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     In this work we present a concurrent atomistic-continuum (CAC) method for modeling and simulation of crystalline 

materials.  The CAC formulation extends the Irving-Kirkwood procedure for deriving transport equations and fluxes 

for homogenized molecular systems to that for polyatomic crystalline materials by employing a concurrent two-level 

description of the structure and dynamics of crystals. A multiscale representation of conservation laws is formulated, 

as a direct consequence of Newton’s second law, in terms of instantaneous expressions of unit cell-averaged quantities 

using the mathematical theory of distributions. Finite element (FE) solutions to the conservation equations, as well as 

fluxes and temperature in the FE representation, are introduced, followed by numerical examples of atomic-scale 
structure of interfaces, dynamics of fracture and dislocations, and phonon thermal transport across grain boundaries. 

In addition to providing a methodology for concurrent multiscale simulation of transport processes under a single 

theoretical framework, the CAC formulation can also be used to compute fluxes (stress and heat flux) in atomistic and 

coarse-grained atomistic simulations.  

 

1. INTRODUCTITON 

 

     Solid state physics describes the structure of all 

crystals in terms of primitive unit cells. These 

primitive unit cells, each containing an identical group 

of atoms, are the building blocks of crystals. When 
added continuously in space, they form the structure 

of a crystal and completely fill the space the crystal 

occupies1, cf. Fig.1.  

 

 

 

 

 

Fig. 1 A two-level structural description of crystals: a 

continuously distributed lattice + a discrete basis. 

 

 
 

 

 

 

 

 

 
 

 

Fig. 2 Transverse atomic motion in (a) an acoustic 

mode and (b) an optical mode. 
 

     Although the motion of an atom in a crystal is an 

irregularly fluctuating function of time, it turns out that 

the dynamics of a crystal can be most readily 

described, not in terms of individual atoms, but in 

terms of travelling waves, named lattice vibrations by 

Max Born. These vibrational modes are called 

phonons and are of two types: acoustic and optical, cf. 

Fig. 2. With the former, atoms in a unit cell move in 

the same phase, resulting in the deformation of the 

lattice; with the latter, atoms undergo relative motion 

within the lattice cells, leaving the lattice unchanged. 
Thus, the displacements of atoms in a crystal can be 

described as the sum of continuous lattice 

displacements and the internal displacements of the 

atoms relative to the lattice.2  

     It is seen that the solid state physics description of 

the structure and dynamics of crystals is based on a 

concurrent atomistic-continuum approach: the 

structure is continuous at the lattice level but discrete 

at the atomic level; the lattice deformation is 

continuous until a defect is generated, cf. Fig. 3, while 

the internal motion is discrete.  
    

Fig. 3 Schematics illustrating that (a) the lattice 

deformation is continuous until (b) structural 

discontinuities generated by slip and/or twinning. 
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     Historically, atomistic and continuum descriptions 

offer two fundamentally different approaches to our 

understanding of crystalline matter. From the 

atomistic viewpoint, matter consists of discrete 

particles; while from the continuum viewpoint, 
matter is infinitely divisible. The continuum view 

leads to formulations of field equations of 

conservation laws. Supplemented by constitutive 

relations, such as Hooke’s law and Fourier’s law, these 

conservation equations serve as the governing 

equations in continuum modeling of materials.  

     This work introduces the concurrent atomistic-

continuum (CAC) method that links and unifies the 

atomistic and continuum descriptions of crystalline 

materials. The Irving-Kirkwood procedure for linking 

the molecular description to hydrodynamical 

equations is reviewed in Sec. 2; the CAC formalism is 
introduced in Sec. 3; the finite element (FE) 

formulation of CAC as well as the fluxes and 

temperature in the FE representation is outlined in Sec. 

4; numerical examples are presented in Sec. 5, 

followed by a summary in Sec. 6. Detailed derivations 

of the conservation equations using the mathematical 

theory of distributions for monatomic crystals are 

included in Appendix A and that for polyatomic 

crystals in Appendix B. 

 

II. THE IRVING-KIRKWOOD PROCEDURE 

 

   The statistical mechanics formulation to link 

discrete and continuum descriptions of conservation 

laws was pioneered by Irving and Kirkwood (IK) in 

19503.  In their landmark paper, IK defined local 

densities in terms of molecular variables using the 

Dirac delta for “localized density”4, “since mass or 

momentum of any molecule may be considered as 

localized at that molecule”3. A local density of a 

dynamic phase function ( , )k kA r v , where kr  and kv are 

the position and velocity of the kth particle, is defined 

as an ensemble-averaged point function ( , )ta x as 
 

                   
1

( ) ( , ) ( )
N

k k k
k

,t A 
=

 −a x r v r x  ,                

(1) 
 

 where the symbol “≡” means “equal by definition”.     
     Equation (1) is usually interpreted as mapping the 

phase functions in the 6N-dimensional phase space to 

the local densities in the 4-dimensions of physical 
space and time.  Based on the local density definition 

in Eq.(1), IK derived the rate of change for the 

densities of mass, momentum, and energy in the form 

of partial differential equations that relate the density 

of a conserved quantity ( , )ta x and its flux ( , )tJ x  as  
  

 ( , ) ( , )xt t
t
 = 


a x J x .                       (2) 

 

Formulas for fluxes (stress and heat flux) are then 
obtained through comparing the rate equations with 

the differential equations of hydrodynamics.  

    The IK formalism has inspired numerous efforts to 

link molecular variables to field quantities in classical 

continuum mechanics5-8.  To understand the motivation 

of a new formalism, we recall the following noted by 

Irving and Kirkwood3 and by Kirkwood9.  

(1) Local densities and fluxes in the IK formulation 

are point functions. “The point functions, 

although averaged neither over space nor time, 

satisfy equations that are identical in form to the 

equations of hydrodynamics for a single 
component, single phase system”3. These 

equations were called “the hydrodynamical-like 

equations” in the IK paper3. It was noted that, “to 

obtain the hydrodynamical equations themselves 

it is merely necessary to perform the appropriate 

space and time averages”3.  

(2) The densities for mass, momentum and energy 

were defined without restriction to a single 

component single phase system. For fluxes (stress 

and heat flux), IK stated that “we must impose this 

restriction” and the flux formulas obtained with 
their formalism are “only valid for a single 

component, single phase system”3.  

(3) The statistical mechanical theory of transport 

processes published in a series of 14 papers by 

Kirkwood and coworkers only considers rigid 

molecules, ignoring the internal degrees of 

freedom of the molecules. In the first one of the 

series, Kirkwood envisioned extension of the 

formulation to molecules possessing internal 

degrees of freedom (DOFs)9.   

 

III. THE CAC FOMALISM 
 

      The CAC formalism is an extension of the IK 

procedure for homogeneous hydrodynamic systems  to 

a two-level structural description of crystals that 

includes the atomic DOFs within each lattice cell10,11. 

