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Article history: We calculate exponential growth constants describing the asymptotic behavior of several
Received 28 January 2019 quantities enumerating classes of orientations of arrow variables on the bonds of several
Available online 15 October 2019 types of directed lattice strip graphs G of finite width and arbitrarily great length, in

the infinite-length limit, denoted {G}. Specifically, we calculate the exponential growth
constants for (i) acyclic orientations, a({G}), (ii) acyclic orientations with a single source
verteX, oo({G}), and (iii) totally cyclic orientations, B({G}). We consider several lattices,
including square (sq), triangular (tri), and honeycomb (hc). From our calculations, we
infer lower and upper bounds on these exponential growth constants for the respective
infinite lattices. To our knowledge, these are the best current bounds on these quantities.
Since our lower and upper bounds are quite close to each other, we can infer very
accurate approximate values for the exponential growth constants, with fractional
uncertainties ranging from 0(10~%) to O(10~2). Further, we present exact values of
a(tri), ao(tri), and B(hc) and use them to show that our lower and upper bounds on
these quantities are very close to these exact values, even for modest strip widths.
Results are also given for a nonplanar lattice denoted sqs. We show that «({G}), ao({G}),
and B({G}) are monotonically increasing functions of vertex degree for these lattices.
A comparison is given of these exponential growth constants with the corresponding
exponential growth constant t({G}) for spanning trees. Our results are in agreement
with inequalities following from the Merino-Welsh and Conde-Merino conjectures.

© 2019 Published by Elsevier B.V.

1. Introduction and basics

In this paper we report new results on three quantities defined on directed graphs, namely acyclic orientations,
acyclic orientations with a single source vertex, and totally cyclic orientations of families of directed graphs. We present
calculations of the exponential growth constants for these quantities for strip graphs of several lattices in the limit of
infinite strip length. From these calculations we infer lower and upper bounds on the three types of exponential growth
constants on the thermodynamic limits of the respective lattices. These are quite close to each other, even for modest
maximal values of strip width used. Hence, we are able to infer the values of these growth constants to high accuracies,
with fractional uncertainties ranging from the 0(10~%) to 0(1072). We also present exact results for three exponential
growth constants. From our calculations, we show that the exponential growth constants for acyclic orientations, acyclic
orientations with a single source, and totally cyclic orientations are monotonically increasing functions of vertex degree.
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Comparisons are also made with the exponential growth constants for spanning trees on these lattices. The results are in
agreement with inequalities implied by the Merino-Welsh and the Conde-Merino conjectures.

We begin with some basic background and definitions. Let G = (V, E) be a graph defined by its vertex and edge sets V
and E. Let n(G) = |V|, e(G) = |E|, and k(G) denote the number of vertices, edges (= bonds), and connected components of
G, respectively. We will often use the simpler symbol n = n(G) where no confusion will result. Without loss of generality,
we restrict our analysis to connected graphs here, so k(G) = 1. We also restrict our analysis to graphs that do not contain
loops (i.e., edges that connect a vertex to itself) or multiple edges joining a given pair of vertices. The reasons for this
exclusion will be explained below. The degree A(v;) of a vertex v; € V is the number of edges that are incident on v;.
Given a graph G, one can assign an arrow to each edge of G, thereby defining a directed graph, also called a digraph, D(G)
[1]. We denote a directed (oriented) edge joining a vertex v; to a vertex vj, with the arrow pointing from v; to vj, as €ij,
and the set of edges of D(G) with such arrow assignments as E, so that D(G) = (V, E). For a given G, there are

Neo(G) = 2e(G) (1.1)

such assignments of arrows to the edges of G and hence 249 corresponding directed graphs D(G). The subscript eo on
N¢,(G) stands for “edge orientations”. Since we study edge orientations of graphs G, we assume henceforth that G has
at least one edge, and hence exclude the trivial case in which G consists only of one or more disjoint vertices with no
edges. Given a vertex v; in a digraph D(G), its out-degree, A™(v;), and in-degree, A~(v;), are, respectively, the number of
outgoing and incoming arrows on edges incident on v;, so that the total degree of the vertex is A(v;) = AT (v;) + A~ (v;).
A graph with the property that all vertices have the same degree is denoted a A-regular graph. A directed cycle on a
directed graph D(G) is defined as a set of directed edges forming a cycle such that, as one traverses the cycle in a given
direction, all of the arrows on the oriented edges point in the direction of traversal. An acyclic orientation of the edge
arrows of D(G) is one in which there are no directed cycles. Further background on graph is given in Appendix.

An important question in the study of directed graphs concerns the enumeration of the subset of the 2¢% directed
graphs D(G) that are acyclic. Since this number depends only on the structure of G itself, it is commonly denoted a(G) and
is called the number of acyclic orientations of (arrows on edges of) G. In addition to its intrinsic interest in mathematical
graph theory, the quantity a(G) is also of interest in applications, such as manufacturing and operations research. The
reason for this is that directed graphs that describe these applications are acyclic.

The number of acyclic orientations of a graph G can be calculated via an evaluation of the chromatic polynomial of
G, We recall that the chromatic polynomial of a graph G, denoted P(G, q), enumerates the number of assignments of g
colors to the vertices of G, subject to the condition that no two adjacent vertices have the same color [1-6]. This is called
a proper g-coloring of (the vertices of) G. P(G, q) is a polynomial of degree n in q. For proper q colorings, ¢ must be a
positive integer, and cannot be equal to 1 if G contains at least one edge. More generally, one can consider the behavior
of P(G, q) at other values of q. For acyclic orientations, one has [7]

aG) = (=" PG, -1). (12)

The chromatic polynomial is a special case of an important two-variable function, namely the partition function of the
g-state Potts model [8], Z(G, q, v) with v = —1 (zero-temperature Potts antiferromagnet), or equivalently, the Tutte
polynomial T(G, x, y) [1,9-11] withx = 1—q and y = 0 (see Egs. (A.6) and (A.14) in the Appendix; some recent reviews
are [12-14]). Using this connection, one can equivalently express a(G) as an evaluation of T(G, x, y), namely

a(G) =T(G, 2,0) . (1.3)

In many practical applications such as manufacturing processes and scheduling, the relevant digraph is characterized
by a single source vertex, e.g., the first position of an item on an assembly line in a factory. Thus, a second quantity
of interest can be defined as follows. In a graph G = (V, E), let us pick a given vertex v; € V. Among the a(G) acyclic
orientations of the edges of G, count the number for which two conditions are satisfied: (i) v; is a source vertex, i.e., it
has only outgoing arrows on edges incident with it (and hence maximal out-degree A™(v;) = A(v;) > 1); and (ii) v; is
the only source vertex. In order for this to be a function of G, it must be true, and it does turn out to be true, that this
number is independent of which vertex v; one selects for this enumeration [15]. This number is denoted as aog(G) and
can also be calculated from a knowledge of the chromatic polynomial P(G, q). This polynomial P(G, q) is identical to the
partition function of the zero-temperature g-state Potts antiferromagnet in statistical physics. A proper g-coloring of G
is obviously not possible if g = 0, so P(G, 0) = 0, and hence, as a polynomial, P(G, q) always has an overall factor of q.
Hence, one can define the reduced (r) polynomial P,(G, q) = q~'P(G, q), as in Eq. (A.2). Then [15,16]

a0(G) = (=1)"“"1 P(G, 0) . (14)
From Eqgs. (A.6) and (A.14), ag(G) can also be defined as an evaluation of the Tutte polynomial,
ao(G) =T(G, 1,0). (1.5)

If a graph G contains a loop, this precludes the possibility of a proper g-coloring, and thus the chromatic polynomial
P(G, q) vanishes identically, as do both a(G) and ay(G). It is to avoid these trivial zeros that we exclude graphs with loops
in our analysis.
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Let us illustrate these definitions in the simplest nontrivial case, namely the tree graph T, with two vertices and a
single edge joining them. In general, for the tree graph with n vertices, T(Ty, x, y) = x"~ 1. There are two edge orientations
of T,, both of which are acyclic, so a(T,) = T(T,, 2,0) = 2. In both of these, there is a source vertex, but the source
vertex is different for the two different edge orientations. Recalling the definition of ag(G), one picks a specific vertex and
then enumerates how many of the acyclic orientations have this specific vertex as a source vertex, and this number is
ap(T,) = T(T,, 1,0) = 1. As is obvious from the fact that the reversal of all arrows is an automorphism of the set of all
orientations of directed edges, one could equivalently define ay as the number of acyclic orientations of G such that there
is a unique sink rather than a unique source.

Since acyclic orientations with a unique source are a subset of all acyclic orientations, it follows that

ag(G) <a(G), ie., T(G 1,0)<T(G,2,0). (1.6)

This inequality is evident from Eq. (A.13), since the coefficients of the nonzero terms in T(G, x, y) are positive. From
the relations (1.3) and (1.5), the necessary and sufficient condition for (1.6) to be an equality is clear, namely that
T(G,1,0) = T(G, 2,0) if and only if T(G, x, y) contains an overall factor of y so that T(G, 1,0) = T(G,2,0) = 0 and
thus ag(G) = a(G) = 0. For the lattice graphs of interest here, (1.6) will be a strict inequality, i.e., ag(G) < a(G).

It is also of interest to enumerate, for a given graph G, the number of digraphs D(G) in which every directed edge
is a member of at least one directed cycle. Such digraphs are called totally cyclic, and the directed edges are called as
totally cyclic orientations of D(G). We denote the number of these as b(G). (The number of totally cyclic orientations
of G should not be confused with the number of linearly independent cycles on G, denoted c(G), which is given by
¢(G) = e(G) + k(G) — n(G).) The number b(G) can be obtained as an evaluation of the Tutte polynomial, namely [17,18]

b(G) = T(G,0,2) . (1.7)

Starting with a given graph G, one can increase b(G) arbitrarily by replacing each edge with multiple edges joining the
same pair of vertices. In order to have a minimal measure of totally cyclic orientations, we thus exclude graphs with
multiple edges in our analysis. Using the equivalence between the Tutte polynomial and the partition function of the
Potts model, as given in Eq. (A.14), we can express b(G) as

b(G) = (-1)9Zz(G, —1,1) = =Z(G, —1, 1) . (1.8)

where Z(G, q, v) is the partition function of the Potts model on the graph G at a temperature given by the variable v
defined in Eq. (A.9). Thus, b(G) is obtained as an evaluation of the partition function of the Potts ferromagnet at ¢ = —1
and the (finite-temperature) value v = 1. The quantity b(G) can also be obtained as an evaluation of a one-variable
polynomial, namely the flow polynomial F(G, q), as

b(G) = (=1 "O=1F(G, 1) (1.9)

The flow polynomial F(G, q) enumerates the number of nowhere-zero g-flows on the graph G (with flow conservation
mod q at vertices) [1]. In addition to Refs. [7-18], some related work includes Refs. [19-24]. In particular, in [21] we
presented a number of results on acyclic orientations and their asymptotic behavior.

A recursive family of graphs is a family of graphs such that the (m+ 1)'th member, G, 1, can be obtained from the m’th
member, roughly speaking, by the addition of some subgraph [25,26]. For example, a square-lattice ladder strip of length
m + 1 vertices with free boundary conditions can be obtained by adding a square to the end of the square-lattice strip of
length m. For a wide variety of recursive families of graphs, these numbers a(G), ap(G), and b(G) grow exponentially with
the number of vertices, n, for n > 1. It is thus of interest to study the associated exponential growth constants. Let us
denote {G} as the limit of the recursive family of n-vertex graphs G as n — oo. We define the three exponential growth
constants for a(G), ag(G), and b(G) as

a({G}) = lim [a(G)]"" (1.10)

ao({G}) = nlirgo[ao(G)]1/” (1.11)
and

BUGYH = lim [b(G)]"/" . (1.12)
For all of the lattices that we study, we find the inequality

ao({G}) < a({G}) . (1.13)

Note that this inequality is not implied by the inequality (1.6), since, a priori, the difference, limyg)_ o [a(G)]"/™®) —
limp(c)— 00 [a0(G)]Y/™® might vanish as n(G) — oc.

Let G be a planar graph, which we denote as G, and denote G, as the planar dual graph, formed by bijectively
associating the vertices (respectively faces) of G, with the faces (respectively, vertices) of G and connecting the vertices
of G;, via edges crossing the edges of Gp,. For such a planar graph, the Tutte polynomial satisfies the relation

T(Gpi, %, ) = T(Gp, ¥, %) . (1.14)
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In particular, T(Gp;, 2, 0) = T(G;l, 0, 2), so
a(Gpr) = b(Gy) - (1.15)
We denote the number of faces of a graph G as f(G) and recall the Euler relation that for a planar graph G,
F(Gp1) — e(Gpr) + n(Gp) =2 . (1.16)
From the duality relation, it follows that n(G;f,) = f(Gp). For A-regular graphs G,
A(G)n(G
o) = 20O e

For a A-regular planar graph G, we define the ratio

n(Gy)  A(Gy)

= i = —-1. 1.18

ViGy) G0 T(Gyt) 2 (1.18)

where we have used Eq. (1.17) in the last equality in (1.18). Note that
1
v({Gp}) = ——~ - (1.19)
PTG

We record the specific values

v(sq) =1 (1.20)
and

v(tri) =2, (1.21)

= V(he)

where the property that v(tri) = 1/v(hc) follows from the fact that the triangular and honeycomb lattice are planar duals
of each other. From Eq. (1.15), it follows that if a planar graph is self-dual, indicated as Gy sq., then a(Gpy sa.) = b(Gpi.sd.),
and hence

a({Gprsa.}) = BUGpr.sa.}) - (1.22)
In particular, since the square lattice is planar and self-dual, we have
a(sq) = B(sq) , (1.23)

so that the lower and upper bounds that we infer below for «(sq) also hold for (sq). For the triangular and honeycomb
lattices, we obtain the relations

ahe) = [B(tri)]"") = [B(tri)]/2 (1.24)
and
Bhe) = [a(tri)]"") = [a(tri)]/* . (1.25)

As was true of a(G), ag(G), and b(G), the corresponding exponential growth constants «({G}), ao({G}), and S({G}) have
interesting connections with quantities in statistical physics. Specifically,

a({G}) = [W({G}, —1)] (1.26)
and
ao({G}) = IW({G}, 0)| , (1.27)

where W({G}, q) is the ground-state (i.e., zero-temperature) degeneracy of states, normalized per vertex (site) of the
g-state Potts antiferromagnet, defined in Eq. (A.11). The absolute values are used in Egs. (1.26) and (1.27) because for
(real) values of g away from the positive integers, P(G, q) can be negative, so that the formal relation W({G}, q) =
lim,_, oo [P(G, @)]/™ in Eq. (A.11) requires specification of which of the n roots of (—1) one chooses, while the value of
|W({G}, q)| is unambiguous. (Note that for any finite n = n(G), a negative sign in P(G, q) is canceled by the factor of
(—1)"® in Eq. (1.2) for a(G) and the factor of (—1)"®~1 in Eq. (1.4) for ao(G).)

Furthermore,

BUGY = e/, (1.28)

where f({G}, g, v) is the dimensionless free energy per vertex of the g-state Potts model defined in Eq. (A.10). Although
the Potts model partition function is naturally defined for integral ¢ > 1 in statistical mechanics, its definition can also
be extended, via Eq. (A.5) to more general values of g, and this generalization is used here. The absolute value is used in
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Eq. (1.28) because Z(G, —1, 1) is negative (as is clear from Eq. (1.8)), so the formal relation (A.10) requires specification
of which of the n roots of (—1) one uses, whereas |f({G}, —1, 1)| is unambiguously determined by Eq. (A.10).

