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ABSTRACT

The chemical and physical properties of microstructured materials vary with position. The
photophysics of solute molecules can measure these local properties, but they often show multiple
rates (rate dispersion), which complicates the interpretation. In the case of micelles, rate dispersion
in a solute’s anisotropy decay has been assigned to either local anisotropy or heterogeneity in the
local viscosity. To resolve this conflict, the rotation of PM597 molecules in SDS micelles has
been measured by polarized MUPPETS (multiple population-period transient spectroscopy). This
2D technique shows that heterogeneity is strong and that local anisotropy is minimal. The results
suggest that on a subnanosecond timescale, the solute sees only one strong fluctuation of the

micelle structure. The anisotropic, average structure only emerges on longer timescales.
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In soft, microstructured materials—micelles, vesicles, gels, star polymers, polymer
nanoparticles, and so on—there are intertwined questions of where a solute resides and what local
properties it sees. The photophysics of a solute that is also a chromophore are often used to gain
information.!"?’” Static (0D) measurements, for example, the fluorescence quantum yield or Stokes’
shift, give a spatial average of static properties, such as hydrogen-bond availability or polarity.
Time-resolved measurements with one time dimension (1D) give rates that characterize dynamic
properties. For example, the reorientation or solvation rate characterizes the local viscosity or
dielectric-relaxation time, but again, only with an average over locations. In microstructure
materials, these 1D kinetics often have nonexponential decays. The implications are clearly
important, but the cause is often ambiguous. This Letter shows how 2D kinetics?®* resolve this
problem. MUPPETS (multiple population-period transient spectroscopy)—a 2D version of

3739__is applied to micelles to distinguish between different pictures

ultrafast optical spectroscopy;
of the solute distribution and the local properties of a micelle.

The rotation time of a dye-molecule solute can be measured by the decay of its optical
anisotropy.*® It is well established that the rotation time reflects the solvent’s macroscopic
viscosity. In simple solvents, the decay is close to a single exponential, yielding a single viscosity.
(Deviations are seen, even in pure solvents, when complexity is added, for example, slow

38,4142 or jonic liquids.*’) When the same experiment is performed

solvation,*! oligomeric solvents,
in microstructured materials in general, and micelles in particular, the anisotropy decays become
nonexponential and appears to have multiple rates.'?” (Whether this rate dispersion should be
described as a multiexponential (discrete rates) or as a stretched exponential or other continuous
rate distribution is not experimentally decidable, but depends on the model used to describe it. We
use a nonparametric approach that does not distinguish between these cases.**)

A simple explanation for the observed rate dispersion is that it reflects rate heterogeneity.” 1+
1523 Solute molecules occupy a variety of positions within the micelle, and these positions have
different local viscosities. Each solute has a specific microviscosity, a well-defined rotation time,
and an exponential anisotropy decay, but 1D kinetics only see the average over the distribution of
microviscosities. In this model, the distribution of observed rates can be directly converted into a
distribution of viscosities.

A contrasting, but widely accepted,'®?%?*?7 explanation is the “wobble-in-a-cone” model.**
46 This model is homogeneous. It assumes that every micelle has the average structure, which is
strongly layered into a hydrocarbon core, a surface layer of partially hydrated head groups, and the
aqueous solvent. It further assumes that the probe is confined to the surface layer, and this layer
is strongly anisotropic. As a result, the solute can only “wobble” over a restricted cone of angles
about the local director. Other angles are explored more slowly by diffusion to a different point

on the surface. In its simplest form, this model predicts a biexponential decay: the fast time gives



the viscosity of the surface layer, the slow time gives the layer’s diffusion constant, and the relative
amplitude is related to the cone angle. Every molecule experiences both fast and slow processes
in sequence, and the rates seen on one molecule are also seen on every other molecule. Using 1D
kinetics alone, it is difficult, if not impossible, to distinguish between the wobble-in-a-cone and

heterogeneity models.
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Figure 1. The 1D kinetics of PM597 in SDS micelles. (a) The rotational decay Cr(l) (7)
from pump-probe measurements (blue) and time-correlated single-photon counting
(red) is shown as a solid curve. The nonexponential rotational dynamics are
characterized by the geometric-mean time 7, and the rate dispersion d,,. A single
exponential with the same 7, (green) and its own dispersion dexp is shown for
comparison. A smooth fit (black dots) is used to produce the spectrum in (b). The
rotation-free electronic decay Cél)(r) (orange) is also shown with its smooth fit (black
dots). (b) Rotational decay spectra from 1D (black) and 2D (blue) measurements.

The 1D kinetics of pyrromethene 597 (PM597)** in sodium-dodecyl-sulfate (SDS)
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micelles” > are shown in Figure 1. The absorption change with parallel A4 H(r) and perpendicular

A4 | (z) polarizations are converted to the electronic,
%AAH(T) + %AAJ_(Z')
304,(0)+5 A4, (0)

c(r)= (1)



and rotational,
AA” (r)—AA4, (7)
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decays (Figure 1a).** [See the Supporting Information (SI) for experimental methods.] The
electronic decay is similar to the electronic lifetimes reported for PM597 in other solvents.*” The
rotational decay is also similar to those for other dye molecules in a variety of micelles.'®?” It is
clearly stretched relative to a single exponential. For reference, a stretched-exponential fit
(exp[(—2/T O)ﬁ], not shown) gives £ = 0.66.

