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ABSTRACT 

The chemical and physical properties of microstructured materials vary with position.  The 

photophysics of solute molecules can measure these local properties, but they often show multiple 

rates (rate dispersion), which complicates the interpretation.  In the case of micelles, rate dispersion 

in a solute’s anisotropy decay has been assigned to either local anisotropy or heterogeneity in the 

local viscosity.  To resolve this conflict, the rotation of PM597 molecules in SDS micelles has 

been measured by polarized MUPPETS (multiple population-period transient spectroscopy).  This 

2D technique shows that heterogeneity is strong and that local anisotropy is minimal.  The results 

suggest that on a subnanosecond timescale, the solute sees only one strong fluctuation of the 

micelle structure.  The anisotropic, average structure only emerges on longer timescales.  
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In soft, microstructured materials—micelles, vesicles, gels, star polymers, polymer 

nanoparticles, and so on—there are intertwined questions of where a solute resides and what local 

properties it sees.  The photophysics of a solute that is also a chromophore are often used to gain 

information.1-27  Static (0D) measurements, for example, the fluorescence quantum yield or Stokes’ 

shift, give a spatial average of static properties, such as hydrogen-bond availability or polarity.  

Time-resolved measurements with one time dimension (1D) give rates that characterize dynamic 

properties.  For example, the reorientation or solvation rate characterizes the local viscosity or 

dielectric-relaxation time, but again, only with an average over locations.  In microstructure 

materials, these 1D kinetics often have nonexponential decays.  The implications are clearly 

important, but the cause is often ambiguous.  This Letter shows how 2D kinetics28-39 resolve this 

problem.  MUPPETS (multiple population-period transient spectroscopy)—a 2D version of 

ultrafast optical spectroscopy;37-39—is applied to micelles to distinguish between different pictures 

of the solute distribution and the local properties of a micelle.  

The rotation time of a dye-molecule solute can be measured by the decay of its optical 

anisotropy.40  It is well established that the rotation time reflects the solvent’s macroscopic 

viscosity.  In simple solvents, the decay is close to a single exponential, yielding a single viscosity.  

(Deviations are seen, even in pure solvents, when complexity is added, for example, slow 

solvation,41 oligomeric solvents,38, 41-42 or ionic liquids.43) When the same experiment is performed 

in microstructured materials in general, and micelles in particular, the anisotropy decays become 

nonexponential and appears to have multiple rates.16-27  (Whether this rate dispersion should be 

described as a multiexponential (discrete rates) or as a stretched exponential or other continuous 

rate distribution is not experimentally decidable, but depends on the model used to describe it.  We 

use a nonparametric approach that does not distinguish between these cases.34)  

A simple explanation for the observed rate dispersion is that it reflects rate heterogeneity.9, 14-

15, 23  Solute molecules occupy a variety of positions within the micelle, and these positions have 

different local viscosities.  Each solute has a specific microviscosity, a well-defined rotation time, 

and an exponential anisotropy decay, but 1D kinetics only see the average over the distribution of 

microviscosities.  In this model, the distribution of observed rates can be directly converted into a 

distribution of viscosities. 

A contrasting, but widely accepted,16-22, 24-27 explanation is the “wobble-in-a-cone” model.44-

46  This model is homogeneous.  It assumes that every micelle has the average structure, which is 

strongly layered into a hydrocarbon core, a surface layer of partially hydrated head groups, and the 

aqueous solvent.  It further assumes that the probe is confined to the surface layer, and this layer 

is strongly anisotropic.  As a result, the solute can only “wobble” over a restricted cone of angles 

about the local director.  Other angles are explored more slowly by diffusion to a different point 

on the surface.  In its simplest form, this model predicts a biexponential decay: the fast time gives 
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the viscosity of the surface layer, the slow time gives the layer’s diffusion constant, and the relative 

amplitude is related to the cone angle.  Every molecule experiences both fast and slow processes 

in sequence, and the rates seen on one molecule are also seen on every other molecule.  Using 1D 

kinetics alone, it is difficult, if not impossible, to distinguish between the wobble-in-a-cone and 

heterogeneity models.  

 

Figure 1.  The 1D kinetics of PM597 in SDS micelles.  (a) The rotational decay 
(1)
r ( )C   

from pump–probe measurements (blue) and time-correlated single-photon counting 

(red) is shown as a solid curve.  The nonexponential rotational dynamics are 

characterized by the geometric-mean time 
rT  and the rate dispersion d rot.  A single 

exponential with the same 
rT  (green) and its own dispersion dexp is shown for 

comparison.  A smooth fit (black dots) is used to produce the spectrum in (b).  The 

rotation-free electronic decay 
(1)
e ( )C   (orange) is also shown with its smooth fit (black 

dots).  (b) Rotational decay spectra from 1D (black) and 2D (blue) measurements.  

 The 1D kinetics of pyrromethene 597 (PM597)47-49 in sodium-dodecyl-sulfate (SDS) 

micelles50-55 are shown in Figure 1.  The absorption change with parallel ΔA

(τ) and perpendicular 

ΔA(τ) polarizations are converted to the electronic, 
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decays (Figure 1a).40  [See the Supporting Information (SI) for experimental methods.]  The 

electronic decay is similar to the electronic lifetimes reported for PM597 in other solvents.47 The 

rotational decay is also similar to those for other dye molecules in a variety of micelles.16-27  It is 

clearly stretched relative to a single exponential.  For reference, a stretched-exponential fit 

(exp[(−τ/T0)
β
], not shown) gives β  = 0.66. 

