
 

Baryon-number-violating nucleon and dinucleon decays
in a model with large extra dimensions

Sudhakantha Girmohanta and Robert Shrock
C.N. Yang Institute for Theoretical Physics and Department of Physics and Astronomy,

Stony Brook University, Stony Brook, New York 11794, USA

(Received 11 November 2019; published 27 January 2020)

It is known that limits on baryon-number-violating nucleon decays do not, in general, imply
corresponding suppression of n − n̄ transitions. Indeed, it has been shown, using a model with fermions
propagating in higher dimensions, that even with nucleon decays suppressed far below observable levels,
n − n̄ oscillations can occur at a rate comparable to existing experimental limits, motivating new searches
for such oscillations. In the context of this model we investigate a related question, namely the implications
of limits on ΔL ¼ −1 proton and bound neutron decays mediated by four-fermion operators for rates of
nucleon decays mediated by k-fermion operators with k ¼ 6 and k ¼ 8. These include a variety of nucleon
and dinucleon decays to dilepton and trilepton final states with ΔL ¼ −3;−2; 1, and 2. We carry out a low-
energy effective field theory analysis of relevant operators for these decays and show that, in this extra-
dimensional model, the rates for these decays are strongly suppressed and hence are in accord with
experimental limits.
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I. INTRODUCTION

Although the Standard Model (SM), as extended to
include nonzero neutrino masses and lepton mixing, agrees
with current data, there are many aspects of particle physics
that it does not explain. Although this theory conserves
baryon number B [1], many ultraviolet extensions of it
predict baryon number violation (BNV). In general, one
expects there to be some violation of baryon number in
nature, because this is one of the necessary conditions for
generating the observed baryon asymmetry in the universe
[2]. A number of dedicated experiments have been carried
out since the early 1980s to search for baryon-number-
violating decays of protons and of neutrons bound in
nuclei. (Henceforth, we shall refer to these as nucleon
decays, with it being understood that the term excludes
baryon-number-conserving weak decays of neutrons.)
These experiments have obtained null results and have
set resultant stringent upper limits for the rates of such
nucleon decays [3].

It was pointed out early on that neutron-antineutron
(n − n̄) oscillations and the associated jΔBj ¼ 2 violation
of baryon number could account for baryogenesis [4], and
there has long been interest in this type of baryon number

violation (some early works include [5–9]). The same
physics beyond the Standard Model (BSM) that gives rise
to n − n̄ oscillations also leads to matter instability via the
decays of nn and np dinucleon initial states to nonbaryonic
final states, typically involving several pions. The reason
for this is that a nonzero transition amplitude hn̄jLeff jni
means that a physical state jniphys contains a small but
nonzero jn̄i component. In turn, this leads to the annihi-
lation of the jn̄i component with a neighboring neutron or
proton in a nucleus, and thus produces ΔB ¼ −2 decays of
dinucleons. There have been searches for n − n̄ oscillations
using neutron beams from reactors [10] and for matter
instability and various dinucleon decay modes using large
underground detectors [11–24].

The operators in the low-energy effective Lagrangian for
nucleon decay are four-fermion operators with Maxwellian
dimension 6 in mass units and hence coefficients of the
form 1=ðmassÞ2. In contrast, the operators in Lðnn̄Þ

eff are six-
quark operators with dimension 9 and hence with coef-
ficients of the form 1=ðmassÞ5. Consequently, if one were
to assume that there is a single high mass scale MBNV
describing the physics responsible for baryon number
violation, nucleon decay would be much more important
than n − n̄ oscillations and the corresponding dinucleon
decays as a manifestation of baryon number violation.
However, the actual situation might be quite different [6].
Reference [25] showed an example, using an extra-
dimensional model [26,27], in which nucleon decays could
be suppressed well below an observable level, while n − n̄
oscillations could occur at a level comparable to existing
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experimental limits. In this case, it is the (jΔBj ¼ 2) n − n̄
oscillations and the corresponding (ΔB ¼ −2) nn and np
dinucleon decays that are the main observable effects of
baryon number violation, rather than (ΔB ¼ −1) decays of
individual nucleons. This provides motivation for new
experimental searches for n − n̄ oscillations. Additional
examples with baryon number violation but no proton
decay were later discussed in [28]. Reviews of n − n̄
oscillations include [29–31].
This finding in Ref. [25] naturally motivates one to ask a

more general question: in this type of extra-dimensional
model, are there baryon-number-violating processes medi-
ated by k-fermion operators with higher values of k, in
particular, k ¼ 6 and k ¼ 8, that could also be relatively
unsuppressed, as was the case with the k ¼ 6 operators
responsible for n − n̄ oscillations?
In this paper we address and answer this question. Using

the same extra-dimensional model as in [25], we study a
variety of nucleon and dinucleon decays that violate both B
and total lepton number L and are mediated by k-fermion
operators with k ¼ 6 and k ¼ 8, respectively. These include
the ΔL ¼ −3 nucleon decays

p → lþν̄ν̄0 ð1:1Þ
and

n → ν̄ν̄0ν̄00 ð1:2Þ
and the ΔL ¼ 1 nucleon decays

p → lþνν0 ð1:3Þ

and

n → ν̄ν0ν00; ð1:4Þ
both of which are mediated by six-fermion operators, and
the following ΔL ¼ −2 dinucleon decays mediated by
eight-fermion operators:

pp → lþl0þ; ð1:5Þ

where lþ and l0þ can be eþ, μþ, or τþ, as allowed by phase
space, i.e.,

pp → ðeþeþ; μþμþ; eþμþ; eþτþ; or μþτþÞ; ð1:6Þ

np → lþν̄; ð1:7Þ

and

nn → ν̄ν̄0: ð1:8Þ
In addition, we consider the ΔL ¼ 2 dineutron decays

nn → νν0; ð1:9Þ

which are also mediated by eight-fermion operators. Here
and below we use the symbol ν to denote either an
electroweak-doublet (EW-doublet) neutrino or an EW-
singlet neutrino. From experimental limits on nucleon
decays, we first determine constraints on relevant param-
eters of the extra-dimensional model, namely distances
separating centers of fermion wave functions in the extra
dimensions. Then, for each of the various types of decays,
we analyze relevant multifermion operators and apply these
constraints to estimate the typical predictions of the model
for the decay rates. Answering the question posed above,
we show that these nucleon decays (1.1)–(1.4) and dinu-
cleon decays (1.6)–(1.9) are safely smaller than the rates for
the leading baryon-number-violating nucleon decays medi-
ated by four-fermion operators and thus are in accord with
experimental limits.
There are several motivations for the class of extra-

dimensional theories that we consider. The possibility
that our four-dimensional spacetime could be embedded
in a higher-dimensional spacetime dates back at least to
attempts to unify electromagnetism and gravity by Kaluza
and Klein [32], and this embedding is implied by string
theory, since the low-energy limit of a (super)string theory
leads to a ten-dimensional pointlike field theory. Since all
experimental data are consistent with spacetime being four-
dimensional, the extra dimensions must be compactified on
scale(s) that is (are) much shorter than those that have been
probed experimentally. In this context, the Standard Model
can be viewed as a low-energy effective field theory that
describes physics at length scales much larger than the
compactification scale(s). One of the most striking and
perplexing features of the quarks and charged leptons is the
great range of approximately 105 spanned by their masses,
extending from 173 GeV for the top quark to 0.511 MeV
for the electron. The Standard Model gives no insight into
the reason for this large range of masses, and instead just
accommodates it via a correspondingly large range of
magnitudes of Yukawa couplings. This fermion mass
hierarchy is even larger when one takes into account the
tiny but nonzero masses of neutrinos. An intriguing
suggestion was that this large range of SM fermion masses
might be explained naturally if the SM is embedded in a
spacetime of higher dimension d ¼ 4þ n, with n extra
additional spatial dimensions, and SM fermions have wave
functions that are localized at different positions in the
additional n-dimensional space [26,27]. Here we will use a
model of this type in which the wave functions of the SM
fermions are strongly localized, with Gaussian profiles of
width 1=μ, at various points in this extra-dimensional space
[25–27], [33–41]. As in Refs. [25–27], we do not make any
specific assumption concerning possible ultraviolet com-
pletions of the model.
In addition to giving insight into various baryon- and

lepton-number-violating processes in the context of a BSM
model, our analysis is an interesting application of effective
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field theory in a more complicated case than usual, in which
there are multiple mass scales relevant for the B and L
violation, namely μ, a general scale MBNV characterizing
baryon number violation, and the inverse distances between
the centers of the wave functions of various fermions in the
extra dimensions. For each decay with a given l ¼ e or μ,
there are at least ð6

2
Þ ¼ 15 of these inverse distances,

corresponding to the five SM quark and lepton fields
QL, uR, dR, Ll;L, and lR, and one or more electroweak-
singlet neutrinos, νs;R. There is a correspondingly large
variety of multifermion operators with different structures,
which we analyze.
The present work complements our recent studies in [42],

where we derived improved upper bounds on the rates for
several nucleon-to-trilepton decay modes with ΔL ¼ −1,
and in [43], where we similarly presented improved upper
bounds on the rates for several dinucleon-to-dilepton decay
channels with ΔL ¼ 0. These works [42,43] were model-
independent phenomenological analyses, whereas our
present paper is a study within the context of a specific type
of extra-dimensional model.
This paper is organized as follows. In Sec. II we discuss

the extra-dimensional model and low-energy effective field
theory approach that serve as the theoretical framework for
our calculations. In Sec. III we extract constraints on the
fermion wave functions in the model from limits on nucleon
decay modes. Section IV is devoted to a review of n − n̄
oscillations in the model, as mediated by six-fermion
operators. A discussion is given in Sec. V of ΔL ¼ 0
dinucleon decays to dileptons. In Secs. VI and VII we
analyze six-fermion operators that contribute to ΔL ¼ −3
andΔL ¼ 1 nucleon decays to trilepton final states, respec-
tively. In Sec. VIII we present a general operator analysis of
eight-fermion operators that contribute to ΔL ¼ −2 dinu-
cleon decays to dileptons. Applications of this general
analysis to the decays pp → lþl0þ, np → lþν̄, and
nn → ν̄ν̄0 are given in Secs. IX–XI. Section XI also contains
a discussion of the ΔL ¼ 2 dineutron decays nn → νν0.
Our conclusions are contained in Sec. XII. In the
Appendixes A, B, and D we give relevant integral formulas,
color SUð3Þc and weak SUð2ÞL tensors, and present further
information on relevant operators.

II. THEORETICAL FRAMEWORK

In this section we describe the theoretical framework for
our study. Usual spacetime coordinates are denoted as xν,
ν ¼ 0, 1, 2, 3, and the n extra coordinates as yλ; for
definiteness, the latter are assumed to be compact. The
fermion fields are taken to have a factorized form:

Ψðx; yÞ ¼ ψðxÞχðyÞ: ð2:1Þ

In the extra dimensions the SM fields are restricted to the
interval 0 ≤ yλ ≤ L for all λ. We define an energy corre-
sponding to the inverse of the compactification scale as

ΛL ≡ 1

L
: ð2:2Þ

We will give most results for general n, but note that only
for even n are chiral projection operators defined, since
they require there to be a γ5 Dirac matrix that anticommutes
with the other Dirac gamma matrices, and this is only
possible for even n. The d ¼ ð4þ nÞ-dimensional fields
thus have Kaluza-Klein mode decompositions. We use a
low-energy effective field theory approach that entails an
ultraviolet cutoff, which we denote as M�. The localization
of the wave function of a fermion f in the extra dimensions
has the form [26,27]

χfðyÞ ¼ Ae−μ
2ky−yfk2 ; ð2:3Þ

where A is a normalization factor and yf ∈ Rn denotes the
position vector of this fermion in the extra dimensions, with
components yf ¼ ððyfÞ1;…; ðyfÞnÞ and with the standard
Euclidean norm of a vector in Rn, namely

kyfk≡
�Xn

λ¼1

y2f;λ

�
1=2

: ð2:4Þ

For n ¼ 1 or n ¼ 2, this fermion localization can result
from appropriate coupling to a scalar with a kink or vortex
solution, respectively [33]. One can also include correc-
tions due to Coulombic gauge interactions between fer-
mions [34] (see also [35,36]). The normalization factor A is
determined by the condition that, after integration over the
n higher dimensions, the four-dimensional fermion kinetic
term has its canonical normalization. This yields the result

A ¼
�
2

π

�
n=4

μn=2: ð2:5Þ

We define a distance inverse to the localization measure
μ as

Lμ ≡ 1

μ
: ð2:6Þ

As noted, this type of model has the potential to yield an
explanation for the hierarchy in the fermion mass matrices
via the localization of fermion wave functions with half-
width

Lμ ≪ L ð2:7Þ

at various points in the higher-dimensional space. The ratio
of the compactification scale L divided by the scale
characterizing the localization of the fermion wave func-
tions in the extra dimensions is

ξ≡ L
Lμ

¼ μ

ΛL
¼ μL: ð2:8Þ

BARYON-NUMBER-VIOLATING NUCLEON AND DINUCLEON … PHYS. REV. D 101, 015017 (2020)

015017-3



The choice

ξ ∼ 30 ð2:9Þ

is made for sufficient separation of the various fermion
wave functions while still fitting well within the size L of
the compactified extra dimensions. The UV cutoff M�
satisfiesM� > μ for the validity the low-energy field theory
analysis. The choice

ΛL ≳ 100 TeV; ð2:10Þ

i.e., L≲ 2.0 × 10−19 cm, is consistent with bounds on extra
dimensions from precision electroweak constraints and
collider searches [3] and produces adequate suppression
of flavor-changing neutral-current (FCNC) processes
[39,41]. With the ratio ξ ¼ 30, this yields

μ ∼ 3 × 103 TeV; ð2:11Þ

i.e., Lμ ≡ μ−1 ¼ 0.67 × 10−20 cm.
Starting from an effective Lagrangian in the d ¼ ð4þ nÞ-

dimensional spacetime, one obtains the resultant low-energy
effective Lagrangian in four dimensions by integrating over
the extra n dimensions. The integration over each of the n
coordinates of a vector y runs from 0 toL, but, because of the
restriction of the fermion wave functions to the form (2.3),
with Lμ ≪ L, it follows that, to a very good approximation,
the domain of integration can be extended to the interval
ð−∞;∞Þ: R L

0 dny →
R∞
−∞ dny. It is convenient to define the

dimensionless variable

η ¼ μy; ð2:12Þ

with components given by η ¼ ðη1;…; ηnÞ.
We first discuss the fermion mass terms. For the first

generation of quarks and charged leptons, the Yukawa
terms in the higher-dimension theory are

LYuk ¼ ½hðdÞQ̄LdRϕþ hðuÞQ̄LuRϕ̃þ hðeÞL̄e;LeRϕ�
þ H:c:; ð2:13Þ

whereQL ¼ ðudÞL, and ϕ ¼ ðϕþ
ϕ0 Þ is the SM Higgs field, with

ϕ̃ ¼ iσ2ϕ† ¼ ð ϕ0�
−ϕ−Þ. With the inclusion of the second and

third generations of SM fermions, the Yukawa couplings
hðfÞ with f ¼ u, d, e become 3 × 3 matrices. The diago-
nalization of the resultant quark mass matrices in the charge
2=3 and charge −1=3 sectors yields the quark masses and
Cabibbo-Kobayashi-Maskawa quark mixing matrix. For
our present purposes, it will often be adequate to neglect
small off-diagonal elements in the Yukawa matrices. The
vacuum expectation value of the Higgs field is written, in
the standard normalization, as

hϕi0 ¼
�

0

v=
ffiffiffi
2

p
�
; ð2:14Þ

where v ¼ 246 GeV. Given the factorization (2.1) and the
Gaussian profiles of the fermion wave functions (2.3), the
integration over the extra n dimensions of a given fermion
bilinear operator product hðfÞðv= ffiffiffi