Because different models imply different fitting functions, we analyze the data with a
nonparametric approach, that is, one that does not require a specific form for the fitting function.
The data is smoothed (see SI) so its derivative can be taken to give the “decay spectrum” (Figure
Ib),

)
CP(nT) = —(%J 3)
nr Ier

The first moment of this spectrum gives the geometric-mean rotation time, 7. = 230 ps. The

second central moment (variance) is the total rate dispersion d,, = 3.22, substantially higher than
exp — 1.645).
This decay spectrum contrasts with the more common rate spectrum Cr(l)(ln 7),

for a single exponential decay (d

—t/T

cV(r)= j: CV(nTye ™ d(nT) &)

which is an inverse-Laplace transform on a log scale. It expresses the rotational decay as a
superposition of exponential decays with time constants 7. The advantage of the decay spectrum
is that it can be derived uniquely from the data, whereas finding the rate spectrum is well-known
to be an ill-posed problem without a unique solution.® The precise relationship between the decay

and rate spectra is

cO—c®xs0 (5)

exp
where the star indicates convolution on the In-7 scale. Thus, the measurement of the rate spectrum
is obscured by a “response function” (A?é)l{)p (InT), which is the decay spectrum of an exponential
decay (green curve in Figure 1b). It is a precisely known function, but it obscures the details of
the rate spectrum nonetheless. Equation 5 shows that the lack of uniqueness in the rate spectrum
is the same as the ambiguity in deconvolution. Because variances add under convolution, we can

quantify the degree of stretching by the excess rate dispersion d the difference between the

exc?

variance of the experimental spectrum d, and the variance of the response function d gy, doy. =



dio— dey, = 1.58. Broad features, such as these variances, can be recovered despite the
convolution, even though fine features cannot.

A general way to model the dispersion in the rotational decay is to start with a homogenous
decay shape C}(l:))m
biexponential decay predicted by the wobble-in-a-cone model. It has an excess dispersion dy,,,, or

(z/T), which is shared by all molecules. For example, it could be the

a total dispersiond, ,, + d ... Inaddition, each molecule may have its own time constant 7', which

exp*
is distributed with a probability P, (7). Combining this heterogeneous source of rate dispersion

with the homogeneous decay give the total decay,

cr)= j;o Cyom (7/ TPy (T)dT (6)

rot

This model assumes that the local time constant does not change during the decays; it is in the slow
rate-exchange limit.
With this model,

A

~(1
C( ) = Chom * Phet (7)

T

and
drot - dhom + dexp + dhet (8)

where d, ., is the variance of P, (T) on a In-T scale. One-dimensional methods can measure the
excess rate dispersion, d . =d,, —d exp = Dhom T Ahep but they provide no means to separate this
sum into its components.

Two-dimensional kinetics?®3°

are sensitive to the difference between homogeneous and
heterogeneous rate dispersion.’” In these experiments, there are two excitations of the sample
separated by a time interval 7;. A measurement of the state of the system and its return to
equilibrium occurs after a second period 7,, measured from the second excitation. If the response
of the system is nonlinear, this signal differs from the sum of the signals from each excitation
individually. This difference is the 2D decay C(z)(rz, 7).

MUPPETS is a version of 2D kinetics based on ultrafast optical excitation of electronic
states.’” Each excitation is a pair of simultaneous laser pulses crossed at the sample to produce a
spatial grating of excited states. The final measurement is by heterodyned diffraction from the
mixed grating created by the nonlinear interaction of both excitations. This configuration requires
a six-pulse sequence, but results in single-shot cancellation of the 1D signals from each excitation
acting individually. The optical system used to generate this pulse sequence is described in the SI.

When using polarized pulses, there are four unique correlation functions differing by the type
of dynamics measured in each time interval: rotation—rotation, electronic—electronic, symmetric

rotation—electronic, and asymmetric rotation—electronic. The first two can be isolated with



measurements at only two polarization combinations: A4, (z,, 7;) and A4_,(,, 7;) (see Figure

S4a in the SI).?® These can be added to give the electronic—electronic correlation,

%AA++(12,71)+%AA+_(12,11)

Cé?(fz )= )
’ 7 5
1704,,(0,0)+3 A4, (0,0)
or subtracted to give the rotation—rotation correlation,
AA - A4
CO (55,17 = it 2= AT T (10)

§M++(T2,Tl)+%AA+_(T2,T1)

The resulting electronic—electronic surface is shown in Figure 2a as a set of slices at fixed 7.
The 1D decay (Figure 1a) is nearly single exponential. There is an additional small component
that is attributed to electronic-state solvation, which causes a spectral shift and a slight drop in
cross section at early times. Thus, no heterogeneity is expected. The solid curves are predicted
from the 1D electronic decay, making this assumption. The data in Figure 2a do not deviate from
the predictions in a systematic way as 7, increases. This result indicates that there is no
heterogeneity in the electronic-state relaxation. Attention can focus on the more interesting

rotational dynamics.
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Figure 2. The 2D kinetics of PM597 in SDS micelles. The (a) electronic—electronic

Cé? (z,,7,) and (b) rotation—rotation Cr(f ) (7,,7,) surfaces are shown as a series of cuts

at constant z;. The smooth curves in (a) are the predictions from the 1D results, assuming
a homogeneous electronic decay. In (b), the curves are a smoothing fit. They are used
to produce the decay spectra in Figure 3.

