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Abstract

Two features desired in a three-dimensional (3D) optical tomographic image reconstruction algorithm
are the ability to reduce imaging artifacts and to do fast processing of large data volumes. Traditional
iterative inversion algorithms are impractical in this context due to their heavy computational and memory
requirements. We propose and experimentally validate a novel scalable iterative minibatch algorithm
(SIMBA) for fast and high-quality optical tomographic imaging. SIMBA enables high-quality imaging by
combining two complementary information sources: the physics of the imaging system characterized by
its forward model and the imaging prior characterized by a denoising deep neural net. SIMBA easily
scales to very large 3D tomographic datasets by processing only a small subset of measurements at each
iteration. We establish the theoretical fixed-point convergence of SIMBA under nonexpansive denoisers
for convex data-fidelity terms. We validate SIMBA on both simulated and experimentally collected
intensity diffraction tomography (IDT) datasets. Our results show that SIMBA can significantly reduce
the computational burden of 3D image formation without sacrificing the imaging quality.

1 Introduction

Optical tomographic imaging seeks to recover the three-dimensional (3D) distribution of the refractive index
of an object from its light measurements. In a standard setup (see Figure 1 for an example), the sample is
illuminated multiple times from different angles and the scattered light-field is recorded with a camera. In the
interferometry-based microscopy, one measures both the amplitude and the phase of the scattered field [1-3],
while in the intensity-only setups one measures only the amplitude of the light-field [4-6]. A tomographic
reconstruction algorithm is then used to computationally reconstruct the 3D distribution of the sample’s
refractive index. The quantitative characterization of the refractive index is important in biomedical imaging
since it allows to visualize the internal structure of a tissue, as well as characterize physical changes within
biological samples.

The reconstruction of the refractive index is often formulated as an inverse problem. In this context, the
forward model characterizes the physics of data-acquisition and can be used to ensure the consistency of the
final estimate with respect to the measurements. However, the need for processing large-scale tomographic
data limits the utility of traditional iterative methods in 3D optical tomography. Traditional batch algorithms
process the whole tomographic dataset at every iteration. On the other hand, online algorithms can effectively
scale to large datasets by processing only a small subset of data per iteration.

Using imaging priors is a standard strategy for mitigating the ill-posed nature of many tomographic imaging
problems. Popular imaging priors include Tikhonov [7] and total variation (TV) [8] regularizers. Recently,
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Figure 1: The conceptual illustration of the proposed inversion algorithm for optical tomographic imaging. The
brightfield measurements of the scattered light-field are collected with a standard computational microscope platform.
An online reconstruction algorithm, SIMBA, facilitated by a convolutional neural network (CNN) denoiser is then
used to form a 3D phase image. Unlike traditional batch algorithms, SIMBA processes a subset of measurements at a
time, making it scalable for processing very large tomographic datasets.

a new class of methods, called plug-and-play priors (PnP) [9], have popularized the idea of using general
image denoisers as imaging priors within iterative inversion. By leveraging advanced image denoisers, such as
BM3D [10] and DnCNN [11], PnP methods have achieved the state-of-the-art performance in various imaging
applications [12-21]. An alternative framework for using image denoisers is the regularization by denoising
(RED) [22], where the denoiser is used to formulate an explicit regularizer that has a simple gradient. The
work [23] has clarified the existence of RED regularizers for certain class of denoisers, and the excellent
performance of the framework has been demonstrated in phase retrieval [24] and image super-resolution [25]
using DnCNN and the deep image prior, respectively. In short, using advanced denoisers has proven to be
effective for improving the reconstruction quality in various imaging contexts. Note that the concept of
regularization described in this paper is distinct from the concept of regularization for training deep neural
nets by injecting noise [26].

In this paper, we present a new scalable iterative minibatch algorithm (SIMBA ) for the regularized inversion
in optical tomography. SIMBA is an online extension of the traditional RED framework. It can thus leverage
powerful convolutional neural network (CNN) denoisers as imaging priors, while also taking advantage of
the physical information available through the forward model. However, unlike traditional RED algorithms,
SIMBA is scalable to datasets that are too large for batch processing since it only uses a subset of measurements
at a time. We prove that SIMBA converges in expectation to the same set of fixed points as its batch
counterparts under a set of transparent assumptions. Thus, SIMBA benefits from the excellent imaging
quality offered by RED, but does so in a computationally tractable way for optical tomographic imaging.

We validate SIMBA in the context of intensity-only microscopy called intensity diffraction tomography
(IDT). IDT microscopes are relatively cheap and easy to implement since they do not collect the phase
of the light. We adopt the IDT forward model in [27] that establishes a linear relationship between the
desired object and the intensity measurements by neglecting the terms corresponding to higher order light
scattering. We show that SIMBA can efficiently reconstruct a high-resolution (1024 x 1024 x 25 pixels) IDT



image while also offering improvements in the 3D sectioning capability. The preliminary version of this work
was presented in [28]. The current paper significantly extends [28] by including the IDT model, providing
additional simulations, and validating the method on an experimentally collected 3D IDT dataset.