Thus, although it might initially seem that a(G), ag(G), b(G), and the associated exponential growth constants «a({G}),
ao({G}), and B({G}), are only of relevance in mathematical graph theory and applications such as operations research,
Eqs. (1.2)-(1.7) and (1.26), (1.27), and (1.28), with Eqs. (A.6), (A.10), (A.11), and (A.14), show that these quantities also
have interesting and fruitful connections with statistical physics. Our new results in this paper demonstrate the value of
exploiting these connections.

A basic property of a digraph is that the number of edge orientations on G, N,,(G), grows exponentially rapidly as a
function of the number of edges of G. In order to define the corresponding exponential growth constant, one first expresses
e(G) in terms of n(G). This is done via Eq. (1.17) for A-regular graphs. More generally, for graphs containing vertices of
different degrees, we define an effective vertex degree, as in [27] (with n = n(G) here and below),

2¢e(G)
Aer(G) = m (1.29)
In particular, in the n — oo limit,
2e(G
Ag((Gh = tim 249 (1.30)
n(G)— o0 n

Thus, the exponential growth constant for the total number of edge orientations D(G) of a A-regular family of graphs G,
normalized per vertex, is
€({G}) = lim [Neo(G)]V" = lim (299)V/n = 2416h/2 (1.31)
n—oo

n—oo

More generally, for a family of graphs G containing vertices with different degrees,
€({G}) = 221(16D/2 (1.32)

For a given digraph, many of the edge orientations do not fall into any of the three classes (i)-(iii), i.e., they are not
acyclic or totally cyclic. This is reflected in the property that for most digraphs, a(G)+b(G) < Ngo(G). An interesting question
related to this is the following: for a given graph G = G(V, E), what fraction of the total number of edge orientations
is comprised of those that are (i) acyclic, (ii) acyclic with a unique source vertex, and (iii) totally cyclic? Each of the
corresponding numbers a(G), ag(G), and b(G) can be denoted generically as Nonq.(G), where the subscript cond. refers to
the condition that the edge orientations must satisfy to be a member of the given class. The corresponding fraction is
then the ratio

Ncond.(c) Ncond.(G)
rcomi(G) = Neo(G) - 2¢(0) . (133)
For each of the specified conditions (i)-(iii), renqg.(G) < 1. For certain families of graphs, rcnq.(G) = 1. Recall that a tree

graph is a connected graph that does not contain any circuits. For n-vertex tree graphs, denoted T, all edge orientations
are acyclic, so a(T,) = Neo(T,) = 2" ! and thus r4(T,) = 1, while b(T,) = 0, so r,(T,) = 0 (independent of n). However, as
discussed above, from exact results on strip graphs of lattices with fixed width L, > 2 and with various transverse and
longitudinal boundary conditions, one finds that r.,,4.(G) < 1 and, furthermore, that N¢y,4.(G) grows exponentially rapidly
with n(G) for n(G) > 1. A relevant question is the following: for a given condition, does the ratio 4 (G) approach a
finite nonzero constant as n(G) — oo or not? The answer to this question depends on the type of families graphs that
one considers. If one were to consider tree graphs, for example, then the ratio r,(T,) would be finite (and equal to its
maximal value, 1) for all n and, in particular, for n — oo. However, for all of the lattice strip graphs of finite width
(i.e., excluding the circuit graph) that we have studied, r¢nq.(G) vanishes as n(G) — oo. That is,

lim NCL'(G) =0, where Nyn.(G) = a(G), ag(G), or b(G) . (1.34)

n—>00 Neo(G)
Specifically, for these lattice strip graphs we find that r,4(G) vanishes exponentially rapidly as n(G) — oo. Therefore,
one is motivated to define a measure of this exponential decrease in the ratio rnq.(G). Since for most lattice strip graphs
both the numerator and denominator of the ratio r.n4(G) increase exponentially rapidly with n, it is natural to define
this measure as

) limy_, oo [Neond.(G)]/"
Phgna (GY) = 1im [Fong (G)]/" = ———=2 : (1.35)
n—o0 €({G})
For each of the three quantities considered here corresponding to the orientations satisfying the specified conditions (i)
acyclic, (ii) acyclic with a unique source vertex or sink vertex, and (iii) totally cyclic, we then have

o ae) \"" alo))

8 “({G})znli“Jo<Neo(c>> = (o) (1.36)
B a0(6) \"  ao({G))

g °‘°({G})‘nli'?o<weo(c)> (G (1:37)
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and

( b(G) )”” _ BUGh (138)
) .

Neo(G ey

This paper is organized as follows. In Section 2 we present a number of exact results on a(G), ag(G), b(G) for lattice strip
graphs and show how, in the limit of infinite strip length, these yield resultant values for the corresponding exponential
growth constants «(G), ao(G), and B(G). In Sections 3 and 4 we discuss our methods for inferring lower and upper bounds
on the exponential growth constants for infinite lattices from calculations on strip graphs of varying widths in the limit
of infinite width. In Sections 5 and 6 we present our numerical results on these lower and upper bounds for a(A), ag(A),
and B(A) for various lattices A. In these sections, using exact values of «(tri), ao(tri), and B(hc), we show that our lower
and upper bounds on these quantities are very close to the exact values for modest values of strip widths. We present
some further discussion in Section 7, including a comparison with growth constants for spanning trees. Our conclusions
are given in Section 8. Some graph theory background is included in Appendix.

ps(1G)) = lim

n—oo

2. Exact results for lattice strip graphs

In this section we present some exact calculations of a(G), ap(G), and b(G) for lattice strip graphs of fixed transverse
width L, and arbitrarily great length L, with certain boundary conditions, and show how one derives the corresponding
exponential growth constants «({G}), ao({G}), and B({G}) from these in the limit L, > 1. As indicated, we take the
longitudinal direction to lie along the x (horizontal) axis, and the transverse direction to lie along the y (vertical) axis.
We also include results on the constants p,({G}), ps,({G}), and pg({G}). These examples are selected from calculations of
chromatic and Tutte polynomials for a number of lattice strip graphs (e.g., [21,28-46]).

2.1. Cyclic square-lattice ladder graph

We first consider the square-lattice ladder strip graph L, of width L, = 2 vertices and length L, = m vertices with
cyclic longitudinal boundary conditions and free transverse boundary conditions. This graph has n(L,) = 2m vertices,
e(Ly,) = 3m edges, and uniform vertex degree, A = 3. The number of linearly independent cycles on L;; is ¢(L,) = m+ 1.
We denote the infinite-length limit, m — oo, of this strip graph as {L}. The exponential growth constant for the number
of edges in this limit is

e({L}) = 232 = 2.828427 , (2.1)
where here and below, we write non-integer numbers with the indicated number of significant figures.
Evaluating the chromatic polynomial at ¢ = —1, one finds [21]
ally)=7"—-22™ 4+ 4™)+5. (2.2)
Using Eq. (1.10), one calculates
a({L}) = 7 = 2.645751 . (2.3)
Evaluating the expression for ag(G) in Eq. (1.4), we obtain
ao(L) = 2m — 3)3™ 1 —(m —2). (2.4)

Hence, in the limit m — oo,
ao({L}) = v/3 = 1.732051 . (2.5)

The origin of the factors of m in Eq. (2.4) is as follows. For a cyclic strip graph Ggip, the chromatic polynomial P(Gsip, q)
has the form of a sum of powers of certain algebraic functions multiplied by various coefficients. These powers involve
L, = m, the length of the strip. Although a chromatic polynomial always has a factor of g, this factor is not explicit in the
expression written as a sum of powers of these algebraic functions. Consequently, to evaluate P(Gsip, q) = q‘lP(Gsmp, q)
at g = 0, one actually uses L’'Hopital’s rule, calculating
. dP(Gstrip, q)
Py (Gstrip, 0) = lim P(Gyrip, q) = —— (2.6)
q—0 dq q=0
It is this differentiation that brings down factors of m.
For the number of totally cyclic orientations of G, from the solution for Z(L,,, g, v) or equivalently T(Ly,, x, y) in Ref. [39],
we calculate

b(Ly) = 2(4™)—-3" -5, (2.7)
so that, in the limit m — oo,

L) =2. (2.8)
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From these results and the expression for €({L}), we compute

ey 7
pe({L}) = Vs~ 0.935414 (2.9)
C (L) 3
Lo (L)) = <~ Vs =0.612372 (2.10)
and
AUy 1
pp{L}) = -5 0.707107 . (2.11)

2.2. Cyclic triangular-lattice ladder graph

We next consider a cyclic strip of the triangular lattice TL,, [where TL is an abbreviation for “triangular (lattice) ladder”]
of width L, = 2 vertices and length L, = m vertices. This graph can be obtained from the cyclic square-lattice strip by
adding a diagonal edge to each square from, say, the lower left vertex to the upper right vertex. This graph has n(TL,;) = 2m
vertices, e(L,) = 4m edges, uniform vertex degree A = 4, and c(L,) = 2m + 1 linearly independent cycles. Evaluating
the chromatic polynomial at ¢ = —1, one finds [21]

7+/13\" (7 —-/13\"
a(TLm):9m—2|:<+2> +<#) }+5. (2.12)
Denoting the limit of TL,, as m — oo as {TL} and using Eq. (1.10), one has
a({TL}) = 3. (2.13)
Evaluating P,(TL,,, q) at ¢ = 0, we obtain
2 2
ao(TLy) = (ﬂ - 1)4'" L (2.14)
3 3
and hence
aog({TLH) = 2. (2.15)
For the number of totally cyclic orientations of G, from the solution for Z(TL,,, g, v) in Ref. [40], we find
114 3/13\" 11— 34/13\"
b(TLm)=2|:< + ) +< ) }—9’“—5, (2.16)
2 2
and hence
1/2
11+ 3413 34413
BUTLY) = ( +2 ) = +2 = 3.3027756 . (2.17)
Combining these results with
e({TL}) =4, (2.18)
we obtain
3
Pa({TL}) = 1 (2.19)
1
pop({TL}) = 50 (2.20)
and
34+ V13
ps({TL}) = +T = 0.825694 . (2.21)

2.3. Cyclic honeycomb-lattice ladder graph

We next consider a cyclic strip of the honeycomb lattice, HL,;, [where HL stands for “honeycomb (lattice) ladder”] of
width L, = 2 vertices and length L, = 2m vertices. Here, m is the number of hexagons in a horizontal layer of the strip.
This graph can be obtained from the cyclic square-lattice strip by adding a vertex on each horizontal edge (which is a
homeomorphic expansion of the square-lattice ladder strip). The graph HL;, has n(HL;,) = 4m vertices, e(L;,) = 5m edges,
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and c(L,,) = m+1 linearly independent cycles. It has two equal subsets of vertices of two different degree values, namely

2 and 3, and thus an effective vertex degree of Ay = 5/2. Evaluating the chromatic polynomial [31] at ¢ = —1, we find

a(HLy) = (31)™" — 2(10™ +4™) +5 . (2.22)
Denoting the limit of HL,;, as m — oo as {HL} and using Eq. (1.10), we thus obtain

a({HL}) = (31)/* = 2.359611 . (2.23)
Further, we compute

6

ao(HLy) = (%ﬂ - 1) 5™ _2(m—1), (2.24)
and hence

ao({HL}) = 574 = 1.495349 . (2.25)

For the number of totally cyclic orientations of G, from the solution for Z(HL,,, q, v) or equivalently T(HLy,, x, y) in Ref. [42],
we calculate

b(HLy) = 2(4™)— 3™ —5 | (2.26)
and hence
B({HL}) = V2 = 1.414214 . (2.27)
Combining these results with
e({HL})) = 2°/* = 2.378414 , (2.28)
we obtain
31, 1/4
pu({HL}) = <§) — 0.992094 (2.29)
5 \1/4
pag({HLY) = (i) — 0.628717 (2.30)
and
1\ 1/4
ps({HL}) = (§> — 0.594604 . (2.31)

2.4. A family of self-dual planar graphs

An n-vertex wheel graph Wh, = K; + C,_¢ is comprised of a circuit graph with all n — 1 vertices on the “rim”
connected to one central “spoke” vertex. (Here, G + H is the “join” of G and H). This graph has e(Wh,) = 2(n — 1)
and thus c¢(Wh,) = n — 1 linearly independent circuits. The n — 1 vertices on the rim have degree 3 and the central spoke
vertex has degree n — 1, so in the limit n — oo, the effective degree is A = 4. The wheel graph Wh;, is a self-dual
planar graph, so, as a consequence of Eq. (1.15),

a(Why,) = b(Why,) . (2.32)
An elementary calculation yields P(Wh,, q) = ql(q — 2)* ! + (q — 2)(—1)""1], so

a(Why) = b(Wh,) = 3" -3 (2.33)
and

ap(Why) =2""1 -2, (2.34)
Denoting {Wh} as the n — oo limit of the Wh;,, family, we then have

a({Wh}) = p({Wh}) = 3 (2.35)
and

ao({Wh}) =2 . (2.36)

We note that Wh;,, (and its n — oo limit) share with the infinite square lattice the property of being planar and self-dual.
Combining the results above with

€({Wh}) =4, (2.37)
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we find

pulWH)) = py((Wh)) = (2.38)
and

P (W) = = (2.39)

2
2.5. The sqq family of cyclic strip graphs

It is also of interest to investigate a family of strip graphs with a higher value of A. We define strip graphs of this
family, denoted (sqq), (Where the subscript d stands for “diagonals”), as follows. One starts with the cyclic square-lattice
ladder graph Ly, of width L, = 2 and length L, = m and then adds (i) an edge connecting the upper left and lower right
vertices of each square to each other, and (ii) an edge connecting the upper right and lower left vertices of each square to
each other. This is a A-regular nonplanar lattice graph with Agy, = 5. The cyclic (sqq)m lattice strip has n = 2m vertices
and 5m edges. Using our calculations in [37], we obtain

a([sqalm) = (12)" — 2 - (8)™ + 2™*! (2.40)
and

ao([5Ga]m) = (g - 1) 6" 4 3.2m ! (2.41)
Denoting {sqq} as the m — oo limit of the [sq,];;, family, we then have

a({sqq}) = 2+/3 = 3.464102 (2.42)
and

ao({sqa}) = V6 = 2.449490 . (2.43)
From our results in [43], we find

b([sqq]m) = 2[(13 +V/I8T)" 4+ (13 — \/ﬁ)m] - [{2(6 +/39))™ + {2(6 — @)}m] _gml (2.44)
so that, in the m — oo limit,

B{sqa}) =/ 13 + V181 = 5.143309 . (2.45)
In conjunction with

e({sqq}) = 2°/* = 5.656854 , (2.46)
these results yield

pa({sqa}) = \/g =0.612372 (2.47)

Poo({5qa)) = ? = 0.433013 (2.48)
and

P, ({sqq}) = % = 0.909217 . (2.49)

2.6. Comparative properties

We list our results for the exponential growth constants and the corresponding p.ong. constants for these infinite-
length, finite-width strips in Table 1. From these results, we can observe several properties. We find that «({G}), ao({G}),
and B({G}) are monotonically increasing functions of A (and, where applicable, of Aq). This is also true of the ratios
ao({G})/a({G}) for the various strips; from the values listed in Table 1, we have

ao({HL}) ( 5

1/4
—) = 0.633727 (2.50)
31

a({HL})

}
ao({L})
a({L})

w

=./2 =0.654654 (2.51)

~
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Table 1
Values of €, a, ag, B, pa, Puy, and pg for the infinite-length limits of some simple strip graphs. See text for notation. The strips are listed in order
of increasing vertex degree A or A.y. Short floating-point evaluations of exact expressions are included.