Because different models imply different fitting functions, we analyze the data with a 

nonparametric approach, that is, one that does not require a specific form for the fitting function.34  

The data is smoothed (see SI) so its derivative can be taken to give the “decay spectrum” (Figure 

1b), 

 
(1)

(1) r
r

( )ˆ (ln )
ln

T

C
C T






=

 
= − 

 
 

 (3) 

The first moment of this spectrum gives the geometric-mean rotation time, rT  = 230 ps.  The 

second central moment (variance) is the total rate dispersion d rot = 3.22, substantially higher than 

for a single exponential decay (dexp = 1.645). 

This decay spectrum contrasts with the more common rate spectrum 
(1)

r (ln )C T , 
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which is an inverse-Laplace transform on a log scale.  It expresses the rotational decay as a 

superposition of exponential decays with time constants T .  The advantage of the decay spectrum 

is that it can be derived uniquely from the data, whereas finding the rate spectrum is well-known 

to be an ill-posed problem without a unique solution.56  The precise relationship between the decay 

and rate spectra is 

 (1) (1) (1)
exp

ˆ ˆ*C C C=   (5) 

where the star indicates convolution on the ln-T  scale.  Thus, the measurement of the rate spectrum 

is obscured by a “response function” (1)
exp

ˆ (ln )C T , which is the decay spectrum of an exponential 

decay (green curve in Figure 1b).  It is a precisely known function, but it obscures the details of 

the rate spectrum nonetheless.  Equation 5 shows that the lack of uniqueness in the rate spectrum 

is the same as the ambiguity in deconvolution.  Because variances add under convolution, we can 

quantify the degree of stretching by the excess rate dispersion dexc,  the difference between the 

variance of the experimental spectrum d rot and the variance of the response function dexp, dexc = 
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d rot – dexp = 1.58.  Broad features, such as these variances, can be recovered despite the 

convolution, even though fine features cannot. 

A general way to model the dispersion in the rotational decay is to start with a homogenous 

decay shape 
(1)

hom ( / )C T , which is shared by all molecules.  For example, it could be the 

biexponential decay predicted by the wobble-in-a-cone model.  It has an excess dispersion dhom or 

a total dispersion dhom + dexp.  In addition, each molecule may have its own time constant T , which 

is distributed with a probability Phet(T).  Combining this heterogeneous source of rate dispersion 

with the homogeneous decay give the total decay, 

 
(1)

rot hom het0
( ) ( / ) ( )C C T P T dT 


=   (6) 

This model assumes that the local time constant does not change during the decay; it is in the slow 

rate-exchange limit.   

With this model, 

 
(1)

r hom het
ˆ ˆC C P=   (7) 

and  

 rot hom exp hetd d d d= + +  (8) 

where dhet is the variance of Phet(T) on a ln-T  scale.  One-dimensional methods can measure the 

excess rate dispersion, dexc = d rot – dexp = dhom + dhet, but they provide no means to separate this 

sum into its components.   

Two-dimensional kinetics28-39 are sensitive to the difference between homogeneous and 

heterogeneous rate dispersion.37  In these experiments, there are two excitations of the sample 

separated by a time interval τ1.  A measurement of the state of the system and its return to 

equilibrium occurs after a second period τ2, measured from the second excitation.  If the response 

of the system is nonlinear, this signal differs from the sum of the signals from each excitation 

individually.  This difference is the 2D decay C (2)(τ2, τ1). 

MUPPETS is a version of 2D kinetics based on ultrafast optical excitation of electronic 

states.37  Each excitation is a pair of simultaneous laser pulses crossed at the sample to produce a 

spatial grating of excited states.  The final measurement is by heterodyned diffraction from the 

mixed grating created by the nonlinear interaction of both excitations.  This configuration requires 

a six-pulse sequence, but results in single-shot cancellation of the 1D signals from each excitation 

acting individually.  The optical system used to generate this pulse sequence is described in the SI. 

When using polarized pulses, there are four unique correlation functions differing by the type 

of dynamics measured in each time interval: rotation–rotation, electronic–electronic, symmetric 

rotation–electronic, and asymmetric rotation–electronic.  The first two can be isolated with 



  7 

measurements at only two polarization combinations: ΔA+ +(τ2, τ1) and ΔA− +(τ2, τ1) (see Figure 

S4a in the SI).38  These can be added to give the electronic–electronic correlation, 

 

7 5
(2) 2 1 2 112 12
ee 2 1 7 5

12 12

( , ) ( , )
( , )

(0,0) (0,0)

A A
C

A A

   
  ++ +−

++ +−

 + 
=

 + 
 (9) 

or subtracted to give the rotation–rotation correlation, 
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The resulting electronic–electronic surface is shown in Figure 2a as a set of slices at fixed τ1.  