This paper is organized as follows. In Section 2, we introduce the IDT forward model and the RED
framework. In Section 3, we present the algorithmic details of SIMBA. In Section 4, we analyze the fixed-point
convergence under a set of assumptions. In Section 5, we provide simulations and experiments that illustrates
the efficiency and effectiveness of SIMBA. Section 6 concludes the paper.

2 Background

In this section, we provide the background on IDT and image-denoising priors. We start by describing
the IDT forward model, then formulate the corresponding inverse problem, and finally introduce the RED
framework as a strategy to leverage image denoisers as priors.

2.1 Linearized IDT

Consider a 3D object with the permittivity distribution €(r) in a bounded sample domain  C R?, immersed
into the background medium of permittivity €,. We use Ae = Aere+iAen, = € — € to denote the permittivity
contrast between the object and the background medium. The real part Aege corresponds to the phase effect,
and the imaginary part Aep, accounts for the absorption. The object is illuminated by an angled incident
light field u;,(r). The incident field wu;, is assumed to be known inside Q2 as well as at the camera domain
I' € R2. The total light-field u(r) is measured only through its intensity at the camera. Here, r = (z,y, 2)
denotes the 3D spatial coordinates. Under the first Born approximation [29], the light-sample interaction is
described by the following equation

u(r) = uin(r) + /Q g(r — )o@ ) up(r)dr’, reQ (1)

where u(r) = iy (r) + us(r) is the total light field, v(r) = ;=k?Ac is the scattering potential, k = 27/ is

A7
wave number in free space, and A is the wavelength of the illumination. In the 3D space, the Green’s function

at the camera plane I' is given by

cikslrls
r)= ———,
T e
where k, = \/€yk is the wavenumber of the background medium, and || - |2 denotes the ¢5-norm. For a single
illumination, the intensity of the light field after propagating through the sample is given by
I = Ju(r) *pf, (2)

where p is the point spread function of the microscope, and the operator % denotes the 2D convolution. Eq. (2)
can be expanded into the summation of four components

I:Iii_|_ISS_|_Iis_|_]:si7 (3)

where I% is the constant background intensity, I*¢ is the squared modulus of the scattered field, and I** = (I%%)*
are the cross terms that relate the unscattered and scattered field. Here, (-)* denotes the complex conjugate.
Due to the first Born approximation, I*® can be assumed to be small and thus neglected. By modeling the 3D
object as a series of slices along the axial dimension z, one can represent the spectrum of the total scattered
field as the summation of the sub-scattered fields produced by each slice [27]

I=T¢ + / [HRe(z)KeRe(z)+H1m(z)&1m(z)] dz (4)



where - denotes 2D Fourier transform, and T is the background intensity spectrum measured at I'. In
(4), Hge and Hiyy, are the angle-dependent phase and absorption transfer functions (TF) for each sample slice
at depth z, respectively. These TFs linearly map the Fourier transform of the permittivity contrast to the
intensity spectrum of the scattered field. We refer the reader to [27] for the full details of the TF for IDT.

By discretizing (4) and explicitly including the Fourier transform into the equation, we obtain the following
linear model in the spatial domain for the i*" illumination

J
Ii = Iz“ + é}%{ ZAija:j}, with Aij = FHHZ‘]‘F, (5)
j=0
where j = 0,...,J discretely indexes the axial direction z, x; € CY is the discretized complex permittivity

contrast of the j* slice, I; is the measured intensity of the total field, I is the discretized intensity of the
background, and Hj; is the discretized TF accounting for both phase and absorption at z;. We use F' and
F* to denote the 2D discrete Fourier transform and its inverse, respectively. By re-arranging the terms, we
can obtain the following linear forward model

H
i0 Zo
Yy, = Ajx+e, with A= : x=|: (6)

)

H
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where the operator ()" denotes the conjugate transpose, y; = I, — I'* € RY is the measured intensity with
the removal of the background intensity for the ¢*" illumination, and e € RY is the error term. Note that, as
was discussed in [27], the IDT forward model does not contain any information on the DC component of the
phase.

2.2 Inverse Problem

Since image reconstruction in optical tomography is often ill-posed, it is typically formulated as the regularized
inversion problem

T = argmin {g(x) + h(x)}, (7)

zeCN

where g is the data-fidelity term that ensures the consistency with the measured data, and h is the regularization
term that imposes the prior knowledge on the desired image. For example, the Tikhonov regularization [30]
assumes a Gaussian prior on the unknown image. It has been previously used in IDT for deriving a closed
form solution [27]. More recent regularizers, such as the sparsity-promoting ¢;-norm penalty [31] and the
edge-preserving total variation (TV) [32], are nonsmooth and do not have closed-form solutions, thus requiring
iterative algorithms for image formation. In particular, the family of proximal methods—such as proximal
gradient method (PGM) [33-36] and alternating direction method of multipliers (ADMM) [37-40]—avoid the
need to differentiate the regularizer by using the proximal map [41].