{G}  AorAg € o ao B Pa Peg Pp
(HL} 52 25/4 =2.378 (31)V4 =2.360 54 =1495 2= 1414 (%)1/4 =0.992 (%)1/4 =0.629 (;)”4 =0.595
L 3 232 = 2828 /7 =2.646 V3=1732 2 @ =0.935 3=0612 % =0.707
{(Wh} 4 4 3 2 3 3 1 H
{IL} 4 4 3 2 /8 _ 3303 H 1 Y13 _ 0.826
{sqa) 5 252 =5657 24/3=3464 6=2449 13+ /181=5.143 @ = 0612 S —0.433 14181 — 0,909
oo({Wh ao({TL 2
oliWh}) _ ao({TL}) _ 2 (2552)
a({Wh})  «({TL}) 3
and
ap({s 1
oisaad) _ 1 _ 5707107 . (2.53)

a({sqa}) 2

Concerning the ratios pgec({G}), we find that p,({G}) and p,,({G}) are monotonically decreasing functions, while pg({G})
is a monotonically increasing function of A (and, where applicable, of Agy).

2.7. Some families of graphs without exponential growth for a(G), ap(G), and/or b(G)

For perspective, we mention some families of graphs G for which a(G), ag(G), and/or b(G) do not exhibit exponential
growth with n. We begin with two recursive families of graphs, namely tree graphs and circuit graphs. For n-vertex tree
graphs, T,, two of the three quantities of interest here are actually constants, independent of n. These are ao(T,) = 1, and
b(T,) = 0. The other quantity, a(T,) does grow exponentially with n and, indeed, is maximal, namely a(T,;) = Neo(T,) =
2"1, Hence, denoting {T} as the n — oo limit of the T, family, we have a({T}) = 2, ao({T}) = 1, and B({T}) = 0.

For a circuit graph, a(C,) = 2" — 2, ao(C,) = n — 1, and b(C,) = 2, so that although ao(C,) grows with n, it does not
grow exponentially rapidly, and b(C,) is a constant, independent of n. Hence, denoting {C} as the n — oo limit of the C,
family, it follows that «({C}) = 2, ao({C}) = 1, and B({C}) = 1. In contrast, for strip graphs of various lattices with widths
L, > 2, we do find that a(G), ao(G), and b(G) grow exponentially with n.

More generally, from a physics point of view, the property that Z(G, q, v) grows exponentially rapidly with n(G) as
n(G) — oo is equivalent to the property that the free energy per vertex (or per d-dimensional volume, for a d-dimensional
lattice) is a constant in this limit. In turn, this reflects the extensivity of the total free energy in statistical physics.
However, even in this physics context, there are examples where Z(G, g, v) does not grow exponentially rapidly in the
large-n(G) limit. We recall that the chromatic polynomial is equal to the zero-temperature partition function of the Potts
antiferromagnet, Eq. (A.6). For a bipartite graph Gp;p., such as the square or honeycomb lattices, P(Gp;p., 2) = 2, independent
of n(Gpip.), while for a tripartite graph G, such as the triangular lattice, P(Ggip., 3) = 3!, independent of n(Gyyp.). In both
of these cases, the chromatic polynomials evaluated at these respective values of q do not exhibit exponential growth
with the number of vertices and, indeed, are independent of the number of vertices.

It can also happen that for a family of graphs G, the quantities a(G), ag(G), and b(G) grow more rapidly than
exponentially with n. An example, which is not a recursive family, is the family of complete graphs, K. Recall that a
complete graph K, is defined as a graph with n vertices such that each vertex is connected to every other vertex by an
edge, so that there are e(K,) = (g) edges. The chromatic polynomial for K, is P(K;, q) = ]_[}’:_Ol(q — j). Therefore, from Eqgs.
(1.2) and (1.4), one has

a(K,) = n! (2.54)
and
ao(Ky) = (n — 1)! (2.55)

Since n! has the asymptotic behavior given by n! ~ (n/e)* (2rn)"/? for n > 1 (the Stirling formula), it follows that both
a(K,) and ag(K,;) grow more rapidly than exponentially as n — oo. Having mentioned these families of graphs for contrast,
we return in the next section to our main subject, namely strip graphs of various lattices.
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3. Calculations of «({G}) for infinite-length, finite-width lattice strips
3.1. General

In this section we present calculations of a({G}) for strip graphs of several lattices, denoted generically as A in the limit
of infinite length, L, — oo, for various values of the width, L,, and various boundary conditions. The results for «({G}) and
ao({G}) for finite L, are independent of the boundary condition (free, periodic, or twisted periodic) in the longitudinal (x)
direction, denoted BC;, but do depend on the boundary condition in the transverse (y) direction, denoted BC,. In detail, the
relevant boundary conditions (BC,, BC,) and their names are as follows: (i) (F,F), free, (ii) (F,P), cyclic, (iii) (P,F), cylindrical,
(iv) (P,P), toroidal. In past work we have also considered (v) (F,TP), Mébius, and (vi) (P,TP), Klein-bottle, where here the
symbol T stands for twisted, but since strips with twisted longitudinal boundary conditions yield the same results relevant
here as the corresponding cyclic and toroidal strips, it is not necessary to consider these twisted longitudinal boundary
conditions here. For our present discussion, the infinite-length strip of a lattice A is indicated as {A, (L,)r x oo} and
{A, (Ly)p x oo} for these two respective transverse boundary conditions (with brackets included here for clarity). For our
discussion of @ and « on infinite-length lattice strips, we will sometimes use an equivalent notation {4, (L,) x oo, free}
and {A, (Ly) x oo, cyl}, where the abbreviation cyl stands for cylindrical.

We will make use of a property of the chromatic and Tutte polynomials for these strip graphs, namely that they can
be written as a sum of certain coefficients multiplied by powers of various functions, generically denoted A, depending
on A, Ly, and the boundary conditions, but not on L. The powers to which these A functions are raised are given by the
length, m, of the strip (see Appendix). As m — oo, the A function with the largest magnitude dominates the sum. From
calculations of chromatic polynomials for strip graphs of various lattices [21-47] (see also references in [13]), we know
what this dominant A function is. We remark that for the strips that we consider, the dominant A function in P(G, q)
at ¢ = —1 and q = 0 is the same as the X function that is dominant at large q. To calculate «(A) and ag(A), we only
need the dominant A function for the given strip with free or periodic transverse boundary conditions, which will be
denoted as A4 1, free(q) OF A4 1, cyi(q), Tespectively. The reason that our results for a({G}) and ao({G}) are independent of
the longitudinal boundary conditions is that, as discussed in our earlier work, the dominant X for these is the same for free
and periodic (and twisted periodic) longitudinal boundary conditions. In contrast, our results for 8({G}), to be discussed
in Section 6, do depend on both the longitudinal and transverse boundary conditions.

The resultant exponential growth constants for acyclic orientations and acyclic orientations with a unique source on
the infinite-length limits of the square and triangular lattice strips (which have n = L,L,) are

(A, (Ly)ac, x 00) = lim [a(A, (Ly)ac, x L)1 = [A(A, Ly BG)(= D] 3.1)
and
ao( A, (Ly)se, x 00) = lim [ao(A. (Ly)ac, x LI = [MA, Ly, BG)(0)]™ (32)

For strips of the honeycomb lattice, n = 2mlL,, so one replaces the exponents 1/L, by 1/(2L,) in Egs. (3.1) and (3.2).

In our previous study [21], we showed that the resultant values of «(A, (Ly)r x oo) and a(A, (Ly)p x oo) were
monotonically increasing functions of L, for the full range of widths L, for which we carried out calculations with the
square-lattice and triangular-lattice strips. To anticipate the new results that we present here, we continue to find this
behavior both for these lattice strips and for all of the other lattice strips that we have studied. This provides strong
additional support for the inference that we made in Ref. [21], that for a given infinite-length, finite-width strip of a
lattice A with free or periodic transverse boundary conditions,

a(A, (Ly)sc, x 00) is a monotonically increasing function of L. (3.3)
Furthermore, our results in [21] provide strong additional support for the inference that

Llimoo a(A, (Ly)sc, X 00) is independent of the (F or P) BC, . (3.4)
y—)

With this inference, we denote the resultant common limit for either of these transverse boundary conditions as «(A),
where A refers to the infinite lattice A.

Because there is no transverse boundary to the strip if one uses periodic transverse (cylindrical or toroidal) boundary
conditions, one expects that these boundary conditions yield values of a(A, (L,)p x 0o) that approach the L, = oo value,
a(A), more rapidly than if one uses free transverse boundary conditions and calculates the resultant «(A, (L,)r x 00)
values. Our results in [21] and here are in agreement with this expectation. Provided that this monotonicity holds for all
higher values of strip width Ly, it follows that the maximal value that we obtain for a(A, (L,)p x oo) with the largest L,
for which we have performed the calculation is a lower bound for a(A). As we will discuss below, a comparison of our
values of «(tri, (L,)p x oo) with the precise value of «(tri) that we calculate (see Eq. (5.2)) gives further strong support
to this inference. In order to measure the convergence of consecutive values of a(A, (Ly)pc, X 00) to a constant limiting
value, we define the ratio

a(A, (Ly + g, x 00)

(3.5)
a(A, (Ly)sc, x 00)

Ro, A (Ly+1)/Ly.Bc, =
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As will be evident from our results for the square, triangular, and honeycomb lattices, even for modest values of the strip
widths, these ratios approach very close to unity.

3.2. Strips of the square lattice

In Table 2 we list the values of a(sq, (Ly)r x oo) and «(sq, (L,)r x oo) that we have calculated. The values of
a(sq, (Ly)rxoo)for 1 <L, < 8andof «(sq, (Ly)p xoo) for 1 < L, < 12 were given in [21], while the value of «(sq, 13p x 00)
is new here. To show the convergence quantitatively to high accuracy, we have listed the values of «(sq, (Ly)r x 00)
and a(sq, (Ly)p x oo) to more significant figures than were given in [21], and we have also listed values of the ratio
Re sq.(Ly+1)/1.BG - Using (3.3) and (3.4), we therefore infer the lower bound

a(sq) > 3.4932448 . (3.6)

This new lower bound may be compared with previous lower bounds on «(sq). (In this context, it should be mentioned
that our notation is different from the notation used in Refs. [19-24]; our quantities a(G), ag(G), and b(G) are the same
as their «(G), ao(G), and B(G), respectively, and our quantities «({G}), @o({G}), and B({G}) are the same as their quantities
limMy(G)— 00 (G) ™D, limy(c)— 00 @0(G) /™), and limyc)— 0o B(G)/™C), respectively. In [19], Merino and Welsh proved that

22
= = a(sq) < 3.709259278 (3.7)
and
7
3= ao(sq) < 3.21. (3.8)

In [20], Calkin, Merino, Noble, and Noy proved more restrictive lower and upper bounds on «(sq), namely

3.41358 < «a(sq) < 3.55449 . (3.9)
Subsequently, in [24], Garijo et al. obtained still more restrictive lower and upper bounds on «(sq), namely

3.42351 < «(sq) < 3.5477 . (3.10)

Evidently, the new lower bound (3.6) that we have inferred is consistent with, and more restrictive than these previous
lower bounds. We will also infer a more restrictive upper bound on «p(sq) below.

4. Method to infer lower and upper bounds on exponential growth constants

In this section we explain a method that we use to infer lower and upper bounds on the exponential growth constants
a(A), ap(A), and B(A) for several lattices A. Let us discuss a(A) and ag(A) first. We recall Egs. (3.1) and (3.2). For
definiteness, we specialize the following discussion to strip graphs of the square lattice. Corresponding results for other
lattices are similar with appropriate modifications.

As discussed above, our results are consistent with the inference (3.4) so that we may equivalently use strips with
free or periodic transverse boundary conditions (as well as free or periodic longitudinal boundary conditions). For strips
of the square lattice with width L,, the values of «(sq) and ao(sq) are thus given, respectively, by the following, where, as
before, BC, denotes the transverse boundary condition, free or periodic (i.e., cylindrical)

afsq) = lim [P([sq, (Ly)ac, x ml, —1)]"/" = Him [Aq 1, 5, (= 11"
— y—

= lim a(sq, (Ly)sc, % 00) (4.1)

Ly—o0
and

ao(sq) = nlingo[Pr([Sq, (Ly)se, x m], 0)]'/" = Llimoo[)»sq,Ly,ch(O)]l/Ly
— y—

= lim ap(sq, (Ly)sc, % 00) . (4.2)
Ly—o0

Since a(G) and ag(G) can be calculated from the chromatic polynomial P(G, q) without the necessity of calculating the
full two-variable Tutte polynomial or equivalent Potts model partition function, the A functions that will be used for our
analysis are those that occur in P(G, q) and hence depend on the single variable q. These are evaluated at ¢ = —1 for a(G)
and at g = 0 for ay(G), and we indicate this in the notation. The calculation of b(G) requires an evaluation of the full Tutte
polynomial, T(G, x, y) with (x, y) = (0, 2), or equivalently, the Potts model partition Z(G, g, v) with (q, v) = (—1, 1), and
consequently in our discussion below of b(G) and the corresponding exponential growth constant, 8({G}), the XA functions
involved will be those for the Tutte polynomial and hence will depend on two variables. As noted above, for all of these
exponential growth constants, we do not actually need the full chromatic or Tutte polynomial, but only the dominant A
function.
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From our explicit calculations for the full range of L, values that we have investigated, we have observed that all
the quantities [Aq.1, free(— 112, [Asg.1, sree(0)VY, [AsqLycn(—1)1"Y, and [Asqr,.u(0)]V" increase monotonically as L,
increases. Provided that this monotonic increase continues for larger Ly, our values thus yield lower bounds on the
respective asymptotic values in the limit as L, — oo, i.e., the values of «(A) and «o(A) for the infinite lattices A. In [21]
we had used [Asq,Ly,Cy,(—l)]l/Ly with L, up to 12 to obtain the lower bound on «(sq) that we gave in that paper.