With such an extension, the CAC formulation is 

applicable to polyatomic crystalline materials, and can 

be used to solve atomic trajectories or quantify 

instantaneous fluxes, conferring full characteristics of 
a concurrent atomistic-continuum method. 

 

A. Ensemble-Averaged Local Densities 

     For a polyatomic crystal of lN unit cells, with each 

unit cell containing N atoms, the density of a phase 

function ( )k k,  A r v at point r in the physical space can 

be expressed as 
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1 1

( , ) ( ) ( )
l aN N

k k k

k

t ,   




= =

= −a r A r v r r  ,   (3) 

 

where kr and kv are the position vector and velocity 

vector of the ξth atom in the kth unit cell, and the symbol 

< > denotes ensemble averaging that involves l aN N

fold integrals of the phase function A and a probability 
distribution function in the phase space. 

Recall that the structure and deformation of a crystal 

are continuous in space at the lattice level, but are 

discrete at the atomic level. It is therefore consistent 

with solid state physics to describe the crystal structure 

in terms of the positions of lattice cells and the relative 

positions of atoms inside the lattice cells. For this 

purpose, we resolve the sum in the definition of the 

local density in Eq. (3) into contributions from groups 

of atoms within the same lattice cell and express the 

locations relative to the unit cell for those atoms, i.e., 
 

1

1 1

( , , ) ( ) ( ) ( )
N Nl a

k k k k

k

t ,   



 
−

= =

 − − a x y A r v x r y r ,      (4) 

 

where kr  is the position of kth unit cell, and kr is the 

relative position of ξth atom in the unit cell k.  

     The density in Eq. (4) is expressed in terms of the 

direct product of two deltas, with the two field 

variables x and y representing a distinction of large- 

and small-scale variations of the variable r in Eq. (3). 
Note that the ensemble average in Eq. (4) also involves 

l aN N fold integrals and, although expressed in terms of 

different phase variables, the values of a local density 

defined in Eq. (3) and Eq. (4) can be mathematically 

equivalent. However, different from that in Eq. (2), a 
conservation equation for the density defined in Eq. (4) 

relates a conserved quantity to two fluxes, 1J and 2J , 

owing to the use of large and small-scale variation in the 

latter, i.e., 
 

1 2( , , ) ( , ) ( , , )t t t
t
 =  + 
 x y

a x y J x J x y .          (5) 

 

B. Space and Time-Averaged Local Densities 

     Evans and Morriss argued that, since conservation 

laws hold instantaneously, conservation equations and 

fluxes should be definable without ensemble 

averaging12. This has been demonstrated recently for 

monatomic crystals13-16. To derive the conservation 

equations and flux expressions that hold 
instantaneously based on the two-level structural 

description of crystals, we consider a unit cell of 

volume V located at point x in the physical space; 

within the unit cell, there are N volume elements, 

each containing one atom and having volume Vα 

satisfying V V = . Since the distribution of the unit 

cells is continuous and homogenous in space, we may 

define a local density per unit-cell volume as 
 

1 1 1

( , ) ( , ) ( ) ( , )
l a aN N N

k k V k
k

t t  
 


= = =

 
 − = 

 
  a x A r v x r a x  ,    (6) 

 

where ( , ) ( , ) ( )k k V kkt   = −a x A r v x r is the contribution of 

the αth atom to ( , )ta x and can be expressed as 
 

1 1

( , ) ( , ) ( ) ( ) ( , , )
N Nl a

k k V k V k
k

t t    


 
= =

= − − =a x A r v x r y r a x y ,   (7) 

and 

1    if 1( )
0,   if 

k

V k

k

V

V V


− 
−  

− 

x r
x r

x r
,                        (8) 

   if   or =1
( )

  if  or 0

k

V k

k

V

V

 

 
 

 


 

− 
− 

−  

y r
y r

y r
  .       (9) 

 

     Since
1

( ) 1
N

V k


 


=
− = y r , one can see that Eq. (7) 

satisfies Eq.(6), and ( , , ) ( , )t t=a x y a x holds for all Vy .    

     Note that the box functions defined in Eq. (8) and 

Eq. (9) have a jump discontinuity at the enclosing 

surfaces V and Vα, respectively. These functions do not 

have derivatives in the classical sense. It thus requires 

a generalization of the concept of a function. The 

corresponding mathematical theory is known as the 

theory of distributions17. This theory will be used 
throughout this work as the mathematical tool to 

derive the conservation laws for physical quantities 

described by non-differentiable functions.  

       In atomistic simulations, the equation of motion is 

solved in discrete time-steps. Accordingly, local 

densities should be further averaged over a time-

interval. The contribution of the αth atom to the mass 

density ρα, momentum density pα (   =p v ), and 

energy density Eα ( E e  = ) per unit volume can 

then be defined as  
 

 
1 1

( , ) ( ) ( )
N Nl a

V k V k
k

t m   


  
= =

 − −x x r y r ,            (10) 

 
1 1

( , ) ( ) ( )
N Nl a

k V k V k
k

t m    


 
= =

 − −p x v x r y r ,         (11) 

   ( )
1

21
2

1 1

( , ) ( ) ( )
N Nl a

k k V k V k
k

E t m     


 
−

= =

 + − − x v x r y r , (12) 

 

where k  is the potential energy of atom kξ;
V  

denotes the average of δV over a time-interval Δt, i.e.,
1

0
( ) [ ( ) ]

t

V k V kt
t d   




− = + −r x r x . The time evolution of a 

conserved quantity, i.e., the conservation equation, can 

then be expressed in terms of a lattice-level flux J as 

 1( , ) ( , )


 = + 
 

V

t t dS
t V
a x J x x n ,                (13) 

 

or in terms of atomic-level fluxes J1 and J2 as 
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1 2
1 1( , ) ( , ) ( , )

 

  =− +  − + 
  

V V

t t dS , t dS
t V V



 a x J x x n J x y y n ,  (14) 

 

where n is the outward unit normal vector to the 

surface element, J1 is the part of flux that flows across 

the enclosing surface ∂V, J2 is the part of flux that 

flows back and forth inside V and hence only cross the 

bounding surface ∂Vα, as shown in Fig. 4.  

    It is noted that by integrating Eq. (5) over V and 

invoking the divergence theorem one obtains an 

integral equation in the form of Eq.  (14). However, 

Eq. (5) is not valid instantaneously and it requires the 

fluxes to be differentiable. By contrast, the 
conservation equation in Eq. (14) holds 

instantaneously in the distributional sense and the 

fluxes are not required to be continuous functions. 
 

 

 

                 

 

 

 
Fig. 4 2D Schematic for J1, the flux across the 

bounding surface of the unit cell (the rectangle) ∂V, 

and J2, the flux that does not cross ∂V but rather ∂Vα 

(the triangle) within the unit cell.   