2
p Þ½f̄LfR� resulting from

a Yukawa interaction involves the integral

A2hðfÞ
vffiffiffi
2

p
Z

dnye−kη−ηfLk
2−kη−ηfRk2

¼ hðfÞ
vffiffiffi
2

p exp

�
−
1

2
kηfL − ηfRk2

�
: ð2:15Þ

Hence, for the fermions f ¼ u, d and also f ¼ l ¼ e, μ, τ
(neglecting off-diagonal elements in the Yukawa matrices),
we have

mf ¼ hðfÞ
vffiffiffi
2

p exp

�
−
1

2
kηfL − ηfRk2

�
ð2:16Þ

or, equivalently, the following constraint on the separation
distance kηfL − ηfRk:

kηfL − ηfRk ¼
�
2 ln

�
hðfÞvffiffiffi
2

p
mf

��
1=2

: ð2:17Þ

Note that this relation does not depend directly on the
number of large extra dimensions, n. The relation (2.17)
holds for the quarks and charged leptons. For neutrinos, the
situation is more complicated because the neutrino mass
eigenvalues and the lepton mixing matrix result, in general,
from the diagonalization of the combined Dirac and
Majorana mass terms involving electroweak-singlet neutri-
nos νs;R, s ¼ 1;…; ns. TheseMajorana neutrino mass terms
violate L (as jΔLj ¼ 2 operators) and lead to potentially
observable L-violating processes. However, L violation can
occur even with very small neutrino masses, as in R-parity-
violating supersymmetric theories (e.g., [44]).
Since the relation (2.16) applies in the effective

Lagrangian above the electroweak-symmetry-breaking
scale, the values of mf are the running masses evaluated
at this high scale. In accord with the idea motivating this
class of BSM theories, that the generational hierarchy in the
SM fermion masses is not due primarily to a hierarchy in the
dimensionless Yukawa couplings in the higher-dimensional
space but instead to the different positions of the wave
function centers in the extra dimensions, we will take hðfÞ ∼
Oð1Þ in the higher-dimensional space for the various SM
fermionsf. For technical simplicity, we actually sethðfÞ ¼ 1
for all f. It is straightforward to redo our analysis if one
chooses to assign some of the generationalmass hierarchy to
these Yukawa couplings in the (4þ n)-dimensional space.
A calculation of the running quarkmasses at a scaleΛt ¼ mt
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gives [45] muðΛtÞ ¼ 2.2 MeV and mdðΛtÞ ¼ 4.5 MeV.
Combining these values with the known value v ¼
246 GeV fromGF=

ffiffiffi
2

p ¼ 1=ð2v2Þ, we calculate the dimen-
sionless separation distances

kηQL
− ηuRk ¼ 4.75 ð2:18Þ

and

kηQL
− ηdRk ¼ 4.60; ð2:19Þ

so that the ratio is kηQL
− ηuRk=kηQL

− ηdRk ¼ 1.03 [46].
As noted, a major result from this type of model was the

fact that with roughly equal dimensionless Yukawa cou-
plings hðfÞ ∼Oð1Þ for different generations of quark and
charged leptons, the large hierarchy in the values of
these SM fermion masses can be explained by moderate
differences in the separation distances in the extra dimen-
sions, kηfL − ηfRk. This extra-dimensional model is min-
imal in the sense that we do not include additional fields
aside from neutrinos that carry lepton number, such as
Majorons.
A given baryon-number-violating decay involves a set of

operators defined in four-dimensional spacetime, which,
for our applications, are k-fold products of fermion fields.
We denote these operators as Or;ðkÞ and write the effective
Lagrangian in usual four-dimensional spacetime that is
responsible for the BNV physics as

LeffðxÞ ¼
X
r

cr;ðkÞOr;ðkÞðxÞ þ H:c: ð2:20Þ

Each of the fermion fields in Or;ðkÞ has the factorized form
(2.1). We denote the corresponding effective Lagrangian in
the d ¼ ð4þ nÞ-dimensional space as

Leff;4þnðx; yÞ ¼
X
r

κr;ðkÞOr;ðkÞðx; yÞ þ H:c: ð2:21Þ

The factorization property (2.1) implies that theOr;ðkÞðx; yÞ
also can be factored as

Or;ðkÞðxÞ ¼ Ur;ðkÞðxÞVr;ðkÞðyÞ ð2:22Þ

[with SUð3Þc, SUð2ÞL, and Dirac structure implicit and
with no sum on r]. We denote the integral over the extra
dimensions of Vr;ðkÞðyÞ as

Ir;ðkÞ ≡
Z

dnyVr;ðkÞðyÞ: ð2:23Þ

This integral involves an integrand consisting of a k-fold
product of Gaussian wave functions and is given by Eq. (A2)
in Appendix A. Hence, for each r (with no sum on r)

cr;ðkÞ ¼ κr;ðkÞIr;ðkÞ: ð2:24Þ

The coefficient κr;ðkÞ may depend on the generational indices
of lepton fields that occur in Or;ðkÞ; this is left implicit in
the notation. In general, as a k-fold product of fermion
fields in d ¼ 4þ n spacetime dimensions, Or;ðkÞðx; yÞ has
Maxwellian (free-field) operator dimension

dimðOr;ðkÞðx; yÞÞ ¼
kðd − 1Þ

2
¼ kð3þ nÞ

2
ð2:25Þ

in mass units. The condition that the action in the
d-dimensional space must be dimensionless is −dþ
dimðκr;ðkÞÞ þ dimðOr;ðkÞÞ ¼ 0, so

dimðκr;ðkÞÞ ¼ d − k

�
d − 1

2

�

¼ 4þ n − k

�
3þ n
2

�
: ð2:26Þ

It is useful to write the coefficients κr;ðkÞ in a form that shows
this dimensionality explicitly:

κr;ðkÞ ¼
κ̄r;ðkÞ

ðMBNVÞðkð3þnÞ=2Þ−4−n ; ð2:27Þ

where κ̄r;ðkÞ is dimensionless andMBNV is an effective mass
scale characterizing the baryon-number-violating physics.
Then, making use of Eq. (A2), Ir;ðkÞ can be written as a
prefactor bk multiplying an exponential, namely

Ir;ðkÞ ¼ bke
−Sr;ðkÞ ; ð2:28Þ

where

bk ¼ Akμ−n
�
π

k

�
n=2

¼ ½2k=4π−ðk−2Þ=4k−1=2μðk−2Þ=2�n: ð2:29Þ

In Eq. (2.29), the factor Ak arises from the k-fold product of
fermion fields, the factor μ−n from the Jacobian dny ¼
μ−ndnη, and the factor ðπ=kÞn=2 from the integration [see
Eq. (A2) in Appendix A]. By construction, b2 ¼ 1, inde-
pendent of the number of large extra dimensions, n.
Combining these results, we can write

cr;ðkÞ ¼ κr;ðkÞIr;ðkÞ

¼ κ̄r;ðkÞ
ðMBNVÞð3k−8Þ=2

�
μ

MBNV

�ðk−2Þn=2� 2k=4

πðk−2Þ=4k1=2

�
n

× e−Sr;ðkÞ : ð2:30Þ

For each of the various types of decays discussed below,
the number k of fermions in the k-fermion operator
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products will be obvious, so henceforth, we suppress the
subscript (k) in the notation for Ir;ðkÞ and cr;ðkÞ.
Before carrying out detailed analyses of various baryon-

number-violating decays, it is useful to make some rough
estimates of the expected ratios of resultant rates. The
hadronic matrix elements that are relevant for decays
mediated by operators with different numbers of fermions
have different dimensions, but in comparing decay rates,
this difference is compensated by the requisite powers of
the quantum chromodynamics (QCD) mass scale ΛQCD.
Thus, for the ratio of two BNV decays mediated by
operators comprised of k1 and k2 fermions, respectively,
we have the rough estimate

Γðk2Þ
Γðk1Þ

∼
�
ΛQCD

MBNV

�
3ðk2−k1Þ� μ

MBNV

�ðk2−k1Þn�2ðk2−k1Þ=2k1
πðk2−k1Þ=2k2

�
n

× e−2ðhSðk2Þi−hSðk1ÞiÞ; ð2:31Þ

where hSðkÞi denotes a typical size of the exponential
factor occurring in Eqs. (2.28) and (2.30) for this decay.
In particular, relative to BNV nucleon decays such as
p → eþπ0, etc., mediated by four-fermion operators, the
rough estimate (2.31) gives the ratio

Γð6Þ
Γð4Þ

∼
�
ΛQCD

MBNV

�
6
�

μ

MBNV

�
2n
�
4

3π

�
n
e−2ðhSð6Þi−hSð4ÞiÞ

ð2:32Þ

for decays such as (1.1)–(1.4) mediated by six-fermion
operators. Similarly, for dinucleon decays mediated by
eight-fermion operators, such as (1.6)–(1.9), Eq. (2.31)
predicts

Γð8Þ
Γð4Þ

∼
�
ΛQCD

MBNV

�
12
�

μ

MBNV

�
4n
�
2

π2

�
n
e−2ðhSð8Þi−hSð4ÞiÞ:

ð2:33Þ

With ΛQCD ≃ 0.25 GeV, μ ¼ 3 × 103 TeV as in Eq. (2.11),
and an illustrative value MBNV ∼ 102 TeV and n ¼ 2 extra
dimensions, Eqs. (2.32) and (2.33) yield

ln

�Γð6Þ
Γð4Þ

�
∼ −65.5 − 2ðhSð6Þi − hSð4ÞiÞ ð2:34Þ

and

ln

�
Γð8Þ
Γð4Þ

�
∼ −131 − 2ðhSð8Þi − hSð4ÞiÞ: ð2:35Þ

The study of the sums Sr;ðkÞ requires a detailed analysis
of the various k-fermion operators that contribute to

specific baryon-number-violating processes. We discuss
these below.

III. CONSTRAINTS FROM LIMITS
ON BARYON-NUMBER-VIOLATING

NUCLEON DECAYS

We discuss here the constraints on Standard-Model
fermion wave function positions in the extra-dimensional
model that follow from the upper limits on the rates for
baryon-number-violating nucleon decays. The analysis
begins with the observation that the mass scale character-
izing the physics responsible for these decays must be large
compared with the electroweak symmetry-breaking scale v,
and therefore the effective Lagrangian must be invariant
under the full Standard-Model gauge group GSM. To label
the various (four-fermion) operators that contribute, we will
use the abbreviations pd and nd to refer to proton and
(otherwise stably bound) neutron decay, respectively, and
Nd to subsume both of these types of decay, with the
nucleon N ¼ p or N ¼ n. (The use of the same symbol, n,
to refer to neutron and the number of extra dimensions
should not cause any confusion; the context will always
make clear which is meant.) Then we can write

LðNdÞ
eff ðxÞ ¼

X
r

cðNdÞ
r OðNdÞ

r ðxÞ þ H:c:; ð3:1Þ

where cðNdÞ
r are coefficients and OðNdÞ

r ðxÞ are operators.
Correspondingly, in the d ¼ ð4þ nÞ-dimensional space,
the effective Lagrangian is

LðNdÞ
eff;4þnðx; yÞ ¼

X
r

κðNdÞ
r OðNdÞ

r ðx; yÞ þ H:c: ð3:2Þ

We recall our notation for fermion fields. The SUð2ÞL-
singlet and -doublet quark fields are denoted uαR, d

α
R, and

Qα
L ¼ ðuαdαÞL, where α is a color index. The SUð2ÞL-singlet

and SUð2ÞL-doublet lepton fields are denoted lR
and Ll;L ¼ ðνll ÞL, where l ¼ e, μ, τ. In addition, we
include electroweak-singlet neutrinos, written as νs;R, with
s ¼ 1;…; ns, as is necessary to form Dirac and Majorana
mass terms for the neutrinos. The upper and lower compo-
nents of the quark and lepton SUð2ÞL doublets are indicated
by Roman indices i; j;…, soQiα

L ¼ uαL for i ¼ 1,Qiα
L ¼ dαL

for i ¼ 2, Li
l;L ¼ νl for i ¼ 1, and Li

l;L ¼ lL for i ¼ 2. For
each of these fields f ¼ QL, uR, dR, Ll;L, lR, and νs;R, the
wave function in the (4þ n)-dimensional space has the form
(2.1) with normalization factor A given by Eq. (2.5) and
Gaussian profile given by Eq. (2.3).

With the original SM fermions, before the addition
of any electroweak-singlet νs;R fields, the four-fermion

operators OðNdÞ
r in LðNdÞ

eff that contribute to nucleon decays
are [47–50]
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OðNdÞ
1 ¼ ϵαβγ½uαTR CdβR�½uγTR ClR�; ð3:3Þ

OðNdÞ
2 ¼ ϵijϵαβγ½QiαT

L CQjβ
L �½uγTR ClR�

¼ 2ϵαβγ½uαTL CdβL�½uγTR ClR�; ð3:4Þ

OðNdÞ
3 ¼ ϵijϵαβγ½QiαT

L CLj
l;L�½uβTR CdγR�

¼ ϵαβγð½uαTL ClL� − ½dαTL Cνl;L�Þ½uβTL CdγR�; ð3:5Þ

and

OðNdÞ
4 ¼ ϵijϵkmϵαβγ½QiαT

L CQjβ
L �½QkγT

L CLm
l;L�

¼ 2ϵαβγ½uαTL CdβL�ð½uγTL ClL� − ½dγTL Cνl;L�Þ; ð3:6Þ

where C is the Dirac charge conjugation matrix satisfying
CγμC−1 ¼ −ðγμÞT , C ¼ −CT ; and ϵαβγ and ϵij are totally
antisymmetric SUð3Þc and SUð2ÞL tensors, respectively.
Two other operators would be present in a multigen-
erational context but vanish identically in the relevant
case here, where the quarks are all of the first generation,
i.e., u and d:

ϵαβγ½uαTa1;RCu
β
a2;R

�½dγTa3;RClR� ð3:7Þ

and

ðϵikϵjm þ ϵimϵjkÞϵαβγ½QiαT
a1;L

CQjβ
a2;L

�½QkγT
a3;L

CLm
l;L�; ð3:8Þ

where a1, a2, and a3 are generation indices.
Including electroweak-singlet neutrinos νs;R with s ¼

1;…; ns, one has two additional types of operators for
nucleon decays, namely

OðNdÞ
5 ¼ ϵαβγ½uαTR CdβR�½dγTR Cνs;R� ð3:9Þ

and

OðNdÞ
6 ¼ ϵijϵαβγ½QiαT

L CQjβ
L �½dγTR Cνs;R�

¼ 2ϵαβγ½uαTL CdβL�½dγTR Cνs;R�: ð3:10Þ

For completeness, we also list a four-fermion operator
that would be present in a multigenerational context but
vanishes identically in the case considered here with first-
generation quarks, namely

ϵαβγ½dαTa1;RCd
β
a2;R

�½uγTa3;RCνs;R�: ð3:11Þ

To each of the operators OðNdÞ
r there corresponds an

operator OðNdÞ
r in LðNdÞ

eff;4þn. These are four-fermion oper-
ators, and, as the k ¼ 4 special case of Eq. (2.27), we have

κðNdÞ
r ¼ κ̄ðNdÞ

r

ðMBNVÞ2þn : ð3:12Þ

As noted before, in general, the coefficient κðNdÞ
r may

depend on the generational indices of fermion fields that

occur in OðNdÞ
r ; this is left implicit in the notation. The

special case of Eq. (2.22) for nucleon decay is

OðNdÞ
r ðx; yÞ ¼ UðNdÞ

r ðxÞVðNdÞ
r ðyÞ: ð3:13Þ

We have

VðNdÞ
1 ðyÞ ¼ A4 exp½−f2kη − ηuRk2 þ kη − ηdRk2 þ kη − ηlR

k2g�; ð3:14Þ

VðNdÞ
2 ðyÞ ¼ A4 exp½−f2kη − ηQL

k2 þ kη − ηuRk2 þ kη − ηlRk2g�; ð3:15Þ

VðNdÞ
3 ðyÞ ¼ A4 exp½−fkη − ηQL

k2 þ kη − ηLl;L
k2 þ kη − ηuRk2 þ kη − ηdRk2g�; ð3:16Þ

VðNdÞ
4 ðyÞ ¼ A4 exp½−f3kη − ηQL

k2 þ kη − ηLl;L
k2g�; ð3:17Þ

VðNdÞ
5 ðyÞ ¼ A4 exp½−fkη − ηuRk2 þ 2kη − ηdRk2 þ kη − ηνs;Rk2g�; ð3:18Þ

and

VðNdÞ
6 ðyÞ ¼ A4 exp½−f2kη − ηQL

k2 þ kη − ηdRk2 þ kη − ηνs;Rk2g�: ð3:19Þ

To perform the integrals over y, we use the general integration formula given as Eq. (A2) in Appendix A. Carrying out the
integration over the y components and using Eq. (2.5) for the relevant case k ¼ 4, we obtain the following results for the
nonvanishing operators:
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IðNdÞ
1 ¼ b4 exp