As an explicit example, we consider strips of the square lattice. For L, = 2, the dominant 1 is

}\sq.Z,free = qz - 3q +3. (43)

Thus, a({L}) = (Asqiz,ﬁee)lﬂy = /Asq.2 free €Valuated at ¢ = —1, which yields the result in Eq. (2.3) above. The corresponding
evaluation at ¢ = 0 yields the value in (2.5).
For L, = 3, depending on the value of g, the dominant A functions are [29,32,33]

1 2 2 4 3 2
Asqies = 5@ 2(a* =34+ 5) £ V(@ =50+ 7)Mq* —5¢° + 11¢ — 12 +8) | . (44)
If (real) g > 2, then the function A 3 free + is dominant (i.e., has the larger magnitude) and determines the W function
defined in Eq. (A.11) as W = (Asq,3.free.+)]/3. In contrast, for the values of g that are relevant here, namely ¢ = —1 and

q = 0, the function A 3 fee,— has the larger magnitude and hence is dominant. This A 3 free,— function is negative for
q < 2.685, but, as is evident in Eqs. (1.26) and (1.27), only the magnitude is relevant for the « and ¢y exponential growth
constants. (For finite-length strips, the factor (—1)*(G) in Eq. (1.2) and the factor (—1)X®-1 in Eq. (1.4) yield positive
values for a(G) and ay(G).) To avoid magnitude signs cluttering various equations, it is understood implicitly that, where

necessary, we remove minus signs so that the dominant A function is positive for ¢ = —1 and q = 0. In the present case
of the L, = 3 square-lattice strips, we thus set |Asq 3 free,—| = Asq 3 e, and similarly for other strips. Evaluating this at
q = —1and g = 0 and taking the 1/L, = 1/3 root, we get
1/3
27 + 481

a(sq, Ly = 3, free) = (B) = 2.903043 (4.5)
and

ao(sq, L, = 3, free) = (5 + +/14)"3 = 2.0599875 . (4.6)

We observe the inequalities «(sq, 3, free) > «(sq, 2, free), where «(sq, 2, free) = «a({L}) in Eq. (2.3), and «g(sq, 3, free) >
ap(sq, 2, free), where ag(sq, 2, free) = ap({L}) in Eq. (2.5). These are in accord with the monotonicity relations that were
noted above.

The property that we find in our calculations, that a(A, L, free) and og(A, Ly, free) are monotonically increasing
functions of strip width for a strip of the lattice A, is opposite to the behavior that was found for W(A, Ly, free, q) for
values of q used in proper g-colorings of the lattice A [35]. This reversal can be traced to the evaluation at different values
of g, namely ¢ = —1 and q = 0 here, as contrasted with values of q used for proper q colorings of A.

Related to this, we have noticed an interesting connection between our results for «(A) and «o(A) and the analytic
expressions that were proved in [27] (see also [48,49]) to be lower bounds on W(A, q) for all Archimedean lattices (and
dual Archimedean lattices) using a coloring-matrix method introduced in [26] to prove a lower bound on W(sq, q). We find
that if one evaluates these expressions at ¢ = —1 and q = 0, then the results are consistent with being upper bounds on
o(A) and op(A), respectively. As discussed in the Appendix, an Archimedean lattice A has the form A = (]_[l.pf"), where
this product refers to the ordered sequence of polygons traversed in a circuit around any verteX, and the i'th polygon
has p; sides, appearing a; times contiguously in the sequence (it can also occur non-contiguously). The total number of
occurrences of the polygon p; in the above sequence is denoted as a;. In this general notation, (sq) = (4*), (tri) = (3%),
and (hc) = (63). The number of polygons of type p; per vertex is

Qs
Yy = — . 4.7
DPi i ( )
Note that v,, coincides with v, in Eq. (1.18) and takes on the values in Egs. (1.20)-(1.21) for the square, triangular, and
honeycomb lattices. The lower bound proved in [27] for a general Archimedean lattice is

W(A,q) > W(A,q) , (4.8)
where
aj i[Dp; (@)1
W((]_[pi’), q) _ [y (4.9)
i ¢ q-1
with
= s(N— 1 n—2—s
Dn(q)= ) (—1) ( s )q . (4.10)
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This lower bound applies for ¢ > x(G), where x(G) is the chromatic number of G (i.e., the minimum value of q required
for a proper g-coloring of G). In [27,48,49] this lower bound on W(A, q) was shown to be very close to the actual values
of W(A, q) as determined from Monte-Carlo measurements, large-q series, and the result for W(tri, q) from [50]. We
conjecture that for each Archimedean lattice A, the evaluation of the right-hand side of Eq. (4.9) at the respective values
q = —1 and g = 0 yields respective upper bounds on «(A) and «g(A). which would read

a(A) < ayy(A) (4.11)
and

og(A) < oo uw(A) (4.12)
where

() = L2 (=D lD"’é_l)lvpi (4.13)
and

ao.uw(A) =[] IDp(O)I'7i . (4.14)

To indicate the connection with the W(A, g) bounds, we use a subscript w in these expressions. Specifically, for the three
Archimedean lattices under consideration here, in order of increasing vertex degree A(A), these conjectured upper bounds
are

V31
oy w(he) = —— =2.78388218 (4.15)
7
ouu(sq) = 5 (4.16)
9
oty (tri) = 3 (4.17)
and
ao.uw(hc) = v/5 = 2.236068 (4.18)
O[O,u,w(sq) =3 (419)
and
oo uw(tri) =4 . (4.20)

As will be seen below, these are close to the upper bounds that we derive from our studies of strip graphs of these
lattices, and to the exact values that we obtain for «(tri) and ag(tri). (The respective values in Eqs. (4.15)—(4.20) are the
(Ly+1)/L, = 2/1 entries in the corresponding tables based on strip graph calculations.) A plausible inference is that this
closeness of the values (4.15)-(4.20) to the optimal inferred upper bounds is related to the fact that the lower bound
(4.8)-(4.10) that was rigorously proved in [27] for all Archimedean lattices is very close to the actual values of W(A, q)
on these lattices.

From [39], the dominant A function in Z(G, g, v) for the relevant values g = —1and v = 1is

v
hsqaee@, 0) = 5[4 00+ 4) + Vo + 403 1207 = 2007 + 4qv + ¢ | (421)
with the evaluation
)¥sq,2,free =4 at(q,v)=(-1,1). (4.22)

Taking the 1/(L,) = 1/2 root, one obtains the result for 5(sq, 2, free) = B({L}) given above in Eq. (2.8).
From [44] we find that for the L, = 3 strip of the square lattice with free transverse boundary conditions, the dominant
A at (q,v) =(—1, 1) is a root of the sixth-degree equation given in Eqgs. (A.1)-(A.7) of [44], with the value

17 + /145
2

Asq.3,free = at(q,v) =(-1,1). (4.23)

Taking the 1/3 root, one obtains the result

17 + /145

1/3
5 ) = 2.439665 . (4.24)

B(sq. 3, free) = (
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We note the inequality S8(sq, 3, free) > B(sq, 2, free), in agreement with the general monotonicity property noted above.

We next prove a useful inequality. For this purpose, we begin by considering lattice strip graphs with width L, = 2P
for some (positive) integer power p. This inequality applies to the exponential growth constant ¢ for the Tutte polynomial
of a recursive family of graphs (e.g., lattice strip graphs) for x > 0 and y > 0, where ¢ is defined as

$((Ghx.y)= lim [T(G, x, y)]V/me (4.25)

If an edge e € E is not a loop or a bridge, then the Tutte polynomial satisfies the deletion-contraction relation
T(G,x,y)=T(G—e x,y)+T(G/e,x,y), (4.26)

where G — e denotes G with the edge e deleted and G/e denotes the result of deleting the edge e from G and identifying
the vertices that this edge connected. (For a graph that is comprised of £ loops and b bridges, T(G, x, y) = x"y. The proof
of the inequality follows from an iterative use of the deletion—contraction relation. This leads to nested inequalities for
the dominant A function for all of the three cases (x,y) = (2, 0) for a({G}), (x,y) = (1, 0) for «o({G}), and (x,y) = (0, 2)
for B({G}). The basic observation is that if one compares the Tutte polynomial for, say, an L, x 4 strip of a lattice A, with
the Tutte polynomial for a (disconnected) graph consisting of two copies of an L, x 2 strip, then the former has L, more
edges, the removal of which yields the latter two graphs. By iterative application of the deletion-contraction theorem,
one can relate the free strip of width L, = 4 to the graph consisting of two L, = 2 free strips, and the inequality then
follows.

From Egs. (3.1) and (3.2), it follows that for the square and triangular lattices, as the strip width L, — 00, A(4, (Ly)sc, X
00)(—1) ~ [a(A)]% and A(A, (Ly)pg, x 00)(0) ~ [ao(A)]Y. Therefore, another measure of the asymptotic large-L, limit is
given by the ratio

MA, (Ly)se, x o0)(q)

. (4.27)
MA, (Ly — 1)pg, x 00)(q)
where ¢ = —1 for a(A) and where g = 0 for ag(A). llustrating this with our illustrative strip, we observe that the ratios
of the dominant A(q) functions in the chromatic polynomial at g = —1 and g = 0 are
Msq, 3 —1 27 + /481
(59, 3p x 00)(=1) _ 27 + = 3.495122 (4.28)
M(sq, 2F x 00)(—1) 14
and
Msq, 3 0 5+4/14
(s, 3 x 00X0) _ 5+ V14 _, g 13056 . (4.29)
A(sq, 2F x 00)(0) 3
(The equivalent notation ’;gg;gﬁggjg and ;Ejgiﬁggggg is used in the tables.)

A corresponding discussion applies for 8(A), with the dominant A(q) function in the chromatic polynomial replaced
with the dominant A(q, v) function in the Potts/Tutte polynomial, evaluated at (x,y) = (0, 2) i.e., (q, v) = (—1, 1). For
the honeycomb lattice, one replaces these ratios by square roots. Thus, for the dominant A(q, v) functions in Z(G, g, v) at
(q,v) =(—1,1) on the L, = 2 and L, = 3 strips of the square lattice with free transverse boundary conditions, we have

Msq.3p x 00) =L 1) _ 17+ V145 _ 5 oa510q (4.30)
A(sq, 2F x 00)(—1,1) 8
A(sq,3,free)(—1,1)
A(sq,2,free)(—1,1)

Now consider the special case of the exponential growth constant a({G}), for which we actually only need the one-
variable special case of the Tutte polynomial given by the chromatic polynomial, with the associated A functions evaluated
at g = —1 for the discussion of acyclic orientations, as will be indicated in the notation below. We then have the sequence
of inequalities

)\sq.l,free( - 1)

(The equivalent notation is used in the tables.)

[}\st;(,Z,free(_‘l)]l/2 = [)‘-sq,4,free(_1)]l/4 = [)\sq,&free(_l)]l/s
o < lim [Rqr ree(— 1YY (4.31)
Ly—o00

IA

IA

Let us focus on one of these inequalities, namely [Asq 2 free(—1)]"/% < [Asq.4sree(—1)]'/%. The others can be treated in a
similar manner. Since [)\sqyz_free(—l)]Lx is the dominant A function for the chromatic polynomial of the 2 x Ly strip, and
equivalently of the Tutte polynomial with (x, y) = (2, 0), it determines the corresponding ¢ function in the limit L, — oo,
while [Asq 4 ree(—1)]* similarly gives the ¢ function for the Ly — oo limit of the Tutte polynomial of the 4 x L strip. Now
compare two L, = 2 strips with a L, = 4 strip. The former has L, fewer edges than the latter, so the Tutte polynomial
of the former is smaller than that of the latter, since the coefficients of the Tutte polynomial (in terms of variables x and
y) are positive. That is, [Asq2 free(— 1)1 < [Asg.afree(—1)]**. This completes the proof. By the same type of argument, it
follows, for example, that

Asq,],free(_]) < [}\sq,3,free(_])]]/3 =< [)hsq,(i,free(_‘l)]]/6 =< [)‘sq,12,free(_])]1/12
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. 1/L
<..= lim [)\sq,Ly,free(_l)] Iy ) (432)
Ly—o0

where here L, = 3-2°, where s is a non-negative integer. Other corresponding inequalities with larger values of L, follow
in the same way.
It is easy to prove that

)qu,Ly,free(_]) =< )qu,Ly,cyl(_l) B (433)

as follows. Consider an assignment of arrows on all of the edges of a free strip of the square lattice with width L, such
that there are no cycles, i.e., an acyclic orientation of this strip. We can add L, more edges to produce the corresponding
cylindrical strip of the square lattice with the same width L,. Now we assign an orientation for the arrow on each of these
directed edges. If a choice of the direction of the arrow would result in a cycle, then we choose the opposite direction
for the arrow. It is impossible that both choices will result a cycle, since that would mean that there would already have
been a cycle in the original free strip, which would contradict the beginning assumption of an acyclic orientation. This
statement applies to each of the additional L, edges of the cylindrical strips, so the number of acyclic orientations on
the cylindrical strip is at least the same as the number on the free strip. Therefore, for a strip graph of the lattice A, the
quantity [Asq1,.qi(—1)]"" serves as a better lower bound on a(A) than [, see(—1)]"/". Alternatively, one can again use
the deletion—contraction relation (4.26) to prove (4.33), since the strip with cylindrical boundary conditions has L, more
edge than the strip with free boundary conditions with the same L,. Similar discussions apply for acyclic orientations
with a unique source, and for the tri and sqq lattices. For the honeycomb lattice, it is [A,mLy.free(—l)]‘/ CLly) that yields the

corresponding values of « and ¢ with ¢ = —1 and q = 0, respectively. We thus infer the two inequalities

a(A) > a(A, (Ly)p x oo) for the maximal calculated value of L, (4.34)
and

ap(A) > ag(A, (Ly)p x 00) for the maximal calculated value of L, , (4.35)

where the right-hand sides of these inequalities are given, respectively, by [Aa.r,.qi(—1I"Y and [A1,,i(0)]"Y for
A = sq, tri, sqq, and by the corresponding square roots of these functions for A = hc. The corresponding bounds also
apply for free transverse boundary conditions, but, as noted, the bounds with periodic transverse boundary conditions
are more restrictive.

As mentioned above, we have shown by explicit calculation that

)qu,l,free(_l) < [)\sq,l.free(_‘l)]]/2 < [)\sq,3,ﬁ’ee(_1)]l/3 <. < [)\sq{,&free(_‘l)]l/8 (4.36)
for the square lattice. This sequence should approach «(sq) as the strip width L, — co. With the inference that

[Asq,Ly,free(_])]1/Ly < [)\sq,Ly+1,free(_1)]1/(Ly+1) s (4.37)
this is equivalent to

ksq,Ly,free(_ 1 ) < [)qu‘Ler],free( -1 )]Ly/uer]) (438)
and

Asq.Ly+1free(—1)
[)qu,Ly+l,free(_1)]1/(Ly+1) < % (4-39)
)\sq,Ly.free(_l)

From our explicit calculation, we find that

)‘sq,&free(_]) )\sq,7,free(_]) < )\sq,3,free(_]) )bsq,z,free(_l) ) (4'40)

)qu,7,free(_1) )\sq,G,free(_]) }\sq,Z,free(_]) )qu,l,free(_l)

This leads us to infer that the ratio As 1,4 1.free(—1)/Asq.L, free(—1) serves as an upper bound for «(sq). From Eq. (3.1) and
the proof above that [)\sq,Ly,free(—l)]l/Ly approaches «(sq) from below (and is very close to it when L, > 1), one could

infer that A 1,41 free(—1) is close to [a(sq)]¥*! and Asq.Ly freel(—1) is also close (but not as close) to [oe(sq)]Y. Therefore,

% should be slightly larger than «(sq), and hence should serve as an upper bound on «(sq). Similar discussions
sq,Ly free

apply for the evaluation at ¢ = 0 and for the tri and sqq lattices. For the honeycomb lattice, one replaces this ratio by its
square root to obtain the upper bound on «(hc). We thus infer the two inequalities

A -1
of M for the maximal calculated value of L, (4.41)

)\A,Ly,free( -1 )
and

A 0
og(A) < M for the maximal calculated value of L, , (4.42)

)‘-A,Ly,free(o)
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for A = sq, tri, sqq lattices. We infer the corresponding inequalities for the honeycomb lattice with the ratios on the
right-hand sides replaced by their square roots.