     

C. Conservation Equations and Fluxes  

     Averaging a local density over a unit cell of volume 

V leads to the integral form of conservation laws that 

equate the rate of the change of conserved quantities 

in the unit cell to their fluxes across the enclosing 

surface of the unit cell. Following from Eq.(10), the 

equation of conservation of mass can be derived in the 
form of Eq. (14) as 
 

1 1

1 1

( ) ( )

( ) ( )

1 1

= =

= =

 

 = − −
 

+ − −


=−  −  





 

N Nl a

k V k V k
k

N Nl a

k V k V k
k

V V

m
t t

m
t

dS dS
V V


  



  


   




 

 

 

x r y r

x r y r

v n v n

,           (15) 

 

where =v x , /  =v p , and   = −v v v . 

    The momentum conservation law can also be 
derived, using the momentum density defined in 

Eq.(11), from Newton’s second law, as 
 

1 1

1 1

1 1

( )
( ) ( )

( ) ( )

( ) ( )

1 1 ( )( )

= =

= =

= =

 


= − −



+ − −


 + − −
 

= +−  −  







 

N Nl a

k V k V k

k

N Nl a

k V k V k

k

N Nl a

k V k V k

k

V V

m
t

m
t

m
t t

V V
dS dS

 
   



   


   


      




 

 

 

 

v
v x r y r

v x r y r

v x r y r

t v v n τ v v n

,   (16) 

where tα and τ  are the momentum flux (stress) that 

cross ∂V and ∂Vα, respectively, as a result of atomic 

interaction and motion involving atom α. The total 

stress vector t on a surface element An of area A and 

normal n, located at position y in the unit cell at x, from 

all the atoms can then be expressed as  
 

pot kin

1

( , , ) ( ) ( , , ) ( , , )
Na

 
=

= + = +t x y n t τ t x y n t x y n ,         (17) 

 

where pott is the potential part of t that measures the 

interaction force per unit area transmitted across An, i.e., 
 

pot

, ( ) ,

,

( , , ) ( )

( ) ( )

kl a

l

kl a

k

N N
k n

A
k l k l

N N
k n

V k A
k k

d

V d











  



   



 






= −




+ − −



  

  

r

r

r

r

t x y n φ x φ
r

x r φ y φ
r

,            (18) 

and kint is the kinetic part of t that measures the flow of 

momentum per unit area and time across An, i.e., 

kin

1

1 1

( , , ) ( )

( ) ( )

Nl
n

k k A k
k

N Nl a
n

V k k k A k
k

m

V m   




 

=

= =

=− −

− −   −



 

t x y n v v x r

x r v v y r

.     (19) 

 

Here, k k= −v v v , k k   = −v v v ; ( )k

l

n

A d


 −

r

r
φ x φ , defined in 

Eq. (A3), and ( )n
A k −y r , defined in Eq.(A4), represent 

potential and kinetic fluxes as a line-plane intersection 

problem in space and time, respectively.  

Similarly, denoting qα and jα as the parts of heat flux 

that cross ∂V and ∂Vα, respectively, the time rate of 

change of the energy density Eα, can be derived as  
 

 ( )

( )

1 1

( )
( ) ( )

1

1

= =





 = − −
 

= +  − 

+ +  − 







N Nl a

k V k V k
k

V

V

e
E

t t

e dS
V

e dS
V

 
  



    

      




 





x r y r

q t v v n

j τ v v n

.       (20) 

 

The total heat flux is then given by 
 

1

( , ) ( ) ( , ) ( , ) ( , , )
Na

pot kin i iq 
=

= + = + =q x y q j q x y q x y x y e e ,    (21) 

 

where ei (i =1, 2, 3) are the orthonormal basis at x,  
 

pot

, ,

,

( , ) ( )

( ) ( )






=  −




+ −  −



  

  

N N kl a
i ik

k A
k l k l l

N N kl a
ik

V k k A
k k l

q , d

V d





   





    



 

r

r

r

r

x y e v φ x φ
r

r x v φ y φ
r

 ,       (22) 

and 

( )

( )

kin 21
2

1 1

21
2

1

( , ) ( )

( ) ( )

N Nl
i i

k k k A k
k

N Nl a
i

V k k k k A k
k

q , m

V m



  

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



 

= =

=

=− + −

− − +  −



 

x y e v v x r

r x v v y r

.    (23) 

J1 

J2 
∂Vα 

∂V 
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     The link between atomistic and continuum 

descriptions at this point has fundamentally departed 

from the IK formalism. As distinct from classical 

continuum mechanics, this new formulation describes 

the structure and properties of a crystalline system as 
a continuous function in x at the lattice level, cf. Fig. 

3 and Fig. 5, while discrete in α or y at the atomic level; 

fluxes (stress and heat flux) are composed of 

components resulting from the motion and 

deformation of lattice cells (denoted as t and q, 

respectively) and the rearrangement of atoms within 

the cells (denoted as τ and j, respectively). Most 

importantly, instead of linking molecular variables to 

classical continuum mechanics equations, the CAC 

formalism leads to a new representation of 

conservation laws and fluxes. 

 
 

 

 

 

 

 

 
 

Fig. 5 Schematic of the mass density distribution in 
space for a crystal with two different atoms in the 

primitive unit cell: (a) using Eq. (3), (b) and (c) using 

Eq. (7), showing that the mass density is a continuous 

and homogenous function at the lattice level, while it 

is discrete and inhomogeneous at the atomic scale. 

 

D. Temperature  

      An important difference between atomistic and 

classical continuum theories is the definition of 

temperature; in the former, temperature is a derived 

quantity, while in the latter, temperature is a 

fundamental state variable. Specifically, the abiding 
definition of temperature in classical molecular 

simulations is the kinetic temperature defined by 

kinetic theory in terms of the mean kinetic energy of 

the random motion of atoms, while that in quantum 

calculations is based on the mean energy of phonons.   

      Kinetic theory provides a microscopic description 

of temperature through the classical mechanics of 

particles. The equipartition theorem of kinetic theory 

asserts that the average kinetic energy of a particle in 

an equilibrium gaseous system with temperature T is
31 2

2 2 Bkm k T =v . Away from thermal equilibrium, the 

particle velocity is usually replaced by kv , the 

difference between particle velocity and the velocity 

field. Such a temperature definition is consistent with 

the physical picture of an ideal-gas thermometer in 

which the velocity is measured relative to the co-
moving frame of the kinetic thermometer18. The non-

equilibrium temperature is expressed19 as 

 

2

1

3 1( ) ( )
2 2

lN
N

B k V k
k

k T m V  
=

= −x v x r .              (24) 

 

  This temperature definition, however, has 

unambiguous meaning only in thermal equilibrium or 

an approximate local thermal equilibrium condition 
such as that in a steady state.  To elucidate this point, 

we decompose the kinetic energy density into two parts:  
 

   

kin 2

1 1

2 2

1 2
1
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    


     

 

 

= =

=

= − −

= + − = +





x v x r y r

v v x r

,     (25) 

 

where 1k is the kinetic energy density represented by 

the velocity field, and 2k is the kinetic energy due to 

the velocity difference between particle velocity and 

velocity field, usually interpreted as the random 

motion of particles. Although the definition of total 

kinetic energy is unambiguous, the velocity field can 

only be uniquely defined when it is zero (for thermal 

equilibrium) or a constant (for steady state). This is 

because the velocity field depends on length and time 

scales, i.e., the averaging, of the linear momentum. 