�
−
1

4
f2kηuR − ηdRk2 þ 2kηuR − ηlRk2 þ kηdR − ηlRk2g

�
; ð3:20Þ

IðNdÞ
2 ¼ b4 exp

�
−
1

4
f2kηQL

− ηuRk2 þ 2kηQL
− ηlRk2 þ kηuR − ηlRk2g

�
; ð3:21Þ

IðNdÞ
3 ¼ b4 exp

�
−
1

4
fkηQL

− ηLl;L
k2 þ kηQL

− ηuRk2 þ kηQL
− ηdRk2

þ kηLl;L
− ηuRk2 þ kηLl;L

− ηdRk2 þ kηuR − ηdRk2g
�
; ð3:22Þ

IðNdÞ
4 ¼ b4 exp

�
−
3

4
kηQL

− ηLl;L
k2
�
; ð3:23Þ

IðNdÞ
5 ¼ b4 exp

�
−
1

4
f2kηuR − ηdRk2 þ kηuR − ηνs;Rk2 þ 2kηdR − ηνs;Rk2g

�
; ð3:24Þ

and

IðNdÞ
6 ¼ b4 exp

�
−
1

4
f2kηQL

− ηdRk2 þ 2kηQL
− ηνs;Rk2 þ kηdR − ηνs;Rk2g

�
; ð3:25Þ

where b4 ¼ ðπ−1=2μÞn, from the k ¼ 4 special case of

Eq. (2.29). It is convenient to write the integral IðNdÞ
r in

the form

IðNdÞ
r ≡ b4e−S

ðNdÞ
r ; ð3:26Þ

where SðNdÞ
r denotes the sum of squares of fermion wave

function separation distances (rescaled via multiplication
by μ to be dimensionless) in the argument of the exponent

in IðNdÞ
r . Thus, for example, in the case of OðNdÞ

4 , the sum in

the exponent is SðNdÞ
4 ¼ ð3=4ÞkηQL

− ηLl;L
k2, and similarly

for the other SðNdÞ
r . Then, as the k ¼ 4 special case of (2.30),

cðNdÞ
r ¼ κ̄ðNdÞ

r

ðMBNVÞ2
�

μ

π1=2MBNV

�
n
e−S

ðNdÞ
r : ð3:27Þ

The amplitude for the decay of a nucleon N ¼ p or n to a

final state f:s: is given by hf:s:jOðNdÞ
eff jNi. The hadronic

matrix elements for various operators have been calculated by
lattice gauge simulations [51,52]. We then use the exper-
imental lower bound for the partial lifetime ðτ=BÞN→f:s: ¼
Γ−1
N→f:s: for a given nucleon decay mode N → f:s: with

branching ratioB to infer upper bounds on themagnitudes of

the cðNdÞ
r coefficients. Since in our low-energy effective field

theory approach we do not assume any cancellation between

different terms cðNdÞ
r OðNdÞ

r occurring in LðNdÞ
eff , we conserva-

tively impose the bounds from a given decay individually on
each term that contributes to it. For given values of μ,MBNV,

and the dimensionless coefficients κ̄ðNdÞ
r , these constraints are

upper bounds on the integrals IðNdÞ
r

IðndÞr < IðNdÞ
max ; ð3:28Þ

and hence lower bounds on the sums of squares of distances

in SðNdÞ
r for each operator OðNdÞ

r ,

SðNdÞ
r > SðNdÞ

min ; ð3:29Þ

where

SðNdÞ
min ¼ ln

�
b4

IðNdÞ
max

�
: ð3:30Þ

When comparing lower bounds from two different nucleon
decay modes, denoted Nd1 and Nd2, to which the same
operators contribute, a general relation is

SðNdÞ
min;1 − SðNdÞ

min;2 ¼
1

2
ln

�ðτ=BÞNd1;min

ðτ=BÞNd2;min

�
: ð3:31Þ

Someof the squared fermion separationdistanceskηfi − ηfjk2
occurring in the individual SðNdÞ

r sums are already fixed by
Standard-Model physics such as quark and lepton masses
and mixing, and values of, or limits on, FCNC processes.
These include the (rescaled) distances kηQL

− ηqRk with
qR ¼ uR; dR, and for leptons, the distances kηLl;L

− ηl0
R
k

withLl;L¼Le;L;Lμ;L;Lτ;L andl0
R ¼ eR; μR; τR, respectively.
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For example, for l ¼ e, the inequality SðNdÞ
2 > SðNdÞ

min is a
quadratic inequality in the space R3n spanned by the three
n-dimensional vectors ηQL

, ηuR , and ηlR , with one distance
kηQL

− ηuRk fixed by the u-quark mass. The (rescaled)
separation distances between SM fermion wave function

centers that enter into the SðNdÞ
r of this type and are not already

fixed by SM physics are

kηuR − ηdRk; kηuR − ηlRk; kηdR − ηlRk;
kηQL

− ηlRk; kηl;L − ηuRk; kηl;L − ηdRk;
kηQL

− ηLl;L
k for l ¼ e; μ: ð3:32Þ

Hence, the full set of lower bounds on fermion separation

distances from all of the inequalities SðNdÞ
r > SðNdÞ

min contrib-
uting to nucleon decays constitutes a set of coupled quadratic
inequalities in the space spanned by the relevant fermion
position vectors. For example, the most stringent lower bound
on a partial lifetime, ðτ=BÞp→eþπ0 , yields coupled quadratic
inequalities in theR5n space spanned by the vectors ηQL

, ηuR ,
ηdR ,ηLe;L

, andηeR , and similarlywithnucleondecays involving
l ¼ μ. With the inclusion of EW-singlet neutrino fields νs;R,
the set of separation distances that affect the rates for nucleon
decay also includes

kηqR − ηνs;Rk; kηQL
− ηνs;Rk for q ¼ u; d: ð3:33Þ

The lower bounds on the partial lifetimes for some of the
simplest proton decays are [53]

ðτ=BÞp→eþπ0 > 1.6 × 1034 yr ð3:34Þ

and

ðτ=BÞp→μþπ0 > 0.77 × 1034 yr: ð3:35Þ
These and the other bounds quoted here are at the
90% confidence level. Other bounds of comparable sen-
sitivity include, e.g., ðτ=BÞp→eþη > 1.0 × 1034 yr and
ðτ=BÞp→μþη > 0.47 × 1034 yr [54]. Comparable lower
bounds apply for baryon-number-violating neutron decays,
such as ðτ=BÞn→eþπ− >0.53×1034 yr [53], ðτ=BÞn→μþπ− >
0.35 × 1034 yr [54], and ðτ=BÞn→ν̄π0 > 1.1 × 1033 yr [55]
(see also [56]). These bounds can easily be satisfied by
separating the positions of the wave function centers of the
quarks and first two generations of leptons [26].
The calculation of the rate for a nucleon decay to a given

final state, ΓN→f:s., depends on the ultraviolet physics

responsible for the operators OðdÞ
r and their coefficients

κðNdÞ
r in the effective Lagrangian. In particular, it involves
the integration of the square of the matrix element
hf:s:jLeff jNi with respect to the n-body phase space.
Since this ultraviolet physics is not determined in the
context of our low-energy effective Lagrangian approach, it
is not possible to actually perform this integral precisely,
but this will not be necessary for our estimates. Because the
most stringent lower bounds on partial lifetimes of nucleon
decays are for two-body final states, these two-body modes
will determine the distance constraints, and hence we will
only need the two-body phase-space factor R2 (see
Appendix C). The rate for the decay N → f:s: is

ΓN→f:s: ¼
1

2mN

Z
dR2jAN→f:s:j2

¼ 1

2mN

1

ðMBNVÞ4
�

μ

π1=2MBNV

�
2n
����
X
r

κ̄ðNdÞ
r e−S

ðNdÞ
r hf:s:jOðNdÞ

r jNi
����
2

R2; ð3:36Þ

where an average over initial spin and sum over final spins
is understood. As noted above, the dimensionless coeffi-
cients κ̄ðNdÞ

r depend on the UV completion of the extra-
dimensional theory and the associated BSM physics
responsible for the baryon number violation and are not
determined within the framework of our low-energy effec-

tive field theory. We take κ̄ðNdÞ
r ≃Oð1Þ and note that it is

straightforward to recalculate bounds on separation dis-
tances in the context of a specific UV completion with

different values of the dimensionless coefficients κ̄ðNdÞ
r .

Given these sources of uncertainty, we limit ourselves to
correspondingly rough estimates of lower bounds on
fermion separation distances. From the most stringent
bound on a two-body proton decay to lþ þmeson, namely

ðτ=BÞp→eþπ0 in (3.34) and ðτ=BÞp→μþπ0 in (3.35), using
estimates of the hadronic matrix elements from lattice

calculations [51,52] (and setting κ̄ðNdÞ
r ¼ 1 as above), we

derive the approximate lower bound, applicable for both of
these types of decays:

Sr > ðSðNdÞ
r Þmin; ð3:37Þ

where

ðSðNdÞ
r Þmin ¼ 48 −

n
2
ln π − 2 ln

�
MBNV

100 TeV

�

− n ln

�
MBNV

μ

�
: ð3:38Þ
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The most direct bound on fermion separation distances

arises from the contribution of the operator OðNdÞ
4 , since the

integral IðNdÞ
4 involves a single fermion separation distance,

kηQL
− ηLl;L

k for a given lepton generation l ¼ e or l ¼ μ.
In this case, from the inequality (3.37) with (3.38), we
obtain the lower bound, for both eþ and μþ decay modes,

kηQL
− ηLl;L

k2 > 62 −
8

3
ln

�
MBNV

100 TeV

�

−
8

3
ln

�
MBNV

μ

�
: ð3:39Þ

In a model having n ¼ 2 extra dimensions [and value
μ ¼ 3 × 103 TeV, as given in (2.11)], with the illustra-
tive value MBNV ¼ 100 TeV, this is the inequality
kηQL

− ηLl;L
k > 8.4, while forMBNV¼μ, this is the inequal-

ity kηQL
− ηLl;L

k > 7.3. Since SðNdÞ
min depends only logarith-

mically on the mass scale MBNV, it follows that the lower
bounds on the fermion separation distances also depend only
logarithmically on MBNV, i.e., only rather weakly on this
scale. A very conservative solution to the coupled quadratic
inequalities would require that each of the relevant distances
kηfi − ηfjk in Eq. (3.32) for both l ¼ e and l ¼ μwould be
larger than the square root of the right-hand side ofEq. (3.38):

fkηuR − ηlRk; kηdR − ηlRk; kηQL
− ηlRk; kηQL

− ηLl;L
k;

kηLl;L
− ηuRk; kηLl;L

− ηdRkg > ½ðSðNdÞ
r Þmin�1=2: ð3:40Þ

That is, this set of inequalities is sufficient, but not
necessary, to satisfy experimental constraints on the model
from lower limits on partial lifetimes for nucleon decays.
With inclusion of electroweak-singlet νs;R fields

with small enough masses so that they could occur in
nucleon decays involving (anti)neutrinos, an analogous
conservative choice would be to impose the same lower
bounds as in Eq. (3.40):

fkηuR − ηνs;Rk; kηdR − ηνs;Rk; kηQL
− ηνs;Rkg > ½SðNdÞ

min �1=2
ð3:41Þ

for all s such that the νs;R can occur in nucleon decays. We
will assume that these inequalities on fermion separation
distances hold in the following. It is straightforward to use
Eq. (3.29) to calculate lower bounds on fermion wave
function separation distances with values ofMBNV different
from the illustrative value used above.
The limits on two-body nucleon decays involving

(anti)neutrino emission are somewhat less stringent than
the limits on nucleon decays yielding charged leptons. For
example, ðτ=BÞp→ν̄πþ > 3.9 × 1032 yr and ðτ=BÞn→ν̄π0 >
1.1 × 1033 yr [55]. Hence, they do not add extra informa-
tion to the constraints that we have derived on fermion

separation distances involving the Ll;L and lR fermions
with l ¼ e or l ¼ μ. However, since a nucleon is kine-
matically forbidden from decaying to a real final state
containing a τ lepton, these experimental limits are useful
for deriving constraints on separation distances involving
the Lτ;L and τR fermions. The relevant operators that would

contribute to such decays would be the OðNdÞ
r listed above

that contain Lτ;L or τR. The BSM physics responsible for
baryon number violation determines the magnitude of the

corresponding coefficients κðNdÞ
r . Since the quark fields in

these four-fermion operators are all of the first generation, a
usual expectation would be that the resultant coefficients
for operators in which the lepton field is of the third
generation would be smaller than if the lepton field is of the
first or second generation. However, to be as conservative
as possible, we consider the possibility of substantial
coefficients for such four-fermion operators with a third-
generation lepton field, namely ντ (see also [57]). Using the
above-mentioned experimental lower bounds on (τ=B) for
the p → ν̄πþ and n → ν̄π0 decays in conjunction with

Eqs. (3.31) and (3.38), we obtain the bound ðSðNdÞ
r Þmin;τþ ≃

ðSðNdÞ
r Þmin − 2, where ðSðNdÞ

r Þmin refers to decay modes
such as p → eþπ0 and p → μþπ0 and was given in
Eq. (3.38). This can be satisfied conservatively with the
inequality

fkηqR − ητRk; kηQL
− ητRk; kηqR − ηLτ;L

k; kηQL
− ηLτ;L

kg
> ½ðSðNdÞ

r Þmin;τþ�1=2 for q ¼ u; d: ð3:42Þ

IV. n− n̄ OSCILLATIONS AND DINUCLEON
DECAYS TO HADRONIC FINAL STATES

In this section we review the striking finding in Ref. [25],
that in this extra-dimensional model, even with nucleon
decays suppressed well below experimental limits, n − n̄
oscillations can occur near to their experimental limits.
Thus, let us consider a general theory in which BSM
physics leads to n − n̄ transitions and let us denote the

relevant low-energy effective Lagrangian in 4D as Lðnn̄Þ
eff

and the transition matrix element jδmj ¼ jhn̄jLðnn̄Þ
eff jnij. In

(field-free) vacuum, an initial state which is jni at time
t ¼ 0 has a nonzero probability to be an jn̄i state at a later
time t > 0. This probability is given by PðnðtÞ ¼ n̄Þ ¼
jhn̄jnðtÞij2 ¼ ½sin2ðt=τnn̄Þ�e−t=τn , where τn is the mean life
of the neutron. The current direct limit on τnn̄ is from an
experiment with a neutron beam from a nuclear reactor
at the Institut Laue-Langevin (ILL) in Grenoble: τnn̄ ≥
0.86 × 108 sec, i.e., jδmj¼1=τnn̄ <0.77×10−29MeV [10].
As noted above, a nonzero n − n̄ transition amplitude

hn̄jLeff jni has the consequence that the resultant physical
eigenstate for the neutron state in matter has a small
component of n̄, i.e., jniphys ¼ cos θnn̄jni þ sin θnn̄jn̄i.
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The nonzero jn̄i component in jniphys leads to annihilation
with an adjacent neutron or proton, and hence to the decays
to zero-baryon, multimeson final states, consisting domi-
nantly of several pions: nn → pions and np → pions.
A number of experiments have searched for the resultant
matter instability due to these dinucleon decays and have
set lower limits on the matter instability (m.i.) lifetime τm:i.
[12–16]. This is related to τnn̄ by the formula τm:i ¼ Rτ2nn̄,
where R ∼Oð102Þ MeV, or, equivalently, R ≃ 1023 sec−1,
depending on the nucleus. The best current limit on matter
instability is from the SuperKamiokande (SK) water
Cherenkov experiment [16],

τm:i > 1.9 × 1032 yr: ð4:1Þ

Using the value R ≃ 0.52 × 1023 sec−1 for the 16O nuclei in
water (see, e.g., [31] and references therein), the SK
experiment gives the lower limit