Recently, deep learning has gained popularity in imaging inverse problems [42-50]. Traditional strategy
trains the convolutional neural network (CNN) to learn the direct mapping from the measurements to some
ground-truth image. Despite their excellent performance in some image reconstruction problems, this strategy
does not leverage the known physics of the imaging system and does not insure consistency with the measured
data. In this paper, we propose SIMBA to reconcile the model-based and learning-based approaches by
infusing deep denoising priors into online iterative algorithms.

2.3 Regularization by Denoising

RED [22] is a recently introduced framework to leverage powerful image denoisers. It has been successfully
applied in many regularized imaging tasks, including image deblurring [22], super-resolution [25], and phase



Algorithm 1 SIMBA
1: input: z €R", 7>0,0>0,and B> 1
2: for k=1,2,... do
3 Vg(z* ') + minibatchGradient(z*~!, B)
4 G(zF )+ Vg(@F ) + r(zF 1 — D, (2 1))
5 xh — ph1 — ’ya(as’“_l)

retrieval [24]. The framework aims to find a fixed point x* that satisfies
G(z*) = Vg(a*) + 7(2" — Dy (27)) = 0, (8)

where Vg denotes the gradient of g, D, is the image denoiser, and 7 > 0 adjusts the tradeoff between the
data-fidelity and the prior. RED algorithms seek a vector x* that lies in the zero set of G : R™ — R"™

x* € zer(G) = {x e R": G(x) = 0}. (9)
For example, the gradient-method variant of RED (denoted as GM-RED) can be implemented as

xb b — 4 (Vg(xF ) + H(zr 1))
where H(z) = 7(x — D,(x)). (10)

Here, the parameter v > 0 is the step-size. When the denoiser D, is locally homogeneous and has a symmetric
Jacobian [22,23], the operator H corresponds to the gradient of the following regularizer

h(z) = ng(ac — D, (x)). (11)
By having a closed-form objective function, one can use the classical optimization theory to analyze the
convergence of RED algorithms [22]. On the other hand, fixed-point convergence has also been established
without having an explicit objective function [20,23]. Reehorst et al. [23] have shown that RED proximal
gradient methods (RED-PG) converges to a fixed point by utilizing the monotone operator theory. Sun et
al. [51] have established the explicit convergence rate for the block coordinate variant of RED (BC-RED)
under a nonexpansive D,. In this paper, we extend these prior analyses to the randomized processing of the
measurements instead of image blocks, which opens up applications to tomographic imaging with a large
number of projections.

3 Proposed Method

We now introduce SIMBA that combines the iterative usage of the forward model with a deep denoising prior.
At each iteration, SIMBA updates x by combining a stochastic gradient for increasing data-consistency with
a CNN denoiser for artifact reduction. SIMBA is ideal for data-intensive biomedical imaging applications
where the object features are difficult to characterize using traditional regularizers.

3.1 Iterative Online Procedure

In IDT, the data-fidelity term can be written as an average over a set of distinct components functions

L
g(x) = 7 Zgi(x)v (12)



where each component function g; is evaluated only on the subset y; of the full measurements y
9i(x) = L(y;, Aix) , (13)

where £ is a smooth loss function quantifying the discrepancy between the predicted measurement A;x and
the actual measurements y;. For example, all the results in this paper were obtained using

1
gi(@) = 5llyi — Aizls = Vgi(2) = A (Aiz - v,).

The computation of the gradient of g

I
V() = % > Vo), (14)

is proportional to the total number of illuminations I. A large I effectively precludes the applicability of the
batch RED algorithms due to the computational cost of evaluating Vg.

SIMBA, summarized in Algorithm 1, improves scalability through partial randomized processing of gradient
components Vg; via the following minibatch approximation of the gradient

B
-~ 1
Vg(x) = B Z Vg, (x), (15)
b=1
where i1, ...,ip are independent random indices that are distributed uniformly over {1,...,I}. Due to its

ability to control the minibatch size 1 < B < I, SIMBA benefits from considerable flexibility for trading off
different practical considerations compared to the batch RED algorithms. For example, one can consider
using small minibatches (B <« I) for problems where Vg is computationally expensive and D, is relatively
efficient. On the other hand, one can consider larger minibatches for problems where D, is relatively slow
compared to Vg. In this paper we focus on image denoisers corresponding to deep neural nets, thus obtaining
D, that is both fast and effective for many practical imaging problems.

3.2 CNN-based Denoiser

In recent years, CNNs have been shown to achieve the state-of-the-art performance on image denoising [11,52].
We propose a simple denoising network DnCNN™ as the deep learning module in SIMBA. The architecture
of the neural network, illustrated in Figure 1, is adapted from the popular DnCNN. In general, DnCNN*
consists of two parts. The first part contains N, — 1 sequential composite convolutional layers, each of which
has one convolutional layer followed by a rectified linear unit (ReLU) layer. The second part is a single
convolutional layer that outputs the final denoised image, resulting the total number of layers in DnCNN™ to
be Ny. All the convolution filters are implemented with size 3 x 3, and every feature map has 64 channels.
In SIMBA, we apply this 2D image denoising network to the 3D sample by performing the layer-by-layer
denoising along the axial direction z.