The rotation—rotation results are shown in Figure 2b. Careful examination shows that these
shapes do change systematically as 7, increases; small 7, curves begin decaying earlier than curves
with a large 7. This result indicates that rate heterogeneity is important in the rotational dynamics.
For a more quantitative interpretation, the data are smoothed and converted to a 2D decay spectrum
(see SI). The smoothing surface is shown as the curves in Figure 2b; the corresponding spectrum

is shown in Figure 3b.
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Figure 3. Analysis of the rotation-rotation results (Figure 2b). The 2D decay spectra
é’r(f ) (T,,T;) for (a) 100% heterogeneity and (c) 0% heterogeneity are compared to (b) the
measured spectrum. (d) Projections of the decay spectra along the diagonal: 100%
heterogeneous (a, red), measured (b, black) and 0% heterogeneous (c, blue). (e) The
decay shape for an individual molecule (C},,(7/T), black) compared to an exponential
(green).

A 2D decay spectrum indicates the degree of correlation between the time constant 7', that a
molecule has during 7, and the time constant 7', that it has during 7,. For heterogeneous rate
dispersion, each time constant has a distribution throughout the sample; for a specific molecule,
there is only one time constant, which is the same in both time intervals. If we could measure the
2D rate spectrum, it would be spread along the diagonal with all the rates of the 1D spectrum, but
it would be a delta function along the antidiagonal. However, we can only directly measure the
2D decay spectrum, which is a convolution of the rate spectrum with the spectrum of an
exponential (similar to eq 5). Figure 3a shows the decay spectrum calculated from the 1D data,
assuming only heterogeneous rate dispersion and including this convolution. Despite the

convolution, the elongation along the diagonal is clear.
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On the other hand, if the rate dispersion is homogeneous, the various rates seen in the 1D data
represent sequential steps in a relaxation process that is experienced by every molecule. Even a
single molecule will experience all time constants during two separate relaxation events, one
during 7, and one during 7,. In a 2D rate spectrum, there would be off-diagonal “cross peaks” at
every combination of time constants. Figure 3¢ shows the decay spectrum calculated from the 1D
data, assuming only homogeneous rate dispersion and including the convolution with the response
function. The spectrum is compact with similar widths along the diagonal and the antidiagonal.

The measured 2D decay spectrum (Figure 3b) is strongly elongated, indicating that rate
heterogeneity is the primary source of rate dispersion. The same qualitative conclusion can be
taken from the time-domain data (Figure 2b), but the 2D spectrum makes it more visually evident.

The 2D spectrum is also easy to quantify. In principle, both local anisotropy and local
viscosity variation, that is both homogeneous and heterogeneous mechanisms, may be acting
simultaneously. Thus, the quantitative question is what fraction of the rate dispersion is due to
rate heterogeneity. Within the slow rate-exchange model (eq 6), the 2D spectrum can be further
reduced to two, 1D projections.*®* The integrations involved result in additional averaging of the
experimental noise.

If the 2D spectrum is projected along the vertical (or horizontal) axis, it should give the 1D
spectrum. This projection from the 2D spectrum (Figure 3b) is compared to the result from the
1D data in Figure 1b. They are in good agreement. (The vertical projections of the heterogeneous
and homogeneous models in Figures 3a and 3¢ agree perfectly with the 1D data, by construction.)

The new information in the 2D spectrum comes from the other projection, which is taken

along the diagonal (Figure 3d). It has a variance of d g, = d; ., + d
¢34

exp> the heterogeneous

contribution in eq 8§ is absen For comparison, the projections of the homogeneous and
heterogeneous models (Figures 3a and 3c) are also shown. The data are close to the heterogeneous
limit, but there is a slight broadening due to some degree of homogeneous rate dispersion. The
effect 1s small, but eliminating it results in a clear increase in the chi-squared of the fit to the time-
domain data (see SI).

The variances of these two projections can be combined to give the fraction of the excess rate

dispersion that is due to rate heterogeneity,

fhet _ dhet _ drot — ddia =87% (1 1)
dhom + dhet d d

rot = “exp

When the projections are reduced to their two variances, there is even more averaging of
experimental noise. This single number is a reduction or “averaging” of all the data in Figure 2.
Thus, it is more reliable than one might anticipate. It also does not rely on assumptions about the

specific mechanism responsible for either the homogeneous or heterogeneous rate dispersion or
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using specific functions to represent Cy,(z/T) or P, (T). It only assumes the general form of eq
6.