τnn̄ > 2.7 × 108 sec; ð4:2Þ

or, equivalently,

jδmj < 2.4 × 10−30 MeV: ð4:3Þ

This lower bound on τnn̄ in (4.2) from the SK experiment
[16] is comparable to, and stronger by approximately a
factor of 3 than, the direct lower bound on τnn̄ from the
ILL experiment [10]. The SK experiment has also searched
for specific dinucleon decays and has obtained the
limits [17]

Γ−1
np→πþπ0 > 1.70 × 1032 yr ð4:4Þ

and

Γ−1
nn→π0π0

> 4.04 × 1032 yr: ð4:5Þ

An improvement in the search for n − n̄ oscillations
is anticipated if a new n − n̄ search with requisite sensi-
tivity could be carried out at the European Spallation
Source [31].
The effective Lagrangian (in four-dimensional space-

time) that mediates n − n̄ oscillations is a sum of six-quark
operators:

Lðnn̄Þ
eff ðxÞ ¼

X4
r¼1

cðnn̄Þr Oðnn̄Þ
r ðxÞ þ H:c: ð4:6Þ

As with Eqs. (3.1) and (3.2), there is a corresponding
Lagrangian in the (4þ n)-dimensional space:

Lðnn̄Þ
eff;4þnðx; yÞ ¼

X
r

κðnn̄Þr Oðnn̄Þ
r ðx; yÞ þ H:c: ð4:7Þ

Since the mass scale characterizing the jΔBj ¼ 2 baryon
number violation is large compared with the electroweak
symmetry-breaking scale, these six-quark operators must
be invariant under the Standard-Model gauge symmetry. As

indicated in Eq. (4.6), there are four Oðnn̄Þ
r of this type,

namely

Oðnn̄Þ
1 ¼ ðTsÞαβγδρσ½uαTR CuβR�½dγTR CdδR�½dρTR CdσR�; ð4:8Þ

Oðnn̄Þ
2 ¼ ðTsÞαβγδρσ½uαTR CdβR�½uγTR CdδR�½dρTR CdσR�; ð4:9Þ

Oðnn̄Þ
3 ¼ ϵijðTaÞαβγδρσ½QiαT

L CQjβ
L �½uγTR CdδR�½dρTR CdσR�

¼ 2ðTaÞαβγδρσ½uαTL CdβL�½uγTR CdδR�½dρTR CdσR�; ð4:10Þ

and

Oðnn̄Þ
4 ¼ ϵijϵkmðTaÞαβγδρσ½QiαT

L CQjβ
L �½QkγT

L CQmδ
L �½dρTR CdσR�

¼ 4ðTaÞαβγδρσ½uαTL CdβL�½uγTL CdδL�½dρTR CdσR�; ð4:11Þ

where, as before, Greek indices α; β;… are SUð3Þc color
indices; i; j… are weak SUð2ÞL indices; and the SUð3Þc
color tensors are

ðTsÞαβγδρσ ¼ ϵραγϵσβδ þ ϵσαγϵρβδ

þ ϵρβγϵσαδ þ ϵσβγϵραδ ð4:12Þ

and

ðTaÞαβγδρσ ¼ ϵραβϵσγδ þ ϵσαβϵργδ: ð4:13Þ

(See Appendix B for the symmetry properties of these
tensors.)
To each of these operators there is a corresponding Vðnn̄Þ

r

function, as defined by Eq. (2.22). For example,

Vðnn̄Þ
1 ¼ Vðnn̄Þ

2

¼ A6 exp½−f2kη − ηuRk2 þ 4kη − ηdRk2g�; ð4:14Þ

andso forth for theother twooperators. The resultant integrals
(2.23) over the extrandimensions comprise three classes. The

integration of theVðnn̄Þ
r functions for the operatorsOðnn̄Þ

r with

r ¼ 1, 2 are the same, defining class Cðnn̄Þ
1 :

Iðnn̄ÞC1
¼ b6 exp

�
−
4

3
kηuR − ηdRk2

�
; ð4:15Þ

where b6 ¼ ð2 · 3−1=2π−1μ2Þn from the k ¼ 6 special case of

Eq. (2.29) and Iðnn̄ÞCk
≡ I

Cðnn̄Þ
k

. The operator Oðnn̄Þ
3 yields a

second class:
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Iðnn̄ÞC2
¼ b6 exp

�
−
1

6
f2kηQL

− ηuRk2 þ 6kηQL
− ηdRk2

þ 3kηuR − ηdRk2g
�
: ð4:16Þ

Finally, the operator Oðnn̄Þ
4 yields the third class:

Iðnn̄ÞC3
¼ b6 exp

�
−
4

3
kηQL

− ηdRk2
�
: ð4:17Þ

From the k ¼ 6 special cases of Eqs. (2.23)–(2.30), it follows
that

cðnn̄Þr ¼ κ̄ðnn̄Þr

ðMBNVÞ5
�

2μ2

31=2πM2
BNV

�
n
e−S

ðnn̄Þ
r ; ð4:18Þ

where

Sðnn̄Þr ¼ 4

3
kηuR − ηdRk2 for r ¼ 1; 2; ð4:19Þ

Sðnn̄Þ3 ¼ 1

6
f2kηQL

− ηuRk2 þ 6kηQL
− ηdRk2

þ 3kηuR − ηdRk2g; ð4:20Þ

and

Sðnn̄Þ4 ¼ 4

3
kηQL

− ηdRk2: ð4:21Þ

Then

jδmj ¼ 1

ðMBNVÞ5
�

μ

MBNV

�
2n
�

2

31=2π

�
n

×

����
X
r

κ̄ðnn̄Þr e−S
ðnn̄Þ
r hnjOðnn̄Þ

r jni
����: ð4:22Þ

Reference [25] used, as a specific framework, a model with
n ¼ 2 and, in addition to the values of kηQL

− ηuRk and
kηQL

− ηdRk from (2.17), also the value kηuR − ηdRk ¼ 7

from [27]. It was shown in [25] that, with this input,

the contributions of the Oðnn̄Þ
r with r ¼ 1, 2, 3 are small

compared with the contribution of Oðnn̄Þ
4 . Hence, jδmj ¼

jcðnn̄Þ4 hn̄jOðnn̄Þ
4 jnij; i.e., only the r ¼ 4 term in Eq. (4.22) is

non-negligible. The sumSðnn̄Þ4 is fixed, via Eq. (2.17), by thed
quark mass, so, for the given μ and an input value of MBNV

(and with κðnn̄Þ4 ≃ 1), the coefficient cðnn̄Þ4 is also fixed. The

matrix elements hn̄jOðnn̄Þ
r jnihavedimensions of ðmassÞ6, and

since they are determinedbyhadronic physics, one expects on
general grounds that they are ∼Λ6

QCD, where, as above,

ΛQCD ≃ 0.25 GeV. This is borne out by quantitative
studies [8,9,58]. Requiring that jδmj must be less than the
experimental upper bound (4.3) yields a lower bound on
MBNV (denotedMX in [25]).With the illustrativevaluen ¼ 2,
this is

MBNV > ð44 TeVÞ
�

τnn̄
2.7 × 108 sec

�
1=9

�
μ

3 × 103 TeV

�
4=9

×

�jhn̄jOðnn̄Þ
4 jnij

Λ6
QCD

�
1=9

: ð4:23Þ

Thus, as pointed out in [25], for values ofMBNV in the range
relevant to our extra-dimensional model, although nucleon
decays could easily be suppressed well below experimental
limits, n − n̄ oscillations could occur at a level comparable to
current limits.
Since the value of the separation distance kηuR − ηdRk is

not determined by quark masses or mixing (since these
arise from bilinear operator products of QL with uR and
dR), it is of interest to inquire what range of values this
distance can have, subject to the condition that jδmj be
smaller than the experimental upper limit (4.3). With the
input value of μ given in Eq. (2.11) and for a value of
MBNV ¼ 50 TeV, we find the bound kηuR − ηdRk≳ 4.6.
As noted in Sec. III, because constraints on fermion

separation distances enter in the sums Sðnn̄Þr , the lower
bounds on these distances depend only rather weakly
(logarithmically) on MBNV.

V. ΔL= 0 DINUCLEON DECAYS TO DILEPTONS

The same baryon-number-violating physics that leads to
n − n̄ oscillations and hence also to the dinucleon decays
nn → pions and np → pions also leads to dinucleon decays
to dilepton final states. These decays are of several different
types, characterized by different ΔL values: ΔL ¼ 0,
ΔL ¼ −2, and ΔL ¼ 2. The ΔL ¼ 0 dinucleon decays
are on a different footing from the ΔL ¼ �2 decays,
because a ΔL ¼ 0 dinucleon decay can occur via a
combination of a ΔB ¼ −1 n − n̄ transition followed by
Standard-Model processes, namely the annihilation of the n̄
(i) with a neighboring n to produce, respectively, a virtual
photon or Z which then creates a final-state lþl− or νlν̄l,
or (ii) with a neighboring p to produce a virtualWþ, which
then creates the final-state lþνl.
In [43] we calculated rough lower bounds on the partial

lifetimes for the above ΔL ¼ 0 dinucleon-to-dilepton
decays by relating their rates to the rates for the decays
nn → π0π0, nn → πþπ−, and np → πþπ0 and using exper-
imental lower bounds on the partial lifetimes of the latter
dinucleon decays. Our study in [43] was a general
phenomenological analysis and did not assume a particular
BSM theory such as the extra-dimension model used in the
present work. We obtained the estimated lower bounds
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ðτ=BÞnn→lþl− ≳ 5 × 1034 yr for l ¼ e; μ; ð5:1Þ

ðτ=BÞnn→νlν̄l
≳ 2 × 1041 yr for νl ¼ νe; νμ; ντ; ð5:2Þ

ðτ=BÞnp→lþνl ≳ 1041 yr for l ¼ e; μ; ð5:3Þ

and

ðτ=BÞnp→τþντ ≳ 1042 yr: ð5:4Þ

These bounds are considerably stronger than the correspond-
ing experimental bounds from searches for these decays.
Experiments use the notational convention of referring to
their limits as limits on (τ=B) for nn → π0π0,n → πþπ−, and
np → πþπ0 although their limits actually apply to the
nuclei in their detectors. We follow this convention here.
These experimental bounds are as follows: ðτ=BÞnn→eþe− >
4.2 × 1033 yr and ðτ=BÞnn→μþμ− > 4.4 × 1033 yr from SK
[23] (per 16O nucleus in the water); ðτ=BÞnn→inv > 1.4 ×
1030 yr from KamLAND [14,59] (per 12C nucleus in
the liquid scintillator), and ðτ=BÞnp→eþx > 2.6 × 1032 yr,
ðτ=BÞnp→μþx > 2.2 × 1032 yr [21] (per 16O nucleus), where
x denotes a neutrino or antineutrino. Reference [19] used
data from searches for dinucleon decays into multilepton
final states involving eþ and μþ plus (anti)neutrinos to
obtain the bound ðτ=BÞnp→τþν̄τ > 1 × 1030 yr. A dedicated
search by the SK experiment yielded the bound [21]
ðτ=BÞnp→τþx > 2.9 × 1031 yr,where, as above, x is a neutral,
weakly interacting fermion, assumed to have a negligibly
small mass. This subsumes the cases in which x is an
electroweak-doublet neutrino or antineutrino of some unde-
termined flavor, or possibly an electroweak-singlet (sterile)
neutrino.

VI. ΔL= − 3 NUCLEON DECAYS
TO TRILEPTONS

In this section we consider the ΔL ¼ −3 nucleon decays
to trileptons (1.1) and (1.2). We use the constraints on
distances derived in Sec. III to obtain generic expectations
for lower bounds on partial lifetimes for these decays in the
extra-dimensional model. Operators that contribute to the
decays (1.1) and (1.2) are six-fermion operators. In terms of
fermion fields, the operators that we discuss comprise eight
classes, which are listed in Table I. We denote these with a
superscript (pm3), (nm3), or ðpm3; nm3Þ, corresponding
to the decays (1.1) and (1.2) to which the operator
contributes, where pm3 stands for “proton decay to
tripleptons, with ΔL equal to minus 3” and similarly for
nm3. We list these operators below (with l ¼ e or μ),
together with the class to which they belong:

Oðpm3Þ
1 ¼ ϵαβγ½uαTR CdβR�½uγTR ClR�½νTs;RCνs0;R� ∈ Cðpm3Þ

1 ;

ð6:1Þ

Oðpm3Þ
2 ¼ ϵαβγ½uαTR CdβR�½uγTR Cνs;R�½lT

RCνs0;R� ∈ Cðpm3Þ
1 ;

ð6:2Þ

Oðnm3Þ
3 ¼ ϵαβγ½uαTR CdβR�½dγTR Cνs;R�½νTs0;RCνs00;R� ∈ Cðnm3Þ

2 ;

ð6:3Þ

Oðpm3Þ
4 ¼ ϵijϵαβγ½QiαT

L CQjβ
L �½uγTR ClR�½νTs;RCνs0;R�

¼ 2ϵαβγ½uαTL CdβL�½uγTR ClR�½νTs;RCνs0;R� ∈ Cðpm3Þ
3 ;

ð6:4Þ

Oðpm3Þ
5 ¼ ϵijϵαβγ½QiαT

L CQjβ
L �½uγTR Cνs;R�½lT

RCνs0;R�
¼ 2ϵαβγ½uαTL CdβL�½uγTR Cνs;R�½lT

RCνs0;R� ∈ Cðpm3Þ
3 ;

ð6:5Þ

Oðnm3Þ
6 ¼ ϵijϵαβγ½QiαT

L CQjβ
L �½dγTR Cνs;R�½νTs0;RCνs00;R�

¼ 2ϵαβγ½uαTL CdβL�½dγTR Cνs;R�½νTs0;RCνs00;R� ∈ Cðnm3Þ
4 ;

ð6:6Þ

Oðpm3;nm3Þ
7 ¼ ϵijϵαβγ½QiαT

L CLj
l;L�½uβTR CdγR�½νTs;RCνs0;R�

¼ ϵαβγð½uαTL ClL� − ½dαTL Cνl;L�Þ½uβTR CdγR�
× ½νTs;RCνs0;R� ∈ Cðpm3;nm3Þ

5 ; ð6:7Þ

TABLE I. Structures of classes CðNm3Þ
k of operators contributing

toΔL ¼ −3 nucleon decays to trileptons. The first column lists the
class number; the second column lists the number Nd of SUð2ÞL
doublets in the operators in this class; and the third column lists the
structure of operators in the class. As in the text, we use the
abbreviations pm3 for p → lþν̄ν̄0 and nm3 for n → ν̄ν̄0ν̄00. The
abbreviations used for the fermion fields are Q ¼ QL, L ¼ LL,
u ¼ uR, d ¼ dR, l ¼ lR, and ν ¼ νs;R. The primes distinguishing
different ν fields are suppressed in the notation.