We generated the training dataset by adding AWGN to the natural images from BSD400 and applying
standard data augmentation strategies including flipping, rotating, and rescaling. Note that our training
dataset does not include any biomedical image. We employed the residual learning technique [53] in DnCNN*
so that the network is forced to learn the noise residual in the noisy input. DnCNN™* was trained to minimize
the following loss

L= %Z{nfe(wi) — il 4 pll foles) — wilh ) (16)
=1

where x; is the noisy input, y; is the noise, and fy(x) represents the noise predicted by the neural network.
Eq. (16) penalizes both the mean squared error (MSE) and the mean absolute error (MAE) between the



Figure 2: Eight test images used in the experiments. Top row from left to right: Aircraft, Boat, Cameraman, Foreman.
Bottom row from left to right: House, Monarch, Parrot, Pirate.

estimated noise and the ground truth. A loss parameter p > 0 is thus introduced to adjust the tradeoff
between the two errors for the best training performance. Our results show that our simple DnCNN™* is
competitive with traditional denoisers in terms of the imaging quality.

4 Convergence Analysis

Our analysis relies on the fixed-point convergence of averaged operators, which is well known as the
Krasnosel’skii-Mann theorem [54]. Here, we extend the result to the iterative online algorithms under the
RED formulation and show the worst-case convergence rates. Note that our analysis does not assume that
the denoiser corresponds to any explicit RED regularizer. We first introduce the assumptions necessary for
our analysis and then present the main results.

Assumption 1. We make the following assumptions on the data-fidelity term g:

(a) The component functions g; are all convex and differentiable with the same Lipschitz constant L > 0.
(b) At every iteration, the gradient estimate is unbiased and has a bounded variance:

2

E [So(e)] = Vata). © |[Vate) - Tota)|[}| < %

for some constant v > 0.

Assumption 1 (a) implies that the overall data-fidelity g is also convex and has Lipschitz continuous gradient
with constant L. Assumption 1 (b) assumes that the minibatch gradient is an unbiased estimate of the full
gradient. The bounded variance assumption is a standard assumption used in the analysis of online and
stochastic algorithms [55-57]

Assumption 2. The operator G is such that zer(G) # &.

Assimption 2 is a mild assumption that simply asserts the existence of a solution to (8). It is related to the
existence of stationary points in traditional smooth optimization [58].
Assumption 3. Given o > 0, the denoiser D, is a nonerpansive operator such that

Do (2) = Do(y)l2 < [l — ylla =,y R,

Nonexpansive variants of several widely used denoisers, such as NLM and DnCNN, have been developed
in [12,14,51,59]. Under the above assumptions, we can establish the following for SIMBA.



Table 1: List of parameters of the experimental setup

Experimental parameters Simulations Experiments

(5.2) (5.3)

A wavelength of LED light 630 nm 630 nm

e,  background medium index 1.33 1.33

zLEp axial position of LEDs —70 mm —79 mm

z  axial position of the sample 0 pm (—20,100) pm

MO  microscope objectives 40x 10x

NA numerical aperture 0.65 0.25

Table 2: List of algorithmic hyperparameters

Hyperparameters Simulations Experiments
(5.2) (5.3)
0 initial point of 0 0
reconstructions
B minibatch size 20 10
I batch size 60 89
¥ step size ﬁ.&gf L-&Q-r
o input noise level for 10 5
DnCNN*
P loss function parameter 0 1
Ny number of layers in 7 10
DnCNN*
- level of regularization in optimized for optimized for
GM-RED and SIMBA each image the dataset

Theorem 1. Run SIMBA fort > 1 iterations under Assumptions 1-3 using a fized step-size 0 < v < 1/(L+27)
and a fixed minibatch size B > 1. Then, we have

|2° — =*||3 | ?
< (L+27) | m—12 4
<(L+ r)[ pw + 5

t
1 _
E[tzcw DI
k=1
Proof. See Appendix B. O

Thereom 1 is analogous to the convergence of the minibatch stochastic gradient descent (SGD) [60] in the
sense that the convergence can be established up to an error term that depends on v and B. Similarly, the
accuracy of the expected convergence of SIMBA to zer(G) improves with smaller v and larger B. For example,
by setting v = 1/[(L + 27)V/t], we get

)

SlQ

B, pin 16l <E
ke{l,

1 t
- G k—1 2 <
nin ; 26| <

where C' is some positive constant.

Finally, note that the analysis in Theorem 1 only provides sufficient conditions for the convergence of
SIMBA. As corroborated by our numerical studies in Section 5, the actual convergence of SIMBA is more
general and often holds beyond nonexpansive denoisers (such as BM4D). One plausible explanation for
this is that such denoisers are locally nonexpansive over the set of input vectors used in testing (see also
discussion in [59]). On the other hand, the recent techniques for spectral-normalization of deep neural
nets [61-63] provide a convenient tool for building globally nonexpansive neural denoisers that result in
provable convergence of SIMBA.
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Figure 3: Illustration of convergence in SNR of SIMBA with minibatch size B = 20 under the DnCNN™* denoiser. The
top and bottom figures plot the SNR values against the number of itartions and running time, respectively. Two batch
algorithms, GM-RED (20) and GM-RED (full), are plotted for comparison. Under the same per-iteration complexity,
SIMBA converges to significantly higher SNR than GM-RED (20) due to its actual usage of the full data. Moreover,
online processing makes SIMBA converge significantly faster than GM-RED (full). The acceleration is due to the
lower computational cost of processing a small random subset of the full data. The same trend is observed for both
accelerated and normal versions of the algorithms.