The 1D decay (Figure 1a) is nearly single exponential.  There is an additional small component 

that is attributed to electronic-state solvation, which causes a spectral shift and a slight drop in 

cross section at early times.  Thus, no heterogeneity is expected.  The solid curves are predicted 

from the 1D electronic decay, making this assumption. The data in Figure 2a do not deviate from 

the predictions in a systematic way as τ1 increases.  This result indicates that there is no 

heterogeneity in the electronic-state relaxation.  Attention can focus on the more interesting 

rotational dynamics.  
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Figure 2.  The 2D kinetics of PM597 in SDS micelles.  The  (a) electronic–electronic 
(2)
ee 2 1( , )C    and  (b) rotation–rotation (2)

r r 2 1( , )C    surfaces are shown as a series of cuts 

at constant τ1.  The smooth curves in (a) are the predictions from the 1D results, assuming 

a homogeneous electronic decay.  In (b), the curves are a smoothing fit.  They are used 

to produce the decay spectra in Figure 3. 

The rotation–rotation results are shown in Figure 2b.   Careful examination shows that these 

shapes do change systematically as τ1 increases; small τ1 curves begin decaying earlier than curves 

with a large τ1.  This result indicates that rate heterogeneity is important in the rotational dynamics. 

For a more quantitative interpretation, the data are smoothed and converted to a 2D decay spectrum 

(see SI).  The smoothing surface is shown as the curves in Figure 2b; the corresponding spectrum 

is shown in Figure 3b. 
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(two-column figure) 

Figure 3.  Analysis of the rotation–rotation results (Figure 2b).  The 2D decay spectra 
(2)
r r 2 1

ˆ ( , )C T T  for (a) 100% heterogeneity and (c) 0% heterogeneity are compared to (b) the 

measured spectrum.  (d) Projections of the decay spectra along the diagonal: 100% 

heterogeneous (a, red), measured (b, black)  and 0% heterogeneous (c, blue).  (e) The 

decay shape for an individual molecule (Chom(τ/T), black) compared to an exponential 

(green). 

A 2D decay spectrum indicates the degree of correlation between the time constant T1 that a 

molecule has during τ1 and the time constant T2 that it has during τ2.  For heterogeneous rate 

dispersion, each time constant has a distribution throughout the sample; for a specific molecule, 

there is only one time constant, which is the same in both time intervals.  If we could measure the 

2D rate spectrum, it would be spread along the diagonal with all the rates of the 1D spectrum, but 

it would be a delta function along the antidiagonal.  However, we can only directly measure the 

2D decay spectrum, which is a convolution of the rate spectrum with the spectrum of an 

exponential (similar to eq 5).  Figure 3a shows the decay spectrum calculated from the 1D data, 

assuming only heterogeneous rate dispersion and including this convolution.  Despite the 

convolution, the elongation along the diagonal is clear. 
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On the other hand, if the rate dispersion is homogeneous, the various rates seen in the 1D data 

represent sequential steps in a relaxation process that is experienced by every molecule.  Even a 

single molecule will experience all time constants during two separate relaxation events, one 

during τ1 and one during τ2.  In a 2D rate spectrum, there would be off-diagonal “cross peaks” at 

every combination of time constants.  Figure 3c shows the decay spectrum calculated from the 1D 

data, assuming only homogeneous rate dispersion and including the convolution with the response 

function.  The spectrum is compact with similar widths along the diagonal and the antidiagonal. 

The measured 2D decay spectrum (Figure 3b) is strongly elongated, indicating that rate 

heterogeneity is the primary source of rate dispersion.  The same qualitative conclusion can be 

taken from the time-domain data (Figure 2b), but the 2D spectrum makes it more visually evident. 

The 2D spectrum is also easy to quantify.  In principle, both local anisotropy and local 

viscosity variation, that is both homogeneous and heterogeneous mechanisms, may be acting 

simultaneously.  Thus, the quantitative question is what fraction of the rate dispersion is due to 

rate heterogeneity.  Within the slow rate-exchange model (eq 6), the 2D spectrum can be further 

reduced to two, 1D projections.34  The integrations involved result in additional averaging of the 

experimental noise. 

If the 2D spectrum is projected along the vertical (or horizontal) axis, it should give the 1D 

spectrum.  This projection from the 2D spectrum (Figure 3b) is compared to the result from the 

1D data in Figure 1b.  They are in good agreement.  (The vertical projections of the heterogeneous 

and homogeneous models in Figures 3a and 3c agree perfectly with the 1D data, by construction.) 

The new information in the 2D spectrum comes from the other projection, which is taken 

along the diagonal (Figure 3d).  It has a variance of ddia = dhom + dexp; the heterogeneous 

contribution in eq 8 is absent.34  For comparison, the projections of the homogeneous and 

heterogeneous models (Figures 3a and 3c) are also shown.  The data are close to the heterogeneous 

limit, but there is a slight broadening due to some degree of homogeneous rate dispersion.  The 

effect is small, but eliminating it results in a clear increase in the chi-squared of the fit to the time-

domain data (see SI). 

The variances of these two projections can be combined to give the fraction of the excess rate 

dispersion that is due to rate heterogeneity, 

 het rot dia
het

hom het rot exp

87%
d d d

f
d d d d

−
= = =

+ −
 (11) 

When the projections are reduced to their two variances, there is even more averaging of 

experimental noise.  This single number is a reduction or “averaging” of all the data in Figure 2.  

Thus, it is more reliable than one might anticipate.  It also does not rely on assumptions about the 

specific mechanism responsible for either the homogeneous or heterogeneous rate dispersion or 
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using specific functions to represent Chom(τ/T) or Phet(T).  It only assumes the general form of eq 

6. 