Class CðNm3Þ
k Nd Structure

Cðpm3Þ
1

0 u2dlν2

Cðnm3Þ
2

0 ud2ν3

Cðpm3Þ
3

2 Q2ulν2

Cðnm3Þ
4

2 Q2dν3

Cðpm3;nm3Þ
5

2 QLudν2

Cðpm3;nm3Þ
6

2 QLu2lν

Cðpm3;nm3Þ
7

4 Q3Lν2

Cðpm3;nm3Þ
8

4 Q2L2uν
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Oðpm3;nm3Þ
8 ¼ ϵijϵαβγ½QiαT

L CLj
l;L�½uβTR Cνs;R�½dγTCνs0;R�

¼ ϵαβγð½uαTL ClL� − ½dαTL Cνl;L�Þ½uβTR Cνs;R�
× ½dγTR Cνs0;R� ∈ Cðpm3;nm3Þ

5 ; ð6:8Þ

Oðpm3;nm3Þ
9 ¼ ϵijϵαβγ½QiαT

L CLj
l0;L�½uβTR ClR�½uγTR Cνs;R�

¼ ϵαβγð½uαTL Cl0
L� − ½dαTL Cνl0;L�Þ½uβTR ClR�

× ½uγTR Cνs;R� ∈ Cðpm3;nm3Þ
6 ; ð6:9Þ

Oðpm3;nm3Þ
10 ¼ ϵijϵkmϵαβγ½QiαT

L CQjβ
L �½QkγT

L CLm
l;L�½νTs;RCνs0;R�

¼ 2ϵαβγ½uαTL CdβL�ð½uγTL ClL� − ½dγTL Cνl;L�Þ
× ½νTs;RCνs0;R� ∈ Cðpm3;nm3Þ

7 ; ð6:10Þ

and

Oðpm3;nm3Þ
11 ¼ ϵijϵkmϵαβγ½QiαT

L CLj
l;L�½QkβT

L CLm
l0;L�½uγTR Cνs;R�

¼ ϵαβγð½uαTL ClL� − ½dαTL Cνl;L�Þ
× ð½uβTL Cl0

L� − ½dβTL Cνl0;L�Þ½uγTR Cνs;R�
∈ Cðpm3;nm3Þ

8 : ð6:11Þ

The contributions of the operators are determined by
the integrals over the n extra dimensions, which, in turn,
only depend on the class to which a given operator belongs.
A general remark relevant for these operators and also
operators for other BNV processes is the following: in
enumerating relevant operators contributing to some proc-
ess, it is sometimes of interest to demonstrate that they are
all linearly independent. However, for our present pur-
poses, this is not necessary, since our actual analysis is
based on the classes of operators and their resultant
integrals, and these classes are manifestly independent of
each other, since they are comprised of different fermion
fields. This remark is also relevant for relations involving
other operators with different Dirac structure.
Usingour general formula (8.18),wecalculate the integrals

for these classes. With the notation Iðpm3Þ
C1

≡I
Cðpm3Þ
1

, we have

Iðpm3Þ
C1

¼ b6 exp

�
−
1

6
f2kηuR − ηdRk2 þ 2kηuR − ηlR

k2 þ 2kηuR − ηνs;Rk2 þ 2kηuR − ηνs0 ;Rk2 þ kηdR − ηlRk2

þ kηdR − ηνs;Rk2 þ kηdR − ηνs0 ;Rk2 þ kηlR − ηνs;Rk2 þ kηlR
− ηνs0 ;Rk2 þ kηνs;R − ηνs0 ;Rk2g

�
; ð6:12Þ

Iðnm3Þ
C2

¼ b6 exp

�
−
1

6
f2kηuR − ηdRk2 þ kηuR − ηνs;Rk2 þ kηuR − ηνs0 ;Rk2 þ kηuR − ηνs00 ;Rk2 þ 2kηdR − ηνs;Rk2

þ 2kηdR − ηνs0 ;Rk2 þ 2kηdR − ηνs00 ;Rk2 þ kηνs;R − ηνs0 ;Rk2 þ kηνs;R − ηνs00 ;Rk2 þ kηνs0 ;R − ηνs00 ;Rk2g
�
; ð6:13Þ

Iðpm3Þ
C3

¼ b6 exp

�
−
1

6
f2kηQL

− ηuRk2 þ 2kηQL
− ηlRk2 þ 2kηQL

− ηνs;Rk2 þ 2kηQL
− ηνs0 ;Rk2 þ kηuR − ηlRk2

þ kηuR − ηνs;Rk2 þ kηuR − ηνs0 ;Rk2 þ kηlR − ηνs;Rk2 þ kηlR − ηνs0 ;Rk2 þ kηνs;R − ηνs0 ;Rk2g
�
; ð6:14Þ

Iðnm3Þ
C4

¼ b6 exp

�
−
1

6
f2kηQL

− ηdRk2 þ 2kηQL
− ηνs;Rk2 þ 2kηQL

− ηνs0 ;Rk2 þ 2kηQL
− ηνs00 ;Rk2 þ kηdR − ηνs;Rk2

þ kηdR − ηνs0 ;Rk2 þ kηdR − ηνs00 ;Rk2 þ kηνs;R − ηνs0 ;Rk2 þ kηνs;R − ηνs00 ;Rk2 þ kηνs0 ;R − ηνs00 ;Rk2g
�
; ð6:15Þ

Iðpm3;nm3Þ
C5

¼ b6 exp

�
−
1

6
fkηQL

− ηLl;L
k2 þ kηQL

− ηuRk2 þ kηQL
− ηdRk2 þ kηQL

− ηνs;Rk2 þ kηQL
− ηνs0 ;Rk2

þ kηLl;L
− ηuRk2 þ kηLl;L

− ηdRk2 þ kηLl;L
− ηνs;Rk2 þ kηLl;L

− ηνs0 ;Rk2 þ kηuR − ηdRk2

þ kηuR − ηνs;Rk2 þ kηuR − ηνs0 ;Rk2 þ kηdR − ηνs;Rk2 þ kηdR − ηνs0 ;Rk2 þ kηνs;R − ηνs0 ;Rk2g
�
; ð6:16Þ
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Iðpm3;nm3Þ
C6

¼ b6 exp

�
−
1

6
fkηQL

− ηLl;L
k2 þ 2kηQL

− ηuRk2 þ kηQL
− ηlRk2 þ kηQL

− ηνs;Rk2 þ 2kηLl;R
− ηuRk2

þ kηLl;L
− ηlRk2 þ kηLl;L

− ηνs;Rk2 þ 2kηuR − ηlRk2 þ 2kηuR − ηνs;Rk2 þ kηlR − ηνs;Rk2g
�
; ð6:17Þ

Iðpm3;nm3Þ
C7

¼ b6 exp

�
−
1

6
f3kηQL

− ηLl;L
k2 þ 3kηQL

− ηνs;Rk2 þ 3kηQL
− ηνs0 ;Rk2 þ kηLl;L

− ηνs;Rk2

þ kηLl;L
− ηνs0 ;Rk2 þ kηνs;R − ηνs0 ;Rk2g

�
; ð6:18Þ

and

Iðpm3;nm3Þ
C8

¼ b6 exp

�
−
1

6
f4kηQL

− ηLl;L
k2 þ 2kηQL

− ηuRk2 þ 2kηQL
− ηνs;Rk2 þ 2kηLl;L

− ηuRk2

þ 2kηLl;L
− ηνs;Rk2 þ kηuR − ηνs;Rk2g

�
: ð6:19Þ

Using these calculations and typical values of fer-
mion separation distances obeying the constraints from
nucleon decays discussed in Sec. III, we find that these
ΔL ¼ −3 nucleon decays are strongly suppressed rel-
ative to nucleon decays mediated by four-fermion
operators. Making reference to the comparison of rates
in Eq. (2.32) and the illustrative numerical example in
Eq. (2.34), we find that the difference hSð6Þi − hSð4Þi is
positive, adding to the suppression from the prefactor.
The basic reason that the ΔL ¼ −3 decays to trilepton
final states are strongly suppressed in this model, while
n − n̄ oscillations can occur at levels comparable to
current limits, is BNV nucleon decays can be sup-
pressed by making the separation between quark and
lepton wave function centers sufficiently large. This
does not suppress n − n̄ oscillations but considerably
suppresses these ΔL ¼ −3 decays, since they involve
outgoing (anti)leptons. This reason also explains the
suppression that we will find for the various types of
BNV nucleon and dinucleon decays in the following
sections.
Thus, we find that the resultant expected predictions for

partial lifetimes for these ΔL ¼ −3 nucleon decays are
compatible with existing experimental limits. These limits
include ðτ=BÞp→eþxx > 0.58 × 1030 yr [20], ðτ=BÞp→μþxx >
0.58 × 1030 yr [20], and ðτ=BÞn→xxx > 0.58 × 1030 yr [22],
where here x denotes an unobserved neutral, weakly
interacting fermion with negligibly small mass that does
not decay in the detector. Thus, for example, the lower limit
on (τ=B) for the decayp → lþxx applies to all of the decays
p → lþν̄ν̄0 (with ΔL ¼ −3), p → lþνν̄0 (with ΔL ¼ −1),
and p → lþνν0 (with ΔL ¼ 1) for lþ ¼ eþ or μþ, and
similarly, the lower bound on n → xxx applies to all neutron
decays to combinations of (anti)neutrinos with ΔL ranging
from ΔL ¼ −3 to ΔL ¼ þ3. Further searches for these

and other types of nucleon decays are worthwhile
(e.g., [60–62]). In addition to continued data taking
at SuperKamiokande, future searches for nucleon decays
are planned at HyperKamiokande [63] and in the liquid
argon detector in DUNE (Deep Underground Neutrino
Experiment) [64].

VII. ΔL= 1 NUCLEON DECAYS
TO TRILEPTONS

Here we study the ΔL ¼ 1 nucleon decays to tri-
lepton final states (1.3) and (1.4). These decays are
mediated by six-fermion operators, as was the case with
the ΔL ¼ −3 nucleon decays to trilepton final states
analyzed in Sec. VI. Our procedure for analyzing these
decays is analogous to the procedure we used in
Sec. VI. Indeed, there is a one-to-one correspondence
between the operators here and a subset of the operators

in that section, namely OðNm3Þ
r with r ¼ 1, 3, 4, 6, 7,

obtained by the replacement of an EW-singlet neutrino
bilinear by one with each νs;R field replaced by
ðνs;RÞc ≡ ðνcÞs;L (the charge conjugation reverses the
chirality), i.e., by replacing ½νTs;RCνs0;R� by ½νc Ts;LCνcs0;L�.
We denote these with a superscript ðp1Þ, ðn1Þ, or
ðp1; n1Þ, corresponding to the decays (1.3) and (1.4)
to which the operator contributes, where p1 stands for
“proton decay to tripleptons, with ΔL equal to 1” and
similarly for n1. The charge conjugation leaves the
position of the fermion unchanged, so ηνs;R ¼ ηνcs;L .

Consequently, the five classes to which the operators
for the ΔL ¼ 1 nucleon decays to trileptons belong are
in one-to-one correspondence with five of the seven
classes to which the operators for the ΔL ¼ −3 nucleon
decays to trileptons belong, and the corresponding
integrals are equal:
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Cðp3Þ
1 ↔ Cðp1Þ

1 ; Cðn3Þ
2 ↔ Cðn1Þ

2 ; Cðp3Þ
3 ↔ Cðp1Þ

3 ;

Cðn3Þ
4 ↔ Cðn1Þ

4 ; Cðp3;n3Þ
5 ↔ Cðp1;n1Þ

1 ; ð7:1Þ

where here the symbol↔means replacement of a νν bilinear
by a νcνc bilinear. The integrals satisfy the equalities

Iðp1ÞC1
¼ Iðpm3Þ

C1
; Iðn1ÞC2

¼ Iðnm3Þ
C2

; Iðp1ÞC3
¼ Iðpm3Þ

C3
;

Iðn1ÞC4
¼ Iðnm3Þ

C4
; Iðp1;n1ÞC5

¼ Iðpm3;nm3Þ
C5

: ð7:2Þ
Operators mediating these ΔL ¼ 1 dinucleon decays to

trileptons are

Oðp1Þ
1 ¼ ϵαβγ½uαTR CdβR�½uγTR ClR�½νcTs;LCνcs0;R� ∈ Cðp1Þ

1 ; ð7:3Þ

Oðn1Þ
2 ¼ ϵαβγ½uαTR CdβR�½dγTR Cνs;R�½νcTs0;LCνcs00;L�∈Cðn1Þ

2 ; ð7:4Þ

Oðp1Þ
3 ¼ ϵijϵαβγ½QiαT

L CQjβ
L �½uγTR ClR�½νcTs;LCνcs0;L�

¼ 2ϵαβγ½uαTL CdβL�½uγTR ClR�½νcTs;LCνcs0;L�∈Cðp1Þ
3 ; ð7:5Þ

Oðn1Þ
4 ¼ ϵijϵαβγ½QiαT

L CQjβ
L �½dγTR Cνs;R�½νcTs0;LCνcs00;L�

¼ 2ϵαβγ½uαTL CdβL�½dγTR Cνs;R�½νcTs0;LCνcs00;L� ∈ Cðn1Þ
4 ;

ð7:6Þ
and

Oðp1;n1Þ
5 ¼ ϵijϵαβγ½QiαT

L CLj
l;L�½uβTR CdγR�½νcTs;LCνcs0;L�

¼ ϵαβγð½uαTL ClL�− ½dαTL Cνl;L�Þ½uβTR CdγR�½νcTs;LCνcs0;L�
∈Cðp1;n1Þ

5 : ð7:7Þ

We summarize these classes in Table II. Owing to the
equalities (7.2), our conclusions concerning upper bounds
on the rates for these ΔL ¼ 1 nucleon decays to trilepton

final states are the same as for theΔL ¼ −3 nucleon decays
to trileptons.

VIII. ΔL= − 2 DINUCLEON DECAYS TO
DILEPTONS: GENERAL OPERATOR ANALYSIS

In this section we carry out a general operator analysis of
the ΔL ¼ −2 dinucleon decays to dileptons (1.5)–(1.8). In
later sections, we shall use our results to obtain approxi-
mate estimates of expected rates for these decays in the
extra-dimensional model. As is obvious from the selection
rule ΔL ¼ −2 for these decays, they arise differently from
the ΔB ¼ −2, ΔL ¼ 0 dinucleon-to-dilepton decays for
which we set bounds in [43]. The process by which the
ΔB ¼ −2, ΔL ¼ 0 dinucleon-to-dilepton decays occur
involves a local six-fermion operator that mediates the
n − n̄ transition, in conjunctionwith nn̄ annihilation leading
to a virtual γ, Z, or n̄p annihilation leading to a virtualWþ.
The virtual γ, Z, or Wþ then produce the final-state lepton-
antilepton pairs, namelylþl−, νlν̄l, andlþνl, respectively.
Although the amplitudes involve eight external fermion
lines, the lepton-antilepton operator product is bilocal with
respect to the six-quark operator product (separated by a
Euclidean distance∼1=fm for the γ,∼1=mZ and∼1=mW for
the processes with a virtual Z and Wþ, respectively; i.e.,
these ΔB ¼ −2, ΔL ¼ 0 amplitudes do not dominantly
involve local eight-fermion operator products.
Proceeding with our analysis, we first discuss the general

structure of an effective Lagrangian for the ΔB ¼ −2,
ΔL ¼ −2 dinucleon-to-dilepton decays. For labeling pur-
poses, we shall introduce the superscript NN0, which takes
on the respective values ðNN0Þ ¼ ðppÞ for pp → lþl0þ

decays, ðNN0Þ ¼ ðnpÞ for np → lþν̄ decays, and ðNN0Þ ¼
ðnnÞ for nn → ν̄ν̄0 decays, with the dilepton final state kept
implicit in the notation. This effective Lagrangian has the
form

LðNN0Þ
eff ðxÞ ¼

X
r

cðNN0Þ
r OðNN0Þ

r ðxÞ þ H:c:

¼
X
r

κðNN0Þ
r

Z
dnyOðNN0Þ

r ðx; yÞ þ H:c:

¼
X
r

κðNN0Þ
r UðNN0Þ

r ðxÞ
Z

dnyVðNN0Þ
r ðyÞ þ H:c:

¼
X
r

κðNN0Þ
r IðNN0Þ

r UðNN0Þ
r ðxÞ þ H:c:; ð8:1Þ

where, in accord with the general notation (2.23),

IðNN0Þ
r ¼

Z
dnyVðNN0Þ

r ðyÞ: ð8:2Þ

Various sets of operators OðNNÞ
r yield the same integrals

IðNNÞ
r , so they can be organized into certain classes, as we
will discuss below.

TABLE II. Structures of classes CðN1Þ
k of operators contributing

to ΔL ¼ 1 nucleon decays to trileptons. The first column lists the
class number; the second column lists the number Nd of SUð2ÞL
doublets in the operators in this class; and the third column lists
the structure of operators in the class. As in the text, we use the
abbreviations p1 for p → lþνν0 and n1 for n → ν̄ν0ν00.
The abbreviations for fermion fields are the same as in Table I.
The primes distinguishing different ν fields are suppressed in the
notation.

