Concurrent atomistic-continuum modeling of crystalline materials
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In this work we present a concurrent atomistic-continuum (CAC) method for modeling and simulation of crystalline
materials. The CAC formulation extends the Irving-Kirkwood procedure for deriving transport equations and fluxes
for homogenized molecular systems to that for polyatomic crystalline materials by employing a concurrent two-level
description of the structure and dynamics of crystals. A multiscale representation of conservation laws is formulated,
as a direct consequence of Newton’s second law, in terms of instantaneous expressions of unit cell-averaged quantities
using the mathematical theory of distributions. Finite element (FE) solutions to the conservation equations, as well as
fluxes and temperature in the FE representation, are introduced, followed by numerical examples of atomic-scale
structure of interfaces, dynamics of fracture and dislocations, and phonon thermal transport across grain boundaries.
In addition to providing a methodology for concurrent multiscale simulation of transport processes under a single
theoretical framework, the CAC formulation can also be used to compute fluxes (stress and heat flux) in atomistic and
coarse-grained atomistic simulations.

1. INTRODUCTITON Max Born. These vibrational modes are called
phonons and are of two types: acoustic and optical, cf.

Solid state physics describes the structure of all
crystals in terms of primitive unit cells. These
primitive unit cells, each containing an identical group
of atoms, are the building blocks of crystals. When
added continuously in space, they form the structure
of a crystal and completely fill the space the crystal
occupies', cf. Fig.1.
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Fig. 1 A two-level structural description of crystals: a
continuously distributed lattice + a discrete basis.
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Fig. 2 Transverse atomic motion in (a) an acoustic
mode and (b) an optical mode.

Although the motion of an atom in a crystal is an
irregularly fluctuating function of time, it turns out that
the dynamics of a crystal can be most readily
described, not in terms of individual atoms, but in
terms of travelling waves, named lattice vibrations by

Fig. 2. With the former, atoms in a unit cell move in
the same phase, resulting in the deformation of the
lattice; with the latter, atoms undergo relative motion
within the lattice cells, leaving the lattice unchanged.
Thus, the displacements of atoms in a crystal can be
described as the sum of continuous lattice
displacements and the internal displacements of the
atoms relative to the lattice.?

It is seen that the solid state physics description of
the structure and dynamics of crystals is based on a
concurrent  atomistic-continuum  approach: the
structure is continuous at the lattice level but discrete
at the atomic level; the lattice deformation is
continuous until a defect is generated, cf. Fig. 3, while
the internal motion is discrete.
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Fig. 3 Schematics illustrating that (a) the lattice
deformation is continuous until (b) structural
discontinuities generated by slip and/or twinning.



Historically, atomistic and continuum descriptions
offer two fundamentally different approaches to our
understanding of crystalline matter. From the
atomistic  viewpoint, matter consists of discrete
particles; while from the continuum viewpoint,
matter is infinitely divisible. The continuum view
leads to formulations of field equations of
conservation laws. Supplemented by constitutive
relations, such as Hooke’s law and Fourier’s law, these
conservation equations serve as the governing
equations in continuum modeling of materials.

This work introduces the concurrent atomistic-
continuum (CAC) method that links and unifies the
atomistic and continuum descriptions of crystalline
materials. The Irving-Kirkwood procedure for linking
the molecular description to hydrodynamical
equations is reviewed in Sec. 2; the CAC formalism is
introduced in Sec. 3; the finite element (FE)
formulation of CAC as well as the fluxes and
temperature in the FE representation is outlined in Sec.
4; numerical examples are presented in Sec. 5,
followed by a summary in Sec. 6. Detailed derivations
of the conservation equations using the mathematical
theory of distributions for monatomic crystals are
included in Appendix A and that for polyatomic
crystals in Appendix B.

II. THE IRVING-KIRKWOOD PROCEDURE

The statistical mechanics formulation to link
discrete and continuum descriptions of conservation
laws was pioneered by Irving and Kirkwood (IK) in
1950°. In their landmark paper, IK defined local
densities in terms of molecular variables using the
Dirac delta for “localized density”, “since mass or
momentum of any molecule may be considered as
localized at that molecule™. A local density of a

dynamic phase function A(r,v;), where r, and v, are

the position and velocity of the k™ particle, is defined
as an ensemble-averaged point function a(x,¢) as

N
a(x,z)z<kz:1A(rk,vk)5<rk—x)> ,
(1)

where the symbol “=" means “equal by definition”.
Equation (1) is usually interpreted as mapping the
phase functions in the 6N-dimensional phase space to
the local densities in the 4-dimensions of physical
space and time. Based on the local density definition
in Eq.(1), IK derived the rate of change for the
densities of mass, momentum, and energy in the form
of partial differential equations that relate the density
of a conserved quantity @ (x,t) and its flux J(x,7) as

%E(x,t)zvx T(x,0)- )

Formulas for fluxes (stress and heat flux) are then
obtained through comparing the rate equations with
the differential equations of hydrodynamics.

The IK formalism has inspired numerous efforts to
link molecular variables to field quantities in classical
continuum mechanics®®. To understand the motivation
of a new formalism, we recall the following noted by
Irving and Kirkwood® and by Kirkwood’.

(1) Local densities and fluxes in the IK formulation
are point functions. “The point functions,
although averaged neither over space nor time,
satisfy equations that are identical in form to the
equations of hydrodynamics for a single
component, single phase system”. These
equations were called “the hydrodynamical-like
equations” in the IK paper’. It was noted that, “to
obtain the hydrodynamical equations themselves
it is merely necessary to perform the appropriate
space and time averages”™”.

(2) The densities for mass, momentum and energy
were defined without restriction to a single
component single phase system. For fluxes (stress
and heat flux), IK stated that “we must impose this
restriction” and the flux formulas obtained with
their formalism are “only valid for a single
component, single phase system”>.

(3) The statistical mechanical theory of transport
processes published in a series of 14 papers by
Kirkwood and coworkers only considers rigid
molecules, ignoring the internal degrees of
freedom of the molecules. In the first one of the
series, Kirkwood envisioned extension of the
formulation to molecules possessing internal
degrees of freedom (DOFs)’.

III. THE CAC FOMALISM

The CAC formalism is an extension of the IK
procedure for homogeneous hydrodynamic systems to
a two-level structural description of crystals that
includes the atomic DOFs within each lattice cell'®!".
With such an extension, the CAC formulation is
applicable to polyatomic crystalline materials, and can
be used to solve atomic trajectories or quantify
instantaneous fluxes, conferring full characteristics of
a concurrent atomistic-continuum method.

A. Ensemble-Averaged Local Densities

For a polyatomic crystal of N, unit cells, with each
unit cell containing N, atoms, the density of a phase
function A(r,v,)at point r in the physical space can
be expressed as



ar.)=(YY Alr, 0,00, -1)) » 3)
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where 1, and v, are the position vector and velocity

vector of the £M atom in the 4” unit cell, and the symbol
< > denotes ensemble averaging that involves NN,
fold integrals of the phase function 4 and a probability
distribution function in the phase space.