Although the 1D data cannot be uniquely decomposed into homogenous and heterogeneous 

contributions, the loss of information in eq 6 is not complete.  The loss primarily affects the high 

moments of Chom(τ/T) or Phet(T).  An example of a decomposition with the correct low moments 

can be created using the 2D results and mild assumptions.  We assign a biexponential to Chom(τ/T) 

and a beta distribution to Phet(T).  The biexponential is the simplest form from the wobble-in-a-

cone model for local anisotropy.  The beta distribution is a smooth, single peaked function with 

four adjustable parameters.57  With these forms, the SI shows that the first four moments of the 1D 

decay spectrum and the value of fhet from the 2D measurements can be correctly reproduced.  The 

resulting inversion of eq 6 correctly represents the major features of Chom(τ/T) and Phet(T), even 

though the details are not unique. 

Figure 3d compares Chom(τ/T) to a single exponential.  This comparison correctly illustrates 

the magnitude of the homogeneous rate dispersion, which in turn, reflects the amount of anisotropy 

in the solute’s local environment.  It is quite small, near the limits of experimental detectability.   

 

Figure 4.  The distribution of microviscosities seen by the solute.  The viscosities of 

several pure solvents are marked for reference. 

Figure 4 shows the distribution of microviscosities implied by the measurements.  The rotation 

time of PM597 in several pure solvents was measured to establish the relationship between rotation 

time and viscosity (SI).  This figure must be interpreted with the understanding that finer features 

may be distorted in the deconvolution.  For example, the low viscosity tail may decay too slowly 

or the high viscosity cut-off may be too sharp.  However, the mean position, width and skewness 

of the distribution are well represented.  Thus, microviscosities are significantly populated from 

levels near, or even below, those of the external water (1 cP) to ones ~30-fold higher.  The high 
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viscosity is not simply characteristic of long hydrocarbon chains: the viscosity of dodecane is only 

1.3 cP.  Rather it is caused by constraints on the motion imposed by the micelle structure.  A  

similarly high viscosity is found in dodecanol (16.1 cP), where motion is constrained by the need 

to maintain hydrogen bonding between the sparse hydroxyl groups.  The skew is strong, with the 

peak probability near the maximum microviscosity and a steadily decreasing probability for lower 

microviscosities.  This shape has implications for a structural interpretation. 

  Many discussions of micelles are based on their average structure.  This structure can be seen 

in measurements that average over many molecules, such as light,54 x-ray52 or neutron51, 53 

scattering.  In a sense, they are mean-field discussions.  The wobble-in-a-cone model adds the idea 

that a solute is tightly confined to a single portion of this structure, resulting in homogenous 

behavior.   

To create the observed heterogeneity, we could keep the mean-field picture of the micelle, but 

add a strong radial gradient in microviscosity and assume that take the solutes distribute throughout 

the micelle.  However, the highest viscosity would be in the center, which occupies a small volume.  

The intermediate region has a larger volume and, as a result, most solutes would be in a region of 

intermediate microviscosity.  The strong skew in Figure 4 is hard to explain. 

On the other hand, we can drop the mean-field picture.  Micelles are held together by weak 

forces, allowing large fluctuations in their instantaneous structure.  Heterogeneity arises not just 

from the variety of conditions within one micelle, but also from the diversity of structures from 

micelle to micelle.  Most structures have a substantial region from which water is excluded and 

where the solute is most soluble.  The need to exclude water constrains motion, creating a high 

viscosity.  In the interfacial region, the water, head groups, and hydrocarbon mix in ways that are 

much more diverse, with more water exposure leading to sites that are more mobile, but also less 

favorable to the solute.  This picture can account for the broad and highly skewed distribution of 

microviscosities, if the range of instantaneous configurations persist over the nanosecond duration 

of the measurement.   

The same issues are relevant to other microstructured materials and other processes.  These 

materials are all susceptible to large fluctuations in structure that can persist over times longer than 

important chemical events.  The average structure seen in many experiments only becomes 

relevant on longer timescales.  Two-dimensional kinetics offer a direct approach to probing the 

properties of such fluctuations. 
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◼ EXPERIMENTAL METHODS 

Sample.  The sample consisted of an aqueous solution of sodium dodecyl sulfate (SDS, 200 

mM) and pyrromethene 597 (PM597, 52 µM) in a 1.0 mm flow cell at 22 °C (see Figure S1).  The 

solution had an optical density of 0.39 at the excitation wavelength of 530 nm.  At this 

concentration, the SDS forms micelles containing ~80 molecules.50-55  The micelles are crowded 

enough to have correlations in the inter-micelle positions, but they are not crowded enough to 

perturb the internal structure of the micelles.  To confirm this conclusion, 1D measurements at 

SDS concentrations of 150 mM and 100 mM with the same dye concentration were made, but 

showed no difference from the 200 mM sample.   

 

Figure S1.  Structures of pyrromethene 597 (PM597) and sodium dodecyl sulfate (SDS). 

PM597 has simple photochemistry: high quantum yield, low triplet yield, weak excited-state 

absorption, good photostability and weak solvatochromism.47-49  The sample had an average of 

one PM597 molecule per 46 micelles, so dye interactions are not expected.  To confirm this 

expectation, the dye concentration was varied to give sample optical densities between 0.17–0.64.  