Thus, regardless of whether it is in an atomistic or a 

multiscale simulation, temperature can only be well 

defined at thermal equilibrium or steady state. It is a 
concept describing the state of a system rather than the 

dynamics of an atom. 

      Differing from the classical concept, the quantum 

description of temperature is expressed in terms of 

phonons. There are more phonons at high temperature 

and fewer phonons at low temperature. The average 

phonon number is determined by the equilibrium 

temperature T and the phonon frequency ω through the 

Planck constant ħ and the Boltzmann constant Bk . 

This relationship is called the Bose-Einstein 

distribution, i.e., 
 

1
( , )

( , ) exp 1
B

n
k T

 


−
   

= −     

κ
κ ,             (26) 

 

where ( , )n κ is the phonon number for branch ν and 

wave vector κ in thermal equilibrium. The total kinetic 

energy of an equilibrium system can then be expressed 

in terms of all the available phonon modes in the 

systems, i.e., 
 

3
1

2

1 ( , ) ( , )
2

N Nl a

K n


   = +
  


κ

k k  .             (27) 

 

Recall that the number of phonon modes is equal to 

the number of the particle degrees of freedom of the 

system, and that the total kinetic energy per phonon 

mode in the classical limit is equal to kBT/2. The 

difference between the quantum and classical 

(a) 

(b) 

(c) 
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temperatures can thus be quantified through equating 

the phonon and classical descriptions of the total 

kinetic energies20, i.e.,  
 

3

1
3

1

2

1 1( , ) ( , )
2 2

( , )1 ( , ) exp 1
2

3
2

N Nl a

N Nl a

B quantum
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K n

k T

N N k T





  

 
 

−

 = +
  

    
= + −   

    

=





κ

κ

k k

k
k .  (28) 

  

     For a given quantum temperature, the 
corresponding classical temperature can be calculated 

using Eq.(28). Fig. 6 presents such calculations for LiF 

and SrTiO3. As can be seen from Fig. 6, the two 

temperatures are different at low temperature, but the 

difference becomes negligible as the temperature 

increases. At 0 K quantum temperature LiF and 

SrTiO3 have a zero-point energy equivalent to 237.1K 

and 279.7K classical temperature, respectively, and 

hence there are corresponding motions at 0K, i.e., the 

zero-point vibrations.  
 

 
 

 

 

 

 

 

 
 

Fig. 6 Quantum temperature vs classical temperature 

(blue solid curves) for (a) LiF and (b) SrTiO3, showing 

that the two temperatures converge at high 

temperature, indicated as the solid blue curves 
approaching the dotted green lines.  

 

IV.  FINITE ELEMENT FORMULATION  
 

   As shown in Fig. 5, a local density such as the mass 
density in a polyatomic system is not a continuous 

function at the atomic scale. By decomposing the 

atomic position into the position of the lattice cell, x, 

and its internal position within the unit cell at x, we are 

able to express a density aα(x,t) or a(x, y, t) at an 

equilibrium or steady state system as a homogeneous 

and continuous function in x. Consequently, the field 

equations of the conservation laws can be discretized 

in x and solved using continuum-based numerical 

methods such as the finite element (FE) method. 

 

A. Temperature in FE formulation  

  As shown in Eq.(25), the decomposition of the 

total kinetic energy into 1k and 2k depend on the 

length scale of the velocity field.  In particular, in a FE 

model 1k  is represented by FE nodal velocities, in 

which the displacement field in an element is 

interpolated with FE shape functions ( )S x , i.e., 
 

                     ˆ ( , ) ( ) ( )t S t  =u x x U  ,    (29) 

 

where ( )tU is the displacement vector of αth atom 

embedded within the ξth node of the element; the 

contribution of the αth atom to the kinetic energy in an 

element of volume Ve is thus given by  
 

2 2
1

1 1 ( ) ( ( )U )
2 2V V Ve e e

k dV dV S dV      = =  u x .   (30) 

 

       The kinetic energy of an element can also be 

expressed in terms of phonons using the phonon 

dispersion relations of the FE model21. However, a FE 

model employing the usual tri-linear shape functions 

cuts off phonons whose wavelengths are smaller than 
the element size. The motion of the FEs thus only 

represents a subset of the phonons of the system.  This 

means that the FE mesh, i.e., the FE displacement 

approximation, uniquely determines the 

decomposition of total kinetic energy into 1k  and 2k , 

where 1k is represented by FE nodal velocities, while 

2k  is related to 1k  through the temperature-

dependent phonon number ( , )n κ .  

      A special case is for systems at high-temperature 

thermal equilibrium, in which every phonon mode or 

every particle DOF has the same energy /2Bk T . The 

total kinetic energy of an 8-node element containing

/l en V V=  unit cells is thus given by 
 

  1 2
3

2
l B

V Ve e

k dV k dV n k T + =    ,          (31) 

 

with 

2
1

3

2

1( , ) [ ( )U ] 8( )
2

B

V Ve e

k t dV S dV k T   = = x x ,  (32) 

and 

2
2

1

3

2

1( , ) ( ) ( ) ( 8)( )
2

Nl

k V k l B
kV Ve e

k t dV m dV n k T   
=

= − = − x v x r . (33) 

 

     Equations (32) and (33) can be used to prescribe FE 

nodal velocities for a given initial equilibrium 

temperature T or to find 2k from 1k . 

 

B. Finite Element Equations 

     Substituting the conservation equations of mass 

into the linear momentum equation, we obtain 
 

int 1 1( ) kin kin

V V

dS dS
V V



     
 

= + + u f x t τ .             (34) 

 

      Denoting the sum of the two surface integrals of 

kinetic stresses as ( , )T tf x , noting that the averaged

(b) SrTiO3 (a) LiF 
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( , )T tf x over a long-time duration can be linked to 2k

and hence the local temperature, we have 
 

0 0 0

1 1 1 1 1( , )
t t t

T kin kin

V V

d dS dS T
t t V t V



     
 

 + =      xf x t τ ,   (35) 

 

where Tx  and λ can be determined from 1 2( )k k  +x , 

in which 1kx  can be calculated based on FE nodal 

velocities, and 2kx can be determined from 1kx  if 

we assume local thermal equilibrium and employ the 

assumption used in the linearized phonon Boltzmann 

equation, i.e., 0( , ) ( , )k kn t n t =x xx x  22, where 0
kn  and kn  

are the equilibrium and non-equilibrium phonon mode 

distribution for wave vector k. 

     Equation (34) can be solved using the finite 
element method, with the weighted residual of Eq. 

(34) over an element being given by 
 

  ( )int( ) 0ext T

Ve

S dV      − − − = x u f f f .        (36) 

This is the weak (Galerkin) form of Eq. (34). The 
integral can be numerically evaluated using Gaussian 

quadrature and the equation can be solved for 

equilibrium or non-equilibrium processes.  