Although the 1D data cannot be uniquely decomposed into homogenous and heterogeneous
contributions, the loss of information in eq 6 is not complete. The loss primarily affects the high
moments of C,  (¢/T) or Py (T). An example of a decomposition with the correct low moments
can be created using the 2D results and mild assumptions. We assign a biexponential to C, (/T
and a beta distribution to P (7). The biexponential is the simplest form from the wobble-in-a-
cone model for local anisotropy. The beta distribution is a smooth, single peaked function with
four adjustable parameters.’” With these forms, the SI shows that the first four moments of the 1D
decay spectrum and the value of f ., from the 2D measurements can be correctly reproduced. The
resulting inversion of eq 6 correctly represents the major features of C,  (/T) and P (7T, even
though the details are not unique.

Figure 3d compares C,,(z/T) to a single exponential. This comparison correctly illustrates
the magnitude of the homogeneous rate dispersion, which in turn, reflects the amount of anisotropy

in the solute’s local environment. It is quite small, near the limits of experimental detectability.
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Figure 4. The distribution of microviscosities seen by the solute. The viscosities of
several pure solvents are marked for reference.

Figure 4 shows the distribution of microviscosities implied by the measurements. The rotation
time of PM597 in several pure solvents was measured to establish the relationship between rotation
time and viscosity (SI). This figure must be interpreted with the understanding that finer features
may be distorted in the deconvolution. For example, the low viscosity tail may decay too slowly
or the high viscosity cut-off may be too sharp. However, the mean position, width and skewness
of the distribution are well represented. Thus, microviscosities are significantly populated from

levels near, or even below, those of the external water (1 cP) to ones ~30-fold higher. The high
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viscosity is not simply characteristic of long hydrocarbon chains: the viscosity of dodecane is only
1.3 cP. Rather it is caused by constraints on the motion imposed by the micelle structure. A
similarly high viscosity is found in dodecanol (16.1 cP), where motion is constrained by the need
to maintain hydrogen bonding between the sparse hydroxyl groups. The skew is strong, with the
peak probability near the maximum microviscosity and a steadily decreasing probability for lower
microviscosities. This shape has implications for a structural interpretation.

Many discussions of micelles are based on their average structure. This structure can be seen
in measurements that average over many molecules, such as light,** x-ray>? or neutron’! >3
scattering. In a sense, they are mean-field discussions. The wobble-in-a-cone model adds the idea
that a solute is tightly confined to a single portion of this structure, resulting in homogenous
behavior.

To create the observed heterogeneity, we could keep the mean-field picture of the micelle, but
add a strong radial gradient in microviscosity and assume that take the solutes distribute throughout
the micelle. However, the highest viscosity would be in the center, which occupies a small volume.
The intermediate region has a larger volume and, as a result, most solutes would be in a region of
intermediate microviscosity. The strong skew in Figure 4 is hard to explain.

On the other hand, we can drop the mean-field picture. Micelles are held together by weak
forces, allowing large fluctuations in their instantaneous structure. Heterogeneity arises not just
from the variety of conditions within one micelle, but also from the diversity of structures from
micelle to micelle. Most structures have a substantial region from which water is excluded and
where the solute is most soluble. The need to exclude water constrains motion, creating a high
viscosity. In the interfacial region, the water, head groups, and hydrocarbon mix in ways that are
much more diverse, with more water exposure leading to sites that are more mobile, but also less
favorable to the solute. This picture can account for the broad and highly skewed distribution of
microviscosities, if the range of instantaneous configurations persist over the nanosecond duration
of the measurement.

The same issues are relevant to other microstructured materials and other processes. These
materials are all susceptible to large fluctuations in structure that can persist over times longer than
important chemical events. The average structure seen in many experiments only becomes
relevant on longer timescales. Two-dimensional kinetics offer a direct approach to probing the

properties of such fluctuations.
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B EXPERIMENTAL METHODS

Sample. The sample consisted of an aqueous solution of sodium dodecyl sulfate (SDS, 200
mM) and pyrromethene 597 (PM597, 52 uM) in a 1.0 mm flow cell at 22 °C (see Figure S1). The
solution had an optical density of 0.39 at the excitation wavelength of 530 nm. At this
concentration, the SDS forms micelles containing ~80 molecules.’*>> The micelles are crowded
enough to have correlations in the inter-micelle positions, but they are not crowded enough to
perturb the internal structure of the micelles. To confirm this conclusion, 1D measurements at
SDS concentrations of 150 mM and 100 mM with the same dye concentration were made, but

showed no difference from the 200 mM sample.

sodium dodecyl sulphate

Figure S1. Structures of pyrromethene 597 (PM597) and sodium dodecyl sulfate (SDS).

PM597 has simple photochemistry: high quantum yield, low triplet yield, weak excited-state
absorption, good photostability and weak solvatochromism.*’** The sample had an average of
one PM597 molecule per 46 micelles, so dye interactions are not expected. To confirm this
expectation, the dye concentration was varied to give sample optical densities between 0.17—0.64.

No effect on the 1D measurements was found. PM597 is poorly soluble in water: a saturated
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solution has an optical density of 8<107* in 1.0 mm. The signal from PM597 independent of a
micelle can be neglected.