No effect on the 1D measurements was found.  PM597 is poorly soluble in water: a saturated 
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solution has an optical density of 8×10−4 in 1.0 mm.  The signal from PM597 independent of a 

micelle can be neglected. 

Optical system.  The laser pulses were generated by a standard, 1-kHz Ti:sapphire laser 

system.  The signal from a white-light-seeded optical parametric generator was mixed with 800 

nm pulses to generate pulses at 530 nm with a bandwidth of 150 cm-1.  At the sample, the pulses 

had a length of ~300 fs (not bandwidth limited) and an energy of 80 nJ/pulse. 

 

Figure S2.  MUPPETS optical system: polarizers (P), lenses (L), transmission gratings 

(G), delay lines (DL), meniscus lenses (ML), phase plates (PP), neutral density filter (ND), 

masks (M), sample (S), pinhole (PH), and photodiodes (PD). 

 The MUPPETS current optical system is shown in Figure S2.  Its design and operation have 

been described in detail elsewhere.37-38  The initial pulse is split equally in the vertical direction 

into first excitation (1), second excitation (2), and probe (3) by a transmission grating (G1).  

Waveplates (WP) and polarizer P2 were used to adjust the polarizations at the sample to the 

required combinations (Figure S4a).  Extinction ratios were in the range 500–5000 at the sample.  

A second grating (G2) further divided the pulses into nine equal intensity pulses (Figure S2, left 

cross-section).  Three pulses were blocked to leave the six pulses used for the experiment (Figure 

S2, right cross-section).  The differential heterodyne detection required unequal probe intensities 

at the sample.S1  One of the phase plates was also a neutral density filter (ND, optical density 1.0, 

pulse 3c).  A compensating variable neutral density (VND) filter was placed in beam 3a. 

In polarization measurements, it is common to make a “G-factor” correction by matching the 

tails of the signals at long times, when rotation is complete.  Because those times lie outside our 

2-ns time window, we made several changes to the MUPPETS set-up to improve its stability across 

multiple scans:  (1) Fine angle adjustments were added to lens L5 to correct for residual coma.  (2) 

A magnifying doublet lens and camera (not shown) were used to image the beams at the sample 

position.  This system can detect self-focusing, spherical aberration, horizontal and vertical coma, 

and horizontal and vertical astigmatism.  Each of these problems can be systematically corrected 

by appropriate adjustments of the main (L4, L5) and meniscus (ML1, ML2) lenses.  (3) A slow 
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response (300 ms) photodiode (PD3) independently measured fluctuations in the laser power, 

which were used to correct both 1D and 2D  measurements.  (4) Phase plates (PP) have been added 

to all the beams to allow phase shifts in the excitations.   

It was found that residual signal from low-order processes were a significant cause of long 

term drift and instability, so additional measures were taken to remove them by fast modulation.  

The first excitation and probe were amplitude modulated by two choppers.  The second excitation  

(2a and 2b) was modulated by chopper C1; pulse 1c was modulated by chopper C2.  Both choppers 

operated at 250 Hz, but with a 90° phase shift, that is, shifted by one pulse period.  The signal was 

detected at 500 Hz with the phase set to give no signal when the pulse 1c was blocked.   

1D measurements.  Pump–probe measurements out to 2 ns were made on the same system 

using pulses 1c and 3c.  The raw data are shown in Figure S3.  The time range was extended using 

measurements by time-correlated single-photon counting (150 ps FWHM instrument response 

function, 373 nm excitation, 560 nm detection) on a sample with an optical density of 0.10.  

Anisotropy results for times >700 ps and electronic results for times >1 ns were matched to the 

pump–probe data in the overlapping regions to create data sets over times from 1 ps – 10 ns.  

Measurements were taken at parallel ΔA∥(τ), perpendicular ΔA(τ) and magic-angle ΔAm(τ) 

polarizations.  The amplitudes of the parallel and perpendicular decays were adjusted slightly to 

match the sum to the magic-angle results before calculating the anisotropy.   

 

Figure S3.  The  raw, 1D pump–probe data for PM597 in SDS micelles: parallel (ΔA∥(τ), 

black), perpendicular (ΔA(τ), red), and magic-angle (ΔAm(τ), blue) polarizations.  The 

scale changes from linear for times <1 ps to logarithmic for times >1 ps.  Data are shown 

as points, and fits to eq 16 are shown as solid lines.  

2D measurements.  The 2D signal ΔAp(τ2, τ1; φ) is a change in absorbance as a function 

of two time separations, τ1 and τ2, phase φ  and polarization conditions p .  This signal was recorded 

as sets of scans along τ2 at a fixed value of τ1.  Scans were taken at each of the four polarization 

combinations shown in Figure S4a.  The (+ +/− −) and (+ −/− +) pairs should be identical.  All four 
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polarizations were measured to check for consistency and to improve averaging.  The phase of the 

second excitation (beam 2b) was adjusted for either maximum positive (0°) or maximum negative 

(180°) signal.  Measurements at other phases at τ1 = 1 ps showed a constant phase, so only these 

two phases were needed.  All polarizations were measured at both phases, giving a total of eight 

scans in a set (Figure S4b).  These scans were combined to give 
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which are shown in Figure S4c. 