5 Experimental Validation

In this section, we validate SIMBA on both simulated and experimental data. We first numerically demonstrate
the efficiency and practical convergence of SIMBA in simulations. Next, we apply SIMBA to reconstruct a 3D
model from a set of real intensity-only measurements. Our results highlight the applicability and effectiveness
of SIMBA for the iterative inversion in optical tomography.

5.1 Setup

In simulations, we reconstruct eight grayscale natural images, representing the phase component of the
complex permittivity contrast, displayed in Figure 2. They are assumed to be on the focal plane z = 0 pm
with LEDs located at zpgp = —70mm. We generate I = 60 simulated intensity measurements with 40 x
microscope objectives (MO) and 0.65 numerical aperture (NA). All simulated measurements are corrupted by
AWGN corresponding to 20 dB of input signal-to-noise ratio (SNR). As a quantitative metric for measuring
the quality of reconstructions, we use the SNR defined as follows

X lylle
SNR(9,y) £ max {QOIOg (A2
W9 = B0 Ty~ ag + 01,



Table 3: Optimized SNR for each test image in dB

Algorithms GM saMm GM GM-RED (20) SIMBA GM-RED (full)
(20) (full)
Denoisers — — — BM3D DnCNN*  BM3D DnCNN*  BM3D DnCNN*
Aireraft 17.44 18.00 18.01 18.82 19.85 19.65 20.48 19.47 20.44
Boat 18.09 18.78 18.82 19.96 20.40 21.23 21.29 21.12 21.55
25r
m -
2
a4
z\ !/, - _a—=-
17} I
—_—— —— SIMBA DnCNN accelerated
—— SIMBA BM3D
— — SIMBA DnONN non-accelerated
— — SIMBA BM3D
0 L L I}
0 seconds 100

Figure 4: Tllustration of the convergence speed of SIMBA with minibatch size B = 20 under the DnCNN* and BM3D
denoisers. The figure plots the SNR values against the running time in seconds. SIMBA DnCNN is significantly faster
due to the fast GPU implementation of the denoiser.

where gy represents the noisy vector and y denotes the ground truth. In experiments, we recover a 3D
algae sample from real IDT measurements. The 3D sample is located over the range (—20,100) pm and
zLgp = —79mm. We set the slice spacing as 5 pm, so each slice represents the average over the sample
thickness. We take I = 89 measurements with 10x MO and 0.25 NA for reconstruction. We refer to Table 1
for the detailed summary of the experimental parameters. All experiments in this paper were performed on a
machine equipped with an Intel Xeon E5-2620 v4 Processor that has 4 cores of 2.1 GHz and 256 GBs of
DDR memory. We trained all neural nets using NVIDIA RTX 2080 GPUs.

The algorithmic hyperparameters are summarized in Table 2. All algorithms start from 2° = 0. We trained
DnCNN* for the removal of AWGN at four noise levels corresponding to o € {5,10,15,20}. The same set of
o is used for BM3D. All algorithmic parameters are optimized for the best performance.

5.2 Simulated Data

In this section, we numerically illustrate the advantages of SIMBA in tomographic imaging over the batch
GM-RED. The advantages are: (1) better SNR under a limited memory budget; (2) better time efficiency
when all the measurements are used.

Figure 3 (top) plots the average SNR over test images against the iteration number for SIMBA and
GM-RED (20), both using DnCNN* as the denoiser. GM-RED (20) uses a fixed set of 20 (out of 60)
measurements, while SIMBA selects a random subset of 20 at every iteration. Under the same computational
complexity, SIMBA achieves a SNR boost of about 1 dB over GM-RED (20) because the former has access
to all the measurements. Visual examples are presented in Figure 5. As a reference, we also plot the SNR for

10



3
GM (20)
NoReg

. o pu—
- =
] 3
o =
SM-RED

5VI-RED (20)

-.-A - . ;.A’--"/ = -..1 —'»'/" —
‘.' ¥ - = - “% -

v 3 SIMB!/ X A-RED (full)

& DnCNN* “NN* £ DnCNN*
o5~y s =

= | N/ 1/ IN/¥ ]

Figure 5: Visual examples of reconstructed Aircrafts (left) and Boat (right) images by different algorithms. Three
columns correspond to algorithms using fixed 20, random 20 out of 60, and full 60 measurements, respectively. The
first row presents the unregularized results and the second and third row show the results given by a well-known
BM3D denoiser and a state-of-the-art deep learning prior, respectively. Differences are zoomed in using boxes inside
the images. Each image is labeled by its SNR (dB) with respect to the original image. Note that our proposed

algorithm SIMBA recovers the details lost by the batch algorithm with the same computational cost and achieves the
same level of SNR and visual quality as the full batch algorithm.

GM-RED using all 60 measurements, denoted as GM-RED (full).