Another argument that supports this inference is the following, where we again specialize to the square-lattice strips
for definiteness. Let us define the ratio of the adjacent terms in (4.36) (i.e., successive lower bounds on «(sq) from the
infinite-length strip of width L, and width L, — 1) as

(_1) o [ksq,Ly,free(_])]l/Ly

R Ly = .
sq,Ly—}:],free [)qu,Ly—l,free(_1)]]/(1'3/7])

(4.43)

This ratio Req (1, +1)1, free(—1) is larger than 1. We find that this ratio decreases toward 1 from above as L, increases from 1
to 7, as listed in the next section. The same statement applies when the boundary condition is cylindrical. This is consistent
with the inference that our lower bound is approaching an asymptotic constant value, namely the value for the infinite
lattice.

Provided that this property continues to hold for any L,, namely,

[}\sq,LerLfree(_ 1 )]1/(L‘V+1) [)\Sq,Ly-free( —1)] 1y

< , (4.44)
[)qu,Ly,free(_ 1 )]]/Ly [)\sq,Ly—l,free(_1)]1/("3/71)
then it is equivalent to
[)\sq L free(_l)]Z/Ly
[hsguy+1.free(— 1]V EFD < =
sq,Ly+1.free [)\sq,Ly—l,free(_1)]1/““/71)
_ )qu,Ly,free(_l) % [)\sq.Ly—l‘free(_l)](Ly_z)/“'y_l)
)\sq,Ly—l,free(_ 1) [)\sq.Ly,free(_ 1 )](Ly—z)/Ly
< )\sq,Ly,free(_l) ) (4.45)
)\sq,Ly—l,free(_l)
Let us define the ratio
A —1)?
R P (_1) — [ sq,Ly.free( )] ) (4.46)
5%m»ﬁ’ee )\sq.Ly—l.free(_1))\sq,Ly+1,free(_1)

This is the ratio of adjacent upper bounds. Since the upper bounds decrease as the strip width L, increases, the larger-L,
upper bound in the denominator is smaller than the smaller-L, upper bound in the numerator, so this ratio is also larger
than unity. We find that this ratio also decreases as L, increases from 2 to 7, as listed in the next section. This is consistent
with our upper bounds approaching a constant value as L, — oo, namely the value of «(sq) for the infinite lattice.

Next, we consider the totally cyclic orientations on strip graphs and the exponential growth constant 8(A) of the
lattice A. As stated above in Eqs. (1.7) and (1.8), for a finite graph, G, the number of totally cyclic orientations, b(G), is
given by the evaluations b(G) = T(G, 0, 2), or equivalently, by b(G) = —Z(G, —1, 1). From our earlier calculations of Potts
model partition functions for strip graphs of various lattices with cyclic and toroidal boundary conditions, we showed
that the dominant A function in the Potts partition function evaluated at (q,v) = (—1, 1) has the coefficient g — 1.
Related to this, the result for 8 in the limit of infinite length depends on both the longitudinal and transverse boundary
conditions of the strip. To minimize finite-size effects, we therefore restrict to strips with periodic longitudinal boundary
conditions in our analysis of the 8 exponential growth constant. The dominant A functions of this type will be denoted as
)qu,Ly,CyC(q =—lv=1)= )\sq,Ly.CyC(—l, 1) and Asq,Ly’wr(q = —1,v=1) = Agq1,.tor(=1, 1), respectively. We have obtained
inequalities similar to those discussed above in this case also. That is, [Asq.1,.cpc(—1, 1)]"/% and [Asq1,.cor(—1, 1)]/Y increase
monotonically as L, increases, and

}\sq,Ly,cyc(_ls ]) < )qu,Ly,tor(_]» 1) . (4-47)
We find similar results for other lattices. This leads us to infer that [A, 1, or(—1, 1)]"% is a lower bound for B(A) for
A =sq, tri, sqq:

B(A) > [k, or(—1, 1)]Y  for the maximal calculated value of L, . (4.48)

for these lattices. For the honeycomb lattice, we infer that the corresponding lower bound holds with the right-hand side

replaced by its square root, i.e., with the power 1/(2L,) rather than 1/L,. We define the ratio
[Asq.ty.85,(—1, DIV

[ksq,Lyfl.BCy(_lv 1)]1/(Ly_1)

for the adjacent lower bounds, where BC, can be either cyclic or toroidal boundary conditions. For the honeycomb lattice,
Ly can only be an even number for the strips with cylindrical or toroidal boundary conditions, and the ratio analogous to
(4.49) is defined by the results for strips with width L, and L, — 2 rather than L, and L, — 1.

R (-1,1) =

(4.49)

Ly
sq,wj,BCy
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Table 2

Values of «({G}) for the infinite-length limits of strip graphs of the square lattice with
width L, vertices and free (F) or periodic (P) transverse boundary conditions, BC, Here,
as discussed in the text, «(sq, (Ly)gcy X 00) = [)qu,(Ly)ch(fl)]l/Ly, and these values are
inferred to be lower bounds on «(sq), with the values for periodic BC, and the maximal
L, being the most restrictive. Here and in subsequent tables, a blank entry means that
the evaluation is not applicable.

BC, L, a(sq, (Ly)sc, x 00) R nc, s
F 1 2
F 2 V7 = 2.64575131 1.32287566
vas1) "2
F 3 (Z/51) 7 = 2.90304302 109724713
F 4 3.04073149 1.04742901
F 5 3.12642125 1.02818064
F 6 3.18487566 1.01869691
F 7 3.22729404 1.01331934
F 8 3.25947731 1.00997215
P 3 (34)"° = 3.2396118 1.22445817
1/4
P 4 ((12o0gT0009) 7 = 3.39445098 104779560
1/5
P 5 32T 20055 VZZUUF’“) = 3.44812570 1.01581249
P 6 347054571 1.00650209
P 7 3.48113984 1.00305258
P 8 3.48658682 1.00156471
P 9 3.48956089 1.00085301
P 10 3.49125850 1.00048648
P 11 3.49226085 1.00028710
P 12 3.49286857 1.00017402
P 13 3.493244875 1.000107736
Table 3
Upper bounds and their ratios for «(sq) as functions of strip width L,.
Ly+1 hsq,Ly+1.free(—1)
- e R 2 (-1
Ly Asq Ly free(—1) sq.m.fme
2/1 35
3/2 44881 _ 349512230 1.00139557
4/3 3.49423306 1.00025449
5/4 3.49401836 1.00006145
6/5 3.49395589 1.00001788
7/6 3.49393533 1.00000588
8/7 3.493927961 1.000002100

We also find that the ratio

A —1, 1)
R 13 (-1,1) = ! SQJ-y,cyc( )

(4.50)
sq, W}(/Ly-*-l) ,cyc )‘sq,Ly—l,cyc(_ 1 ) l)ksq,Ly+l,cyc( -1 s 1 )

decreases when L, increases and therefore infer that )\Sq‘LyH,q,C(—l, 1)/Asq,Ly,CyC(—1, 1) provides an upper bound on S(sq).
We find similar behavior for other lattices and thus infer the upper bound

)\‘A,Ly+1.fyf(_15 1)
)\A,Ly,cyc(_]v 1)

for A = sq, tri, sqq. For the honeycomb lattice, A = hc, we infer the corresponding inequality with the ratio on the
right-hand side replaced by its square root.

B(A) <

for the maximal calculated value of L, . (4.51)

5. Numerical values of lower and upper bounds for a(A) and ag(A)

In this section we present our results for numerical values of lower and upper bounds for «(A) and «g(A) on various
two-dimensional lattices A. For a given lattice A, we denote our lower (£) and upper (u) bounds with respective subscripts
¢ and u as ap(A), ay(A), g ¢(A), and cp u(A). Since we use the entries with the highest values of strip width L, for our
lower and upper bounds, we quote these to slightly higher precision than the smaller-L, entries. As noted above, we obtain
our best lower and upper bounds from the strips with periodic transverse boundary conditions. To begin, we present these
results for the square lattice in Tables 2-5.
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Table 4
Lower bounds and their ratios for ag(sq) as functions of strip width L,. In this table and
the others, the abbreviation cyl stands for “cylindrical”.

BC Ly [Rsq 1y sreecyi(0)]/1 Reg ey reeson®
free 1 1
free 2 V3 =1.73205081 1.73205081
free 3 (5 + +/14)1/3 = 2.05998754 1.18933436
free 4 2.24131157 1.08802190
free 5 2.35572295 1.05104662
free 6 2.43432494 1.03336640
free 7 2.49159809 1.02352733
free 8 2.53516365 1.01748499
cyl 3 (13)'3 = 2.35133469 1.35754371
cyl 4 (23 4 2+/111)"4 = 2.57655243 1.09578294
cyl 5 (74 + 114/34)V/5 = 2.67956432 1.03998052
cyl 6 2.73462860 1.02054971
cyl 7 2.76735961 1.01196909
cyl 8 2.78834612 1.00758359
cyl 9 2.80258484 1.00510651
cyl 10 2.81267772 1.00360127
cyl 11 2.82008605 1.00263390
cyl 12 2.82568101 1.00198397
cyl 13 2.830007783 1.001531233
Table 5
Upper bounds and their ratios for ag(sq) as functions of strip width L.
Ly+1 /\s_q,Ly+1.ﬁce(U) R 5 0
by Hsaly free(®) sq, ‘(L‘y—iﬁﬁyfl)'free( )
2/1 3
312 34414 _ 391388580 1.02955305
4/3 2.88678970 1.00938624
5/4 2.87482980 1.00416021
6/5 2.86846939 1.00221735
716 2.86467029 1.00132619
8/7 2.862213752 1.000858265
Table 6

Lower bounds on «(tri) and their ratios relative to the exact value (5.2), as functions of strip width L,.
]1/Ly

[Atri Ly free/cyl(—1)

BC L [y — 117 T Rt o)
free 2 3 0.67044390

1/3
free 3 (L 14 ) = 3.429090932116... 0.766337701111... 1.143030310705...
free 4 366535037 0.81913727 1.06889856
free 5  3.81466660 0.85250665 1.04073723
free 6  3.91752078 0.87549264 1.02696282
free 7 3.99266294 0.89228551 1.01918105
free 8 404995674 0.90508960 1.01434977
free 9 409508340 0.91517457 1.01114251
ayl 2 24/3=3.46410162 0.77416193
cyl 3 (71)'/% = 4.14081775 0.92539534 119535112
ayl 4 (25 x11)V/4 = 4.33147354 0.96800334 1.04604303
oyl 5 [3(299 + 113V/5)]'/° = 4.40312504 0.98401611 1.01654206
oyl 6 443528747 0.99120381 1.00730445
ayl 7 445150713 0.99482860 1.00365696
ayl 8 446037926 0.99681136 1.00199306
oyl 9 446552972 0.99796239 1.00115471
oyl 10 446865768 0.99866143 1.00070047
ayl 11 447062537 0.99910117 1.00044033
ayl 12 4471898356 0.999385660 1.0002847452

Next, for the triangular lattice, we can use Eqs. (1.26) and (1.27) together with exact expressions for the W function
on the triangular lattice from [50] to obtain precise values of «(tri) and ag(tri). As discussed below, by duality, one thus
obtains a precise value of B(hc). These results provide a quantitative measure of how close our lower and upper bounds
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Table 7
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Upper bounds on «(tri), their ratios relative to the exact value (5.2), and ratios of adjacent
upper bounds, as functions of strip width L.

Ly+1 hri Ly +1.ree(=1) htri Ly +1,free(—1)/Mri Ly free(—1)
Ly Aty free(=1) o) Rm‘. ‘(Ly—lL)%Lyﬂ)free( R

2/1 45 1.00566585

3/2 % = 4.48017002 1.00123422 1.00442617

4/3 4.47635966 1.00038268 1.00085122

5/4 4.47528766 1.00014311 1.00023954

6/5 4.47491635 1.000060125 1.00008298

7/6 4.47476968 1.00002735 1.00003278

8/7 4.47470626 1.000013175 1.00001417

9/8 4.474676977 1.000006630 1.0000065451
Table 8

Lower bounds on «g(tri) and their ratios relative to the exact value (5.3), and ratios of
adjacent bounds, as functions of strip width L.

[Mtri Ly free/cy1(0)]

1/ly

BC Ly [harityree/cyi(00'/Y e i sreesen®)
free 2 2 0.53037459
\/@ 1/3
free 3 (17+2 7> = 2.49042857 0.66043002 1.24521429
free 4 277154840 073497943 111288010
free 5 295242249 0.78294494 1.06526102
free 6 3.07822224 0.81630543 1.04260899
free 7 3.17066700 0.84082061 1.03003187
free 8 324142502 0.85958474 102231645
free 9 3.29730594 0.87440365 1.01723962
oyl 2 /6 =2.44948974 0.64957356
eyl 3 254 =3.17480210 0.84191719 1.29610753
eyl 4 [6(12+/129)]/4 = 3.440692605  0.91242797 1.08375026
eyl 5 (307 +2985)Y5 =356318084  0.94491029 1.03559988
oyl 6 3628852235 0.96232551 1.01843055
oyl 7 3.667909685 0.97268305 1.01076303
oyl 8 3.69293928 0.97932058 1.00682394
eyl 9 370990510 0.98381970 1.00459412
oyl 10 372191820 0.98700543 1.003238115
oyl 11 373072654 0.98934128 1.00236661
oyl 12 3737371971 0.991103569 1.001781271
Table 9

Upper bounds on «g(tri), their ratios relative to the exact value (5.3), and ratios of adjacent
bounds, as functions of strip width L,.

Ly+1
Ly

R (0)

12
tri, free
-+

2/1
312
43
5/4
6/5
7/6
87
9/8

triLy+1,free(0) tri Ly +1,free(0)/ A Ly free(0)
Ari Ly free(0) ao(tri)

4 1.06074919

174419 _ 386155550 1.02403546

3.82003723 1.01302535

380191720 1.00822014

3.79234033 1.00568048

3.78664508 1.00417017

3.78297452 1.003196785

3.780466270 1.002531630

1.03585200
1.01086855
1.00476603
1.00252532
1.00150404
1.00097028
1.000663476

are to the exact values and show the very high degree of precision that we achieve with these bounds for the square,

triangular, and honeycomb lattices, even with modest values of strip width L,. For the relevant range of real g < 0, with
q=2—£&—£71, an infinite-product expression for W(tri, q), applicable for 0 < £ < 1, was given in [50], from which one

has

oo

(19731 — 9221 —¢57)

|W(tri, q)| = g l_[ (1 — E5-5)(1 — £61-4)(1 — £61)(1 — £6/+1) .

j=1
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Table 10
Lower bounds on a(hc) and their ratios, as functions of strip width L.
—1)1v/Ly) —
BC L Uty geyn =DV Ric, et peejorl ™)
free 2 (31)"/4 = 2.35961106
free 3 2.49321528 1.05662129
free 4 2.56281578 1.02791596
free 5 2.60550411 1.01665681
free 6 2.63435715 1.01107388
cyl 2 V7 = 2.64575131
cyl 4 2.77349764 1.04828357
cyl 6 2.782197008 1.003136606
Table 11
Upper bounds on «(hc) and their ratios, as functions of strip width L,.
(Ly + ])/Ly \/)“hc.Ly-f—Lfree(_1)/)Lhc,Ly.free(_1) R L; (_1)
hc’i(Lyfl)(LyH) JJfree
2/1 1 _ 378388218
32 2.78354659 1.00012056
4/3 2.78349352 1.00001907
5/4 2.78348737 1.00000221
6/5 2.783486470 1.000000323
Table 12
Lower bounds on ag(hc) and their ratios, as functions of strip width L.
2
BC Ly [)‘hfv’-yvf'ee/cyl(o)ll/( W) Rhfv %/%ﬁee/m(o)
free 2 51/4 = 1.49534878
free 3 1.69793365 1.13547667
free 4 1.80571700 1.06347913
free 5 1.87241553 1.03693742
free 6 1.91770572 1.02418811
cyl 2 /3 = 1.73205081
cyl 4 2.04591494 1.18120954
cyl 6 2.106218408 1.029475062
Table 13
Upper bounds on ag(hc) and their ratios, as functions of strip width L,.
(Ly + ])/Ly \/)\hc,Lerl,free(o)/)‘hc.Ly.free(o) R L} (0)
hc, =T F1) Jfree
2/1 /5 = 2.23606798
3/2 2.18915819 1.02142823
4/3 2.17188387 1.00795361
5/4 2.16477332 1.00328466
6/5 2.161128567 1.001686502

We have evaluated this infinite product numerically for g = —1, i.e., £ = (3 — +/5)/2, using Maple and Mathematica. We
obtain

a(tri) = |W(tri, —1)| = 4.47464730907 . (5.2)

The values that we obtain from Maple and Mathematica serve to check each other and agree with each other; their
precision extends well beyond the twelve significant figures listed in Eq. (5.2), but the numerical result in Eq. (5.2) will
be sufficient for our present purposes.