Recall that the structure and deformation of a crystal
are continuous in space at the lattice level, but are
discrete at the atomic level. It is therefore consistent
with solid state physics to describe the crystal structure
in terms of the positions of lattice cells and the relative
positions of atoms inside the lattice cells. For this
purpose, we resolve the sum in the definition of the
local density in Eq. (3) into contributions from groups
of atoms within the same lattice cell and express the
locations relative to the unit cell for those atoms, i.€.,

Np N1

ate,y.)=(Y Y Al v )8x-r)8(y-4r) ) (4

k=1 é=1

where 1, is the position of &A™ unit cell, andAris the

relative position of E" atom in the unit cell k.

The density in Eq. (4) is expressed in terms of the
direct product of two deltas, with the two field
variables x and y representing a distinction of large-
and small-scale variations of the variable r in Eq. (3).
Note that the ensemble average in Eq. (4) also involves
NN, fold integrals and, although expressed in terms of

different phase variables, the values of a local density
defined in Eq. (3) and Eq. (4) can be mathematically
equivalent. However, different from that in Eq. (2), a
conservation equation for the density defined in Eq. (4)
relates a conserved quantity to two fluxes, J,andJ,,
owing to the use of large and small-scale variation in the
latter, i.e.,

Qa(xy)=V, T x4V, T(xps) - (9

B. Space and Time-Averaged Local Densities
Evans and Morriss argued that, since conservation
laws hold instantaneously, conservation equations and
fluxes should be definable without ensemble
averaging'?. This has been demonstrated recently for
monatomic crystals'*!°. To derive the conservation
equations and flux expressions that hold
instantaneously based on the two-level structural
description of crystals, we consider a unit cell of
volume ¥ located at point x in the physical space;
within the unit cell, there are N, volume elements,

each containing one atom and having volume V,
satisfying >V, =V . Since the distribution of the unit

cells is continuous and homogenous in space, we may
define a local density per unit-cell volume as

a(x,0)= ZA(}‘M,V,{;)JJ (x=1)=Da,(x,0) , (6)

k=1\_&=1

wherea, (x,t)=3,4(n, Vi, )9 (x—1,) is the contribution of
the o atom to a(x,¢) and can be expressed as

0, (5.0)=3 S Al 2,00, (x-1,)6,, (7-Ar,)=a(x.pnt) . (7)

k=léal
and
11 ifx-neV
Oy (x—r,)=— ’ °
y (x=1,) V{O, if x—r, 2V’ ®
1 if y-Ar.€V, or é=a
8, (y-Ar, )= ) -
o (Y=AT,) {0 if y-Ar, ¢V, or {2 v

Since "6, (y—An.)=1, one can see that Eq. (7)
satisfies Eq.(6), anda(x,y,t)=a,(x,t) holds for all yeV/, .

Note that the box functions defined in Eq. (8) and
Eq. (9) have a jump discontinuity at the enclosing
surfaces V and V,, respectively. These functions do not
have derivatives in the classical sense. It thus requires
a generalization of the concept of a function. The
corresponding mathematical theory is known as the
theory of distributions!”. This theory will be used
throughout this work as the mathematical tool to
derive the conservation laws for physical quantities
described by non-differentiable functions.

In atomistic simulations, the equation of motion is
solved in discrete time-steps. Accordingly, local
densities should be further averaged over a time-
interval. The contribution of the o atom to the mass
density p,, momentum density ps ( p,=p.v. ), and

energy density £, (E,=p,¢e, ) per unit volume can
then be defined as

N Ny

£, (%, t)EZiémggV(x_"k)gr/a(y_A"kg) , (10)
N Ng 5 _ _
D, (x, t)EZZm§Vk§5V(x—rk )0y (¥=Ar) (11)

(x, 1)= ZaZ( mg"kz»;"'q)kg)gv(x—"k)gVa(y—A’k.g), (12)

where @ is the potential energy of atom k& 5,
denotes the average of dy over a time-interval 4¢, i.e.,
o (i, —,\c):ﬂoA '8y [n(1+7)—-x]dz . The time evolution of a

conserved quantity, i.e., the conservation equation, can
then be expressed in terms of a lattice-level flux J as

9 -1 13
ata(x,t) V?Jx x t ndS, (13)

or in terms of atomic-level fluxes J; and J- as



—a (x, )= OJ x x t ndsS yOI xy yit nds,, (14)

4 Ve
where n is the outward unit normal vector to the
surface element, J; is the part of flux that flows across
the enclosing surface 0V, J, is the part of flux that
flows back and forth inside /" and hence only cross the
bounding surface 0V, as shown in Fig. 4.

It is noted that by integrating Eq. (5) over V and
invoking the divergence theorem one obtains an
integral equation in the form of Eq. (14). However,
Eq. (5) is not valid instantaneously and it requires the
fluxes to be differentiable. By contrast, the
conservation equation in Eq. (14) holds
instantaneously in the distributional sense and the
fluxes are not required to be continuous functions.

Ve

Fig. 4 2D Schematic for Ji, the flux across the
bounding surface of the unit cell (the rectangle) oV,
and J>, the flux that does not cross 0V but rather 0V,
(the triangle) within the unit cell.

C. Conservation Equations and Fluxes

Averaging a local density over a unit cell of volume
V leads to the integral form of conservation laws that
equate the rate of the change of conserved quantities
in the unit cell to their fluxes across the enclosing
surface of the unit cell. Following from Eq.(10), the
equation of conservation of mass can be derived in the
form of Eq. (14) as

Pa = =
2 —kzzmkg & (x=1)8. (y-An)
+szkggl/(x—'} )%gva(y—m}g) ’ (15
k=i
-1
= Vc;pavn das V?apa v, ndS,
where v=_", v,=p,/p,,and Av,=v,—v.
The momentum conservation law can also be

derived, using the momentum density defined in
Eq.(11), from Newton’s second law, as

puve) 3
(pv _ZZm vk/,:é‘y/ RY 'k)&/a(y Ar’ff)

ot e

NI Na
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where 7, and 7, are the momentum flux (stress) that
cross 0V and 0V, respectively, as a result of atomic
interaction and motion involving atom a. The total
stress vector ¢ on a surface element 4" of area 4 and
normal n, located at position y in the unit cell at x, from
all the atoms can then be expressed as

Na
1(x,p.0)= D (1, +7,) =" (x,p,m) +" (x,p,1m) , (17)
a=1

where " is the potential part of # that measures the
interaction force per unit area transmitted across 4%, i.e.,

pot Ny e aq)/af e Sn
t (xayan): Z Z F ,[5,4 ((D—X)d(D

kiGén Oy f, (18)
a®kf e Sn ’
+z z Vo (x=1) = [ 5] (p-y)p
k &n#s ki Ty

and £ is the kinetic part of # that measures the flow of
momentum per unit area and time across A", i.e.,

. M
M (x,ym)==>m" ~ )
k=1 (19)
N Nq
SV, (x-r)Sm AT Ar,)
k=1 a=1
Here, AT -Ava;J.':':;gj (p—x)dp, defined in

Eq. (A3), and 5} (y—Arn, ) , defined in Eq.(A4), represent

potential and kinetic fluxes as a line-plane intersection
problem in space and time, respectively.