Class CðN1Þ
k Nd Structure

Cðp1Þ
1

0 u2dlν̄2

Cðn1Þ
2

0 ud2νν̄2

Cðp1Þ
3

2 Q2ulν̄2

Cðn1Þ
4

2 Q2dνν̄2

Cðp1;n1Þ
5

2 QLudν̄2
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By the same logic as for the four-fermion operators
contributing to individual nucleon decays and the six-quark
operators contributing to n − n̄ oscillations and dinucleon
decays tomesonic final states, since existing limits imply that
the mass scale characterizing the physics responsible for
these dinucleon-to-dilepton decays must be large compared
with the electroweak symmetry-breaking scale v, it follows

that the eight-fermionoperatorsOðNN0Þ
r ðx; yÞmust be singlets

under the Standard-Model gauge group GSM.
Six of the eight fermions in these operators are quark

fields. The color indices of the six quark fields, denoted as
α, β, γ, δ, ρ, and σ, are coupled together to make an SUð3Þc
singlet. This can be done in any of three ways, correspond-
ing to the color tensors ðTsÞαβγδρσ in Eq. (4.12), ðTaÞαβγδρσ
in Eq. (4.13), and

ðTa3Þαβγδρσ ¼ ϵραβϵσγδ − ϵσαβϵργδ: ð8:3Þ
Some properties of these tensors are reviewed in
Appendix B. As discussed in [9], there are also color
tensors related to these by redefinition of indices, such as
Ta20ðsaaÞ and Ta20ðasaÞ in Eqs. (3.4) and (3.5) of [9], but these
will not be needed here.
The eight-fermion operators can be classified according

to how many of the eight fermions are SUð2ÞL nonsinglets;
the possibilities are 0, 2, 4, 6, and 8. For operators
containing a nonzero number (2, 4, 6, or 8) fermions in
SUð2ÞL nonsinglets, there are various ways to contract the
SUð2ÞL weak isospin indices. One way is to contract each
pair of weak isospin-1=2 indices antisymmetrically to make
singlets, using the ϵij tensor for two SUð2ÞL indices, and so
forth for other SUð2ÞL indices. Alternatively, one can
combine pairs of weak isospin-1=2 fields symmetrically
to make adjoint (i.e., weak isospin 1) representations of
SUð2ÞL and then contract these to obtain an SUð2ÞL singlet.
For example, starting with four weak isospin 1=2 repre-
sentations with SUð2ÞL indices ði; jÞ; ðk;mÞ, the (i; j) and
(k;m) indices can each be combined symmetrically, and
then the resulting two isovectors can be contracted to make
an SUð2ÞL singlet. This is done with the SUð2ÞL tensor

ðIssÞijkm ≡ ðϵikϵjm þ ϵimϵjkÞ: ð8:4Þ
For operators with six fermions in SUð2ÞL doublets,
another relevant SUð2ÞL tensor involves symmetric combi-
nations of two pairs of isospin-1=2 representations com-
bined with an antisymmetric combination of the third pair
of isospin-1=2 representations, via the tensor

ðIssaÞijkmnp ≡ ðϵikϵjm þ ϵimϵjkÞϵnp; ð8:5Þ
where the subscript (ssa) refers to this symmetric-
symmetric-antisymmetric structure of SUð2ÞL contractions.
Finally, one can also use a set of SUð2ÞL contractions in
which all pairs of isospin-1=2 representations are combined
symmetrically. The SUð2ÞL tensor that does this is

Isss¼ ϵikðϵjnϵmpþ ϵmnϵjpÞþ ϵimðϵjnϵkpþ ϵknϵjmÞ
þ ϵjkðϵinϵmpþ ϵmnϵipÞþ ϵjmðϵinϵkpþ ϵknϵipÞ; ð8:6Þ

where the (sss) subscript refers to the threefold symmetric
set of contractions.
Since there is a one-to-one correspondence between an

operatorOðNN0Þ
r in LðNN0Þ

eff and an operatorOðNN0Þ
r in LðNN0Þ

eff;4þn,
one can use either of these for a structural analysis; we will

use theOðNN0Þ
r . We will determine a general set of classes of

operators that yield the same integrals IðNN0Þ
r , as defined in

Eq. (8.2). A given class typically contains several different
individual operators. However, since it is the integrals

IðNN0Þ
r that control the contribution to the amplitude, the
natural organization for our analysis is in terms of these
classes, rather than the individual operators.
We proceed with the general structural analysis of the

ΔL ¼ −2 dinucleon-to-dilepton decays. The eight fermions

that comprise a given operator OðNN0Þ
r are comprised of

six quarks and two leptons, namely uud; uud;lþ;l0þ,
uud; ddu;lþν̄, and ddu; ddu; ν̄; ν̄0 for the decays (1.5),
(1.7), and (1.8), respectively. As discussed above, the quarks
can be chosen from the SUð2ÞL-doublet QL or the SUð2ÞL-
singlets uR and dR, and the leptons can be chosen from the
SUð2ÞL-doubletsLl;L andLl0;L and the SUð2ÞL-singletslR,
l0
R, and νs;R. We can abstractly represent a generic eight-

fermion operator product OðNN0Þ
r as

OðNN0Þ ¼ Q
nQ
L LnL

L unuR dndR lnl
R ν

nνs
s;R; ð8:7Þ

where we have suppressed the arguments y and η in the
fermion fields, have suppressed the difference between
lepton fields with and without primes, and have left the
chiralities of the fermions implicit in the exponents. The fact
that the operator involves eight fermions is the condition

nQ þ nL þ nu þ nd þ nl þ nνs ¼ 8: ð8:8Þ
The condition that the initial state is a dinucleon is that

nQ þ nu þ nd ¼ 2Nc ¼ 6; ð8:9Þ
where Nc ¼ 3 is the number of colors. With the color
contractions discussed above, this condition is sufficient for
the operator be an SUð3Þc singlet. The condition that the
final state has L ¼ −2, i.e., is comprised of two antileptons,
is that

nL þ nl þ nνs ¼ 2: ð8:10Þ
Note that only two of the three equations (8.8)–(8.10) are
linearly independent. The requirement that O must be
invariant under the SM gauge group implies that it must
have zero weak hypercharge and that it must be a singlet
under SUð2ÞL. The condition that it must have weak
hypercharge Y ¼ 0 is that

P
f nfYf ¼ 0, or, explicitly,
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nQ

�
1

3

�
þ nLð−1Þ þ nu

�
4

3

�
þ nd

�
−
2

3

�
þ nlð−2Þ ¼ 0:

ð8:11Þ

The condition that the operator must be an SUð2ÞL singlet
requires that the number of SUð2ÞL doublets must
be even:

nQ þ nL ¼ ð0; 2; 4; 6; or 8Þ: ð8:12Þ

Equations (8.8)–(8.12) comprise five linear equations,
of which four are linearly independent, in the six
(non-negative, integer) unknown numbers, nQ, nL, nu, nd,
nl, and nνs , with the constraint that each number must lie in
the range [0, 8]. The solutions to these equations with the
given constraint determine the general structures of the
operators for dinucleon-to-dilepton decays with ΔL ¼ −2.
We have obtained these solutions, which we list in Table III.
The abbreviations used for the fermion fields are Q ¼ QL,

L ¼ LL, u ¼ uR, d ¼ dR, l ¼ lR, and ν ¼ νs;R. The first
column lists the class number; the second column lists the
number of SUð2ÞL doublets, denoted Nd; and the third
column lists the general structure. Primes distinguishing
different lepton fields are suppressed in the notation. In
checking candidate solutions of Eqs. (8.8)–(8.12), it is
necessary to verify that they do not vanish identically
because of combined SUð3Þc and SUð2ÞL tensors. We find
that one class with Nd ¼ 6, of the abstract form Q6lν,
contains no nonvanishing operators of our type.We denote a

given class symbolically as CðNN0Þ
k . These contribute as

follows:

pp → lþl0þ∶ CðNN0Þ
k ; k ¼ 1; 4; 7; 10; 13; 15; 16; 17; 19;

ð8:13Þ

np → lþν̄∶ CðNN0Þ
k ;

k ¼ 2; 5; 7; 8; 9; 11; 13; 14; 15; 16; 17; 18; 19; ð8:14Þ

and

nn → ν̄ν̄0∶ CðNN0Þ
k ; k ¼ 3; 6; 8; 12; 14; 15; 16; 18; 19:

ð8:15Þ

As is evident in these lists, some classes of operators only
contribute to one type of ΔL ¼ −2 dinucleon-to-dilepton
decay,while others contribute to two or three of these decays.
We will sometimes indicate this explicitly, writing, for

example, CðNN0Þ
1 ¼ CðppÞ

1 , CðNN0Þ
2 ¼ CðnpÞ

2 , CðNN0Þ
3 ¼ CðnnÞ

3 ,

CðNN0Þ
7 ¼ Cðpp;npÞ

7 , CðNN0Þ
8 ¼ Cðnp;nnÞ

8 , and CðNN0Þ
15 ¼

Cðpp;np;nnÞ
15 , where abbreviations for superscripts are pp

for the decays pp → lþl0þ, np for np → lþν̄, and nn
for nn → ν̄ν̄0. For brevity, we will also sometimes suppress

the superscript ðNN0Þ onCðNN0Þ
k , writing simplyCk, as in the

notation IðNN0Þ
Ck

≡ I
CðNN0Þ
k

.

The integrand function of a class of operatorsCðNN0Þ
k in this

table with a given set of exponents ðnQ; nL; nu; nd; nl; nνÞ is
of the form

VðNN0Þ
k ðyÞ ¼ A8 exp

�
−
X
ffg

nfkη − ηfk2
�
: ð8:16Þ

The integral of VðNN0Þ
k ðyÞ over the extra spatial coordi-

nates is

IðNN0Þ
Ck

¼
Z

dnyVðNN0Þ
k ðyÞ: ð8:17Þ

This gives

TABLE III. Structures of classes CðNN 0Þ
k of operators contribut-

ing to dinucleon-to-dilepton decays with ΔL ¼ −2. The first
column lists the class number; the second column lists the number
of SUð2ÞL doublets in the operators in this class; and the third
column lists the structure of operators in the class. The abbrevia-
tions in the superscripts on the classes arepp forpp → lþl0þ, np
fornp → lþν̄, andnn fornn → ν̄ν̄0. The abbreviations for fermion
fields are the same as in Table I. The primes distinguishing
different lepton fields are suppressed in the notation.

Class CðNN 0Þ
k Nd Structure

CðppÞ
1

0 u4d2l2

CðnpÞ
2

0 u3d3lν

CðnnÞ
3

0 u2d4ν2

CðppÞ
4

2 Q2u3dl2

CðnpÞ
5

2 Q2u2d2lν

CðnnÞ
6

2 Q2ud3ν2

Cðpp;npÞ
7

2 QLu3d2l

Cðnp;nnÞ
8

2 QLu2d3ν

CðnpÞ
9

2 L2u3d3

CðppÞ
10

4 Q4u2l2

CðnpÞ
11

4 Q4udlν

CðnnÞ
12

4 Q4d2ν2

Cðpp;npÞ
13

4 Q3Lu2dl

Cðnp;nnÞ
14

4 Q3Lud2ν

Cðpp;np;nnÞ
15

4 Q2L2u2d2

Cðpp;np;nnÞ
16

6 Q4L2ud

Cðpp;npÞ
17

6 Q5Lul

Cðnp;nnÞ
18

6 Q5Ldν

Cðpp;np;nnÞ
19

8 Q6L2
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IðNN0Þ
Ck

¼ b8 exp

�
−
1

8

X
f;f0;f≠f0;ord

nfnf0 kηf − ηf0k2
�
; ð8:18Þ

where the sum is over all of the types of fermion fields in
the operator product, in an ordered manner, as indicated in
Eq. (A2). The prefactor b8 ¼ ð21=2π−3=2μ3Þn, from
Eq. (2.29). As noted in connection with Eq. (A2), for an

operator OðNN0Þ
k containing Nf different types of fermion

fields, the integral IðNN0Þ
Ck

depends on ðNf
2
Þ different sepa-

ration distances kηf − ηf0 k.
As the k ¼ 8 special case of Eq. (2.30), the coefficient

cðNN0Þ
r can be expressed as

cðNN0Þ
r ¼ κðNN0Þ

r IðNN0Þ
r ¼ κ̄ðNN0Þ

r

ðMBNVÞ8þ3n b8e
−SðNN0Þ

r

¼ κ̄ðNN0Þ
r

M8
BNV

�
21=2μ3

π3=2M3
BNV

�
n
e−S

ðNN0Þ
r : ð8:19Þ

Then the decay rate for one of the three dinucleon-to-
dilepton decays (1.5)–(1.8) is

ΓNN0 ¼
�

1

2mN

�
S

�
1

M16
BNV

��
2

π3

�
n
�

μ

MBNV

�
6n

×

����
X
r

κ̄ðNN0Þ
r e−S

ðNN0Þ
r hf:s:jOðNN0Þ

r jNN0i
����
2

R2; ð8:20Þ

where S is a symmetry factor, S ¼ 1=2 for decays with
identical leptons in the final state and R2 is the phase-space
factor.

IX. pp → l+l0 + DECAYS

In this section we apply our general analysis to theΔL ¼
−2 dinucleon decays pp → lþl0þ of Eq. (1.5), where l
and l0 can be e, μ, or τ, as allowed by phase space. Thus,
these are the decays pp → ðeþeþ; μþμþ; eþμþ; eþτþ; or
μþτþ). The pp → eþeþ decay is related by crossing to
hydrogen-antihydrogen transitions ðepÞ → ðē p̄Þ [65].
These decays are of particular interest because if an
experiment were to observe any of them, this would be
not only an observation of baryon number violation with
ΔB ¼ −2, but also an observation of the violation of total
lepton number by ΔL¼−2 [66]. In contrast, since an experi-
ment does not observe any outgoing (anti)neutrino(s), the
ΔL ¼ −2 decay np → lþν̄ is experimentally indistin-
guishable from the ΔL ¼ 0 decay np → lþν. For the
same reason, the ΔL ¼ −2 decay nn → ν̄ν̄0, the ΔL ¼ 0
decay nn → νν̄0, and the ΔL ¼ 2 decay nn → νν0 are
all indistinguishable experimentally. Furthermore, an
experiment cannot determine whether a final-state neutrino
is an EW-doublet neutrino of some generation (νe, νμ,
or ντ), or whether it is an EW-singlet, νs.
Because six-quark operators of the form uuduud have

nonzero charge (Qem ¼ 2), they cannot, by themselves, be
a singlet under GSM. However, a subset of the six-quark
operators is invariant under SUð2ÞL. The fact that the six-
quark parts of these operators are invariant under SUð2ÞL
implies that the lepton bilinears must also be invariant
under SUð2ÞL, and this fixes them to be of the form
½lT

RCl
0
R�. For this set we list the following operators,

together with the class to which they belong, as defined
in Table III:

OðppÞ
1 ¼ ðTsÞαβγδρσ½uαTR CuβR�½uγTR CuδR�½dρTR CdσR�½lT

RCl
0
R� ∈ CðppÞ

1 ; ð9:1Þ

OðppÞ
2 ¼ ðTsÞαβγδρσ½uαTR CdβR�½uγTR CdδR�½uρTR CuσR�½lT

RCl
0
R� ∈ CðppÞ

1 ; ð9:2Þ

OðppÞ
3 ¼ ðTaÞαβγδρσ½uαTR CdβR�½uγTR CdδR�½uρTR CuσR�½lT

RCl
0
R� ∈ CðppÞ

1 ; ð9:3Þ

OðppÞ
4 ¼ ϵijðTaÞαβγδρσ½QiαT

L CQjβ
L �½uγTR CdδR�½uρTR CuσR�½lT

RCl
0
R� ∈ CðppÞ

4 ; ð9:4Þ

OðppÞ
5 ¼ ϵijϵkmðTaÞαβγδρσ½QiαT

L CQjβ
L �½QkγT

L CQmδ
L �½uρTR CuσR�½lT

RCl
0
R� ∈ CðppÞ

10 ; ð9:5Þ

and

OðppÞ
6 ¼ ðIssÞijkmðTsÞαβγδρσ½QiαT

L CQjβ
L �½QkγT

L CQmδ
L �½uρTR CuσR�½lT

RCl
0
R� ∈ CðppÞ

10 : ð9:6Þ

The remark concerning linear (in)dependence of oper-
ators given above after Eq. (6.11) also applies here. There
are also operators contributing to pp → lþl0 in which one
or both of the lepton fields is (are) contained in SUð2ÞL

doublets rather than being SUð2ÞL-singlets. Although
we have carried out an enumeration of these other oper-
ations, this enumeration is actually not necessary for our
analysis. Instead, as before, the key observation is that the
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contribution of a given operatorOðNN0Þ
r to the amplitude for

the diproton-to-dilepton decay is determined by the inte-
grand function (8.17), given in general by Eq. (8.2). Since
there are substantially fewer classes of integrand functions,
and hence integrals, than the total number of operators
contributing to pp → lþl0þ, this simplifies the analysis.