We combine an analytic evaluation of W(tri, q) at ¢ = 0 from [50] with the relation (1.27) to obtain an exact analytic
result for ag(tri), namely

P2 @a)
5

ol =W O = =62y — = 3ircp

= 3.77091969752 , (5.3)

where I'(z) is the Euler gamma function. The equality of the two analytic expressions on the right-hand side of Eq. (5.3)
follows from the reflection formula I"(z)I"(1 — z) = 7 /[sin(;rz)] with z = 1/3.
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Table 14
Lower bounds on «(sqq) and their ratios, as functions of strip width L,.
BC L gty seeon( =D g e =)
free 2 2+/3 = 3.464101615
free 3 [4(9 + V69 )]1/3 = 4.10604888 1.18531421
free 4 446677215 1.08785167
oyl 3 2 x (15)1/3 = 4.93242415
cyl 4 5.354782509 1.085628962
Table 15
Lower bounds on og(sqq) and their ratios, as functions of strip width L,.
BC L Uhsag by feescn(O)] /2 R oy eeron )
free 2 V6 = 2.44948974
free 3 [F/SD]Y — 315058481 1.28622086
free 4 3.55858048 1.12949839
oyl 3 (60)!/3 = 3.91486764
cyl 4 4417285760 1.128335915

We list the ratios of lower and upper bounds to these exact values in Tables 6-9. For the triangular lattice, e(tri) = 8,
so we also obtain the exact results

pe(tri) = 0.55933091363 (5.4)
and
. 2t
Pag (t11) = m = 0.47136496219 (5.5)

We present our results on lower and upper bounds on «(hc) and «g(hc) in Tables 10-13.

Summarizing the lower and upper bounds for the these lattices A, listed in order of increasing (uniform) vertex degree,
A(A), we have, for a(A), the bounds, given to the indicated number of significant figures (and, where available, the exact
results):

2.782197008 < a(hc) < 2.783486470 (5.6)

3.493244874 < a(sq) < 3.493927960 (5.7)
and

4.471898355 < a(tri) < 4.474676977 (5.8)
(with the precise value «(tri) = 4.47464731 in Eq. (5.2) from the exact result). For ao(A) we have

2.106218408 < ap(hc) < 2.161128567 (5.9)

2.830007782 < ap(sq) < 2.862213752 (5.10)
and

3.737371971 < ao(tri) < 3.780466270 (5.11)

(with the precise value ag(tri) = 3.7709196975 from the exact result in Eq. (5.3)). Aside from «(tri) and «q(tri), for which
we have given exact results, these lower and upper bounds are, to our knowledge, the best current bounds on these
exponential growth constants.

The exact values of «(tri) and a(tri), and our upper bounds on these other exponential growth constants, are close to
the conjectured upper bounds in Eq. (4.11)-(4.20), especially for «,(A), as in evident from the following ratios (note that
we use the exact values of «(tri) and wo(tri) in the numerators of Egs. (5.14) and (5.17):

ay(hc)
— 0.999858 (5.12)

au,w(hc)
(S8 _ 5 998265 (5.13)

OCu,w(SQ)
) _ 5 994366 (5.14)

au,w(tn
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Table 16
Lower bounds and their ratios for B(sq) as functions of strip width L,. The abbreviations
cycl and tor stand for “cyclic” and “toroidal”, respectively.

BC Ly [hsq y cveor(— 1, DIVY Ry e oeyorl =1 )

cycl 1 1

cycl 2 2 2

1/3

cyel 3 (@) = 2.43966477 1.21983238

cycl 4 2.68228611 1.09944864

cycl 5 2.83465313 1.05680491

tor 2 V10 = 3.16227766

N

tor 3 ‘“%) = 3.38648385 1.07090022

tor 4 3.449673447 1.018659353
o y(hc)
— 2 —0.966486 (5.15)
ao,u,w(hc)
ao,u(sq)
T —0.954071 (5.16)
aO,u,w(SQ)

and
o(tri)
( _ = 0.942730 . (5.17)

ag y(tri)

A very important property of our lower and upper bounds on these exponential growth constants is that they are quite
close to each other. To show this quantitatively, we first calculate the average of these values for each exponential growth
constant (EGF),

(EGC)e(A) + (EGF)y(A)

EGCaye(A) = 2 > (5.18)

and then calculate the fractional difference between the upper and lower bounds, i.e., the difference divided by the average
of these bounds,

EGCu(A) — EGCo(A)

’ 5.19
EGCqpe(A) o1
where EGC = «, oo (and S, as discussed below).
In order of increasing vertex degree, we obtain, for «(A),
hc) — ae(h
au(he) — a(he) —=0.463 x 103 (5.20)
Qqpe(hc)
ou(sq) — ee(sq) =196 x 10~* (5.21)
Qave(Sq)
) — (i
cultri) = alr) _ o 651 5 1073 (5.22)
Qqye(tri)
and for ag(A),
he) — h
@ou(he) = a0 (hC) _ o 102 (5.23)
0, ave(hC)
%0.u(s9) = %0.(59) _ 1 15 102 (5.24)
ao,ave(5q)
1) — i
@o.u(fri) — co.(tri) o 02 (5.25)

o, que(tT1)

Since our lower and upper bounds are so close to each other, we can use them to obtain an approximate (ap) value of
the given exponential growth constant. One way to get this is simply to use the average of the lower and upper bounds
for each exponential growth constant,

EGCap(A) = EGCave(A) + 5EGC(A) (526)
where the uncertainty dgcc(4) is defined as

Sece(a) = (EGF)u(A) — EGCape(A) = EGCaye(A) — (EGF)(A) (5.27)
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Carrying out this procedure, we obtain the following approximate values, again listed in order of increasing vertex degree:

agp(hc) = 2.78284 + 0.00064 (5.28)
aap(sq) = 3.49359 + 0.00034 (5.29)
agp(tri) = 4.4733 £ 0.0014 (5.30)
@o.gp(hc) = 2.134 £ 0.027 (5.31)
0.0p(5q) = 2.846 £ 0.016 (5.32)
ag.qp(tri) = 3.7589 + 0.0215 . (5.33)

These values are listed in Table 22. As is evident from these results, we achieve high accuracies in the determinations of
these exponential growth constants, with fractional uncertainties ranging from 0(10~) to 0(10~2).

For each exponential growth constant EGC(A) that is not known exactly, we define the estimated ratio from Eq. (1.35)
as

EGCave(A
pEGC,ﬂp(A) = T())

Regarding the EGCs «(tri), ao(tri), and B(hc), for which we have presented exact values, we define pggc(A) as these exact
EGCs divided by €(A) for the given lattice, i.e., p,(tri) = a(tri)/e(tri), etc. We list these in Table 23.

Combining our calculations of lower and upper bounds for the triangular lattice with our exact results for this lattice
yields another demonstration of the very high precision of our bounds. The fractional difference between our upper bounds
and the exact values of «(tri) and ag(tri) are extremely small:

(5.34)

oultri) = otri) _ ) g6s s 1075 (5.35)
o(tri)
and
M =253%x1073 . (5.36)
O{o(trl)

The corresponding fractional differences relative to our lower bounds are
tri) — op(tri
altr) — aetri) _ o 614 % 1073 (5.37)

o(tri)

and
Olo(tri) — Olo’e(frl')

: =0.890 x 1072 . (5.38)
op(tri)

Thus, our upper bounds for «(tri) and «p(tri) are closer to the respective exact results than are the lower bounds.
Consequently, the average quantities oq,.(tri) and quantities o qe(tri) lie slightly below the respective exact values:

a(tri) — ogye(tri)

: =3.04x 1074 (5.39)
a(tri)

and

2 =3.18 x 1073 (5.40)
op(tri)

Provided that this pattern also holds for the square and honeycomb lattices, then the average quantities og.e(A) and
ao,ave(A) and thus the central values of agp(A) and g qp(A) would also lie slightly below the respective exact values
a(A) and op(A) for A = sq, hc.

We have also carried out corresponding calculations of lower and upper bounds for a nonplanar lattice denoted sqg.
We described above how one constructs a strip of this lattice. The construction here is analogous. One starts with the
square lattice and then adds (i) an edge connecting the upper left and lower right vertices of each square to each other,
and (ii) an edge connecting the upper right and lower left vertices of each square to each other. A finite section of this
lattice with doubly periodic boundary conditions is a A-regular lattice graph with Ag, = 8, and this also describes the
infinite planar lattice. We present the resultant lower bounds and their ratios for «(sqq) and for ag(sqq) in Tables 14-
15. For upper bounds on this lattice, our relevant results are, first, that the ratio A d,LyH‘free(—l)/Asq d,Ly,f,ee(—l) takes
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the respective values 6, 3 4 (1/3)+/69 = 5.76887462, and 5.75046353 for L, = 1, 2, 3, respectively. For the quantity
R 2 (—1), the indicated pairs yield the respective values 1.04006421 and 1.00320167. Second, we find that
sqd,m,ﬁee
the ratio Asgy.1,+1.free(0)/Asqq.1, free(0) has the values 6, (11 + +/97)/4 = 5.21221445, and 5.12783026 for L, = 1, 2, 3. For
the quantity R 2 (0), the indicated pairs yield the respective values 1.15114220 and 1.01645612. Our results
sqd,m,ﬁee
for the sqq lattice 5re !

5.354782509 < «(sqq) < 5.750463529 (5.41)
and
4.417285760 < ap(sqq) < 5.127830256 . (5.42)

These bounds for the sqqy lattice (with A(sqq) = 8) are included mainly for the general insight that they yield concerning
the dependence of the exponential growth constants on vertex degree. This goal is already achieved with the widths that
we have included, showing that for the set of honeycomb, square, triangular, and sqq lattices A, the quantities a(A) and
oo(A) are monotonically increasing functions of the vertex degree, A(A). Accordingly, we have not attempted to carry
out calculations on wider strips of the sg4 lattice to obtain the same precision in the lower and upper bounds that we
did for the planar lattices considered here, and the bounds (5.41) and (5.42) are not as restrictive as the corresponding
bounds for the other lattices considered here.

Given the rapid convergence of our results for these exponential growth constants on these lattice strips, even for
modest strip widths, one could use extrapolation techniques to infer the actual respective values for L, — oo in the cases
where exact results are not known. However, this extrapolation analysis is beyond the scope of our present paper, since
the estimation of the uncertainty in the inferred value of «(A) and «(A) would depend on the extrapolation method used.
These comments also apply to our bounds on B(A) to be presented below. It is straightforward to calculate corresponding
lower and upper bounds for the quantities p,(A) and p,(A) for these lattices; we do not list these explicitly.

6. Lower and upper bounds for §(A)

Using results on calculations of Potts/Tutte polynomials for a variety of families of lattice strip graphs, we have also
obtained lower and upper bounds on the exponential growth constant g for totally cyclic orientations on these lattices.
As discussed above, these involve dominant A functions evaluated at (g, v) = (—1, 1) or equivalently, (x,y) = (0, 2). We
recall the lower and upper bounds that we have inferred in Egs. (4.48) and (4.51).

We list our numerical values of lower and upper bounds for 8(A) on various two-dimensional lattices in Tables 16-21.
The format of these tables is analogous to the format in the corresponding tables presented above for « and «y.

The relation (1.25) enables us to obtain a precise value of B(hc) from our evaluation of the exact expression for «(tri)
in [50]. We find

B(hc) = /a(tri) = 2.11533621655 . (6.1)
Since e(hc) = 23/2, it follows that
pp(hc) = 0.7478842916 . (6.2)

Summarizing the lower and upper bounds for the these lattices A from the above calculations, listed in order of
increasing (uniform) vertex degree, A(A), we have

(%) 2.09444676 < B(hc) < 2.12591038 (6.3)

(%) 3.449673447 < B(sq) < 3.535730951 (6.4)
and

(x) 7.696127303 < B(tri) < 7.832553170 . (6.5)

where (%) means that by using duality and our previous calculations of lower and upper bounds on a(A) for A =
sq, tri, hc, we can improve upon these bounds. Thus, first, using Eq. (1.25), we improve upon the bounds (6.3):

2.114686349 < B(hc) < 2.115343229 . (6.6)

Evidently, these lower and upper bounds on B(hc) are very close to the precise value, B(hc) = 2.11533621655 in (6.1).
Second, using Eq. (1.23) in conjunction with our bounds (5.7), we improve upon the bounds (6.4):

3.493244874 < B(sq) < 3.493927960 . (6.7)
Third, using Eq. (1.24), we improve upon the bounds (6.5):
7.740620193 < B(tri) < 7.747796928 . (6.8)
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Aside from S(hc), for which we have given an exact value, these lower and upper bounds on 3(A), (6.7) and (6.8) are, to
our knowledge, the best current bounds on these quantities.

As was the case with our lower and upper bounds on «(A) and «g(A), our lower and upper bounds on B(A) are very
close to each other. To show this, we exhibit the fractional differences of the upper and lower bounds on these lattices,
in order of increasing vertex degree:

Bu(hc) — By(hc)

. 4
e = 11x10 (6.9)
W — 1.96 x 107 (6.10)

(which is the same as Eq. (5.21) by duality) and
Bultri) — Be(tri)
Bave(tri)

Hence, as before, since our lower and upper bounds are quite close to each other, we can use them to obtain the
approximate value of 8(A) on the various lattices A. Using the same procedure as discussed above in Eqs. (5.18), (5.26),
and (5.27), we calculate the approximate values

Bap(hc) = 2.11501 4 0.00033 (6.12)

=0.927 x 1073 . (6.11)

Bap(sq) = 3.49359 + 0.00034 (6.13)
(which is the same as Eq. (5.29) by duality) and
Bap(tri) = 7.7442 £ 0.0036 . (6.14)

These values of Bq,(sq) and Bgp(tri) are listed in Table 22, which also includes our exact value for B(hc). As is evident, we
achieve very high accuracy with our determination of these approximate values, with a fractional uncertainty of less than
10~ for B(sq) and 5 x 10~* for B(tri).