        For systems at thermal equilibrium, 0T =x , T
f

is a fluctuating function of time with a zero mean 

everywhere except at the system’s boundary if thermal 

expansion is constrained. It can thus be modeled as a 
constant force applied at the boundary. When atomic-

scale fluctuations are important to the simulated 

phenomena such as thermal activation of dislocation 

motion or phase transition, T
f can be modeled as a 

periodic or randomly fluctuating force in time with the 

frequencies of the phonons that are cut off by the FE 
shape functions.  

       For non-equilibrium processes, Tx is a constant 

within an element if the usual linear interpolation is 

used. T
f  can then be modelled as a body force with a 

constant mean in each element but with periodic or 

random fluctuation in t. It is noted that, to model it as 

a random force, T
f  needs to be partitioned into a 

fluctuating part and a damping part, with the latter to 

be determined by and to balance the fluctuation force, 

according to the fluctuation-dissipation theorem23.   
 

C. Fluxes in FEA solutions 

   Similar to that in MD13-15,24, fluxes across a surface 

element in a CAC model can be computed through 

calculations of the interaction forces and atomic 

motions that cross the surface element. Not only can 

the stress and heat flux at any given surface element 

be calculated, their spatial distributions can also be 

plotted as contours for the entire model.  

     With the usual tri-linear shape functions to 

approximate the displacement field in FE, maximum 

fluxes occur at the nodes of the elements. Thus, only 

fluxes at the nodes and a few other locations on the 

boundaries of the elements are needed for the flux 
contours, such as the unit cells shown in Fig. 7. In 

regions of structural disorders or discontinuities, such 

as those near a dislocation core or crack tip, atomic-

scale fluxes can be calculated using Eq. (18) and 

Eq.(19), and plotted as a contour at atomic resolution. 
 

   

 

 

 

 

 

 

 

Fig. 7 (a) 2D schematic of an element containing many 

unit cells, and each unit cell contains two atoms. The 
shaded unit cells are those that can be used to calculate 

fluxes for interpolation of the flux fields in the element 

so as to generate contours of fluxes within the element; 

(b) shear stress contour near a dislocation core. 

 

V. NUMERICAL EXAMPLES 

 

     Currently there are two public versions of CAC 

codes, the CAC in LAMMPS, which will be released 

through LAMMPS distribution, and PyCAC25, which 

are presently available. The general procedure for a 

CAC simulation can be summarized as follows. 
(a) Select an interatomic potential(s) for the system; 

(b) Discretize the system based on its morphological 

length scales, using atomic resolution for atomic-

scale structural disorders such as GBs, while 

using FEs for single crystal regions with the mesh 

size determined by, e.g., the smallest possible 

dislocation spacing;  

(c) Relax the system with initial temperature. One 

may need to systematically change the initial 

configurations to obtain the dislocation or GB 

structures that have the minimal energy;  
(d) Apply loading and boundary conditions;  

(e) Run simulation to solve for and to visualize 

atomic trajectories, which are either atomically 

resolved or interpolated through FE nodal 

displacements, for observations of dynamic 

processes or emerging phenomena, using 

software such as Ovito for atomic visualization or 

Techplot for FE visualization;  

(f) Calculate fluxes (stress or heat flux) or other 

transport properties. 

     The accuracy and efficiency of the CAC method 

have been tested through one-to-one comparisons with 

(a) (b) 
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MD in space- and time-resolved simulations of 

phenomena such as crack initiation and branching26,27, 

phase transitions28, dislocation nucleation29-32, loop 

formations33-36 interactions with interfaces and other 

defects37-43, as well as phonons-dislocation 
interaction44,45 and phonon-GB interaction46. In 

general, for an element containing N by N by N unit 

cells, the ratio of the number of mathematical 

operations in CAC to that in MD scales as O(N−3)42. 

This means CAC can be very efficient by using large 

elements, e.g., for polycrystalline materials with micron-

sized grains or for crystals with low dislocation 

density, i.e., large dislocation spacing. 

    To illustrate the applicability of CAC, in this section 

we present three sets of prior simulation results. These 

simulations were performed at low temperature 

without considering the fluctuations from phonons 
whose wavelengths are smaller than the element size.   

 

A. Atomic-scale structures of interfaces 

 CAC has been employed to study the structure and 

energy of grain boundaries (GBs) and their dynamic 

interaction with cracks and dislocations in SrTiO3 

polycrystals42,43. In these studies, GBs are atomically 

resolved, while regions away from GBs are coarse-

grained. Simulation results show that both the energy 

and atomic displacements of SrTiO3 GBs from CAC 

agree well with those that from MD if the width of the 
atomically resolved region for the GBs is larger than 

12 Å42.  The ghost forces reported at the atomic-

continuum interface in many multiscale models are not 

present in the CAC models42. The atomic-scale GB 

structures from CAC42 is shown in Fig. 8 to compare 

well with those from experimental results47.  
 

 
 

Fig. 8 CAC results of (a) ∑5(310), (b) ∑13(510), (c) 

∑5(210) GBs in SrTiO3, and (d) STEM images of 

∑5(210) GB47; the unit structures around each GB 
plane are outlined with solid lines.42 Reproduced with 

permission from Proc. R. Soc. A 471 (2015). 

 

      Figure 9 presents CAC simulation results of the 

misfit dislocation networks in the phase interfaces in 

heteroepitaxial thin films. CAC is shown to have 

reproduced the experimentally observed dislocation 

networks in PbTe/PbSe (001) interfaces48. The 
dislocation spacing in the system as a function of the 

epilayer thickness obtained by CAC is also in good 

agreement with the experimental measurements. In 

addition, the critical thickness above which misfit 

dislocations are observed to form in the heteroepitaxial 

thin film compare very well with experimental 

observations49. 

 Fig. 9 CAC simulation results of (a) the dislocation 

network in a PbTe/PbSe (001) interface and (b) a 

comparison between CAC simulation results and 

experimental measurements of the dislocation spacing 

as function of PbTe epilayer thickness; the inset in (a) 

is a STM image of the dislocation network in 

PbTe/PbSe (001)48 Reproduced with permission from 

Phys. Rev. Lett. 88, 015507 (2001). 

 

B. Fracture and dislocations  

      Since the only constitutive relation in CAC is the 
nonlocal force field, and CAC is of integral form, 

continuity between FEs is not required. Consequently, 

nucleation and propagation of dislocations and cracks 

can be simulated in the FE region via sliding and 

separation between elements. Simulation results can 

be output in terms of elements or in terms of atomic 

trajectories. This makes CAC a convenient tool for 

simulation and visualization of the dynamic processes 

of defect nucleation, interaction, and propagation. 