Because each set was typically taken on a separate day, their amplitudes and noise levels 

varied.  To correct this variation, a preliminary, multiexponential fit (eq 16) was made to each 

fixed-τ1 curve to extract initial values, ΔA+ +(1ps, τ1) and ΔA+ −(1ps, τ1), and residuals.  The chi-

squared values of the residuals were used to weight the later fitting.  The amplitude of ΔA+ +(τ2, τ1) 

and  ΔA+ −(τ2, τ1) were individually adjusted to match the τ1 = 1 ps scan, assuming τ1–τ2 symmetry, 

ΔAp(τ2, 1ps) = ΔAp(1ps, τ1).  These adjustment effectively combine sequences of 1D slices into 

unified, 2D surfaces. 

The weighted sum of ΔA+ +(τ2, τ1) and ΔA+ −(τ2, τ1) (eq 10) formed the electronic–electronic 

decays shown in Figures S4d and 2a.  For homogeneous electronic relaxation, the 2D result can 

be predicted from the 1D results: 

 (2) (1) (1)
ee 2 1 e 2 e 1( , ) ( ) ( )C C C   =  (14) 

(solid curves in Figure 2a, Table S2).  These results matched the data.  Because the 1D results are 

more accurate, the results of eq 14 were used in eq 18 and to corrected the anisotropy–anisotropy 

results (eq 15) to the rotation–rotation decay (eq 10). 

The difference of ΔA+ +(τ2, τ1) and ΔA+ −(τ2, τ1) is the 2D anisotropy–anisotropy decay, 
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7 5
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An example is shown in Figure S4d.  In the end, the anisotropy–anisotropy decay is divided by the 

electronic–electronic decay to give the rotation–rotation decay (eq 10, Figure 2b).  However, all 

the intermediate data reduction was done on this anisotropy–anisotropy decay. 
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Figure S4.  The MUPPETS data for τ1 = 1 ps.  (a) The polarization of the first (1) and 

second (2) excitations and of the probe (3) are separated by the magic angle θm  

[measured relative to (2)] to create four polarization combinations.  (b) The raw data 

ΔAp(τ2, τ1; φ) with colors corresponding to the polarization conditions in (a).  Positive 

and negative signals correspond to 0° and 180  phases, respectively.  (c) The signals 

ΔA+ +(τ2, τ1) (black) and ΔA− −(τ2, τ1) (red) are derived by combining the results in (a) (eqs 

12 and 13).  (d) The signals from (c) are added to give the electronic–electronic decay 
(2)
ee 2 1( , )C    (eq 9, red) or  subtracted to give the anisotropy–anisotropy decay 
(2)
aa 2 1( , )C    (eq 15, black).  The time scales in (b) and (c) change from linear for times <1 

ps to logarithmic for times >1 ps. 

◼ NONPARAMETRIC DATA REDUCTION 

1D spectrum.  The 1D anisotropy and electronic decay data were each fit to 

 ( )(1) (1)

a/e 1 a/e, 1
0

( ) exp
N

i i
i

C c T 
=

= −   (16) 

with fixed T i = 4
i
2 ps.  For the anisotropy decay, N  = 5; for the electronic decay, N  = 7.  The fits 

are shown in Figure S3 and the values of (1)

a/e,ic  are given in Table S1.   

This fit does not have physical significance; it only encodes our expectation that the signal 

decays smoothly and monotonically.  Hundreds of data points containing both signal and noise are 

reduced to a few coefficients representing the signal.  Residuals from the fit represent the noise 
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that is removed when the number of degrees of freedom is reduced.  The chi-squared of the fit 

could be decreased further by decreasing the spacing of the T i and increasing the number of (1)

a/e,ic .  

However, we would start “fitting the noise”; the result would be less smooth and would include 

more noise.   

This fit was used to calculate the 1D rate spectrum (eq 3), and this spectrum is further reduced 

to the final parameters, rT  and d rot.  Although eq 16 is a specific functional form, it is chosen only 

for mathematical convenience, and it is only used as an intermediate representation of the signal.  

Any other form that goes through the data equally well would give indistinguishable spectra and 

final parameters.   

The set of (1)

a/e,ic  can be regarded as a rate spectrum of the data.  However, rate spectra are never 

unique and many other spectra would represent the data equally well.  For example, the later part 

of the electronic decay is well fit by a single exponential with a 4.8 ns time constant.  The negative 

coefficients at 512 and 32,768 ps are the result of representing it with exponentials with different, 

fixed time constants. 