Optical system. The laser pulses were generated by a standard, 1-kHz Ti:sapphire laser
system. The signal from a white-light-seeded optical parametric generator was mixed with 800
nm pulses to generate pulses at 530 nm with a bandwidth of 150 cm™. At the sample, the pulses
had a length of ~300 fs (not bandwidth limited) and an energy of 80 nJ/pulse.

a

P1 L1 G1 L2

A /\I/\IDL PD3
WPz =g ML1 M1 PP ML2

T—C1 —% M2 P2 PH VND
~
1 | PD2
I
D3 7S q < 'ND/ ) IDiG‘D PD1
A
2 L
L3 /

1 S L6 L7 L8
G2 4 C2 L5
Lock-in
PD2- PD1

Figure S2. MUPPETS optical system: polarizers (P), lenses (L), transmission gratings
(G), delay lines (DL), meniscus lenses (ML), phase plates (PP), neutral density filter (ND),
masks (M), sample (S), pinhole (PH), and photodiodes (PD).

-

The MUPPETS current optical system is shown in Figure S2. Its design and operation have
been described in detail elsewhere.’’® The initial pulse is split equally in the vertical direction
into first excitation (1), second excitation (2), and probe (3) by a transmission grating (G1).
Waveplates (WP) and polarizer P2 were used to adjust the polarizations at the sample to the
required combinations (Figure S4a). Extinction ratios were in the range 500-5000 at the sample.
A second grating (G2) further divided the pulses into nine equal intensity pulses (Figure S2, left
cross-section). Three pulses were blocked to leave the six pulses used for the experiment (Figure
S2, right cross-section). The differential heterodyne detection required unequal probe intensities
at the sample.Sl One of the phase plates was also a neutral density filter (ND, optical density 1.0,
pulse 3c). A compensating variable neutral density (VND) filter was placed in beam 3a.

In polarization measurements, it is common to make a “G-factor” correction by matching the
tails of the signals at long times, when rotation is complete. Because those times lie outside our
2-ns time window, we made several changes to the MUPPETS set-up to improve its stability across
multiple scans: (1) Fine angle adjustments were added to lens L5 to correct for residual coma. (2)
A magnifying doublet lens and camera (not shown) were used to image the beams at the sample
position. This system can detect self-focusing, spherical aberration, horizontal and vertical coma,
and horizontal and vertical astigmatism. Each of these problems can be systematically corrected
by appropriate adjustments of the main (L4, L5) and meniscus (ML1, ML2) lenses. (3) A slow
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response (300 ms) photodiode (PD3) independently measured fluctuations in the laser power,
which were used to correct both 1D and 2D measurements. (4) Phase plates (PP) have been added
to all the beams to allow phase shifts in the excitations.

It was found that residual signal from low-order processes were a significant cause of long
term drift and instability, so additional measures were taken to remove them by fast modulation.
The first excitation and probe were amplitude modulated by two choppers. The second excitation
(2a and 2b) was modulated by chopper C1; pulse 1¢ was modulated by chopper C2. Both choppers
operated at 250 Hz, but with a 90° phase shift, that is, shifted by one pulse period. The signal was
detected at 500 Hz with the phase set to give no signal when the pulse 1¢ was blocked.

1D measurements. Pump—probe measurements out to 2 ns were made on the same system
using pulses 1c and 3c. The raw data are shown in Figure S3. The time range was extended using
measurements by time-correlated single-photon counting (150 ps FWHM instrument response
function, 373 nm excitation, 560 nm detection) on a sample with an optical density of 0.10.
Anisotropy results for times >700 ps and electronic results for times >1 ns were matched to the
pump—probe data in the overlapping regions to create data sets over times from 1 ps — 10 ns.
Measurements were taken at parallel A4 (r), perpendicular A4 () and magic-angle A4 (7)
polarizations. The amplitudes of the parallel and perpendicular decays were adjusted slightly to

match the sum to the magic-angle results before calculating the anisotropy.
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Figure S3. The raw, 1D pump-probe data for PM597 in SDS micelles: parallel (A4 (z),
black), perpendicular (A4 | (r), red), and magic-angle (A4 ,(z), blue) polarizations. The
scale changes from linear for times <1 ps to logarithmic for times >1 ps. Data are shown
as points, and fits to eq 16 are shown as solid lines.

2D measurements. The 2D signal A4 (5, 75 @) 1s a change in absorbance as a function
of two time separations, 7, and 7,, phase ¢ and polarization conditions p. This signal was recorded
as sets of scans along 7, at a fixed value of 7,. Scans were taken at each of the four polarization
combinations shown in Figure S4a. The (++/——) and (+—/—+) pairs should be identical. All four



S4

polarizations were measured to check for consistency and to improve averaging. The phase of the
second excitation (beam 2b) was adjusted for either maximum positive (0°) or maximum negative
(180°) signal. Measurements at other phases at 7; = 1 ps showed a constant phase, so only these
two phases were needed. All polarizations were measured at both phases, giving a total of eight

scans in a set (Figure S4b). These scans were combined to give
AAd, (75,7))=AA, (7,,7;0°) = A4, (7,,7,;180°)
+AA__(7,,7,;0°) = AA__(7,,7,;180°) (12)
and
AAd, (75,7))=AA4, (1,,7,;0°)-AA4, (7,,7,;180°)
+AA_ (7,,7;0°)—AA_ (7,,7,;180°), (13)

which are shown in Figure S4c.