Similarly, denoting ¢, and j, as the parts of heat flux
that cross 0V and 0V, respectively, the time rate of
change of the energy density £, can be derived as

9(pyes) _ GZZE,@(S (X154 (y=Ari.)

ot
=1lo q, t,v,~vp,e,)ndS . (20)
Vy
+lo jIZ TIZ va _Avapaea)‘n dSa
Vir,

The total heat flux is then given by
4Ce)=24 +i)=g" (x.9)+4" (ep)=g(xye)e 21

where & (i =1, 2, 3) are the orthonormal basis at x,

pot iy_ A a(Dkoz et fha i
q (x’y>e )_ z z P Via 5A (0_x) d(ﬂ
kJ#kan "}” ny , (22)

o
+ZV5 (n x)Z P b, 6 p-Y) dp

a e r/\'?? Iy

and

k=la=1 ) (23)



The link between atomistic and continuum
descriptions at this point has fundamentally departed
from the IK formalism. As distinct from classical
continuum mechanics, this new formulation describes
the structure and properties of a crystalline system as
a continuous function in x at the lattice level, cf. Fig.
3 and Fig. 5, while discrete in a or y at the atomic level;
fluxes (stress and heat flux) are composed of
components resulting from the motion and
deformation of lattice cells (denoted as ¢ and ¢,
respectively) and the rearrangement of atoms within
the cells (denoted as T and j, respectively). Most
importantly, instead of linking molecular variables to
classical continuum mechanics equations, the CAC
formalism leads to a new representation of
conservation laws and fluxes.
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Fig. 5 Schematic of the mass density distribution in
space for a crystal with two different atoms in the
primitive unit cell: (a) using Eq. (3), (b) and (c) using
Eq. (7), showing that the mass density is a continuous
and homogenous function at the lattice level, while it
is discrete and inhomogeneous at the atomic scale.

D. Temperature

An important difference between atomistic and
classical continuum theories is the definition of
temperature; in the former, temperature is a derived
quantity, while in the latter, temperature is a
fundamental state variable. Specifically, the abiding
definition of temperature in classical molecular
simulations is the kinetic temperature defined by
kinetic theory in terms of the mean kinetic energy of
the random motion of atoms, while that in quantum
calculations is based on the mean energy of phonons.

Kinetic theory provides a microscopic description
of temperature through the classical mechanics of
particles. The equipartition theorem of kinetic theory
asserts that the average kinetic energy of a particle in
an equilibrium gaseous system with temperature 7 is
Imv?, =2k, T . Away from thermal equilibrium, the

particle velocity is usually replaced by~ , the
difference between particle velocity and the velocity
field. Such a temperature definition is consistent with
the physical picture of an ideal-gas thermometer in
which the velocity is measured relative to the co-
moving frame of the kinetic thermometer'®. The non-
equilibrium temperature is expressed!® as

3k TN( _N]1 ~
=k, T (x)=) =m, -r). (24)
2 =2

This temperature definition, however, has
unambiguous meaning only in thermal equilibrium or
an approximate local thermal equilibrium condition
such as that in a steady state. To elucidate this point,
we decompose the kinetic energy density into two parts:

) N N, _ _
£ ()= 2 0m, (0.3, (x1)d, (-0,
.29

y
:lp (v )2+lzm ¢ -1) =k, tk,
2 a a 2,\21 a a. a.

where k,, is the kinetic energy density represented by
the velocity field, and £,, is the kinetic energy due to
the velocity difference between particle velocity and
velocity field, usually interpreted as the random
motion of particles. Although the definition of total
kinetic energy is unambiguous, the velocity field can
only be uniquely defined when it is zero (for thermal
equilibrium) or a constant (for steady state). This is
because the velocity field depends on length and time
scales, i.e., the averaging, of the linear momentum.
Thus, regardless of whether it is in an atomistic or a
multiscale simulation, temperature can only be well
defined at thermal equilibrium or steady state. It is a
concept describing the state of a system rather than the
dynamics of an atom.

Differing from the classical concept, the quantum
description of temperature is expressed in terms of
phonons. There are more phonons at high temperature
and fewer phonons at low temperature. The average
phonon number is determined by the equilibrium
temperature 7 and the phonon frequency w through the
Planck constant 7 and the Boltzmann constant k5 .
This relationship is called the Bose-Einstein
distribution, i.e.,

-1

kT ) —l} , (26)

where n(x,v) is the phonon number for branch v and

n(k,v)z[exp(h

wave vector x in thermal equilibrium. The total kinetic
energy of an equilibrium system can then be expressed
in terms of all the available phonon modes in the
systems, i.e.,

Nj 3N,
11a

k=133

K Vv

i "-+n(k,v)} . 27)

Recall that the number of phonon modes is equal to
the number of the particle degrees of freedom of the
system, and that the total kinetic energy per phonon
mode in the classical limit is equal to kz7/2. The
difference between the quantum and classical



temperatures can thus be quantified through equating
the phonon and classical descriptions of the total
kinetic energies?, i.e.,

135 -
K=i33n et
( -1
_lNl 3Ng L _h _ 28
_2;; h L2+ exp kB];uantum) ! ( )
:%N/Nngz:)la.SSiUﬂl

For a given quantum temperature, the
corresponding classical temperature can be calculated
using Eq.(28). Fig. 6 presents such calculations for LiF
and SrTiOs. As can be seen from Fig. 6, the two
temperatures are different at low temperature, but the
difference becomes negligible as the temperature
increases. At 0 K quantum temperature LiF and
SrTiO; have a zero-point energy equivalent to 237.1K
and 279.7K classical temperature, respectively, and
hence there are corresponding motions at 0K, i.e., the
zero-point vibrations.
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Fig. 6 Quantum temperature vs classical temperature
(blue solid curves) for (a) LiF and (b) SrTiOs, showing
that the two temperatures converge at high
temperature, indicated as the solid blue curves

approaching the dotted green lines.

IV. FINITE ELEMENT FORMULATION

As shown in Fig. 5, a local density such as the mass
density in a polyatomic system is not a continuous
function at the atomic scale. By decomposing the
atomic position into the position of the lattice cell, x,
and its internal position within the unit cell at x, we are
able to express a density a.(x,?) or a(x, y, f) at an
equilibrium or steady state system as a homogeneous
and continuous function in x. Consequently, the field
equations of the conservation laws can be discretized
in x and solved using continuum-based numerical
methods such as the finite element (FE) method.