Applying our general formula (8.18), we calculate the
following integrals for the classes of operators contributing
to pp → lþl0þ, as listed in Table III and Eq. (8.13). For
the superscript ðNN0Þ, we list all of theΔL ¼ −2 dinucleon
decays to which the class contributes. In accord with our
general formula (8.18), we calculate the integrals

IðppÞC1
¼ b8 exp

�
−
1

8
f8kηuR − ηdRk2 þ 4kηuR − ηlRk2 þ 4kηuR − ηl0Rk2

þ 2kηdR − ηlRk2 þ 2kηdR − ηl0Rk2 þ kηlR − ηl0Rk2g
�
; ð9:7Þ

IðppÞC4
¼ b8 exp

�
−
1

8
f6kηQL

− ηuRk2 þ 2kηQL
− ηdRk2 þ 2kηQL

− ηlR
k2 þ 2kηQL

− ηl0Rk2 þ 3kηuR − ηdRk2

þ 3kηuR − ηlRk2 þ 3kηuR − ηl0
R
k2 þ kηdR − ηlRk2 þ kηdR − ηl0Rk2 þ kηlR − ηl0

R
k2g

�
; ð9:8Þ

Iðpp;npÞC7
¼ b8 exp

�
−
1

8
fkηQL

− ηLl;L
k2 þ 3kηQL

− ηuRk2 þ 2kηQL
− ηdRk2 þ kηQL

− ηl0Rk2 þ 3kηLl;L
− ηuRk2

þ 2kηLl;L
− ηdRk2 þ kηLl;L

− ηl0
R
k2 þ 6kηuR − ηdRk2 þ 3kηuR − ηl0Rk2 þ 2kηdR − ηl0Rk2g

�
; ð9:9Þ

IðppÞC10
¼ b8 exp

�
−
1

8
f8kηQL

− ηuRk2 þ 4kηQL
− ηlRk2 þ 4kηQL

− ηl0Rk2

þ 2kηuR − ηlRk2 þ 2kηuR − ηl0Rk2 þ kηlR − ηl0Rk2g
�
; ð9:10Þ

Iðpp;npÞC13
¼ b8 exp

�
−
1

8
f3kηQL

− ηLl;L
k2 þ 6kηQL

− ηuRk2 þ 3kηQL
− ηdRk2 þ 3kηQL

− ηl0Rk2 þ 2kηLl;L
− ηuRk2

þ kηLl;L
− ηdRk2 þ kηLl;L

− ηl0Rk2 þ 2kηuR − ηdRk2 þ 2kηuR − ηl0Rk2 þ kηdR − ηl0Rk2g
�
; ð9:11Þ

Iðpp;np;nnÞC15
¼ b8 exp

�
−
1

8
f2kηQL

− ηLl;L
k2 þ 2kηQL

− ηLl0 ;Lk2 þ 4kηQL
− ηuRk2 þ 4kηQL

− ηdRk2 þ kηLl;L
− ηLl0 ;Lk2

þ 2kηLl;L
− ηuRk2 þ 2kηLl;L

− ηdRk2 þ 2kηLl0 ;L − ηuRk2 þ 2kηLl0 ;L − ηdRk2 þ 4kηuR − ηdRk2g
�
; ð9:12Þ

Iðpp;np;nnÞC16
¼ b8 exp

�
−
1

8
f4kηQL

− ηLl;L
k2 þ 4kηQL

− ηLl0 ;Lk2 þ 4kηQL
− ηuRk2 þ 4kηQL

− ηdRk2 þ kηLl;L
− ηLl0 ;Lk2

þ kηLl;L
− ηuRk2 þ kηLl;L

− ηdRk2 þ kηLl0 ;L − ηuRk2 þ kηLl0 ;L − ηdRk2 þ kηuR − ηdRk2g
�
; ð9:13Þ

Iðpp;npÞC17
¼ b8 exp

�
−
1

8
f5kηQL

− ηLl;L
k2 þ 5kηQL

− ηuRk2 þ 5kηQL
− ηl0Rk2 þ kηLl;L

− ηuRk2

þ kηLl;L
− ηl0Rk2 þ kηuR − ηl0Rk2g

�
; ð9:14Þ

and

Iðpp;np;nnÞC19
¼ b8 exp

�
−
1

8
f6kηQL

− ηLl;L
k2 þ 6kηQL

− ηLl0 ;Lk2 þ kηLl;L
− ηLl0 ;Lk2g

�
: ð9:15Þ
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Next, we use the lower bounds on the distances sepa-
rating the centers of fermion wave functions in the extra
dimension that we inferred from lower bounds on partial
lifetimes of proton decay modes. We substitute these lower
bounds on separation distances into the integrals IðppÞn and
Eq. (8.20) to obtain upper bounds on the rates for the pp →
lþl0þ decays. Using the lower bounds on the distances
separating centers of fermion wave functions that we
derived from limits on nucleon decay, we find that the
resultant values of ðτ=BÞpp→lþl0þ ¼ ðΓpp→lþl0þÞ−1 pre-
dicted by the extra-dimensional model are easily in agree-
ment with current experimental lower bounds on these
ΔL ¼ −2 dinucleon-to-dilepton decays. As embodied in
Eqs. (2.33) and (2.35), this result follows because of the

lower bounds on the exponent sums SðppÞr , together with the
fact that the amplitude is much more highly suppressed, by
the prefactor 1=M8

BNV, as compared with the prefactor
1=M2

BNV that enters in the amplitude for ΔL ¼ −1 nucleon
decays such as p → lþπ0, whereMBNV. The lower bounds
(from the SK experiment) are [23]

ðτ=BÞpp→eþeþ > 4.2 × 1033 yr; ð9:16Þ

ðτ=BÞpp→μþμþ > 4.4 × 1033 yr; ð9:17Þ
and

ðτ=BÞpp→eþμþ > 4.4 × 1033 yr ð9:18Þ

per 16O nucleus in the water.

X. np → l+ ν̄ DECAYS

In this section we proceed to apply the same methods to
set upper bounds on decay rates for the decays np → lþν̄,
where lþ can be eþ, μþ, or τþ and ν̄ can be an electroweak-
doublet antineutrino of any generation or an electroweak-
singlet antineutrino. Several of the classes of integrals for
np → lþν̄ are the same as those for pp → lþν decays,

which we have already analyzed. These are the CðNN0Þ
k with

k ¼ 7, 13, 15, 16, 17, 19. For the other classes, we calculate
the integrals

IðnpÞC2
¼ b8 exp

�
−
1

8
f9kηuR − ηdRk2 þ 3kηuR − ηlRk2 þ 3kηuR − ηνs;Rk2 þ 3kηdR − ηlR

k2

þ 3kηdR − ηνs;Rk2 þ kηlR − ηνs;Rk2g
�
; ð10:1Þ

IðnpÞC5
¼ b8 exp

�
−
1

8
f4kηQL

− ηuRk2 þ 4kηQL
− ηdRk2 þ 2kηQL

− ηlRk2 þ 2kηQL
− ηνs;Rk2 þ 4kηuR − ηdRk2

þ 2kηuR − ηlR
k2 þ 2kηuR − ηνs;Rk2 þ 2kηdR − ηlRk2 þ 2kηdR − ηνs;Rk2 þ kηlR − ηνs;Rk2g

�
; ð10:2Þ

Iðnp;nnÞC8
¼ b8 exp

�
−
1

8
fkηQL

− ηLl;L
k2 þ 2kηQL

− ηuRk2 þ 3kηQL
− ηdRk2 þ kηQL

− ηνs;Rk2 þ 2kηLl;L
− ηuRk2

þ 3kηLl;L
− ηdRk2 þ kηLl;L

− ηνs;Rk2 þ 6kηuR − ηdRk2 þ 2kηuR − ηνs;Rk2 þ 3kηdR − ηνs;Rk2g
�
; ð10:3Þ

IðnpÞC9
¼ b8 exp

�
−
1

8
fkηLl;L

− ηLl0 ;Lk2 þ 3kηLl;L
− ηuRk2 þ 3kηLl;L

− ηdRk2 þ 3kηLl0 ;L − ηuRk2

þ 3kηLl0 ;L − ηdRk2 þ 9kηuR − ηdRk2g
�
; ð10:4Þ

IðnpÞC11
¼ b8 exp

�
−
1

8
f4kηQL

− ηuRk2 þ 4kηQL
− ηdRk2 þ 4kηQL

− ηlRk2 þ 4kηQL
− ηνs;Rk2 þ kηuR − ηdRk2

þ kηuR − ηlRk2 þ kηuR − ηνs;Rk2 þ kηdR − ηlRk2 þ kηdR − ηνs;Rk2 þ kηlR − ηνs;Rk2g
�
; ð10:5Þ

Iðnp;nnÞC14
¼ b8 exp

�
−
1

8
f3kηQL

− ηLl;L
k2 þ 3kηQL

− ηuRk2 þ 6kηQL
− ηdRk2 þ 3kηQL

− ηνs;Rk2 þ kηLl;L
− ηuRk2

þ 2kηLl;L
− ηdRk2 þ kηLl;L

− ηνs;Rk2 þ 2kηuR − ηdRk2 þ kηuR − ηνs;Rk2 þ 2kηdR − ηνs;Rk2g
�
; ð10:6Þ
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and

Iðnp;nnÞC18
¼ b8 exp

�
−
1

8
f5kηQL

− ηLl;L
k2 þ 5kηQL

− ηdRk2 þ 5kηQL
− ηνs;Rk2 þ kηLl;L

− ηdRk2

þ kηLl;L
− ηνs;Rk2 þ kηdR − ηνsRk2g

�
: ð10:7Þ

Although it is not necessary for our analysis, one can
construct explicit operators of each class, as we have done
for the operators contributing to pp → lþl0þ. Some of
these contribute to decays with EW-singlet antineutrinos,
while others contribute to decays with EW-doublet

antineutrinos, but since these decays are indistinguishable
experimentally, we include all of these operators together.
For example, there are several operators in which all
fermions are SUð2ÞL singlets:

OðnpÞ
1 ¼ ðTsÞαβγδρσ½uαTR CuβR�½uγTR CdδR�½dρTR CdσR�½lT

RCνs;R� ∈ CðnpÞ
2 ; ð10:8Þ

OðnpÞ
2 ¼ ðTsÞαβγδρσ½uαTR CdβR�½uγTR CdδR�½uρTR CdσR�½lT

RCνs;R� ∈ CðnpÞ
2 ; ð10:9Þ

OðnpÞ
3 ¼ ðTaÞαβγδρσ½uαTR CdβR�½uγTR CdδR�½uρTR CdσR�½lT

RCνs;R� ∈ CðnpÞ
2 ; ð10:10Þ

OðnpÞ
4 ¼ ϵijðTaÞαβγδρσ½QiαT

L CQjβ
L �½uγTR CdδR�½uρTR CdσR�½lT

RCνs;R� ∈ CðnpÞ
5 ; ð10:11Þ

OðnpÞ
5 ¼ ϵijϵkmðTaÞαβγδρσ½QiαT

L CQjβ
L �½QkγT

L CQmδ
L �½uρTR CdσR�½lT

RCνs;R� ∈ CðnpÞ
11 ; ð10:12Þ

and

OðnpÞ
6 ¼ ðIssÞijkmðTsÞαβγδρσ½QiαT

L CQjβ
L �½QkγT

L CQmδ
L �½uρTR CdσR�½lT

RCνs;R� ∈ CðnpÞ
11 : ð10:13Þ

There are also operators contributing to np → lþν̄ in
which one or both of the lepton fields is (are) contained in
SUð2ÞL doublets rather than being SUð2ÞL singlets. We
have constructed these explicitly, using the same methods
that we used for the corresponding operators contributing
to pp → lþl0þ.
Proceeding as in Sec. IX, we have calculated the

resultant rates for the ΔL ¼ −2 decays np → lþν̄.
Using the lower bounds on distances between fermion
wave function centers in the extra dimensions that we have
derived in Sec. III, we find that the resultant lower bounds
on the partial lifetimes are in agreement with the current
experimental lower bounds on these decays. Furthermore,
as noted earlier, since an experiment would not observe the
outgoing antineutrino, it would not be able to distinguish
the ΔL ¼ −2 decay np → lþν̄ from the ΔL ¼ 0 decay

np → lþν. As discussed in [43], the latter decay can occur
via the combination of a six-quark BNV vertex with SM
fermion processes and hence is generically much less
suppressed than the ΔL ¼ −2 dinucleon-to-dilepton
decays.

XI. nn → ν̄ν̄0 AND nn → νν0 DECAYS

In this section we consider theΔL ¼ −2 dineutron decay
nn → ν̄ν̄0 and the corresponding ΔL ¼ 2 decay nn → νν0.
Of the classes of eight-fermion operators contributing to the

ΔL ¼ −2 dineutron decay nn → ν̄ν̄0, the six resultant IðNN0Þ
k

integrals have already been given above, namely those for
k ¼ 8, 14, 15, 16, 18, and 19. The remaining three integrals
are for k ¼ 3, 6, 12. We calculate the integrals

IðnnÞC3
¼ b8 exp

�
−
1

8
f8kηuR − ηdRk2 þ 2kηuR − ηνs;Rk2 þ 2kηuR − ηνs0 ;Rk2 þ 4kηdR − ηνs;Rk2

þ 4kηdR − ηνs0 ;Rk2 þ kηνs;R − ηνs0 ;Rk2g
�
; ð11:1Þ
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IðnnÞC6
¼ b8 exp

�
−
1

8
f2kηQL

− ηuRk2 þ 6kηQL
− ηdRk2 þ 2kηQL

− ηνs;Rk2 þ 2kηQL
− ηνs0 ;Rk2 þ 3kηuR − ηdRk2

þ kηuR − ηνs;Rk2 þ kηuR − ηνs0 ;Rk2 þ 3kηdR − ηνs;Rk2 þ 3kηdR − ηνs0 ;Rk2 þ kηνs;R − ηνs0 ;Rk2g
�
; ð11:2Þ

and

IðnnÞC12
¼ b8 exp

�
−
1

8
f8kηQL

− ηdRk2 þ 4kηQL
− ηνs;Rk2 þ 4kηQL

− ηνs0 ;Rk2 þ 2kηdR − ηνs;Rk2

þ 2kηdR − ηνs0 ;Rk2 þ kηνs;R − ηνs0 ;Rk2g
�
: ð11:3Þ

Applying our lower bounds on the distances between
centers of fermion wave functions in the extra dimension
from Sec. III, we find that theseΔL ¼ −2 dinucleon decays
are highly suppressed, similar to what we showed for the
pp → lþl0þ and np → lþν̄ decays.
One can also consider the ΔL ¼ 2 dineutron-to-dilepton

decays nn → νν0 in Eq. (1.9). Given that νs;R is assigned
lepton number L ¼ 1, there is a corresponding charge-
conjugate field, ðνs;RÞc ¼ ðνcsÞL with lepton number
L ¼ −1. The eight-fermion operators that contribute to
the decays (1.9) are obtained from those for the decay nn →
ν̄ν̄0 by replacing the ½νTs;RCνs0;R� neutrino bilinear by
½ðνcsÞTLCðνcs0 ÞL�. There are thus three classes of operators,
which are the results of this change applied to the classes

CðnnÞ
k with k ¼ 3, 6, 12 for nn → ν̄ν̄0 decays. Carrying out

the resultant analysis, we reach the same conclusions as we
did for the ΔL ¼ −2 dinucleon-to-dilepton decays con-
cerning the highly suppressed rates.
A general comment concerning both of these ΔL ¼ �2

dineutron decays is that since an experiment would not
observe the outgoing (anti)neutrinos, it could not distin-
guish these decays from the ΔL ¼ 0 dineutron decays
nn → νν̄ decays, which can occur via a six-quark BNV
operator combined with SM processes and hence are
generically much less suppressed than theΔL ¼ −2 decays
nn → ν̄ν̄0 [43].
One also expects similar suppression in this extra-

dimensional model for B- and L-violating decays involving
trinucleon initial states, such as ppp → lþπþπþ and
ppn → lþπþ, mediated by ten-fermion operators, or
ppp → lþl0þl00þ and ppn → lþl0þν̄, mediated by 12-
fermion operators. Recent experimental bounds on trinu-
cleon decays include [67,68].