Because each set was typically taken on a separate day, their amplitudes and noise levels
varied. To correct this variation, a preliminary, multiexponential fit (eq 16) was made to each
fixed-7, curve to extract initial values, A4, . (1ps, 7,) and A4, (1ps, 7,), and residuals. The chi-
squared values of the residuals were used to weight the later fitting. The amplitude of A4, (75, 7,)
and A4, (z,, t;) were individually adjusted to match the 7, = 1 ps scan, assuming 7,—, symmetry,
A4 (ty, 1ps) = A4 (1ps, 7;). These adjustment effectively combine sequences of 1D slices into
unified, 2D surfaces.

The weighted sum of A4, (7,, 7;) and A4, (t,, ;) (eq 10) formed the electronic—electronic
decays shown in Figures S4d and 2a. For homogeneous electronic relaxation, the 2D result can
be predicted from the 1D results:

Cc2(zy,7)=CP(z,)CP (7)) (14)

c
(solid curves in Figure 2a, Table S2). These results matched the data. Because the 1D results are
more accurate, the results of eq 14 were used in eq 18 and to corrected the anisotropy—anisotropy
results (eq 15) to the rotation—rotation decay (eq 10).
The difference of A4, (7, 7,) and A4, (z,, 7,) is the 2D anisotropy—anisotropy decay,
A/4++ (2-2 > Tl) - A14+— (2-2 > Tl)

cP(z,,7)= . . . (15)
1A, (0,0)+3 A4, (0,0)

An example is shown in Figure S4d. In the end, the anisotropy—anisotropy decay is divided by the
electronic—electronic decay to give the rotation—rotation decay (eq 10, Figure 2b). However, all

the intermediate data reduction was done on this anisotropy—anisotropy decay.
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Figure S4. The MUPPETS data for z; =1 ps. (a) The polarization of the first (1) and
second (2) excitations and of the probe (3) are separated by the magic angle 6,
[measured relative to (2)] to create four polarization combinations. (b) The raw data
AA4 p(rz, 71; ¢) with colors corresponding to the polarization conditions in (a). Positive
and negative signals correspond to 0° and 180 phases, respectively. (c) The signals
A4, (1, 71) (black) and A4__(z,, 71) (red) are derived by combining the results in (a) (eqs
12 and 13). (d) The signals from (c) are added to give the electronic—electronic decay
Cé? (r5,71) (eq 9, red) or

C;i)(fzaﬁ) (eq 15, black). The time scales in (b) and (c) change from linear for times <1

subtracted to give the anisotropy—anisotropy decay

ps to logarithmic for times >1 ps.

NONPARAMETRIC DATA REDUCTION
1D spectrum. The 1D anisotropy and electronic decay data were each fit to

N
1 -
Ce(l/e) (7)) = Zci/e),i €Xp (_Tl /T; )
i=0

53251. are given in Table S1.

S5

(16)

with fixed T, = 4'x2 ps. For the anisotropy decay, N = 5; for the electronic decay, N =7. The fits

This fit does not have physical significance; it only encodes our expectation that the signal

decays smoothly and monotonically. Hundreds of data points containing both signal and noise are

reduced to a few coefficients representing the signal. Residuals from the fit represent the noise
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that is removed when the number of degrees of freedom is reduced. The chi-squared of the fit
could be decreased further by decreasing the spacing of the T, and increasing the number of 52}2’1. .
However, we would start “fitting the noise”; the result would be less smooth and would include
more noise.

This fit was used to calculate the 1D rate spectrum (eq 3), and this spectrum is further reduced

to the final parameters, 7_} and d__,. Although eq 16 is a specific functional form, it is chosen only

rot*
for mathematical convenience, and it is only used as an intermediate representation of the signal.
Any other form that goes through the data equally well would give indistinguishable spectra and
final parameters.

The set of 552’1. can be regarded as a rate spectrum of the data. However, rate spectra are never
unique and many other spectra would represent the data equally well. For example, the later part
of the electronic decay is well fit by a single exponential with a 4.8 ns time constant. The negative
coefficients at 512 and 32,768 ps are the result of representing it with exponentials with different,

fixed time constants.