A. Temperature in FE formulation

As shown in Eq.(25), the decomposition of the
total kinetic energy into k, and k,, depend on the
length scale of the velocity field. In particular, in a FE
model £, is represented by FE nodal velocities, in

which the displacement field in an element is
interpolated with FE shape functions S;(x), i.e.,

i, (x,0)=S.(x)U,, (1) » (29)

where U,, (¢) is the displacement vector of o atom
embedded within the &' node of the element; the
contribution of the a* atom to the kinetic energy in an
element of volume V. is thus given by

Mkadv =[[[3 0.0 RSt . GO)

e e e

The kinetic energy of an element can also be
expressed in terms of phonons using the phonon
dispersion relations of the FE model?!. However, a FE
model employing the usual tri-linear shape functions
cuts off phonons whose wavelengths are smaller than
the element size. The motion of the FEs thus only
represents a subset of the phonons of the system. This
means that the FE mesh, i.e., the FE displacement
approximation, uniquely determines the
decomposition of total kinetic energy into k,; andk,,,
where £, is represented by FE nodal velocities, while
ky, 1s related to k, through the temperature-
dependent phonon number n(x,v) .

A special case is for systems at high-temperature
thermal equilibrium, in which every phonon mode or
every particle DOF has the same energy kz7/2 . The
total kinetic energy of an 8-node element containing
m=V,/V unit cells is thus given by

jijkaldVJerﬂkade:n,x%kBT , 31)
with
[katendr=[[3p 0800 8CkT), (32)
Ve Ve
and
[kt =[[3m ¢ ndr=-8CkD). G3)
Ve Vo k=1

Equations (32) and (33) can be used to prescribe FE
nodal velocities for a given initial equilibrium
temperature 7 or to find £,, from £, .

B. Finite Element Equations
Substituting the conservation equations of mass
into the linear momentum equation, we obtain
1

0. KO O . (34)

Denoting the sum of the two surface integrals of
kinetic stresses as f7(x, ), noting that the averaged



fI(x, ) over a long-time duration can be linked to £,,
and hence the local temperature, we have

Yfrnae=t] 1o o , (3%
t v

where VT and A can be determined from V, (ki +k.2),
in which V.k, can be calculated based on FE nodal
velocities, and V .k, can be determined from V. .k, if
we assume local thermal equilibrium and employ the
assumption used in the linearized phonon Boltzmann
equation, i.e., V. (x,)=V.n’(x,f) %2, where »n? and n,
are the equilibrium and non-equilibrium phonon mode
distribution for wave vector .

Equation (34) can be solved using the finite
element method, with the weighted residual of Eq.
(34) over an element being given by

fIsole —fr=fl)ar=0. (6)
VE
This is the weak (Galerkin) form of Eq. (34). The
integral can be numerically evaluated using Gaussian
quadrature and the equation can be solved for
equilibrium or non-equilibrium processes.
For systems at thermal equilibrium, V. T=0, fJ

is a fluctuating function of time with a zero mean
everywhere except at the system’s boundary if thermal
expansion is constrained. It can thus be modeled as a
constant force applied at the boundary. When atomic-
scale fluctuations are important to the simulated
phenomena such as thermal activation of dislocation
motion or phase transition, f can be modeled as a

periodic or randomly fluctuating force in time with the
frequencies of the phonons that are cut off by the FE
shape functions.

For non-equilibrium processes, VT is a constant

within an element if the usual linear interpolation is
used. f7 can then be modelled as a body force with a

constant mean in each element but with periodic or
random fluctuation in ¢. It is noted that, to model it as
a random force, f! needs to be partitioned into a

fluctuating part and a damping part, with the latter to
be determined by and to balance the fluctuation force,
according to the fluctuation-dissipation theorem?3.

C. Fluxes in FEA solutions

Similar to that in MD"*"">?*, fluxes across a surface
element in a CAC model can be computed through
calculations of the interaction forces and atomic
motions that cross the surface element. Not only can
the stress and heat flux at any given surface element
be calculated, their spatial distributions can also be
plotted as contours for the entire model.

With the wusual tri-linear shape functions to
approximate the displacement field in FE, maximum
fluxes occur at the nodes of the elements. Thus, only
fluxes at the nodes and a few other locations on the
boundaries of the elements are needed for the flux
contours, such as the unit cells shown in Fig. 7. In
regions of structural disorders or discontinuities, such
as those near a dislocation core or crack tip, atomic-
scale fluxes can be calculated using Eq. (18) and
Eq.(19), and plotted as a contour at atomic resolution.
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Fig. 7 (a) 2D schematic of an element containing many
unit cells, and each unit cell contains two atoms. The
shaded unit cells are those that can be used to calculate
fluxes for interpolation of the flux fields in the element
so as to generate contours of fluxes within the element;
(b) shear stress contour near a dislocation core.

V. NUMERICAL EXAMPLES

Currently there are two public versions of CAC
codes, the CAC in LAMMPS, which will be released
through LAMMPS distribution, and PyCAC?, which
are presently available. The general procedure for a
CAC simulation can be summarized as follows.

(a) Select an interatomic potential(s) for the system;

(b) Discretize the system based on its morphological
length scales, using atomic resolution for atomic-
scale structural disorders such as GBs, while
using FEs for single crystal regions with the mesh
size determined by, e.g., the smallest possible
dislocation spacing;

(c) Relax the system with initial temperature. One
may need to systematically change the initial
configurations to obtain the dislocation or GB
structures that have the minimal energy;

(d) Apply loading and boundary conditions;

(¢) Run simulation to solve for and to visualize
atomic trajectories, which are either atomically
resolved or interpolated through FE nodal
displacements, for observations of dynamic
processes or emerging phenomena, using
software such as Ovito for atomic visualization or
Techplot for FE visualization;

(f) Calculate fluxes (stress or heat flux) or other
transport properties.

The accuracy and efficiency of the CAC method
have been tested through one-to-one comparisons with



MD in space- and time-resolved simulations of
phenomena such as crack initiation and branching?®?’,
phase transitions®®, dislocation nucleation®-2, loop
formations*3-¢ interactions with interfaces and other
defects®”*, as well as phonons-dislocation
interaction*** and phonon-GB interaction*®. In
general, for an element containing N by N by N unit
cells, the ratio of the number of mathematical
operations in CAC to that in MD scales as O(N3)*.
This means CAC can be very efficient by using large
elements, e.g., for polycrystalline materials with micron-
sized grains or for crystals with low dislocation
density, i.e., large dislocation spacing.

To illustrate the applicability of CAC, in this section
we present three sets of prior simulation results. These
simulations were performed at low temperature
without considering the fluctuations from phonons
whose wavelengths are smaller than the element size.

A. Atomic-scale structures of interfaces

CAC has been employed to study the structure and
energy of grain boundaries (GBs) and their dynamic
interaction with cracks and dislocations in SrTiO3
polycrystals***. In these studies, GBs are atomically
resolved, while regions away from GBs are coarse-
grained. Simulation results show that both the energy
and atomic displacements of SrTiOs; GBs from CAC
agree well with those that from MD if the width of the
atomically resolved region for the GBs is larger than
12 A*2. The ghost forces reported at the atomic-
continuum interface in many multiscale models are not
present in the CAC models*>. The atomic-scale GB
structures from CAC* is shown in Fig. 8 to compare
well with those from experimental results*.