     Figure 10 presents CAC simulation results for 

loading of a notched solid normal to the notch depth. 
The simulations have captured the dynamics processes 

of crack initiation, propagation and branching. They 

also reveal that the interactions of the stress waves that 

emitted from the propagating crack with those that are 

reflected back by the boundaries of the specimen leads 

to a sharp increase of the crack speed, which in turn 

triggers the dynamic instability and hence the 

branching of cracks in micron-scale specimens26. In 

addition, we have measured the critical stress intensity 

factor and observed a crack speed near the speed of 

Rayleigh wave before crack branching.    

(d) (c) 

(a) (b) 

(a) (b) 
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Fig. 10 Time sequence of CAC simulations of a brittle 

crystal showing (a) stress waves emitting from a 

propagating crack; (b-d) crack branching as a result of 

the interaction between waves propagating from the 

crack tips and those reflected from the specimen 

boundaries.50  Reproduced with permission from Int. 

J. of Plasticity, 26, 1402 (2010). 
 

 Fig. 11 Snapshots of dislocation motion in a V-

notched specimen; only the left part of the specimen in 

MD and the right part of the specimen in CAC are 

displayed. The atoms in MD and the elements in CAC 

are color coded in displaying stress component yy . 

The color, red or blue, respectively, indicates tensile 

or compressive stress. Reproduced with permission 

from Acta Materialia 104 (2016). 

 

    CAC has also been used to characterize the complex 

dynamics of fast moving dislocations, including the 

energy intensities and the wavelengths of phonons 

emitted from sonic dislocations, as well as the 
velocity-dependent stress fluctuations around the core 

of moving dislocations. Fig. 11 presents snapshots 

comparing dislocation motion simulated using CAC 

with a uniform mesh and that using MD, with the 

number of DOFs of the CAC model being 1% of that 

of MD. The dislocation velocity is measured to be 

~2900m/s in both CAC and MD simulations. Mach 

cones in a V-shaped pattern of the phonon wave-fronts 

are observed in the wake of the sonic dislocations. 

Analysis of simulation results based on a wavelet 

transform shows that the faster a dislocation is 
moving, the longer the emitted phonon wavelength29-

32. 
 

 

Fig.12. Snapshots of dislocation pile-up with 

dominant leading screw character impinging against a 

CTB. Atoms are colored by adaptive common 

neighbor analysis: red are of hexagonal-close packed 

local structure, blue are BCC atoms, and all FCC 

atoms are deleted. In (a) incoming dislocations 

approach the CTB. In (b) the leading dislocation is 

constricted at the CTB, where two Shockley partial 
dislocations are recombined into a full dislocation. All 

five potentials produced the same results in (a) and (b). 

In (c), with Mishin-EAM51 and Voter-EAM 

potentials52, the dislocation cross-slips into the 

outgoing twinned grain via redissociation into two 

partials. In (d) with Angelo-EAM53, Foiles-EAM54 and 

Zhou-EAM55, the redissociated dislocation is 

absorbed by the CTB, with two partials gliding on the 

twin plane in opposite directions.56 Reproduced with 

permission from JOM, 69, 814 (2017). 
 

x 

y 

(a) (b) 

(c) (d) 

(a) 

(b) 

(c) 

(d) 
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       Figure 12 presents CAC simulation results of 

sequential slip transfer of a0 ̸2 [110](111) dislocations 

across a Σ3 (111) coherent twin boundary (CTB) in 

Ni56 under ostensibly quasi-static strain rate conditions. 

Simulation results shows that CAC can serve as an 
effective tool for study of slip transfer reactions of 

sequences of incoming and outgoing long-range 

dislocation pile-ups of mixed dislocation characters. 

Five EAM potentials51-55 were compared; results 

demonstrate the uncertainty in computed dislocation-

interface reactions associated with the use of a variety 

of interatomic potentials and suggests that the 

applicability of dislocation/GB interaction criteria in 

the literature for slip transfer may have limitations. 

 

C. Phonon Thermal Transport 

   CAC solves for approximate atomic trajectories. 
Collective motion of atoms, i.e., phonons, and the 

nucleation and propagation of defects, as well as 

phonon scattering by defects and other phonons, 

naturally emerges in the simulation. It thus provides a 

unified treatment for phonon transport and defect 

dynamics, as both are represented by the same atomic 

motion, without the need to assume the nature of 

phonon transport or scattering, or the mechanism for 

defect nucleation, propagation, and interactions.  

Fig.13. Snapshots of kinetic energy distribution in 

space during the propagation a heat pulse across GBs. 

GB locations are indicated by white arrows. 

Reproduced with permission from Acta Materialia 

136, 355 (2017). 

 

Figure 13 presents CAC simulation results of a heat 

pulse propagating across GBs46. A phonon 

representation of heat pulses composed of 

spatiotemporal Gaussian wave packets obeying the 

Bose-Einstein distribution57 is used to mimic the 
coherent lattice excitation by ultrashort lasers. As can 

be seen from Fig.13, the simulation has captured  

(1) The phenomenon of phonon focusing “caustics”58, 

manifested as the concentration of energy flux in 

the six-fold symmetric focusing pattern shown in 

Fig. 13 (a);  

(2) The Kapitza resistance, shown in Fig. 13(d) as the 

discontinuities in the kinetic energy at the GBs; 

(3) Simultaneous ballistic and diffusive phonon 

transport across GBs, and a co-existence of 

coherent-incoherent phonon scattering by the GBs. 

These are clearly shown in Fig. 13(b-d) as both 
wave-like transport of the propagating heat pulse 

and the breaking of the 6-fold symmetry of the 

phonon focusing pattern due to diffusive transport 

and incoherent scattering by the GBs.  

(4) Local reconstruction of the GB structures, as 

shown in Fig. 13(e), as a result of the phonon-GB 

interaction during the heat pulse propagation. 

 

(5) SUMMARY AND DISCUSSIONS 

 

   We have presented the CAC method for 

simulation of transport processes in crystalline 

materials. The formalism extends the Irving-

Kirkwood statistical mechanical theory of transport 

processes for single-phase, single-component 

molecular systems to a concurrently coupled atomic-

continuum description of polyatomic crystals.  

Conservation equations are derived in terms of 

instantaneously expressions of cell-averaged 

quantities using the mathematical theory of 

distributions59.  Fluxes are then obtained that quantify 

the flow of conserved quantities across the lattice cells 

as well as those that flow back and forth within the 

cells, as direct consequences of the local density 

definition and Newton’s second law.  

      Basic features of the CAC formulation, in 

comparison with classical continuum mechanics and 

molecular dynamics, may be summarized as follows.         

(1) As in classical continuum mechanics, the CAC 

governing equations are field equations, and hence 

can be discretized and solved using the finite 

element method. However, unlike the situation 

with continuum mechanics, each element node in 

CAC represents a unit cell that further contains a 

group of atoms; the atomic interaction and atomic-

level crystal structure are thus fully built into the 

formulation, with no additional constitutive 

(a) (b) 

(c) (d) 

(e) 
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equations other than an interatomic potential being 

needed.   