Table S1.  Coefficients Summarizing the 1D Anisotropy and Electronic Decaysa 

T
i
 (ps) 2 8 32 128 512 2048 8192 32,768 

Anisotropy b −0.009 0.051 0.029 0.201 0.514 

 

0.214 — — 

Electronic c 0.050 0.007 0.005 0.012 −0.001 0.295 0.824 −0.192 

a
 See eq 16.  

b (1)
a,ic   

c (1)
e,ic   

Initial 2D spectrum.  A similar procedure was applied to the 2D anisotropy, but with the 

2D extension of eq 16: 

 

( ) ( )

( ) ( )

( ) ( )

5
(2) (2)

aa 2 1 aa, 2 1
, 0

2 1

5
(2)

aa, 2 1
0

( , ) exp exp

exp exp

exp exp

ij j i
j i
j i

i j

ii i i
i

C c T T

T T

c T T

   

 

 

=


=

= − −


+ − −


+ − −



 . (17) 

Symmetry in τ2–τ1 and in the resulting coefficient matrix is enforced, (2) (2)

a, a,ij jic c= , reducing the 

number of degrees of freedom to 21.  Ultimately, the 2D measurement holds only one piece of 

new information, the degree of heterogeneity.  Thus, even reducing the data to 21 degrees of 

freedom still leaves significant flexibility.   
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The fit was done with singular-value decomposition, which allows the number of degrees of 

freedom to be systematically reduced by setting large singular values to zero.S2  The fitting 

procedure forces the corresponding linear combinations of the (1)

a,ic  to zero, creating a smoother 

spectrum at the expense of a higher chi-squared.  Whether the higher chi-squared represents a loss 

of fidelity to the signal or a greater rejection of noise relies on the judgement of the analyst. 

The 2D anisotropy–anisotropy spectrum with eight degrees-of-freedom is shown in Figure 

S5.  Two features are evident.  The main peak is strongly elongated along the diagonal, indicating 

strong rate heterogeneity.  In addition, there are weak cross-peaks near (2 ps, 2 ns).  These cross-

peaks could be due to leakage of electronic–electronic signal into the anisotropy–anisotropy 

measurements.  The electronic–electronic spectrum has similar cross-peaks between the fast 

solvation process and the slow electronic state lifetime.  The polarization conditions were 

calculated for collinear beams, whereas in the experiment, the beams intersect at angles up to 3° 

from the center line, slightly modifying the correct polarization angles.  This systematic error could 

allow electronic–electronic signal to leak into our anisotropy measurements.   

 

Figure S5.  The 2D anisotropy–anisotropy decay spectrum from the initial fitting to eq 

17 with eight degrees of freedom.   

 Refined 2D spectrum.  These observations led us to a more refined fitting procedure that 

allows us to include more of our theoretical expectations.  We used this function: 
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The first line represents a fully heterogeneous anisotropy spectrum, as predicted from the 1D data.  

Using this term incorporates our expectation that the 1D and 2D spectra are consistent with each 

other.  Using this term alone (Ae = 0, (2)

e,ijc  = 0), leaves only one degree of freedom in the fit, the 

amplitude Aa.  It gives the chi-squared shown by the green square in Figure S6.  

   

Figure S6.  Chi-squared versus the number of degrees of freedom for the refined fit to 

the 2D data (eq 18).  Green (1 deg. freedom): for the 100% heterogeneous model. Blue (2 

deg. freedom): with electronic–electronic leakage added.  Black: with homogeneous 

broadening added.  

The second term represents leakage of the electronic–electronic signal.  The coefficients  (2)

ee,ijc

are already determined, so only the amplitude Ae is varied.  Adding this degree of freedom reduces 

the chi-squared significantly (blue square in Figure S6) with a small Ae .  

The third term in eq 18 creates deviations from heterogeneous behavior.  The coefficients 
(2)

aa,ijc  allow intensity to move from the diagonal regions to off-diagonal ones.  Because the 

central peak is expected to broaden, the transfer was limited to near-diagonal regions of the 

spectrum, that is, to next-to-diagonal coefficients.  Attempts to include coefficient farther from the 

diagonal did not improve the fit. 

The coefficients (2)

aa,ijc  were fit while the amplitudes Aa and Ae were fixed at their previously 

determined values. The procedure was then iterated: The fit to Aa and Ae was repeated with fixed 
(2)

aa,ijc  (giving a final result, Ae = 4.7%) and then the (2)

aa,ijc  were refit with fixed Aa and Ae.  

The reiteration gave only a small change.     

The squares in Figure S6 shows the value of chi-squared with the number of degrees of 

freedom in the final fit.  The spectrum in Figure 3b and the remaining analysis were based on the 

fit with five degrees of freedom.  Based purely on measures internal to the data set, chi-squared 

and number of degrees of freedom, this description of the data is equivalent to the initial spectrum 

in Figure S5.  However, the refined fit better incorporates external information: it gives a vertical 

projection that is in better agreement with the 1D kinetics (Figure 1b), it allows for leakage of the 
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electronic–electronic signal, and the horizontal projection has quickly decaying tails that lie 

between the limiting heterogeneous and homogeneous limits (Figure 3d). 

Table S2.  Coefficients Summarizing the 2D Anisotropy–Anisotropy (top a) and Electronic–Electronic 

(bottom b) Decays. 