Figure 3 (bottom) highlights the faster time convergence of SIMBA compared to GM-RED (full) to the
same level of SNR. Figure 5 highlights that the SNR values and the visual quality obtained by SIMBA and
GM-RED (full) are nearly identical. SIMBA, however, significantly reduces the reconstruction time by
processing one third of all measurements at each iteration. Specifically, the average per-iteration times of
GM-RED (20), SIMBA, and GM-RED (full) are 0.30 second, 0.31 second, and 0.52 second, respectively. We
also note that by processing only a subset of measurements, SIMBA leads to a more favorable tradeoff between
computational cost and memory compared to GM-RED (full). This makes SIMBA beneficial for processing
datasets containing a large number of tomographic measurements. The convergence speed of SIMBA can
be significantly improved by using deep learning denoisers implemented on GPUs. This is highlighted in
Figure 4, where SIMBA DnCNN* is compared against SIMBA BM3D.

Table 3 shows final SNRs of all reconstructions we performed. We run all simulations using the accelerated
versions of these algorithms, which are analogous to the accelerated gradient method by Nesterov [58].
Empirically, they converge to the same solution as the non-accelerated counterparts. For reference, we show
the evolution of SNR for non-accelerated versions by the dotted lines in Figure 3. Table 3 shows that our
DnCNN denoiser has higher average SNR than BM3D. The compatibility of SIMBA with DnCNN*, which is

11
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Figure 7: Comparison of SIMBA under BM4D and DnCNN* against Tikhonov. Regions (a) and (b) are zoomed in
to highlight visual differences. Tikhonov reconstructed image contains grid-shape artifacts and interfering contents
from other slices, while BM4D generates blocks and nonsmoothness. SIMBA under DnCNN™* produces the most real
recovery with the clearest shape of the algae.

a low-complexity denoiser, increases the potential of applying SIMBA to large scale image reconstructions.

5.3 Experimental IDT Dataset

In this section, we use SIMBA to reconstruct a 3D algae sample of 1024 x 1024 x 25 pixels from 89 high-resolution
measurements. The large sample volume dramatically increase the memory usage and computational cost, and
prohibits the applicability of the full batch algorithms. Experimental results show that SIMBA successfully
overcomes these difficulties by processing a small subset of all measurements (B = 10) at every iteration and
leads to significant performance improvements compared to the method reported in [27].

Figure 6 provides a 3D visualization of the phase component of the image recovered by SIMBA, with
different algae labeled by circled numbers (there are 6 of them). Figure 7 compares three slices of our SIMBA
results and the Tikhonov (full) results obtained by algorithm in [27], which uses all 89 measurements. As
discussed in [27], the DC component of the phase is lost in the IDT forward model, we thus set the mean of
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SIMBA DnCNN* (B=10)

GM-RED DnCNN* (full)

Abs. Value of Residual

Figure 8: A slice from the full 1024 x 1024 x 25 reconstruction by SIMBA under DnCNN™*. On the right is a comparison
between SIMBA and the full batch results for the dotted region. The two reconstructions are visually indistinguishable,
and the absolute value of the residual between them highlights the numerical proximity of SIMBA to the full batch
reconstruction. Note the small numerical scale of the residual compared to that of the two reconstructions.

all the results to the one of the Tikhonov reconstruction for a more uniform comparison. We evaluate the
quality of different reconstructions by comparing their axial sectioning effect and the ability to eliminates
artifacts. In the 3D tomographic model with strong sectioning effect, a pattern emerges only in the slice it
belongs to and fades away as we go axially to different depths. Sectioning enables us to better predict the
axial location of the patterns within a 3D object and thus better understand its internal structure, which is
crucial for biomedical imaging applications. While Tikhonov regularization is attractive from computational
perspective, it is known that to lead to excessive smoothing. This complicates the understanding of the
axial structure of the sample. On the other hand, by leveraging the DnCNN™* prior, SIMBA improves the
performance, while also mitigating the computational complexity with online processing. Our results show
that SIMBA with DnCNN* enables better sectioning of the object compared to the Tikhonov prior. For
example, maintaining the clarity and sharpness of algae @ in slice z = 25 um, SIMBA successfully reduces
the artifacts generated by the content of adjacent slices, which exist in the region (a) of Tikhonov. In the
other two slices, algae ) fades away and does not generate strong shadowy artifacts as indicated by arrows
(c) and (f). By horizontally comparing the two rows, the algae cluster in region (a) is visually better resolved
by SIMBA than Tikhonov. Moreover, in SIMBA reconstructions, the top half of algae & in region (b) looks
sharp in slice z =25 pm and the bottom half appears clear in slice z =35 pm. This inter-slice information
implies that algae (& penetrate through z =25 pm and z =35 um. However, the whole structure of algae &
is present in both slices of Tikhonov reconstructions, which fails in illustrating the axial position. Note that
SIMBA also better eliminates artifacts pointed out by arrows (d) and (e). To further analyze the performance
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Table 4: Per-iteration memory usage specification for processing our experimental data