In Table 23 we list the values of the ratios pu(A), pe(A), and pg(A) obtained from our calculations. For p,(tri),
Pap(tri), and pg(hc), we list the exact values, and for the others we list the ratios calculated using EGCyue(A), where
EGC = o, «p, B.

We can use our exact value of S(hc) to obtain a further measure of the accuracy of our bounds. The fractional differences
between our upper and lower bounds on B(hc) and this exact value are

hc) — B(hc
Pulhe) = plhe) _ 3.31x 1078 (6.15)
B(hc)
and
B(hc) — Be(hc)
B(hc)

Thus, as was true of our lower and upper bounds on «(tri) and ag(tri), here we observe that the upper bound in (6.6) is
closer to the exact value, S(hc) than is the lower bound in (6.6). Hence, the average, Bq.(hc) is slightly below the exact
value:

B(hc) — Bave(hc)
B(hc)

As before, if this pattern also holds for the square and triangular lattices, then the average quantities Bg.e(A) and thus
the central values of B4,(A) would also be slightly smaller than the exact values B(A) for A = sq, tri.

As discussed above, we have included results for the sq; lattice here for the information that they give on the
dependence of the exponential growth constants on vertex degree. For the sqq lattice strip with cyclic BCs and L, = 2, we
calculate

=3.07 x 107*. (6.16)

=152 x 1074, (6.17)

[Asqaty.cve(—1, DIV? = /13 + V181 = 5.14330867 (6.18)
and for toroidal BCs and L, = 3, we obtain the numerical value
[hsqauty.cor(—1, 1]V = 15.85636130 . (6.19)

These yield lower bounds on B(sqq). In addition, we calculate the ratio

)\sqd,2,cyc(_]v 1)

=13 4+ v/ 181 = 26.45362405 , (6.20)
)\sqd,lcyc(_ls ])
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which yields an upper bound on S(sqq). Thus, we have the loose bounds
15.8563613 < B(sqq) < 26.4536240 . (6.21)

These bounds are much less stringent than our bounds on B(A) for the other lattices, but they are sufficient to show the
monotonic increase of 8(A) with vertex degree A(A) among these lattices. For this reason, we have not tried to include
results from larger-width strips for this sq, lattice.

7. Comparative analysis
7.1. General

From our calculations, we observe that for these lattices A, the values of a(A), ap(A), and B(A) that are consistent
with our lower and upper bounds (and the exact values where we have calculated them) are monotonically increasing
functions of A(A). In particular, this is true of the quantities agye(A), @0 ave(A), and Baye(A). This is the opposite of the
behavior of the ground-state degeneracy of the g-state Potts antiferromagnet, W(A, q), which, for values of g used in
proper g-colorings of A, is a monotonically decreasing function of A(A). This dependence of W(A, q) on A(A) was also
shown in lower and upper bounds on W(A, q) [27,28,28-46,48]. The fact that, for a given value of q used for a proper
g-coloring of the lattice A, W(A, q) is a monotonically decreasing function of A(A), was shown to be a consequence of
the fact that increasing A(A) places more constraints on this proper g-coloring [27,28,35]. The reversal in the dependence
of W(A, q) on A(A) going from (positive) values of q used in proper g-colorings of A to ¢ < 0 was evident in (Fig. 5 of)
Ref. [28]. Our present results extend these earlier ones with quite restrictive upper and lower bounds and high-accuracy
approximate values for a(A) = [W(A, —1)| and ao(A) = |[W(A, 0)|. A property that is pertinent here is the fact that the
signs of successive terms in the chromatic polynomial alternate, starting with a positive sign (and, indeed, a coefficient
of unity) for the highest-degree term, ¢"), then a negative sign for the ¢"“~1 term, and so forth for lower-power terms.
Hence, if q is positive, as in the evaluation of W(G, q) for the ground state degeneracy of the g-state Potts antiferromagnet,
then alternate terms contribute with opposite sign, whereas if q is negative, as in the evaluations at ¢ = —1 for a(G) and
ao(G), then all of the terms in P(G, q) and P,(G, q) = q_'P(G, q) contribute with the same sign.

As regards the relative sizes of a(A) and «g(A), on the one hand, and 8(A) on the other, we find that o(A) and «g(A)
may be larger or smaller than B(A), while the duality of the square lattice implies the equality of «(sq) and B(sq). We also
observe that the property that two families of recursive lattice graphs have the same value of A (or A.y) does not imply
that they have the same values of «({G}), ag({G}), or B({G}). For example, the cyclic square-lattice strip graph L;, has the
same value of (uniform) vertex degree A = 3 as the honeycomb lattice, but the values of «({L}), ao({L}), and B({L}) are
different from the respective values of «(hc), ag(hc), and B(hc).

We recall the inequality (1.13). From our bounds and exact results, we compute the ratios ao(A)/a(A) for various
lattices A, using ogye(A) and og gre(A) for A = he, sq and our exact values «(tri) and o(tri). In order of increasing vertex
degree, we have

o, qve(hC)

—0.767 (7.1)
Aave(hc)
aO,ave(SQ) — 0815 (7.2)
O5ave(5q)
and
i
() _ 8427300 (7.3)
o(tri)

We note that for these lattices, this ratio is a monotonically increasing function of A(A). This is the same dependence
that we showed for the infinite-length, finite-width strips discussed in Section 2. We have also obtained results on these
exponential growth constants for a number of heteropolygonal Archimedean lattices (i.e., Archimedean lattices comprised
of more than one type of regular polygon) [51].

Concerning the ratios pggc(A), we find that p,(A) and pq,(A) are monotonically decreasing functions, while pg(A)
is @ monotonically increasing function of A(A). Again, this is the same dependence that we found for infinite-length,
finite-width strips as a function of A({G}) (or, where appropriate, Ags({G})).

Using similar methods, we have also obtained results on exponential growth constants for spanning forests and
connected spanning subgraphs on a variety of lattices. A spanning forest in a graph G is a spanning subgraph of
G that does not contain any circuits. Denote Nsg(G) as the number of spanning forests of a graph G and ¢({G}) =
limn(c)ﬁm[ng(G)]”“(G). For example, for the square lattice, we have found 3.675183 < ¢(sq) < 3.699659, improving
on the bounds 3.32 < ¢(sq) < 3.8416195 in [19], the bounds 3.64497 < ¢(sq) < 3.74101 in [20], the bounds
3.65166 < ¢(sq) < 3.73635 in [24], and the upper bound ¢(sq) < 3.705603 in [23]. For the triangular and honeycomb
lattices we obtain 5.393333 < ¢(tri) < 5.494840 and 2.803787 < ¢(hc) < 2.804781.
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7.2. Comparison with spanning trees

The quantities a(G), ap(G), and b(G) enumerate classes of orientations of arrows defined on the edges of the directed
graph D(G), but depend only on G itself, and similarly with the resultant exponential growth constants in the n(G) — oo
limit. Because of this, it is appropriate to compare them with the number of spanning trees on G and the associated
exponential growth constant. We do this in the present section. Recall that a tree graph is defined as a connected graph
that does not contain any circuits, and a spanning tree of a graph G is a subgraph of G that is a tree and that contains all
of the vertices of G (and a subset of the edges of G).

From the definition (A.12), it is evident that the number of spanning trees in a graph G is

Ngr(G)=T(G, 1, 1). (7.4)

Since the nonzero coefficients of each term in Eq. (A.13) are positive, and since ag(G) = T(G, 1, 0) (recall Eq. (1.5)), a basic
inequality is [19]

ap(G) < Nsr(G), ie., T(G 1,0)<T(G1,1). (7.5)

The necessary and sufficient condition for this to be an equality is clear from Egs. (1.5), (7.4), and (A.13); thus, T(G, 1,0) =
T(G, 1, 1) if and only if T(G, x, y) does not contain any nonzero terms of the form tijxi)fi with j > 1. From the definition
(A.12), this condition is equivalent to the condition that G does not contain any cycles.

For the families of graphs under consideration here, Nsr(G) grows exponentially rapidly with the number of vertices,
n(G). This motivates one to analyze the associated exponential growth constant,

t({G) = n(égrgm[Nsr(G)]l/ e (7.6)

An equivalent quantity is z({G}), defined as
z({G}) = In[t({G})] . (7.7)

The exponential growth constants 7(A) have been calculated exactly for the square, triangular, and honeycomb lattices
under consideration here [52], and, indeed, for all Archimedean lattices [53-55] (as well as some higher-dimensional
lattices). The relevant exponential growth constants for the planar lattices studied here are, in order of increasing vertex
degree, [52]

n3) 3. /1
t(he) = exp[— +2 le(—)] — 224266494889 (7.8)
4 7 V3
4C
t(sq) = exp(—) — 3.20991230073 (7.9)
T
and
(tri) = exp| ) 4 S ( ! ) 5.02954607297 (7.10)
T = s — —_— = J. . .
p ) 72 73

(to the indicated precision). In Egs. (7.8) and (7.10), Tiy(x) is the tangent inverse integral,

¥ arctan(y) 2 (—1) k2t
Tiy(x) = ——dy = , 7.11
0= [ FE gy > iy (.1)
and in Eq. (7.9), C is the Catalan constant,
o (=1
C= ———— =Tiy(1) = 0.915965594177 7.12
; Grg 1y = () (7.12)

Owing to the fact that the triangular lattice is the (planar) dual of the honeycomb lattice and using Eq. (1.21), we have
t(he) = [z(eri)]'/? (7.13)
which is evident in Egs. (7.8) and (7.10). For the sqq lattice, we have [55]
1
V3

For the strip graphs of the honeycomb, square, and triangular lattices discussed in Section 2, the exponential growth
constants t are, again in order of increasing A or Agy [39,40,42,43,46],

t({HL}) = t(hc, 2F x 00) = (3 +2+/2)4 = /1 + +/2 = 155377397 (7.15)

ac 4 4
7(sqq) = exp|: +1In(2 —v/3)— 5arctanh( ) + —Tir(2 + ﬁ)} = 6.984820959 . (7.14)
T T
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t({L}) = t(sq, 2r x 00) =+/2 + V3 = 1.93185165 (7.16)

t({Wh}) = 3 +2\f5 = 2.61803399 (7.17)

t({TL}) = t(tri, 2 x 00) = ‘/ ’/ +23ﬁ = 3 +2\/§ = 2.61803399 (7.18)
and

7({sqq}) = ((5qq)2.F X 00) = 2+/3 = 3.4641016 . (7.19)

(Note that a({sqq}) = t({sqq}) in the case of the sqq strip.) For both the infinite planar lattices and for these infinite-length,
finite-width lattice strip graphs, the exponential growth constant t({G}) is a monotonically increasing function of A(A)
(and, where appropriate, Aq5({G})).

We discuss some inequalities. A theorem of Thomassen [56] states that if G is a A-regular graph of degree A(G) < 3
which has no loops (which may have bridges and multiple edges), then Nsr(G) < a(G). Considering a family of graphs
of this type and taking the limit n(G) — oo, this implies that in this limit, 7({G}) < «({G}). It is readily checked
that our results for A-regular families of graphs of degree A(G) < 3 satisfy this theorem. For example, for the cyclic
square-ladder strip L,,, which has A(L;;) = 3, the value of 7({L}) given in Eq. (7.16), namely 7({L}) = 1.932, is less than
a({L}) = ~/7 = 2.646 given in Eq. (2.3), and for the infinite honeycomb lattice, with A(hc) = 3, the exactly known value of
7(hc) given in Eq. (7.8) from [52], is less than our value for «(hc) given in Eq. (5.28), namely oqpy(hc) = 2.78284+0.00064.
We calculate the ratio

t(he)
argp(h)

= 0.80589 +0.00019 . (7.20)

Another theorem of Thomassen [56] states that if G is a graph with no loops or bridges (but which may have multiple
edges) with e(G) > 4[n(G)— 1], then Nsr(G) < b(G). For a family of graphs satisfying this condition, in the limit n(G) — oo,
this theorem implies that 7({G}) < B({G}). Among the graphs that we consider, sections of the sqy lattice with doubly
periodic boundary conditions, and also the infinite sqy lattice have A(sqq) = 8 and hence e(G) = 4n(G). Again, it is readily
checked that, with the value of 7(sqq) = 6.985 in Eq. (7.14), it follows that any value of B(sqq) in the range allowed by
our inferred lower and upper bounds in (6.21) satisfies this theorem.

For all of the lattice graphs that we consider,

ao({G}) < T({G}) . (7.21)

Note that this inequality is not implied by the inequality (7.5), since, a priori, the difference, limn(G)_,oo[NST]l/”(G) —
limy(6) 00[a0(G)]™C) might vanish as n(G) — oo.
Furthermore, given the lower and upper bounds (5.7) and the duality relation that «(sq) = B(sq), it is evident that

a(sq) > t(sq) . (7.22)
Numerically, using our determination of the approximate value ogy(sq) in Eq. (5.29), we have

t(sq) _ z(sq)

aap(sq)  Pap(sq)

From the exact value of «(tri) in Eq. (5.2), we have

a(tri) < T(tri) . (7.24)

= 0.9188005 £ 0.0000894 . (7.23)

Numerically,
‘:gﬁ; — 0.8896722 . (7.25)
Given our bounds on S(tri), (6.8), we have
B(tri) > t(tri) . (7.26)
Using our determination of Bqy(tri) in Eq. (6.14), we compute
T(tri)
Bap(tri)

Finally, from the exact value (6.1), we have the inequality

B(hc) < z(hc) (7.28)

= 0.64946 + 0.00030 . (7.27)
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Table 17
Upper bounds and their ratios for g(sq) as functions of strip width L.
(Ly + 1)/Ly )»sq,Lerl,cyc(*L ])/}vsq,Ly,cyc(*ly ]) R L; (*L ])
sq,m.cyc
2/1 4
3/2 744185 _ 363019932 1.10186787
4/3 3.56475709 1.01835812
5/4 3.535730951 1.0082093749
Table 18
Lower bounds and their ratios for B(tri) as functions of strip width L,.
BC Ly (v, cveftor (=1 v Rtri-%.cyc/ror(71’ 1
cycl. 2 348 _ 3.302775637731...
cycl. 3 4.48070229 1.35664749
cycl. 4 5.16971535 1.15377345
cycl. 5 5.61764092 1.08664414
tor. 2 2(14 + +/202) = 7.51168029
tor. 3 7.696127303 1.024554694
Table 19
Upper bounds and their ratios for g(tri) as functions of strip width L,.
(Ly + 1)/Ly )Ltri,Lerl.cyc(_]a 1)/)‘mlLy.cyr(_1s 1) R X L;% (_L 1)
tr"iuy—nuym cyc
2/1 143V _ 10,90832691
3/2 8.24669860 1.32275077
4/3 7.94014180 1.03860848
5/4 7.832553170 1.013736086
Table 20

Lower bounds, their ratios with respect to the exact value of B(hc), and ratios of adjacent bounds,
as functions of strip width L.

[he Ly eyetor(—1, D]/
BC Ly Dretyoepor (=1, DIVEY) s hC-LyL%l/LyL%vayc/ror(_l’ R
cycl. 2 V2 = 1.41421356 0.66855262
cycl. 3 1.62353902 0.76750873 1.14801545
cyc. 4 1.73776398 0.82150722 1.07035554
cycl. 5 1.80926267 0.85530738 1.04114408
tor. 2 2 0.94547618
tor. 4 2.094446760 0.990124758 1.047223380
and numerically,
(he)
p = 0.943224 . (7.29)
t(hc)

It is of interest to discuss how our results relate to the Merino-Welsh conjecture (MWC) [19] and a later conjecture
by Conde and Merino (CMC) [57]. The Merino-Welsh conjecture is as follows: Let G be a connected graph without loops
or bridges (which may have multiple edges). Then the Merino-Welsh conjecture is the inequality [19]

Nst(G) < max[a(G), b(G)], T(G, 1, 1) < max[T(G, 2, 0), T(G,0,2)] (MWC).