T
j
 (ps) \ T

i
 (ps) 2 8 32 128 512 2048 8192 32,768 

 2 
−0.003 

0.003 

0.002 

0.000 

— 

0.000 

— 

0.001 

— 

0.000 

— 

0.015 

— 

0.042 

— 

−0.010 

 8 
0.002 

0.000 

0.044 

0.000 

0.031 

0.000 

— 

0.000 

— 

0.000 

— 

0.002 

— 

0.005 

— 

−0.001 

 32 
— 

0.000 

0.031 

0.000 

−0.006 

0.000 

0.036 

0.000 

— 

0.000 

— 

0.001 

— 

0.004 

— 

−0.001 

 128 
— 

0.001 

— 

0.000 

0.036 

0.000 

0.119 

0.000 

0.031 

0.000 

— 

0.004 

— 

0.010 

— 

−0.002 

 512 
— 

0.000 

— 

0.000 

— 

0.000 

0.031 

0.000 

0.437 

0.000 

−0.003 

0.000 

— 

−0.001 

— 

0.000 

 2048 
— 

0.015 

— 

0.002 

— 

0.001 

— 

0.004 

−0.003 

0.000 

0.205 

0.087 

— 

0.243 

— 

−0.057 

 8192 
— 

0.042 

— 

0.005 

— 

0.004 

— 

0.010 

— 

−0.001 

— 

0.243 

— 

0.679 

— 

−0.158 

32,768 
— 

−0.010 

— 

−0.001 

— 

−0.001 

— 

−0.002 

— 

0.000 

— 

−0.057 

— 

−0.158 

— 

0.037 

a (2) (1) (1) (2)
a a, a, a, a a,ij i j ijc c c c= + . See eq 18.  

b (2) (1) (1)
ee, e, e,ij i jc c c= . See eq 14. 

◼ APPROXIMATING THE MICROVISCOSITY 

DISTRIBUTION 

The convolution inherent in kinetic measurements results in a loss of information (eq 7), so 

the 1D decay spectrum (Figure 1b) cannot be uniquely decomposed into its homogeneous and 

heterogeneous contributions.  Fortunately, the loss of information is not complete, and a 

representative decomposition can be made to illustrate the retained information.  The low-order 

moments of it can be recovered accurately; the loss of information primarily affects higher 

moments.   

The process uses cumulants κn, which are combination of moments.S3  They are additive under 

convolution.  Thus from eq 7, 

 
(1)

r hom het
ˆ ˆ[ ] [ ] [ ]n n nC C P  = +   (19) 

holds for the decay spectra.  The connection between rate and decay spectra (eq 5) leads to 

 (1) (1) (1)
exp

ˆ ˆ[ ] [ ] [ ]n n nC C C  = + . (20) 

Combining these equations gives a relationship between rate spectra, 
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(1)

r hom het[ ] [ ] [ ]n n nC C P  =  . (21) 

The rate spectrum of the 1D rotational decay is easy to find from the form used to represent it, eq 

16.  We believe that the first four cumulants are meaningful.  They are given in Table S3. 

To provide a specific model, the homogeneous decay was taken to be a biexponential, 

 
/ /1 1

hom 2 2
( ) (1 ) (1 )

x x x x
C x b e b e− +− −

= + + − . (22) 

with a geometric-mean (first moment) of zero.  The heterogeneous distribution is assumed to be a 

smooth, single-peaked function.  It should also have sharply defined maximum and minimum 

values, because the micelle should have well-defined maximum and minimum viscosities.  The 

beta distribution satisfies these criteria and can be easily adjusted to have the desired first four 

moments.57  It was used to model the heterogeneous distribution, 

 
( ) ( )

( )

1 1

het 1

ln ln
(ln )

( , )

T a c T
P T

c a B

 

 
 

− −

+ +

− + −
=

−
, (23) 

where B(α , β) is the beta function.  Equation 23 holds for a  < ln T  < c; the distribution is zero 

elsewhere.  

The assignment of the cumulants proceeds as follows (see Table S3).  Because the 

homogeneous decay is defined to have a zero 1st moment, the heterogeneous distribution takes the 

first moment of the 1D spectrum.  The 2D experiment determined that 87% of the 1D 2nd cumulant 

(d rot) should be assigned to the heterogeneous second cumulant (dhet).  The 2nd cumulant of the 

homogeneous decay is then the remaining 13% of d rot.  We assumed that the kurtosis of the 

heterogeneous distribution (ratio of 4th and 2nd cumulantsS3) was the same as that of the 1D 

spectrum.  The 4th cumulant of the homogeneous decay was calculated by subtraction.  The 1st, 

2nd and 4th cumulants of the homogeneous decay completely determine the constants in eq 22: b  

= −0.742, x+ = 2.12, x− = 0.550.  From these values, the 3rd moment of the homogeneous decay 

was calculated and subtracted from the 1D 3rd moment to give the heterogeneous 3rd moment.  

The first four cumulants of the heterogeneous distribution were then known, so the parameters in 

eq 23 could be determined:57 a  = ln (1.60 ps), c  = ln (1.10 ns), α  = 3.25, β  = 1.03. 

Table S3.  Cumulants Calculated on a Ln-T Scale 

spectrum κ 1 κ 2 κ 3 κ 4 

rotational rate a 5.433 1.575 −1.633 7.946 

homogenous rate b     — 0.205 −0.205 0.247 

heterogeneous rate c 5.433 1.371 −1.427 6.014 

a (1)
r (ln )C T   

b (1)
hom (ln )C T  

c
P

het
(ln T ) 
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The rotation time of PM597 was measured in a number of solvents, as shown in Figure S7.  

All the decays were close to single exponential.  The figure reports geometric-mean times versus 

viscosities.  The results were fit to 
rT  = Bη , with B  = 31.6 ps/cP.  This formula was used to 

generate the microviscosity scale in Figure 4. 

 

Figure S7.  The geometric-mean rotation time 
rT  of PM597 in various solvents versus 

their macroscopic viscosities η  (points) and a linear fit (line).   
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