Algorithms SIMBA (10) GM-RED (full)
Variables Data type Shape Size Shape Size
(A} phase complex64 1024 x 1024 x 25 x 10 3.91 Gb 1024 x 1024 x 25 x 89 34.77 Gb

’ absorption complex64 1024 x 1024 x 25 x 10 3.91 Gb 1024 x 1024 x 25 X 89 34.77 Gb
{y.} complex128 1024 x 1024 x 10 0.31 Gb 1024 x 1024 x 89 2.78 Gb
others combined — — 3.13 Gb — 3.13 Gb
Total — — 11.26 Gb — 75.45 Gb

of the priors, we bring BM4D, the 3D version of the well-known denoiser BM3D, into comparison. In zoom-in
region (a) of Figure 7, Tikhonov reconstruction contains grid-shape artifacts. BM4D generates small blocks
due to its block-matching mechanism. DnCNN™ provides a more real and sharper result than the other two.
In region (b), Tikhonov reconstruction is of satisfactory visual quality but the shadow of algae & and ® in
the background interferes with the actual content in this slice. BM4D erases the shadow in the background
but it again generates blocky artifacts which makes its reconstruction not as real as DnCNN™ result.

Finally, we present one slice of the full 1024 x 1024 x 25 reconstruction by SIMBA under DnCNN™ in Figure
8. For comparison, we run GM-RED (full) under DnCNN™ but only for the dotted region because of the high
computational cost of the full batch reconstruction. The result is juxtaposed with our SIMBA result. These
two algorithms are run with the same 7 value until convergence. Visually, they look almost identical and we
present the absolute value of the residual between the two for reference. The residual is negligible compared
to the numerical scale of the two results. Quantitatively, if we assume the result of the full batch algorithm to
be the “ground truth”, the SNR of SIMBA is 47.03 dB. This substantiates that SIMBA sufficiently matches
the full batch algorithms in terms of the final reconstruction quality. Specifically, the average per-iteration
running time of SIMBA for reconstructing the dotted region is 22 seconds, while that of GM-RED is 192
seconds, which corresponds to a 9x speed-up. SIMBA also requires less memory at every iteration by
processing only about one ninths of full measurements. The reduced running time and memory usage in
processing such an intensive amount of data highlighted the efficiency improvement of SIMBA compared to
the traditional batch GM-RED.

We would also like to note that the memory considerations in image reconstruction must take into account
the size of all the variables related to the image volume x, the measured data {y;}, and the measurement
operators {A;}. The goal of this paper is to address the problems where the bottleneck is in the storage
and processing of the measurements and measurement operators. Table 4 records the total memory (Gb)
used by SIMBA and GM-RED (full) in each iteration. Note that our implementation stores each A; as two
separate matrices for phase and absorption. Additionally, each matrix is stored in the Fourier space to reduce
computational complexity of computing convolutions. This results in the storage of complex valued arrays
for each, consisting of pairs of double precision floats for every element. While GM-RED (full) requires 75.45
GDb of memory due to its processing of all measurements in every iteration, SIMBA uses only 11.26 Gb,
about one-seventh of the full volume, which makes the algorithm particularly well suited to tomographic
applications where one needs to process a very large number of views.

6 Conclusion

We proposed an extension of RED for solving imaging inverse problems in optical tomography. Our method is
scalable to large measurements and uses a deep denoising prior to improve the final estimate. We proved the
fixed-point convergence of the method without assuming an explicit objective function, which complements
the current theoretical analysis of RED for large-scale image reconstruction. We validated the method
on both simulated and experimental IDT data. Especially, the 3D reconstruction of a large algae sample
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fully elucidates the benefits of our method in data-intensive imaging problems. Future work includes the
application of SIMBA in other advanced IDT modalities with coded illumination patterns [64] and accelerated
data acquisition [65].
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A Background Material

The results in this section are well-known in the optimization literature and can be found in different forms
in standard textbooks [54,58,66,67]. For completeness, we summarize the key results useful for our analysis.

Definition 1. An operator T is Lipschitz continuous with constant A > 0 if
ITx — Tyl < Az -y, = yeR"™

When A =1, we say that T is nonexpansive.
Definition 2. T is cocoercive with constant 8 > 0 if

(Tz - Ty) (z —y) > 6Tz - Ty|*, =,y ecR"
When B =1, we say that T is firmly nonezrpansive.

The following results are derived from the definition above.

Proposition 1. Let T; : R® — R" for i € I be a set of nonexpansive operators. Then, their conver
combination
T = Zem, with  0; >0 and Zei =1,
icl il

1S MONETPansive.

Proof. By using the triangular inequality and the definition of nonexpansiveness, we obtain

ITe — Tyl <6l Tiz — Ty

icl
< (Z 0¢> lz -yl = llz -yl
il
for all ¢,y € R™. O
Proposition 2. Consider R=1—T where T : R® — R"™.

T is nonexpansive < R is (1/2)-cocoercive.

Proof. First suppose that R is 1/2 cocoercive. Let h := x — y for any ,y € R"™. We then have
1
3Rz —Ry[* < Rz — Ry)'h = |h|* - (Tz - Ty)"h.