Fig. 8 CAC results of (a) Y:5(310), (b) >13(510), (c)
>'5(210) GBs in SrTiO;, and (d) STEM images of
3'5(210) GB*; the unit structures around each GB
plane are outlined with solid lines.*? Reproduced with
permission from Proc. R. Soc. A 471 (2015).

Figure 9 presents CAC simulation results of the
misfit dislocation networks in the phase interfaces in
heteroepitaxial thin films. CAC is shown to have
reproduced the experimentally observed dislocation
networks in PbTe/PbSe (001) interfaces*®. The
dislocation spacing in the system as a function of the
epilayer thickness obtained by CAC is also in good
agreement with the experimental measurements. In
addition, the critical thickness above which misfit
dislocations are observed to form in the heteroepitaxial
thin film compare very well with experimental
observations®.
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Fig. 9 CAC simulation results of (a) the dislocation
network in a PbTe/PbSe (001) interface and (b) a
comparison between CAC simulation results and
experimental measurements of the dislocation spacing
as function of PbTe epilayer thickness; the inset in (a)
is a STM image of the dislocation network in
PbTe/PbSe (001)* Reproduced with permission from
Phys. Rev. Lett. 88, 015507 (2001).

B. Fracture and dislocations

Since the only constitutive relation in CAC is the
nonlocal force field, and CAC is of integral form,
continuity between FEs is not required. Consequently,
nucleation and propagation of dislocations and cracks
can be simulated in the FE region via sliding and
separation between elements. Simulation results can
be output in terms of elements or in terms of atomic
trajectories. This makes CAC a convenient tool for
simulation and visualization of the dynamic processes
of defect nucleation, interaction, and propagation.

Figure 10 presents CAC simulation results for
loading of a notched solid normal to the notch depth.
The simulations have captured the dynamics processes
of crack initiation, propagation and branching. They
also reveal that the interactions of the stress waves that
emitted from the propagating crack with those that are
reflected back by the boundaries of the specimen leads
to a sharp increase of the crack speed, which in turn
triggers the dynamic instability and hence the
branching of cracks in micron-scale specimens®. In
addition, we have measured the critical stress intensity
factor and observed a crack speed near the speed of
Rayleigh wave before crack branching.



Fig. 10 Time sequence of CAC simulations of a brittle
crystal showing (a) stress waves emitting from a
propagating crack; (b-d) crack branching as a result of
the interaction between waves propagating from the
crack tips and those reflected from the specimen
boundaries.®® Reproduced with permission from Int.
J. of Plasticity, 26, 1402 (2010).
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Fig. 11 Snapshots of dislocation motion in a V-
notched specimen; only the left part of the specimen in
MD and the right part of the specimen in CAC are

displayed. The atoms in MD and the elements in CAC
are color coded in displaying stress componento,, .

The color, red or blue, respectively, indicates tensile
or compressive stress. Reproduced with permission
from Acta Materialia 104 (2016).

CAC has also been used to characterize the complex
dynamics of fast moving dislocations, including the
energy intensities and the wavelengths of phonons
emitted from sonic dislocations, as well as the
velocity-dependent stress fluctuations around the core
of moving dislocations. Fig. 11 presents snapshots
comparing dislocation motion simulated using CAC
with a uniform mesh and that using MD, with the
number of DOFs of the CAC model being 1% of that
of MD. The dislocation velocity is measured to be

~2900m/s in both CAC and MD simulations. Mach
cones in a V-shaped pattern of the phonon wave-fronts
are observed in the wake of the sonic dislocations.
Analysis of simulation results based on a wavelet
transform shows that the faster a dislocation is

moving, the longer the emitted phonon wavelength?®-
32
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Fig.12. Snapshots of dislocation pile-up with
dominant leading screw character impinging against a
CTB. Atoms are colored by adaptive common
neighbor analysis: red are of hexagonal-close packed
local structure, blue are BCC atoms, and all FCC
atoms are deleted. In (a) incoming dislocations
approach the CTB. In (b) the leading dislocation is
constricted at the CTB, where two Shockley partial
dislocations are recombined into a full dislocation. All
five potentials produced the same results in (a) and (b).
In (c¢), with Mishin-EAM>' and Voter-EAM
potentials®?, the dislocation cross-slips into the
outgoing twinned grain via redissociation into two
partials. In (d) with Angelo-EAM™, Foiles-EAM>* and
Zhou-EAM?>, the redissociated dislocation is
absorbed by the CTB, with two partials gliding on the
twin plane in opposite directions.*® Reproduced with
permission from JOM, 69, 814 (2017).



Figure 12 presents CAC simulation results of
sequential slip transfer of ao/2 [110](111) dislocations
across a 23 (111) coherent twin boundary (CTB) in
Ni*® under ostensibly quasi-static strain rate conditions.
Simulation results shows that CAC can serve as an
effective tool for study of slip transfer reactions of
sequences of incoming and outgoing long-range
dislocation pile-ups of mixed dislocation characters.
Five EAM potentials®'3 were compared; results
demonstrate the uncertainty in computed dislocation-
interface reactions associated with the use of a variety
of interatomic potentials and suggests that the
applicability of dislocation/GB interaction criteria in
the literature for slip transfer may have limitations.

C. Phonon Thermal Transport

CAC solves for approximate atomic trajectories.
Collective motion of atoms, i.e., phonons, and the
nucleation and propagation of defects, as well as
phonon scattering by defects and other phonons,
naturally emerges in the simulation. It thus provides a
unified treatment for phonon transport and defect
dynamics, as both are represented by the same atomic
motion, without the need to assume the nature of
phonon transport or scattering, or the mechanism for
defect nucleation, propagation, and interactions.

@.LGBF-B GB, GBJ WE?ﬁB GBJ, GBJ

Fig.13. Snapshots of kinetic energy distribution in
space during the propagation a heat pulse across GBs.
GB locations are indicated by white arrows.
Reproduced with permission from Acta Materialia
136, 355 (2017).

Figure 13 presents CAC simulation results of a heat
pulse propagating across GBs*. A  phonon
representation of heat pulses composed of
spatiotemporal Gaussian wave packets obeying the
Bose-Einstein distribution®’ is used to mimic the
coherent lattice excitation by ultrashort lasers. As can
be seen from Fig.13, the simulation has captured
(1) The phenomenon of phonon focusing “caustics™®,
manifested as the concentration of energy flux in
the six-fold symmetric focusing pattern shown in
Fig. 13 (a);

(2) The Kapitza resistance, shown in Fig. 13(d) as the
discontinuities in the kinetic energy at the GBs;

(3) Simultaneous ballistic and diffusive phonon
transport across GBs, and a co-existence of
coherent-incoherent phonon scattering by the GBs.
These are clearly shown in Fig. 13(b-d) as both
wave-like transport of the propagating heat pulse
and the breaking of the 6-fold symmetry of the
phonon focusing pattern due to diffusive transport
and incoherent scattering by the GBs.