XII. CONCLUSIONS

In this paper we have studied several baryon-number-
violating nucleon and dinucleon decays in a model with
large extra dimensions, including (i) the ΔL ¼ −3 nucleon
decays p → lþν̄ν̄0 and n → ν̄ν̄0ν̄00; (ii) the ΔL ¼ 1 nucleon

decays p → lþνν0 and n → ν̄ν0ν00; (iii) the ΔL ¼ −2
dinucleon decays pp → ðeþeþ; μþμþ; eþμþ; eþτþ; or
μþτþ), np → lþν̄, and nn → ν̄ν̄0, where lþ ¼ eþ; μþ, or
τþ; and (iv) the ΔL ¼ 2 dineutron decays nn → νν0. The
decays of type (i) and (ii) are mediated by six-fermion
operators, while the decays of type (iii) and (iv) are
mediated by eight-fermion operators. Motivated by the
earlier finding in Ref. [25] that, even with fermion wave
function positions chosen so as to render the rates for
baryon-number-violating nucleon decaysmuch smaller than
experimental limits, n − n̄ oscillations could occur at rates
comparable to experimental bounds, we have addressed the
generalized question of whether nucleon and dinucleon
decays to leptonic final states mediated by six-fermion and
eight-fermion operators are sufficiently suppressed to agree
with experimental bounds. To investigate this question, we
have determined constraints on separations between wave
functions in the extra dimensions from limits on the best
constrained proton and boundneutron decaymodes and then
have applied these in analyses of relevant six-fermion and
eight-fermion operators contributing to the decays (i)–(iv).
From these analyses, we find that in this extra-dimensional
model these decays are strongly suppressed, in accord with
experimental limits. The reason that n − n̄ oscillations can
occur at a level comparable with current limits, while the
decays (i)–(iv) are suppressed well below experimental
limits on the respective modes can be traced to the fact that
nucleon decays can be suppressed bymaking the separations
between quark and lepton wave function centers sufficiently
large. This procedure does not suppress n − n̄ oscillations
but considerably suppresses the baryon-number-violating
decays of nucleons and dinucleons considered here. In
addition to its phenomenological value, our analysis pro-
vides an interesting example of the application of low-
energy effective field theory techniques to a problem
involving several relevant mass scales. Here, these mass
scales include the fermion wave function localization
parameter μ, the overall mass scale of baryon number
violation, MBNV, and the multiple inverse separation dis-
tances kyfi − yfjk−1 betweenvarious fermionwave function
centers in the extra dimensions.
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APPENDIX A: SOME INTEGRALS

We record here some relevant formulas that are used for
our calculations. First, with η a real variable and the (real)
constants ai > 0, i ¼ 1;…; m, we have

Z
∞

−∞
dη exp

�
−
Xm
i¼1

aiðη − ηfiÞ2
�
¼

�
πP
m
i¼1 ai

�
1=2

exp

�−P
m
j;k¼1;j<k ajakðηfj − ηfkÞ2P

m
s¼1 as

�
: ðA1Þ

The sum
P

m
j;k¼1;j<k ajakðηfj − ηfkÞ2 contains ðm

2
Þ terms, where ðmrÞ≡m!=½r!ðm − rÞ!� is the binomial coefficient.

Second, now generalizing η to an n-dimensional vector η ∈ Rn with components ηj, j ¼ 1;…; n, and norm
kηk ¼ ½Pn

j¼1 η
2
j �1=2, and denoting ½Qn

j¼1

R
∞
−∞ dηj�FðηÞ≡ R

dnηFðηÞ, we have

Z
dnη exp

�
−
Xm
i¼1

aikη − ηfik2
�
¼

�
πP
m
i¼1 ai

�
n=2

exp

�−P
m
j;k¼1;j<k ajakkηfj − ηfkk2P

m
s¼1 as

�
: ðA2Þ

Thus, for example, for m ¼ 3,

Z
dnη exp½−ða1kη − ηf1k2 þ a2kη − ηf2k2 þ a3kη − ηf3k2Þ�

¼
�

π

a1 þ a2 þ a3

�
n=2

exp

�
−ða1a2kηf1 − ηf2k2 þ a2a3kηf2 − ηf3k2 þ a3a1kηf3 − ηf1k2Þ

a1 þ a2 þ a3

�
: ðA3Þ

APPENDIX B: PROPERTIES
OF COLOR TENSORS

The tensors Ts and Ta in Eqs. (4.12) and (4.13) were
defined and used in [8]; in [9] their properties were
discussed further and a third type of color tensor, denoted
Ta3, was defined and applied. In this Appendix we review
the properties of these tensors. We use the notation (a; b)
and [a; b] to mean, respectively, symmetry and antisym-
metry under the interchange a ↔ b, where a and b can be
single SUð3Þc indices or sets of indices. The tensor Ts has
the properties

ðTsÞαβγδρσ∶ ðα; βÞ; ðγ; δÞ; ðρ; σÞ;
ðαβ; γδÞ; ðγδ; ρσÞ; ðαβ; ρσÞ: ðB1Þ

Thus, in a contraction of Ts with a product of six funda-
mental (3) representations of SUð3Þc, the first two pairs are
each combined as ð3 × 3Þs ¼ 6, i.e., in terms of Young
tableaux, ; then the resultant two 6 represen-
tations are combined symmetrically as ð6 × 6Þs ¼ 6̄, i.e.,

, and finally this 6̄ is combined with the 6
resulting from the third pair ð3 × 3Þs ¼ 6 tomake an SUð3Þc
singlet.
The tensor Ta has the properties

ðTaÞαβγδρσ∶ ½α;β�; ½γ;δ�; ðρ;σÞ; ðαβ; γδÞ: ðB2Þ

Hence, in a contraction of Ta with a product of six
fundamental representations of SUð3Þc, the first two pairs
are each combined as ð3 × 3Þa ¼ 3̄, then the resultant two 3̄
representations are combined as ð3̄ × 3̄Þs ¼ 6̄, and finally,
this is combined with the 6 from the ðρσÞ combination to
make an SUð3Þc singlet. To indicate more explicitly these
(anti)symmetry properties, Ref. [9] introduced the notation

ðTaÞαβγδρσ ≡ ðTaasÞαβγδρσ; ðB3Þ
where the subscript (aas) refers to the antisymmetry on the
first two pairs of color indices and symmetry on the last
pair. In an obvious notation, there are two other related
color tensors, Tasa and Tsaa.
As noted in [9], there is a third way to couple six

fundamental representations of SUð3Þc together to make a
singlet, namely to couple each pair antisymmetrically, via
the tensor Ta3 given in Eq. (8.3). This tensor was not
needed in the analysis of n − n̄ oscillations in [8] but did
enter in the analysis of six-quark operators involving higher
generations in [9]. It has the properties

ðTa3Þαβγδρσ∶ ½α; β�; ½γ; δ�; ½ρ; σ�;
½αβ; γδ�; ½γδ; ρσ�; ½αβ; ρσ�: ðB4Þ

APPENDIX C: PHASE-SPACE FACTORS

For an initial state with invariant mass
ffiffiffi
s

p
decaying to an

n-body final state f:s:, the phase-space factor is
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Z
dRn¼

1

ð2πÞ3n−4
Z �Yn

i¼1

d3pi

2Ei

�
δ4
�
p−

�Xn
i¼1

pi

��
; ðC1Þ

where p is the four-momentum of the initial state and Ei
and pi denote the energies and four-momenta of the final-
state particles, respectively. We define the Lorenz-invariant
phase-space factor as

Rn ¼
Z

dRn: ðC2Þ

We will only need R2, which is

R2 ¼
1

8π
½λð1; δ1; δ2Þ�1=2; ðC3Þ

where λðx;y;zÞ¼x2þy2þz2−2ðxyþyzþzxÞ and δi ¼
m2

i =s. If m
2
i =s is zero or negligibly small for all particles

i in the final state, then R2 ¼ 1=ð8πÞ. If δ1 ¼ δ2 ≡ δ, then
R2 ¼ ð8πÞ−1 ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 4δ
p

.

APPENDIX D: OPERATORS
CONTRIBUTING TO pp → l+l0 +

Although our results in this paper depend only on the
classes of operators CðNN0Þ

k and the resultant integrals of

fermion fields over the extra dimensions, IðNN0Þ
Ck

≡ I
CðNN0Þ
k

, it

is worthwhile, for illustrative purposes, to display various
explicit operators that contribute to the ΔL ¼ −2 diproton
decays pp → lþl0þ. We have listed operators of this type
in which all fermions are SUð2ÞL singlets in the text. Here
we give operators contributing to pp → lþl0þ in which
one or both of the lepton fields is (are) in SUð2ÞL doublets.
As remarked after Eq. (6.11) in the text, since our analysis
only depends on the classes of operators (defined by the
integrals), which are manifestly independent, since they are
comprised of different fermion fields, it is not necessary to
work out all linear independence properties among these
explicit operators.
Operators with one lepton field arising from an SUð2ÞL

doublet and the other an SUð2ÞL singlet include the
following. The first of these is

Oðpp;npÞ
7 ¼ ϵijðTsÞαβγδρσ½QiαT

L CLj
l;L�½uβTR CdγR�½uδTR CuρR�½dσTR Cl0

R� ∈ Cðpp;npÞ
7 : ðD1Þ

Carrying out the SUð2ÞL contractions in Oðpp;npÞ
7 explicitly, one has

Oðpp;npÞ
7 ¼ ðTsÞαβγδρσð½uαTL ClL� − ½dαTL Cνl;L�Þ½uβTR CdγR�½uδTR CuρR�½dσTR Cl0

R�: ðD2Þ

Of the two terms in Eq. (D2), the one containing the ½uαTL ClL� fermion bilinear contributes to pp → lþl0þ, while the other
term contributes to np → l0þν̄l. Since it is straightforward to determine which dinucleon-to-dilepton decays each operator
contributes to, we do not indicate this explicitly. Other operators include

Oðpp;npÞ
8 ¼ ϵijðTsÞαβγδρσ½QiαT

L CLj
l;L�½uβTR CdγR�½uδTR CdρR�½uσTR Cl0

R� ∈ Cðpp;npÞ
7 ; ðD3Þ

Oðpp;npÞ
9 ¼ ϵijðTsÞαβγδρσ½QiαT

L CLj
l;L�½uβTR CuγR�½dδTR CdρR�½uσTR Cl0

R� ∈ Cðpp;npÞ
7 ; ðD4Þ

Oðpp;npÞ
10 ¼ ϵijðTaÞαβγδρσ½QiαT

L CLj
l;L�½uβTR CdγR�½uδTR CuρR�½dσTR Cl0

R� ∈ Cðpp;npÞ
7 ; ðD5Þ

Oðpp;npÞ
11 ¼ ϵijðTaÞαβγδρσ½QiαT

L CLj
l;L�½uβTR CdγR�½uδTR CdρR�½uσTR Cl0

R� ∈ Cðpp;npÞ
7 ; ðD6Þ

Oðpp;npÞ
12 ¼ ϵijϵkmðTaÞαβγδρσ½QiαT

L CQjβ
L �½QkγT

L CLm
l;L�½uρTR CuσR�½dδTR Cl0

R� ∈ Cðpp;npÞ
13 ; ðD7Þ

Oðpp;npÞ
13 ¼ ϵijϵkmðTaÞαβγδρσ½QiαT

L CQjβ
L �½QkγT

L CLm
l;L�½uρTR CdσR�½uδTR Cl0

R� ∈ Cðpp;npÞ
13 ; ðD8Þ

Oðpp;npÞ
14 ¼ ϵijϵkmðTa3Þαβγδρσ½QiαT

L CQjβ
L �½QkγT

L CLm
l;L�½uρTR CdσR�½uδTR Cl0

R� ∈ Cðpp;npÞ
13 ; ðD9Þ

Oðpp;npÞ
15 ¼ ϵijϵkmϵnpðTaÞαβγδρσ½QiαT

L CQjβ
L �½QkγT

L CQmδ
L �½QnρT

L CLp
l;L�½uσTR Cl0

R� ∈ Cðpp;npÞ
17 ; ðD10Þ

Oðpp;npÞ
16 ¼ ðIssÞijkmðTsÞαβγδρσ½QiαT

L CQjβ
L �½QkγT

L CLm
l;L�½uρTR CuσR�½dδTR Cl0

R� ∈ Cðpp;npÞ
13 ; ðD11Þ

Oðpp;npÞ
17 ¼ ðIssÞijkmðTsÞαβγδρσ½QiαT

L CQjβ
L �½QkγT

L CLm
l;L�½uρTR CdσR�½uδTR Cl0

R� ∈ Cðpp;npÞ
13 ; ðD12Þ
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Oðpp;np;nnÞ
18 ¼ ϵijϵkmðTsÞαβγδρσ½QiαT

L CLj
l;L�½QkβT

L CLm
l0;L�½uγTR CuδR�½dρTR CdσR� ∈ Cðpp;np;nnÞ

15 ; ðD13Þ

Oðpp;np;nnÞ
19 ¼ ϵijϵkmðTsÞαβγδρσ½QiαT

L CLj
l;L�½QkβT

L CLm
l0;L�½uγTR CdδR�½uρTR CdσR� ∈ Cðpp;np;nnÞ

15 ; ðD14Þ

Oðpp;np;nnÞ
20 ¼ ϵijϵkmðTaÞαβγδρσ½QiρT

L CLj
l;L�½QkσT

L CLm
l0;L�½uαTR CdβR�½uγTR CdδR� ∈ Cðpp;np;nnÞ

15 ; ðD15Þ

Oðpp;np;nnÞ
21 ¼ ϵijϵkmϵnpðTaÞαβγδρσ½QiαT

L CQjβ
L �½QkρT

L CLm
l;L�½QnσT

L CLp
l0;L�½uγTR CdδR� ∈ Cðpp;np;nnÞ

16 ; ðD16Þ

Oðpp;np;nnÞ
22 ¼ ðIssÞijkmðTsÞαβγδρσ½QiαT

L CLj
l;L�½QkβT

L CLm
l0;L�½uγTR CuδR�½dρTR CdσR� ∈ Cðpp;np;nnÞ

15 ; ðD17Þ

Oðpp;np;nnÞ
23 ¼ ðIssÞijkmðTsÞαβγδρσ½QiαT

L CLj
l;L�½QkβT

L CLm
l0;L�½uγTR CdδR�½uρTR CdσR� ∈ Cðpp;np;nnÞ

15 ; ðD18Þ

Oðpp;npÞ
24 ¼ ðIssaÞijkmnpðTsÞαβγδρσ½QiαT

L CQjβ
L �½QkγT

L CQmδ
L �½QnσT

L CLp
l;L�½uσTR Cl0

R� ∈ Cðpp;np;nnÞ
17 ; ðD19Þ

Oðpp;np;nnÞ
25 ¼ ðIssaÞijkmnpðTsÞαβγδρσ½QiαT

L CQjβ
L �½QkρT

L CLm
l;L�½QnσT

L CLp
l0;L�½uγTR CdδR� ∈ Cðpp;np;nnÞ

16 ; ðD20Þ

Oðpp;np;nnÞ
26 ¼ ðIssaÞkmnpijðTaÞαβγδρσ½QiαT

L CQjβ
L �½QkρT

L CLm
l;L�½QnσT

L CLp
l0;L�½uγTR CdδR� ∈ Cðpp;np;nnÞ

16 ; ðD21Þ

Oðpp;np;nnÞ
27 ¼ ðIsssÞijkmnpðTsÞαβγδρσ½QiαT

L CQjβ
L �½QkρT

L CLm
l;L�½QnσT

L CLp
l0;L�½uγTR CdδR� ∈ Cðpp;np;nnÞ

16 ; ðD22Þ

and

Oðpp;np;nnÞ
28 ¼ ϵijϵkmϵnpϵstðTaÞαβγδρσ½QiαT

L CQjβ
L �½QkγT

L CQmδ
L �:½QnρT

L CLp
τ;L�½QsσT

L CLt
l;L� ∈ Cðpp;np;nnÞ

19 : ðD23Þ
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