Subsequently, in [57], Conde and Merino conjectured the stronger inequality that if G is a connected graph without loops
or bridges (which may have multiple edges), then

[Nst(G)]? < a(G)b(G), i.e., [T(G, 1,1)]* <T(G,2, 0T(G, 0,2) (CMC).

As observed in [57], the inequality (7.31) implies the inequality (7.30). Some works related to these conjectures include
[56,58-61]. In particular, the Merino-Welsh conjecture has been proved for wheel graphs Wh,,, complete graphs K,,, and
complete bipartite graphs K, ¢ with r > s > 2 in [58], and for series—parallel graphs in [60].

We first note that the Merino-Welsh and Conde-Merino conjectures imply the following inequalities on exponential
growth constants:

t({G}) = max[a({G}), B{G})]

ie., (7.30)

(7.31)

from MWC . (7.32)
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Table 21
Upper bounds, their ratios relative to the exact S(hc), and ratios of adjacent bounds, as
functions of strip width L.

ety +1,00e (1D Rne 1y cye(—1.1)

MLy +1.pe(=1,1)
(Ly + 1)/Ly Fhey e~ 1) BUhe) Rnc, <Ly—1l>%Ly+n<0’f( 11
3/2 2.13972616 1.01153005
4/3 2.13095839 1.0073820 1.00411447
5/4 2.125910381 1.004998810 1.002374517

Table 22

Values of EGCyp(A) defined in Eq. (5.26) with Egs. (5.18) and (5.27) for honeycomb, square,
and triangular lattices, where EGC denotes exponential growth constant. In the cases
where we have obtained exact values, namely «(tri), ao(tri), and B(hc), these are listed
instead of the EGC,p(A) quantity. For reference, we also list the (exactly known) values
of 7(A) for these lattices. See text for further discussion.

A AA) a(A) ao(A4) B(A) t(4)
hc 3 278284 +0.00064 2.134+0.027 2.11533621655 2.24266494889

sq 4 3.49359 +0.00034 2.8464+0.016  3.49359 4 0.00034 3.20991230073
tri 6 4.47464730907 3.77091969752 7.7442 £ 0.0036 5.02954607297

and
[r({G))]* < «({GHB({G}) from CMC . (7.33)

We discuss these in turn. As is evident in Table 22, our results are in agreement with the inequality (7.32). This is also
true for all of the infinite-length, finite-width strip graphs discussed in Section 2, for which the 7({G}) values were given
in Eqs. (7.15)-(7.19). Recall that the values of t(A) are exactly known for all of the (infinite limits of) lattice graphs that
we consider here. For the honeycomb lattice and the cyclic square-lattice strip graph, the validity of the inequality (7.32)
is guaranteed by the first theorem from Thomassen [56] mentioned above, namely that because A(hc) = A(Ly) = 3, it
follows that t(hc) < a(hc) and 7({L}) < «({L}). In either of the hypothetical cases in which «(hc) > B(hc) or a(hc) < B(hc),
this implies that t(hc) < max[«(hc), B(hc)] and similarly with {L}. In fact, we find that «(hc) > B(hc) and «({L}) > B({L}).
For the square lattice, we find

7(sq) < max[«(sq), B(sq)] where «(sq) = B(sq), (7.34)
with the approximate value of t(sq)/a(sq) = t(sq)/B(sq) given by Eq. (7.23). For the triangular lattice, we have
t(tri) < max[a(tri), B(tri)] = B(tri), (7.35)

with the approximate value of t(tri)/B(tri) given by Eq. (7.27).

Our results are also in agreement with the inequality on exponential growth constants implied by the Conde-Merino
conjecture (7.33). This is clear for our results on the infinite-length finite-width strip graphs discussed in Section 2 in
conjunction with Egs. (7.15)-(7.19), all of which are exact. Further, for the infinite planar lattices we have

[(hc)]* = 5.029546 < agy(hc)B(hc) = 5.8866 (7.36)

[t(sq)]* = 10.30354 < agp(5q)Bap(sq) = [ap(sq)]* = 12.205 (7.37)
and

[z(tri)]? = 25.29633 < a(tri)Byy(tri) = 34.653 , (7.38)

where we have used the approximate (ap) values that we have determined for agp(hc), aap(sq) = Bap(sq), and Bgp(tri) in
Eqs. (5.28), (5.29), and (6.14), respectively, together with our exact values for «(tri) and B(hc) in Egs. (5.2) and (6.1),
in computing the right-hand sides of (7.36)-(7.38). As is clear from these results, the accuracy with which we have
determined the approximate values ogp(hc), aap(sq) = Bap(sq), and Bgp(tri) is more than adequate to establish the validity
of the inequalities (7.36)-(7.38) (see Table 24).

8. Conclusions

In this paper we have calculated the exponential growth constants «, «, and § describing the asymptotic behavior of,
respectively, acyclic orientations, acyclic orientations with a single source vertex, and totally cyclic orientations of directed
lattice strip graphs. We have considered several different types of lattices, including square, triangular, and honeycomb.
From our calculations, we have inferred new lower and upper bounds on these exponential growth constants for the
respective infinite lattices. Our bounds from calculations on infinite-length, finite-width lattice strips converge rapidly
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Table 23

Values of €(A) and pgec(A), defined in (1.31) and (1.36)-(1.38), for honeycomb, square, and
triangular lattices A, with the exponential growth constants (EGCs) a(A), ao(A), B(A), and 7(A).
For the EGCs, we use the exact values of p,(tri), pa,(tri), and pg(hc) that we have presented
here; for the other EGCs, we use EGCye(A) from Eq. (5.18) as in Eq. (5.34). See text for further

discussion.
A A(A) €(A) pa(A) Pag(A) pp(A)
hc 3 2\/5 0.984 0.7545 0.7478842912
sq 4 4 0.873 0.7115 0.873
tri 6 8 0.5593309136 0.4713649622 0.968
Table 24

Graph-theoretic numbers a(G), ap(G), and b(G) and their expressions as valuations of the
chromatic polynomial P(G, q), the reduced chromatic polynomial P,(G, q) = q~! P(G, q),
the Tutte polynomial T(G, x, y), and/or the Potts polynomial Z(G, g, v).

Quantity X y q v Expression

a(G) 2 0 -1 -1 a(G) =T(G, 2,0)=(—1)"P(G, —1)
ao(G) 1 0 0 -1 ao(G) = T(G, 1,0) = (—1)"" 1 P,(G, 0)
b(G) 0 2 -1 1 b(G) =T(G,0,2)=-Z(G, —1,1)

even for modest values of strip widths. Using exact results for a(tri), ao(tri), and S(hc), we have shown that our lower and
upper bounds are very close to the exact values of these quantities. In addition to the above-mentioned exact results, our
bounds are, to our knowledge, the best current bounds on these exponential growth constants. Since our lower and upper
bounds are quite close to each other, we infer quite accurate approximate values for the exponential growth constants
that are not exactly known. These values have fractional uncertainties ranging from 0(10~%) to 0(102). Comparisons
of these values with the growth constants for spanning trees on these lattices are given. Our results are in agreement
with the Merino-Welsh and Conde-Merino conjectures. We have also presented corresponding bounds for a nonplanar
lattice denoted sqq with a higher vertex degree, A = 8. Our results show that «(A), ag(A), and B(A) are monotonically
increasing functions of vertex degree A(A) for these lattices. We have conjectured that the analytic expression that was
proved to be a lower bound on W(A, q) for values of q used in proper g-colorings of A is an upper bound on «(A) and
ao(A) when evaluated at ¢ = —1 and q = 0, respectively.
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Appendix. Some graph theory background

In this appendix we include some graph theory background relevant for our analysis in the paper (for further details,
see, e.g., [1]). As in the text, let G = (V, E) be a graph defined by its vertex and edge sets V and E. Let n = n(G) = |V/|,
e(G) = |E|, and k(G) denote the number of vertices, edges, and connected components of G, respectively. Denote A(v;)
as the degree of the vertex v; € V. A loop is defined as an edge that connects a vertex to itself, and a bridge (co-loop)
is defined as an edge that has the property that if it is deleted, then this increases the number of components in the
resultant graph, relative to the number of components in the initial graph that contained the bridge. If a graph has no
bridges, then it is said to be 2-connected. Two adjacent vertices may have more than one edge joining them,; if so, one
says that the graph has multiple edges (and sometimes calls it a multigraph). However, as explained in the text, in order
to have minimal measures of acyclic orientations, acyclic orientations with a unique source, and totally cyclic orientations,
we exclude graphs with loops or multiple edges from our analysis. A cycle on G is defined as a set of edges that form a
closed circuit (cycle). Let c¢(G) denote the number of linearly independent cycles in G. This satisfies c(G) = e(G)+k(G)—n(G).
The “join” of two graphs G and H is denoted G + H and is defined as the graph constructed by adding edges to each of
the vertices of G connecting to each of the vertices of H.

The chromatic polynomial of G, denoted P(G, q), counts the number of ways of assigning q colors to the vertices of
G subject to the condition that no two adjacent vertices have the same color [1-6]. Such a color assignment is called a
proper g-coloring of (the vertices of) G. The chromatic number x(G) is defined as the minimum value of q required for a
proper g-coloring of G. A spanning subgraph of G, denoted G/, is a graph with the same vertex set V and a subset of the
edge set E, i.e, G = G'(V,E’) with E' C E. P(G, q) is given by

PG, q) =) (—1)Dg"). (A1)

G'cG
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As is clear from Eq. (A.1), P(G, q) is a polynomial of degree n = n(G) in g. Since one obviously cannot perform a proper
g-coloring of a graph G if the number of colors is zero, i.e., ¢ = 0, it follows that P(G, q) always contains a factor q. This
property is also clear from Eq. (A.1). Consequently, one may define a reduced polynomial

P(G,
P(G,q) = % . (A2)

One can write the chromatic polynomial as
n(G)
P(G.q) =) k(G (A.3)
j=1

with «,(G) = 1, etc. A general property is that the signs of the «;(G) alternate as j decreases from n to 1. From Eq. (1.4)
and (A.3), it follows that

ao(G) = (=117 k1(G) . (A4)
The chromatic polynomial is a special case of the partition function of the g-state Potts model, Z(G, g, v). A convenient
expression for this partition function is as a sum of contributions from spanning subgraphs [62],
2(G.q.v) = Y _v@ge), (A5)
G'cG

where, in the physics context, v is a temperature-dependent variable given by Eq. (A.9) below. As is obvious from Eq. (A.5),
Z(G, q, v) is a polynomial in q and v with the property that the nonzero coefficients are positive integers. The expression
for Z(G, q, v) allows one to define the Potts partition function for values of g that are more general than just the positive
integers. From (A.1) and (A.5), it is evident that

P(G,q) =Z2(G,q, -1). (A6)
We recall the definition of Z(G, g, v) in terms of a spin-type Hamiltonian [8]. Consider a graph G with a set of classical
spins o; taking values in the set of positive integers {1, ..., q} at each site (vertex) v; of G, whose interactions with spins
on adjacent sites are described by the Hamiltonian
H=—] Zaa,‘,aj > (A7)
&jj

where ] is the spin-spin interaction constant. Let us define 8 = 1/(kgT) (not to be confused with B(G)), where kg is the
Boltzmann constant, and denote K = gJ. Then the partition function of this model on a graph G is given by

7(G, q,v) = Ze—ﬁﬂ - ZD—[ ema,-.aj} = Z [(1 + vaai,a}_)} , (A.8)
{o} {oi} L ej {o} e
where here {0} denotes the set of all values of the o variables on the vertices of G and

v=ek—-1. (A.9)

The intervals v > 0 and —1 < v < 0 correspond, respectively to the ferromagnetic and antiferromagnetic Potts
models. The value v = —1, i.e., K = —o0, corresponds to the zero-temperature Potts antiferromagnet. This provides
an understanding of the relation (A.6); in the limit K — —oo, the only spin configurations that contribute to the Potts
model partition function are those for which o; # o; on adjacent vertices v; and v; of G, and, with the isomorphism
between the values of these o; and o; variables and assignments of colors to the vertices of G, these spin configurations
are precisely isomorphic to a proper g-coloring of the vertices of G.

The dimensionless free energy, per vertex, of the Potts model on a graph G (usually a regular lattice graph) in the limit
n(G) — oo, is

i 1
f({G}, q,v) = né')foo ) In[Z(G, q, v)] . (A.10)

The ground-state degeneracy, per vertex, of the g-state Potts antiferromagnet on a graph G in the limit n(G) — oo is

W((G). )= lim [P(G. )] (A.11)

As noted above, in statistical physics, one is commonly interested in integral values of ¢ > x(G), is usually a positive
integer, but Eq. (A.5) enables one to generalize q to other values. Since P(G, q) and/or Z(G, g, v) may be negative for (real)
values of q away from the positive integers, the evaluation of the relations (A.10) and (A.11) requires specification of
which of the n roots of (—1) one uses [28,39]. However, the magnitudes |f({G}, g, v)| and |W({G}, q)| are unambiguously
defined by Eqgs. (A.10) and (A.11). The values ¢ = —1 and q = 0 are relevant for the evaluation of the exponential growth
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constants of acyclic orientations of directed edges of G and acyclic orientations of directed edges of G that have a unique
source vertex, as specified in Eqs. (1.26) and (1.27).
The Tutte polynomial of a graph G is defined as

TG, xy) = Y (x— MO (y — 1)1, (A12)
G'cG

Two basic properties that are relevant here are that (i) if G contains a loop, then it has no acyclic orientations, so
a(G) =T(G, 2,0) = 0 and ao(G) = T(G, 1, 0) = 0; and (ii) if G contains a bridge, then it has no totally cyclic orientations,
so b(G) = T(G, 0, 2) = 0. One can write the Tutte polynomial of a graph G as

TG xy) =) XY, (A.13)
ij

where the t;; can be determined from the definition (A.12). A basic property of T(G, x, y) is that the nonzero t; are positive
(integers) [1,10].
The Tutte polynomial and Potts model partition functions are equivalent, and are related according to

Z(G, q,v) = (x — 1Oy — 1)"OT(G, x, ), (A.14)
with the definitions

Xx=1+ % , (A.15)
and

y=v+1 (A.16)
so that

g=x—-1)y—-1). (A17)
Hence,

P(G, q) = ¢"(—1)"OHIT(G, 1~ q,0). (A.18)
Without loss of generality, we restrict ourselves to connected graphs here, i.e., k(G) = 1, so Eq. (A.18) reduces to

P(G,q) = q(—1)"“"'T(G,1—-q,0). (A.19)

From the representation of the Potts model partition function Z(G, q, v) as a sum of contributions from spanning
subgraphs, Eq. (A.5), it follows that Z(G, g, v) also has an overall factor of g, so that it one can define a reduced Potts
model partition function that is a polynomial in g and v,

Z(G
Z(G. q,v) = % (A20)
Thus,
ao(G) = (—1)"“71P(G, 0) = (—1)"9"'Z,(G, 0, —1) = T(G, 1, 0) (A21)
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