(4) Local reconstruction of the GB structures, as
shown in Fig. 13(e), as a result of the phonon-GB
interaction during the heat pulse propagation.

(5 SUMMARY AND DISCUSSIONS

We have presented the CAC method for
simulation of transport processes in crystalline
materials. The formalism extends the Irving-
Kirkwood statistical mechanical theory of transport
processes for single-phase, single-component
molecular systems to a concurrently coupled atomic-
continuum description of polyatomic crystals.
Conservation equations are derived in terms of
instantaneously ~ expressions  of  cell-averaged
quantities using the mathematical theory of
distributions®. Fluxes are then obtained that quantify
the flow of conserved quantities across the lattice cells
as well as those that flow back and forth within the
cells, as direct consequences of the local density
definition and Newton’s second law.

Basic features of the CAC formulation, in
comparison with classical continuum mechanics and
molecular dynamics, may be summarized as follows.
(1) As in classical continuum mechanics, the CAC

governing equations are field equations, and hence

can be discretized and solved using the finite
element method. However, unlike the situation
with continuum mechanics, each element node in

CAC represents a unit cell that further contains a

group of atoms; the atomic interaction and atomic-

level crystal structure are thus fully built into the
formulation, with no additional constitutive
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equations other than an interatomic potential being
needed.

(2) By including the internal DOFs of each lattice cell
associated with atomic movement in the
formulation, CAC can resolve the atomic structure
of crystalline materials and reproduce both
acoustic and optical phonon modes. It also can
measure fluxes at the atomic scale, such as stress
near a dislocation core or heat flux across an
interface or a defect.

(3) Since CAC is derived in a bottom-up manner from
the atomistic, it becomes identical to the
underlying atomistic model when discretized at
lattice level. CAC thus has the full applicability of
MD in predicting materials behavior without the
need of a priori assumption for mechanisms. It can
also go beyond MD to scale up for mesoscale
simulations by utilizing the continuous structure
and deformation in regions where structure
disorders or other discontinuities are absent or
where atomic resolution is not needed.

(4) CAC is thus naturally a concurrent multiscale tool
that resolves details to full atomic resolution at
regions of interest, while coarse-graining to
thousands of atoms per finite element elsewhere; it
admits propagation of dislocations, addresses
stacking fault structures in the FE regions, and
provides a unified treatment for materials
microstructures, defects, and phonon transport.

A comparison of representative coarse grained (CG)
methods can be found in ref [**] and a detailed review
of dynamic multiscale methods can be found in ref [*'].
CAC is currently the only concurrently coupled
atomistic and continuum method whose continuum
description is not based on the classical continuum
mechanics equations but a reformulated field
equations of conservation laws. As distinct from other
CG and multiscale methods, the CAC formulation
links and unifies atomistic and continuum description
of transport equations. There are two unique
capabilities of the CAC formulation:

(1) It can serve as a multiscale theory for concurrent
atomistic-continuum simulation of polyatomic
crystalline materials under a single set of
governing equations, thereby expanding the
current  atomic-interaction-based  simulation
capabilities from the nanoscale to the mesoscale
crystalline materials.

(2) It provides consistent formulas for calculations of
continuum quantities such as stress and heat flux
in atomistic or CG atomistic simulations of
heterogeneous materials, noting that the majority
of flux formulas in literature or -currently
implemented in MD software are only applicable

to homogenized, single-phase, single-component

materials.

Irving and Kirkwood recognized that the classical
hydrodynamics is a single-scale theory as a result of a
single-scale materials description®. Beyond the single-
scale continuum mechanics or hydrodynamics, we
have the generalized continuum mechanics (GCM)
that advocate and employ a concurrent two-level
structural  description of materials®>%.  Well-
established GCM theories include the Micromorphic
theory®’, the Micropolar theory®®, and Microstructural
theory®’. Unlike CAC, these GCMs were formulated
via a top down approach®. Although the link between
molecular dynamics and GCM has been attempted®®-
2, the popular GCMs are two-level continuum-
continuum formulations®, lacking a description for
the discrete structure or motion at the atomic scale.

We have also presented three sets of simulation
results in this Tutorial to illustrate the applicability of
CAC in reproducing atomic-scale structures of
interfaces, dynamic processes of dislocations and
fracture, and phonon transport across GBs. These are
low-temperature simulations, in which thermal
fluctuations with wavelength smaller than the size of
the elements in the FE regions are ignored.

For simulation of defect dynamics at finite
temperature, the FE mesh size in CAC is determined
by the density of defects as well as by the dominant
wavelengths of phonons that interact with the defects.
In regions where atomic-scale accuracy is necessary to
capture interface and defect reconstruction, full atomic
resolution is needed.

For low-temperature transport processes in which
phonon-phonon scattering has a negligible effect, the
usual FE tri-linear shape functions may be replaced by
those that combine the tri-linear shape functions and
Bloch wave functions consisting of phonons whose
wavelength are cut off by the shape function. This
allows short-wavelength phonons from an atomically
resolved region to traverse a coarse-grained FE region
and enter another atomically resolved region’ so as to
model phonon scattering by dislocations, impurities,
GB or phase interfaces with all possible phonons.

For finite-temperature phonon transport when
high-frequency  short-wavelength ~ phonons are
dominated by thermally resistive’ or diffusive
processes, the surface integrals of the kinetic
momentum fluxes, i.e., £/, in the momentum equation

can be modelled as a body force with a constant mean
but fluctuating in time in terms of the frequencies of
the missing phonons. This is intended to reproduce the
phonon density of state of the underlying atomistic
model, thereby approximating the effect of the thermal
fluctuations by the missing phonons. Phonon transport
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represented by the motion and deformation of the
elements, whether it is diffusive, ballistic, or
simultaneously ballistic and diffusive, will naturally
emerge in the simulation as the consequence of the
conservation laws, the interatomic potential, and the
initial temperature.

Finally, we would like to note that, while the
conservation equations and expressions of fluxes and
temperature in the CAC formulation are identical to
those in an atomistic model of particles, the FE solutions
to the conservation equations are approximate
numerical  solutions.  Consequently, simulated
phenomena and calculated fluxes using the FE
approximations feature a tradeoff of efficiency and
accuracy. There are thus coarse-graining errors that
may increase with the FE mesh size, depending on the
nature of the phenomena and the morphological length
scales of the materials. Advanced algorithms that can

improve the accuracy and efficiency of the simulation,
such as adaptive mesh refinement and advanced
multiple time step algorithm, are needed. Also, the
current CAC formulation is based on the traditional
interatomic potentials with well-defined site energies.
Future work will be needed to extend the formulation
to quantum-accurate, machine-learned potentials.
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APPENDIX A: CONSERVATION EQUATIONS FOR MONATOMIC CRYSTALS

The classical formulations of boundary value problems are based on the assumption that their solutions are smooth
(i.e., with continuous derivatives) and that the equation is satisfied at every point in the domain of the problems. For
problems that involve point mass, point charge, or other discreteness or discontinuities, the smoothness assumption
breaks down. The mathematical tool for such problems is the theory of distributions, also known as the theory of
generalized functions, developed by Laurent Schwartz in the 1950s'7. One generalized function frequently used in
science and engineering is the Dirac delta-function introduced by Paul Dirac in his research in quantum mechanics
and is employed in most statistical mechanics formulations to link a particle description to a field representation. The
theory of distributions enables a rigorous solution to the mathematical difficulties in linking discrete and continuum
descriptions that have been bypassed by ad hoc constructions or by heuristic arguments.