(2) By including the internal DOFs of each lattice cell 

associated with atomic movement in the 

formulation, CAC can resolve the atomic structure 
of crystalline materials and reproduce both 

acoustic and optical phonon modes. It also can 

measure fluxes at the atomic scale, such as stress 

near a dislocation core or heat flux across an 

interface or a defect.  

(3) Since CAC is derived in a bottom-up manner from 

the atomistic, it becomes identical to the 

underlying atomistic model when discretized at 

lattice level. CAC thus has the full applicability of 

MD in predicting materials behavior without the 

need of a priori assumption for mechanisms. It can 

also go beyond MD to scale up for mesoscale 
simulations by utilizing the continuous structure 

and deformation in regions where structure 

disorders or other discontinuities are absent or 

where atomic resolution is not needed. 

(4) CAC is thus naturally a concurrent multiscale tool 

that resolves details to full atomic resolution at 

regions of interest, while coarse-graining to 

thousands of atoms per finite element elsewhere; it 

admits propagation of dislocations, addresses 

stacking fault structures in the FE regions, and 

provides a unified treatment for materials 
microstructures, defects, and phonon transport.  

   A comparison of representative coarse grained (CG) 

methods can be found in ref [60] and a detailed review 

of dynamic multiscale methods can be found in ref [61]. 

CAC is currently the only concurrently coupled 

atomistic and continuum method whose continuum 

description is not based on the classical continuum 

mechanics equations but a reformulated field 

equations of conservation laws.  As distinct from other 

CG and multiscale methods, the CAC formulation 

links and unifies atomistic and continuum description 

of transport equations. There are two unique 

capabilities of the CAC formulation: 

(1) It can serve as a multiscale theory for concurrent 

atomistic-continuum simulation of polyatomic 

crystalline materials under a single set of 

governing equations, thereby expanding the 

current atomic-interaction-based simulation 

capabilities from the nanoscale to the mesoscale 

crystalline materials.  

(2) It provides consistent formulas for calculations of 

continuum quantities such as stress and heat flux 

in atomistic or CG atomistic simulations of 

heterogeneous materials, noting that the majority 

of flux formulas in literature or currently 

implemented in MD software are only applicable 

to homogenized, single-phase, single-component 

materials.   

    Irving and Kirkwood recognized that the classical 

hydrodynamics is a single-scale theory as a result of a 

single-scale materials description3. Beyond the single-

scale continuum mechanics or hydrodynamics, we 

have the generalized continuum mechanics (GCM) 

that advocate and employ a concurrent two-level 

structural description of materials62-64. Well-

established GCM theories include the Micromorphic 

theory65, the Micropolar theory66, and Microstructural 

theory67. Unlike CAC, these GCMs were formulated 

via a top down approach68. Although the link between 

molecular dynamics and GCM has been attempted69-

72, the popular GCMs are two-level continuum-

continuum formulations60, lacking a description for 

the discrete structure or motion at the atomic scale.  

      We have also presented three sets of simulation 

results in this Tutorial to illustrate the applicability of 

CAC in reproducing atomic-scale structures of 

interfaces, dynamic processes of dislocations and 

fracture, and phonon transport across GBs.  These are 
low-temperature simulations, in which thermal 

fluctuations with wavelength smaller than the size of 

the elements in the FE regions are ignored.   

      For simulation of defect dynamics at finite 

temperature, the FE mesh size in CAC is determined 

by the density of defects as well as by the dominant 

wavelengths of phonons that interact with the defects. 

In regions where atomic-scale accuracy is necessary to 

capture interface and defect reconstruction, full atomic 

resolution is needed.  

       For low-temperature transport processes in which 

phonon-phonon scattering has a negligible effect, the 
usual FE tri-linear shape functions may be replaced by 

those that combine the tri-linear shape functions and 

Bloch wave functions consisting of phonons whose 

wavelength are cut off by the shape function. This 

allows short-wavelength phonons from an atomically 

resolved region to traverse a coarse-grained FE region 

and enter another atomically resolved region73 so as to 

model phonon scattering by dislocations, impurities, 

GB or phase interfaces with all possible phonons.   

       For finite-temperature phonon transport when 

high-frequency short-wavelength phonons are 
dominated by thermally resistive74 or diffusive 

processes, the surface integrals of the kinetic 

momentum fluxes, i.e., T
f , in the momentum equation 

can be modelled as a body force with a constant mean 

but fluctuating in time in terms of the frequencies of 

the missing phonons. This is intended to reproduce the 
phonon density of state of the underlying atomistic 

model, thereby approximating the effect of the thermal 

fluctuations by the missing phonons. Phonon transport 
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represented by the motion and deformation of the 

elements, whether it is diffusive, ballistic, or 

simultaneously ballistic and diffusive, will naturally 

emerge in the simulation as the consequence of the 

conservation laws, the interatomic potential, and the 
initial temperature.  

       Finally, we would like to note that, while the 

conservation equations and expressions of fluxes and 

temperature in the CAC formulation are identical to 

those in an atomistic model of particles, the FE solutions 

to the conservation equations are approximate 

numerical solutions. Consequently, simulated 

phenomena and calculated fluxes using the FE 

approximations feature a tradeoff of efficiency and 

accuracy. There are thus coarse-graining errors that 

may increase with the FE mesh size, depending on the 

nature of the phenomena and the morphological length 
scales of the materials. Advanced algorithms that can 

improve the accuracy and efficiency of the simulation, 

such as adaptive mesh refinement and advanced 

multiple time step algorithm, are needed.  Also, the 

current CAC formulation is based on the traditional 

interatomic potentials with well-defined site energies. 
Future work will be needed to extend the formulation 

to quantum-accurate, machine-learned potentials. 
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 APPENDIX A:  CONSERVATION EQUATIONS FOR MONATOMIC CRYSTALS 
 

    The classical formulations of boundary value problems are based on the assumption that their solutions are smooth 

(i.e., with continuous derivatives) and that the equation is satisfied at every point in the domain of the problems. For 

problems that involve point mass, point charge, or other discreteness or discontinuities, the smoothness assumption 

breaks down. The mathematical tool for such problems is the theory of distributions, also known as the theory of 

generalized functions, developed by Laurent Schwartz in the 1950s17. One generalized function frequently used in 

science and engineering is the Dirac delta-function introduced by Paul Dirac in his research in quantum mechanics 

and is employed in most statistical mechanics formulations to link a particle description to a field representation. The 

theory of distributions enables a rigorous solution to the mathematical difficulties in linking discrete and continuum 

descriptions that have been bypassed by ad hoc constructions or by heuristic arguments.  

      Appendix A and B present formal derivations of conservation laws based on the mathematical theory of 
distributions. A more detailed discussion of the integral form of conservation laws and atomistic formulas for fluxes 

for monatomic crystals can be found in ref [13-16]. Due to additional quantities such as temperature discussed in this 

work, there are notational changes in this paper.  