Table S1. Coefficients Summarizing the 1D Anisotropy and Electronic Decays”

T, (ps) 2 8 32 128 512 2048 8192 32,768
Anisotropy®  —0.009 0051  0.029 0201 0514 0214 — —
Electronic © 0050 0007 0005 0012 -0.001 0295 0824  —0.192

a b_qy ¢_q
Seeeq 16. ") "zl

Initial 2D spectrum. A similar procedure was applied to the 2D anisotropy, but with the
2D extension of eq 16:

5
Cii)(rz,rl): > Eéi)y [exp(—rz/Tj)exp(—rl/Y})

J,i=0
J>i

+exp(—Tz/Ti)eXp(_Tl/Tj)}

5
¥y e exp(=1y /T, )exp(~1,/T;) . (17)
=0

Symmetry in 7,—7, and in the resulting coefficient matrix is enforced, 5;211) = 5;,2}1-’ reducing the
number of degrees of freedom to 21. Ultimately, the 2D measurement holds only one piece of
new information, the degree of heterogeneity. Thus, even reducing the data to 21 degrees of

freedom still leaves significant flexibility.
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The fit was done with singular-value decomposition, which allows the number of degrees of
freedom to be systematically reduced by setting large singular values to zero.>> The fitting
procedure forces the corresponding linear combinations of the 5;11) to zero, creating a smoother
spectrum at the expense of a higher chi-squared. Whether the higher chi-squared represents a loss
of fidelity to the signal or a greater rejection of noise relies on the judgement of the analyst.

The 2D anisotropy—anisotropy spectrum with eight degrees-of-freedom is shown in Figure
S5. Two features are evident. The main peak is strongly elongated along the diagonal, indicating
strong rate heterogeneity. In addition, there are weak cross-peaks near (2 ps, 2 ns). These cross-
peaks could be due to leakage of electronic—electronic signal into the anisotropy—anisotropy
measurements. The electronic—electronic spectrum has similar cross-peaks between the fast
solvation process and the slow electronic state lifetime. The polarization conditions were
calculated for collinear beams, whereas in the experiment, the beams intersect at angles up to 3°
from the center line, slightly modifying the correct polarization angles. This systematic error could

allow electronic—electronic signal to leak into our anisotropy measurements.

1000 k

100 k

T, (ps)

10

1 10 100 1000
T, (ps)

Figure S5. The 2D anisotropy—-anisotropy decay spectrum from the initial fitting to eq
17 with eight degrees of freedom.

Refined 2D spectrum. These observations led us to a more refined fitting procedure that

allows us to include more of our theoretical expectations. We used this function:

5
Csi)(fz’fl) = Aa25§135§1,) eXP(_Tz/I})eXP(_Tl/E)
i=0
7
+4, Y Eég)y [exp(—rz/Tj)exp(—rl/Y})}
J»i=0
min(5,7) 5

+ 2555217[GXP(‘Tz/TJ)eXp(—Tl/@)erXP(‘Tz/Ti)eXp(‘Tl/TJ)J (18)
j=max(0,i-1) i=0
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The first line represents a fully heterogeneous anisotropy spectrum, as predicted from the 1D data.
Using this term incorporates our expectation that the 1D and 2D spectra are consistent with each
other. Using this term alone (4, =0, 552217? = 0), leaves only one degree of freedom in the fit, the

amplitude 4,. It gives the chi-squared shown by the green square in Figure S6.

N —
65 L ]
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Figure S6. Chi-squared versus the number of degrees of freedom for the refined fit to
the 2D data (eq 18). Green (1 deg. freedom): for the 100% heterogeneous model. Blue (2
deg. freedom): with electronic—electronic leakage added. Black: with homogeneous
broadening added.

The second term represents leakage of the electronic—electronic signal. The coefficients Eé?y
are already determined, so only the amplitude 4 is varied. Adding this degree of freedom reduces
the chi-squared significantly (blue square in Figure S6) with a small 4 .

The third term in eq 18 creates deviations from heterogeneous behavior. The coefficients
55;?;, allow intensity to move from the diagonal regions to off-diagonal ones. Because the
central peak is expected to broaden, the transfer was limited to near-diagonal regions of the
spectrum, that is, to next-to-diagonal coefficients. Attempts to include coefficient farther from the
diagonal did not improve the fit.

The coefficients 55;3} were fit while the amplitudes 4, and 4 . were fixed at their previously
determined values. The procedure was then iterated: The fit to 4, and 4, was repeated with fixed
55,;?[] (giving a final result, 4, = 4.7%) and then the 55;?;, were refit with fixed 4, and 4.
The reiteration gave only a small change.

The squares in Figure S6 shows the value of chi-squared with the number of degrees of
freedom in the final fit. The spectrum in Figure 3b and the remaining analysis were based on the
fit with five degrees of freedom. Based purely on measures internal to the data set, chi-squared
and number of degrees of freedom, this description of the data is equivalent to the initial spectrum
in Figure S5. However, the refined fit better incorporates external information: it gives a vertical

projection that is in better agreement with the 1D kinetics (Figure 1b), it allows for leakage of the
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electronic—electronic signal, and the horizontal projection has quickly decaying tails that lie

between the limiting heterogeneous and homogeneous limits (Figure 3d).

Table S2. Coefficients Summarizing the 2D Anisotropy-Anisotropy (top“) and Electronic—Electronic
(bottom”) Decays.