Appendix A and B present formal derivations of conservation laws based on the mathematical theory of
distributions. A more detailed discussion of the integral form of conservation laws and atomistic formulas for fluxes
for monatomic crystals can be found in ref ['*'¢]. Due to additional quantities such as temperature discussed in this
work, there are notational changes in this paper.

Al. Local density definition and the balance equation of linear momentum for monatomic crystals

Define the volumetric density of mass, linear momentum, and energy over a unit cell and a time-interval as
p(x,t)E%mké_},(x—rk)
p(x’t)v(x:t)E%mkvkgV(x_rk) ) (A)

p(x.te(x,1)= ;(%mkvlf +@; )SV (x=r)

where &y is the time-step-averaged box function &, defined in (8) and is used to serve the role of averaging the IK
point-function local density over a unit cell /" and a time-interval Az.

The derivative of o, does not exist everywhere as a classical function, but it exists as a distribution. A distribution

f{x) is not required to have a value at any point X, it is defined by its action on a test function ¢(x) that infinitely many

times differentiable and has a bounded support. For example, the Dirac delta-function d(x) is defined as (3, ¢)= ¢(0).

In this sense the derivative of Jy is the surface distribution that acts on a test function ¢ as

285 (X~ P(X1)) =0 . Any smooth function g(x) can be viewed as a distribution whose action on a test

function ¢(x) is defined as the integral of the product g(x) ¢(x) over the whole range of the variable x. Furthermore,
any distribution f{x) is proved to be the limit of a sequence of smooth functions f; in the sense that the numerical
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sequence (f;, @) converges to the number (f, @) for any test function as the regularization parameter ¢ approaches 0. In
this sense, the derivative of dy can formally be written as a definite integral of a J-function, that is, as the limit of the
corresponding integral in which the J -function is replaced by a regularized distribution J, that is a smooth function

and converges to ¢ as £—>0 in the distributional sense®, i.e.,

%&(x—rk ):—}:i_r)%%ov noxxr ovnm xxr (A2)
For the rest of the Appendixes, any formal integral of a 0 -function, like the one in the right hand side of (A2),
is understood as a distribution defined by such a limit. Any relation between distributions obtained in this way is
proved to be independent of the choice of regularization®”.

The internal force density is also a volume density. An important fact is that the total internal force in a volume
element V' is equal to the total interaction force transmitted across the enclosing surface 0V, which can be described
as a line-plane intersection problem. Denote an oriented surface element that is centered at x with normal » and area
A as A"; the intersection of the line segment Ly and surface element 4” can be expressed as

1 if L, intersects A" and n-L,;>0
[ Si(x—p)dp= ﬂ J O(x+x'—@)dp-ndS= —— -1 if L, intersects A" and n-L;<0 . (A3)
Ly A

0 if Z; does not intersect A"

It is noted that the time-interval average of I 0'j(x—p)dp over a time-step is itself.

The crossing of an atom through a surface element during a time-step 4¢ can also be expressed as the intersection
of the path of the atom r, and a surface element A" with area 4 and normal n as

N [ ifrintersects 4" in At and n¥
5! (x—n,)v XX rvn r A ny : (A4)

e g - '
4 LO if r,,does not intersect A"

Expressing the total internal force in the volume element /" as the total interaction forces crossing the bounding
surface 0V, we obtain the internal force density in terms of site energy @, , according to Eq.(A3), as

/A A\ A

YRTERAD s S ) z[f afjé}(x—rk):;@ o 5. (AS)

The time rate of change of the linear momentum within J can be derived, as a result of Newton’s second law applying to
the particles in ¥, using Eq. (AS) and Eq.(A2), as

—_ — - At
05 w8, (x-1)=Ym, Y 3mw, 28, (x-1)=Y F,8, (x-1,)—- Jdrlo (e x"-r, ) ndS
Ot T 3 ot % Alo 14
. . . , (A6)
X £ dr o o }ndS=0 o

where the stress vector # on the surface element of normal n is expressed as a line-plane intersection problem, cf. Eq.
(A3) and Eq.(A4), as

t(x,n)= z J 5! (p—x)do— ka o > (A7)
k [(:tk) 1 Ly K<t Ly K
where F_ = r,—0®, /0r,) is a measure of the strength of the interaction between atom & and atom /.

A2 Conservation equation of energy for monatomic crystals

Similarly, the time rate of change of the energy density can also be expressed in terms of atomic variables as
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XA O 5 WEELTxn). (A%)

The first term in the right hand side of Eq. (A8) can be expressed as

Si )22 i(lm,(v,f +(I)k)g,,(x—rk):z (mkvk-w'
k de\2 k K\ [ J (A9)
—y 9% +5(D Sc-r)=L[drlo [ dgdeet x'—g)dS ’
2 Ve an v [y (x=r)=4 ATY TV‘, | vlLkl PpS(x+x'—¢
and the second term, according to Eq. (A2), as,
0x At
ZEk—é'V(x—rk):—Lj.dro ¥(x—x'—r)-ndS
T ot At 0 , (AlO)
At
-1
= Atgdrp o

Substituting Eqs.(A9)-(A10) into Eq.(A8), we obtain the integral form of the energy conservation law as

ape)_, o ndS

‘ : (A1)

and the heat flux vector in the indicial notation as

g0 ==X(m," - - . (A12)

Rot\FR) Ly

APPENDIX B: CONSERVATION EQUATIONS FOR POLYATOMIC CRYSTALS

B1 Balance equation of linear momentum for polyatomic crystals

The rate of change of the density of linear momentum defined in Eq.(11) can be expressed as

a(p"v“) %‘Z mkagé K, x) (Ark, -y) +ZZmEvk, §(rk x) (Ark5 y)+22m§vk55 (n, x) (Arkf—y) . (B1)

k=1¢=1 k=1¢: k=1¢=1

The first term in the right hand side of Eq.(B1) can be derived according to Newton’s second law and, in the absence
of a body force, it is equal to the internal force density f(x) . Note that the translational symmetry of potential energies

requires that

a(Dk‘: _ Nj Ng aq)kf B Ny aché ' (BZ)

Or,; G on, &) o,
This leads to the expression of the total force acting on atom k¢ due to all the other atoms as