 

A1. Local density definition and the balance equation of linear momentum for monatomic crystals 
 

     Define the volumetric density of mass, linear momentum, and energy over a unit cell and a time-interval as 
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,                                          (A1) 

 

where V is the time-step-averaged box function V defined in (8) and is used to serve the role of averaging the IK 

point-function local density over a unit cell V and a time-interval Δt.   

        The derivative of V does not exist everywhere as a classical function, but it exists as a distribution. A distribution 

f(x) is not required to have a value at any point x, it is defined by its action on a test function φ(x) that infinitely many 

times differentiable and has a bounded support. For example, the Dirac delta-function δ(x) is defined as (δ, φ)= φ(0). 

In this sense the derivative of δV is the surface distribution that acts on a test function φ as

( )( , ( , )V k kt V
t dS  

 
− = x r x v n . Any smooth function g(x) can be viewed as a distribution whose action on a test 

function φ(x) is defined as the integral of the product g(x) φ(x) over the whole range of the variable x. Furthermore, 

any distribution f(x) is proved to be the limit of a sequence of smooth functions fε in the sense that the numerical 
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sequence (fε, φ) converges to the number (f, φ) for any test function as the regularization parameter ε approaches 0. In 

this sense, the derivative of δV can formally be written as a definite integral of a δ-function, that is, as the limit of the 

corresponding integral in which the δ -function is replaced by a regularized distribution δε that is a smooth function 

and converges to δ as 0→ in the distributional sense59, i.e., 
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V V
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 − =−  + − −  + − x r v n x x r v n x x r ,                                 (A2) 

 

For the rest of the Appendixes, any formal integral of a δ -function, like the one in the right hand side of (A2), 
is understood as a distribution defined by such a limit. Any relation between distributions obtained in this way is 

proved to be independent of the choice of regularization59. 

     The internal force density is also a volume density. An important fact is that the total internal force in a volume 

element V is equal to the total interaction force transmitted across the enclosing surface ∂V, which can be described 

as a line-plane intersection problem. Denote an oriented surface element that is centered at x with normal n and area 

A as An;  the intersection of the line segment Lkl and surface element An can be expressed as 
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It is noted that the time-interval average of ( )n
A

kl
d −L x φ φ over a time-step is itself. 

The crossing of an atom through a surface element during a time-step Δt can also be expressed as the intersection 

of the path of the atom 
kr and a surface element An with area A and normal n as 
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      Expressing the total internal force in the volume element V as the total interaction forces crossing the bounding 

surface ∂V, we obtain the internal force density in terms of site energy k , according to Eq.(A3), as 
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The time rate of change of the linear momentum within V can be derived, as a result of Newton’s second law applying to 

the particles in V, using Eq. (A5) and Eq.(A2), as 
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where the stress vector t on the surface element of normal n is expressed as a line-plane intersection problem, cf. Eq. 

(A3) and Eq.(A4), as 
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where ( )kl l k k l−   − F r r is a measure of the strength of the interaction between atom k and atom l. 

 

A2 Conservation equation of energy for monatomic crystals 
 

     Similarly, the time rate of change of the energy density can also be expressed in terms of atomic variables as 
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The first term in the right hand side of Eq. (A8) can be expressed as  
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and the second term, according to Eq. (A2), as,  
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Substituting Eqs.(A9)-(A10) into Eq.(A8), we obtain the integral form of the energy conservation law as 
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and the heat flux vector in the indicial notation  as  
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APPENDIX B:  CONSERVATION EQUATIONS FOR POLYATOMIC CRYSTALS 

 

B1 Balance equation of linear momentum for polyatomic crystals 
 

   The rate of change of the density of linear momentum defined in Eq.(11) can be expressed as 
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The first term in the right hand side of Eq.(B1) can be derived according to Newton’s second law and, in the absence 

of a body force, it is equal to the internal force density int ( )f x . Note that the translational symmetry of potential energies 

requires that 
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This leads to the expression of the total force acting on atom kξ due to all the other atoms as 
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    Figure 14 shows that the total interaction force on atom α in the unit cell at point x can be decomposed into the 

interaction forces on atom α due to the interactions between atoms in different unit cells and that between atoms in 

the same unit cell. This then leads to the definitions of surface tractions, pot

t and pot

τ , respectively. The internal force 

density int ( )f x can then be written, according to Eq.(B3), using the line-plane intersection defined in Eq.(A3), as  
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where 
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Fig. 14 The volume element V of the unit cell at point x; (b) two contributions to int ( )f x : (1) the interaction forces 

that cross ∂V, and (2) the interaction forces that only cross V ; (c) the volume elementV . 
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and the third term as 
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with 
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Substituting Eqs.(B4), (B7) and (B8) into Eq. (B1), we obtain the conservation equation of linear momentum as 
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where  

 ( ) ( )pot kin, ,  = +t t x n t x n , and  ( ) ( )pot kin, , , ,  = +τ τ x y n τ x y n    .                                 (B12) 

 

The total stress vector on a surface element at point y in the unit cell located at x due to the interaction and motion of 
all the atoms is then expressed as a sum of potential and kinetic parts as 
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       The stress tensor can then be expressed in terms of the stress vector as  
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B2 Conservation equation of energy for polyatomic crystals 
 

        The rate of change of the energy density can be written as 
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the first term in the right hand side of Eq. (B17) can be expressed, using Eq. (B18) and the line-plane intersection 

theorem, as 
 

1 1 ,

1( ) ( ) ( ) ( ) ( )
N N N N N Nk kl a l a l a

l kk k
k V k V k k l V k k k

k k V l V kV Vk l k kl k

E d dS d dS
V

 
  

       
        

    
= =    

     
 − − = −  + − + − − + −            

       
r r

r r
x r y r v v x x φ φ x r v v y y φ φ

r r r r
.(B19) 

 

The second term can be derived according to the distributional derivative of the box function expressed in Eq.(A2) as 
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and the third term as 
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This leads to 
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The total heat flux is thus expressed as 
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      Irving and Kirkwood noted that a definition for the site energies of particles is required for definition of energy 

density as well as for the derivation of a field representation of energy conservation law in terms of particle variables3. 

The conservation equations and the expressions for fluxes derived in the appendixes are valid for any analytical many-
body potentials with well-defined site energies.  A detailed comparison and discussion of the fluxes defined as a 

surface density presented in Appendix A and the fluxes formulas expressed  as a volume density can be found in ref. 

[13]. Specifically, analytical and MD simulation results presented in ref. [13] show that replacing the Dirac δ with a 

finite-sized volume weighting function changes the fundamental nature of fluxes as a surface density. Consequently, 

the dynamic balance between the rate of change of the total momentum or energy in a volume element and the fluxes 

across the surface boundary cannot be established, leading to the failure of the volume averaged flux formulas in 

satisfying the momentum and energy conservation laws as well as typical transport boundary conditions. The 

equivalence between flux formulas expressed as a pair density derived using kinetic theory75,76 and that expressed as 

a single density derived using statistical mechanics3,  as ensemble averaged point functions or as surface-averages, 

can be found in [16].  
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