Tj (ps)\ T; (ps) 2 8 32 128 512 2048 8192 32,768

—0.003 0.002 — — — — — _

2 0.003 0.000 0.000 0.001 0.000 0.015 0.042  —0.010

0.002 0.044 0.031 — —
0.000 0.000 0.000 0.000 0.000 0.002 0.005  —0.001

— 0.031  —0.006 0.036 — — — —

32 0.000 0.000 0.000 0.000 0.000 0.001 0.004  —0.001

R — — 0.036 0.119 0.031 — —
0.001 0.000 0.000 0.000 0.000 0.004 0.010  —0.002

512 — — — 0.031 0.437  —0.003 — —
0.000 0.000 0.000 0.000 0.000 0.000  —0.001 0.000

P — — — — -0.003 0.205 — —
0.015 0.002 0.001 0.004 0.000 0.087 0243  —0.057

8192 " > > " - - -
0.042 0.005 0.004 0.010  —0.001 0.243 0.679  —0.158

32,768 " - - - . - o

-0.010 —-0.001 —-0.001  —0.002 0.000 —0.057 —0.158 0.037

a2 ~()=~(1 ~(2 b 2 ~(1) ~(1
&2, =N + 562, . Seeeq 18. "2, = &a) . See eq 14.

ee,ij

B APPROXIMATING THE MICROVISCOSITY

DISTRIBUTION

The convolution inherent in kinetic measurements results in a loss of information (eq 7), so
the 1D decay spectrum (Figure 1b) cannot be uniquely decomposed into its homogeneous and
heterogeneous contributions. Fortunately, the loss of information is not complete, and a
representative decomposition can be made to illustrate the retained information. The low-order
moments of it can be recovered accurately; the loss of information primarily affects higher
moments.

The process uses cumulants «,, which are combination of moments.>? They are additive under

convolution. Thus from eq 7,

A 1 A
Kn[cr( )]:Kn[chom]+Kn[Phet] (19)
holds for the decay spectra. The connection between rate and decay spectra (eq 5) leads to
K, [CV1=x,[CV ]+, [CL T (20)

Combining these equations gives a relationship between rate spectra,
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~ 1 ~
K CV 1=, [Coom 1K, [ B ). @n
The rate spectrum of the 1D rotational decay is easy to find from the form used to represent it, eq
16. We believe that the first four cumulants are meaningful. They are given in Table S3.

To provide a specific model, the homogeneous decay was taken to be a biexponential,

Chom () =11 +b)e ™ 4 LA-b)e . (22)
with a geometric-mean (first moment) of zero. The heterogeneous distribution is assumed to be a
smooth, single-peaked function. It should also have sharply defined maximum and minimum
values, because the micelle should have well-defined maximum and minimum viscosities. The
beta distribution satisfies these criteria and can be easily adjusted to have the desired first four

moments.>” It was used to model the heterogeneous distribution,
(InT-a)*" +(c-InT)""
(c_a)a+ﬁ+l B(a,ﬂ) i

where B(a, ) is the beta function. Equation 23 holds for a < In T < ¢; the distribution is zero

P (InT)= (23)

elsewhere.

The assignment of the cumulants proceeds as follows (see Table S3). Because the
homogeneous decay is defined to have a zero 1st moment, the heterogeneous distribution takes the
first moment of the 1D spectrum. The 2D experiment determined that 87% of the 1D 2nd cumulant
(d..) should be assigned to the heterogeneous second cumulant (d, ). The 2nd cumulant of the
homogeneous decay is then the remaining 13% of d,,. We assumed that the kurtosis of the
heterogeneous distribution (ratio of 4th and 2nd cumulants53) was the same as that of the 1D
spectrum. The 4th cumulant of the homogeneous decay was calculated by subtraction. The 1st,
2nd and 4th cumulants of the homogeneous decay completely determine the constants in eq 22: b
=-0.742, x, =2.12, x_ = 0.550. From these values, the 3rd moment of the homogeneous decay
was calculated and subtracted from the 1D 3rd moment to give the heterogeneous 3rd moment.
The first four cumulants of the heterogeneous distribution were then known, so the parameters in
eq 23 could be determined:*’ @ = In (1.60 ps), ¢ = In (1.10 ns), & = 3.25, = 1.03.

Table S3. Cumulants Calculated on a Ln-T Scale

spectrum Ky Ky K3 Ky

rotational rate ¢ 5.433 1.575  —1.633 7.946
homogenous rate b — 0.205  —0.205 0.247
heterogeneous rate ¢ 5.433 1.371 —1.427 6.014

“EOnT) P ED (nT) P, (In T)

hom
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The rotation time of PM597 was measured in a number of solvents, as shown in Figure S7.

All the decays were close to single exponential. The figure reports geometric-mean times versus

viscosities. The results were fit to 77,

generate the microviscosity scale in Figure 4.

600 T

= By, with B = 31.6 ps/cP. This formula was used to

s)

500 -

400
300
200

Rotation Time (p

100

0 1

T T T T T T T
Toluene =
Dodecane
Benzyl Alcohol
Decanol
Ethylene Glycol
Dodecanol

4 6 8 10 12 14 16
Viscosity (cP)

18

Figure S7. The geometric-mean rotation time 7, of PM597 in various solvents versus

their macroscopic viscosities # (points) and a linear fit (line).
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