NNapod, U NaoD, Neod, oD, L Naod, Neod, N NaoD Yo o0, N Na[@@,” 6%] N

o_yyon 2y by

. = . =
a”v 17 arkg’ won  One &5 a"k; won. G5 a'}q b Oy G5 7z

oo, 0D,
Or, O,

j.(B3)

o on,

Figure 14 shows that the total interaction force on atom o in the unit cell at point x can be decomposed into the
interaction forces on atom o due to the interactions between atoms in different unit cells and that between atoms in
the same unit cell. This then leads to the definitions of surface tractions, ¢ and z2* , respectively. The internal force

density f"(x) can then be written, according to Eq.(B3), using the line-plane intersection defined in Eq.(A3), as

AN (AR Ax N\ 153 N /AR Ax N\
o o o , (B4)

oy “ N ooy “

£ ()=

V\»—‘

where
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6@1,7 0 .,
17" (x.n)= Z Z[ it jw (x—p)o, (BS)

kel lgV 7 a’}m ai’,,, By

oo b, e _
™ (x,y.n)= ZVa‘ (x— n)Z[ark 5 ]Jé (y-p)dp= ZZ[% ar:“]jaj(y—w)dqo. (B6)
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Fig. 14 The volume element J of the unit cell at point x; (b) two contributions to £ (x) : (1) the interaction forces

that cross 0V, and (2) the interaction forces that only cross 0V, ; (¢) the volume element V/, .

The second term in Eq. (B1) can be expressed according to Eq.(A2), noting that all the cross terms involving the
velocity differences vanish over a time-interval average and >""= 5, (y—An.)=1, as

A _ _ N _ _
DD M, %5,, (x=1,)6,, (y=Ar,. )=—%O 10 (X+x'=1)0,, (y=An, )dS
=
:—%O - - +x'-1,)5,, (y-Ar, £)ds ) (B7)
_ 1 " ' S 1 A ) dS
=7 Fx'—r)d _VO = O ~n]
and the third term as
N Ng _ a _ e Na
;Z;mg"k: o, (x—r, )55,,(1 (y-An,)=—O u;m,f vkgAvkgé'(y+y’—Ark§ )-nds,
o . 3 . ®9)
==Y 8, (x-1)O O o
= .
with
. N
tf" (x,n):—;,ma T R (B9)
) N
" (x, y,n):—;Vé,, (x—r)m AT~ - . (B10)

Substituting Egs.(B4), (B7) and (B8) into Eq. (B1), we obtain the conservation equation of linear momentum as

Apva) 1 . B11

~a —VO O Yot ( )
where

t,=t" (xn)+t" (x,n), and 7=t (x,p,n)+1" (x,p.n) . (B12)

The total stress vector on a surface element at point y in the unit cell located at x due to the interaction and motion of
all the atoms is then expressed as a sum of potential and kinetic parts as

15



Ny Ny . . "
e,y )= (t,+7, )= (7" +" + " 7=t (x,p,m) "

(x.pn) (B13)
a=1 a=1
where
ot Na 0i 0i acD aq) n (Df aq)
T ARSI i G TR | S TNRRVARS 5 o K SRR T
a=l kel lgVa.n an ar n kel anza ark ark
a n @ n Ty
, (B14)
N Nanﬂla ka Np Ny o _ q)ka
= 2| ar, 51 (x—p)dp+Y > VS, (x~ rk)I an, —45] (y-p)dp
kl(#k)an Hy k anza Ty
and
No o . N N Ne N —
" ey ) =Y (6" 47 ==Y Ym 5 5,6) x m, v, v, Vo, x r, 8;(y-Ar,) . (B15)
a=l a=1 k=1 a=1 k=1
The stress tensor can then be expressed in terms of the stress vector as
o’ (x.p) = I (x.p.e)), or a4 (x,) = to(x,y.€"), ij=123 . (B16)
B2 Conservation equation of energy for polyatomic crystals
The rate of change of the energy density can be written as
a(paea) Ni Ng — N Ng a — — Ni Ng — a —
ZZ )0 (y_A"kg)+ZzEk§ —0y (x=1,)y, (y—Ark¢)+ZZEk;5V (x=1) 20y, (y=An,) . (B17)
o/ A =] == ot e ot
With
i i o 00, 00,
. ey ——y,
P L 6rkg ke o, Vi
N Ng 0D Ng B(I) . N N oD, . N 0D 0D
-3 n,, _z v Agvk§+zz ke y+ ke +7kévk§, (B18)

Vi
T ng ¢ i % - on i Oy, O

N Naf 00, oo, oo, oo,
= Z Z[ —, 5‘%] ZErlvkﬁ_kar]

kST
1707\ O an, 1 O on,

o,

the first term in the right hand side of Eq. (B17) can be expressed, using Eq. (B18) and the line-plane intersection
theorem, as

NN, _ AEYE-V'N A \Fi.. Ny EY. N A \Fi.
22l z)dra(y—%)%o o dpds, -(B19)

N y R w [N iy s oy

The second term can be derived according to the distributional derivative of the box function expressed in Eq.(A2) as

N[ Nll _ _ N N _
I;;Ek‘f %51/ (x=1)0y, (.V_Arkg ):%O 7 O (X+X"'=1,)0y, (.V—Arkg )dS
-1 o
v , (B20)
:—%Q O O
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and the third term as
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This leads to
puts) _ 1 B22
2 =0 ou )-ndS, - (B22)
The total heat flux is thus expressed as
Na o
9(x0)=2(qa+j)=q'e (B23)
with
i & oy, o e ¥ e ~ ~ G
q(xy) =2 2—"V, O4x gdp MyViy ke V04 X T (B24)
kJl#kan al‘[,] ny k=1a=1
and
i &= G 0y, . e M Na ~ .o
J (x’y) :ZVé‘V(x_rk) Z a.vka (SA y (0d¢ V5V rk X mavka ka vka5A y rka . (B25)
k anEa I‘k,] Ty k=1 a

Irving and Kirkwood noted that a definition for the site energies of particles is required for definition of energy
density as well as for the derivation of a field representation of energy conservation law in terms of particle variables®.
The conservation equations and the expressions for fluxes derived in the appendixes are valid for any analytical many-
body potentials with well-defined site energies. A detailed comparison and discussion of the fluxes defined as a
surface density presented in Appendix A and the fluxes formulas expressed as a volume density can be found in ref.
[13]. Specifically, analytical and MD simulation results presented in ref. [13] show that replacing the Dirac d with a
finite-sized volume weighting function changes the fundamental nature of fluxes as a surface density. Consequently,
the dynamic balance between the rate of change of the total momentum or energy in a volume element and the fluxes
across the surface boundary cannot be established, leading to the failure of the volume averaged flux formulas in
satisfying the momentum and energy conservation laws as well as typical transport boundary conditions. The
equivalence between flux formulas expressed as a pair density derived using kinetic theory” ¢ and that expressed as
a single density derived using statistical mechanics’, as ensemble averaged point functions or as surface-averages,
can be found in ['¢].
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