We also have that

1
3lIRz = Ry|* = S[Al* = (T2 = Ty)Th + S| Tz — Ty||*.

1 1
2 2
By combining these two and simplifying the expression
[T — Tyl < [|A].
The converse can be proved by following this logic in reverse. O

Definition 3. For a constant « € (0,1), we say that T is a-averaged, if there exists a nonexpansive operator

N such that T = (1 — a)l + aN.

The following characterization is often convenient.
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Proposition 3. For a nonerpansive operator T, a constant o € (0,1), and the operator R .= | =T, the
following are equivalent

(a) T is a-averaged
(b)) (1 —=1/a)l+ (1/a)T is nonexpansive
(c) Tz - Ty|* < |z - y|* - (}3%) Rz — Ry =,y € R™.

Proof. See Proposition 4.35 in [54]. O

Proposition 4. Consider T : R® — R" and 5 > 0. Then, the following are equivalent
(a) T is B-cocoercive

(b) BT is firmly nonexpansive

(c) | — BT is firmly nonexpansive.

(d) BT is (1/2)-averaged.

(e) 1 — 28T is nonexpansive.

Proof. For any x,y € R", let h := = —y. The equivalence between (a) and (b) is readily observed by
defining P := ST and noting that

(Px —Py)Th=p3(Te —Ty) h
and [Pz — Py|* = 8*|| Tz — Ty|. (17)

Define R := | — P and suppose (b) is true, then
(Rz —Ry)"h = ||h||* - (Pz — Py)"h
= |Rz — Ry|* + (Px — Py)"h — [|Pz — Py||?
> ||Ra — Ryl|*.

By repeating the same argument for P = | — R, we establish the full equivalence between (b) and (c).

The equivalence of (b) and (d) can be seen by noting that

2||Px — Py|*> < 2(Px — Py)'h

& [|Pe — Py[* <2(Px — Py) h — [Pz — Py|?
= [|B[]* = (|k]|* = 2(Pz — Py)"h + [Pz — Py||*)
= ||h|* - Rz — Ry|*.

To show the equivalence with (e), first suppose that N := | — 2P is nonexpansive, then P = 1 (1 + (=N)) is
1/2-averaged, which means that it is firmly nonexpansive. On the other hand, if P is firmly nonexpansive,
then it is 1/2-averaged, which means that from Proposition 3(b) we have that (1 —2)I +2P =2P — 1 = —N is
nonexpansive. This directly means that N is nonexpansive. O
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B Proof of Theorem 1

We consider the following operators
G:=Vg+H and G:=Vg+H with H:= 7(1—D,),

where G is the minibatch approximation of G. The direct application of Assumption 1 implies that for any
z,y €R"

E[G(z)] = E[Vy(z)] + H(z) = G() (18a)

2

E[|IG(2) - G(x)|I3] = E[|Vg(z) - Vg(@)[3] < 3 (18b)

Now we prove Theorem 1 in several steps.

(a) Since Vg is L-Lipschitz continuous, we know that it is (1/L)-cocoercive (see Theorem 2.1.5 in Section 2.1
of [58]). Then from Proposition 4, we know that the operator (I — (2/L)Vyg) is nonexpansive.

(b) From the definition of H and the fact that D is nonexpansive, we know that (I — (1/7)H) =D is
nonexpansive.

(¢) From Proposition 1, we know that a convex combination of nonexpansive operators is also nonexpansive,

hence
2 2 L 2
| — - Rl I T
L12:° <L+2T 2) [ ng]

2 2T 1
— . — | [I—=H
+<L+QT 2){ 7':|7

is nonexpansive. Then from Proposition 4, we know that G is 1/(L + 27)-cocoercive.

(d) Consider any x* € zer(G) and & € R™. We then have
l — a* — 7 Ga|?

= |lz - &*[|* - 2(Gz — Ga™) T (x — ") ++°||Gz||?
2

2y — (L +27)y
< (2 G 2
< Jla— ™| - T == G
* g 2
< |lx—z*|? - G 1

where we used Gz* = 0, the cocoercivity of G, and the fact that 0 <y < 1/(L + 27).

(e) For a single iteration of SIMBA zt =z — vam, we have

|zt —2*|? = | — =* — 7Ga|?

= ||z — &* — 7Gx + 7(Gz — Gz)||?
= ||z — 2" — 1Gz||* + +*||Gz — G2
+ 2v(Gz — Gz)T(z — =* — 1Gx).

By taking the conditional expectation with respect to the previous iterate x, using (18), and applying
the bound (19), we obtain

721/2
E[lz* — 2| | 2] < |z — 2" — 7Gz|* + 5
2 Y 2 72V2
<|le—a*|? - G — 20
<l - 2| = 5 lIGal? + 1 (20)
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(f) By simply rearranging the terms, we obtain

72 1/2

B

v
L+2r7

I1G2||* < E [[la —27||* — [l™ — 27||*|«] +

(g) Hence, by averaging over ¢t > 1 iterations and taking the total expectation, we obtain our main result

E

¢
1 B (L+27) [||2° — =%  ~?%02
- E G k=12 <
t — G2 Il = ~ t + B
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