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It is known that limits on baryon-number-violating nucleon decays do not, in general, imply
corresponding suppression of n — 7 transitions. Indeed, it has been shown, using a model with fermions
propagating in higher dimensions, that even with nucleon decays suppressed far below observable levels,
n — i oscillations can occur at a rate comparable to existing experimental limits, motivating new searches
for such oscillations. In the context of this model we investigate a related question, namely the implications
of limits on AL = —1 proton and bound neutron decays mediated by four-fermion operators for rates of
nucleon decays mediated by k-fermion operators with k = 6 and k = 8. These include a variety of nucleon
and dinucleon decays to dilepton and trilepton final states with AL = -3, -2, 1, and 2. We carry out a low-
energy effective field theory analysis of relevant operators for these decays and show that, in this extra-
dimensional model, the rates for these decays are strongly suppressed and hence are in accord with

experimental limits.
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I. INTRODUCTION

Although the Standard Model (SM), as extended to
include nonzero neutrino masses and lepton mixing, agrees
with current data, there are many aspects of particle physics
that it does not explain. Although this theory conserves
baryon number B [1], many ultraviolet extensions of it
predict baryon number violation (BNV). In general, one
expects there to be some violation of baryon number in
nature, because this is one of the necessary conditions for
generating the observed baryon asymmetry in the universe
[2]. A number of dedicated experiments have been carried
out since the early 1980s to search for baryon-number-
violating decays of protons and of neutrons bound in
nuclei. (Henceforth, we shall refer to these as nucleon
decays, with it being understood that the term excludes
baryon-number-conserving weak decays of neutrons.)
These experiments have obtained null results and have
set resultant stringent upper limits for the rates of such
nucleon decays [3].

It was pointed out early on that neutron-antineutron
(n — 1) oscillations and the associated |AB| = 2 violation
of baryon number could account for baryogenesis [4], and
there has long been interest in this type of baryon number
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violation (some early works include [5-9]). The same
physics beyond the Standard Model (BSM) that gives rise
to n — i oscillations also leads to matter instability via the
decays of nn and np dinucleon initial states to nonbaryonic
final states, typically involving several pions. The reason
for this is that a nonzero transition amplitude (7i|L.q|n)
means that a physical state [n),,, contains a small but
nonzero |i2) component. In turn, this leads to the annihi-
lation of the |72) component with a neighboring neutron or
proton in a nucleus, and thus produces AB = —2 decays of
dinucleons. There have been searches for n — 7 oscillations
using neutron beams from reactors [10] and for matter
instability and various dinucleon decay modes using large
underground detectors [11-24].

The operators in the low-energy effective Lagrangian for
nucleon decay are four-fermion operators with Maxwellian
dimension 6 in mass units and hence coefficients of the
form 1/(mass)?. In contrast, the operators in £\ are six-
quark operators with dimension 9 and hence with coef-
ficients of the form 1/(mass). Consequently, if one were
to assume that there is a single high mass scale Mpny
describing the physics responsible for baryon number
violation, nucleon decay would be much more important
than n — 7 oscillations and the corresponding dinucleon
decays as a manifestation of baryon number violation.
However, the actual situation might be quite different [6].
Reference [25] showed an example, using an extra-
dimensional model [26,27], in which nucleon decays could
be suppressed well below an observable level, while n — 71
oscillations could occur at a level comparable to existing
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experimental limits. In this case, it is the (JAB| =2)n—7

oscillations and the corresponding (AB = —2) nn and np
dinucleon decays that are the main observable effects of
baryon number violation, rather than (AB = —1) decays of

individual nucleons. This provides motivation for new
experimental searches for n — i1 oscillations. Additional
examples with baryon number violation but no proton
decay were later discussed in [28]. Reviews of n —n
oscillations include [29-31].

This finding in Ref. [25] naturally motivates one to ask a
more general question: in this type of extra-dimensional
model, are there baryon-number-violating processes medi-
ated by k-fermion operators with higher values of k, in
particular, k = 6 and k = 8§, that could also be relatively
unsuppressed, as was the case with the k = 6 operators
responsible for n — 71 oscillations?

In this paper we address and answer this question. Using
the same extra-dimensional model as in [25], we study a
variety of nucleon and dinucleon decays that violate both B
and total lepton number L and are mediated by k-fermion
operators with k = 6 and k = 8§, respectively. These include
the AL = —3 nucleon decays

p— o

(1.1)
and
n— 't

(1.2)

and the AL = 1 nucleon decays

p—u/

(1.3)
and
(1.4)

n— o',

both of which are mediated by six-fermion operators, and
the following AL = —2 dinucleon decays mediated by
eight-fermion operators:

pp =0T, (1.5)
where £+ and 't canbe e, u™, or 1, as allowed by phase
space, i.e.,

pp — (eTet, utut, etu®, etch, orptet), (1.6)
np = ¢°0, (1.7)

and
nn — ov'. (1.8)

In addition, we consider the AL = 2 dineutron decays

nn — w/,

(1.9)

which are also mediated by eight-fermion operators. Here
and below we use the symbol v to denote either an
electroweak-doublet (EW-doublet) neutrino or an EW-
singlet neutrino. From experimental limits on nucleon
decays, we first determine constraints on relevant param-
eters of the extra-dimensional model, namely distances
separating centers of fermion wave functions in the extra
dimensions. Then, for each of the various types of decays,
we analyze relevant multifermion operators and apply these
constraints to estimate the typical predictions of the model
for the decay rates. Answering the question posed above,
we show that these nucleon decays (1.1)—(1.4) and dinu-
cleon decays (1.6)—(1.9) are safely smaller than the rates for
the leading baryon-number-violating nucleon decays medi-
ated by four-fermion operators and thus are in accord with
experimental limits.

There are several motivations for the class of extra-
dimensional theories that we consider. The possibility
that our four-dimensional spacetime could be embedded
in a higher-dimensional spacetime dates back at least to
attempts to unify electromagnetism and gravity by Kaluza
and Klein [32], and this embedding is implied by string
theory, since the low-energy limit of a (super)string theory
leads to a ten-dimensional pointlike field theory. Since all
experimental data are consistent with spacetime being four-
dimensional, the extra dimensions must be compactified on
scale(s) that is (are) much shorter than those that have been
probed experimentally. In this context, the Standard Model
can be viewed as a low-energy effective field theory that
describes physics at length scales much larger than the
compactification scale(s). One of the most striking and
perplexing features of the quarks and charged leptons is the
great range of approximately 10° spanned by their masses,
extending from 173 GeV for the top quark to 0.511 MeV
for the electron. The Standard Model gives no insight into
the reason for this large range of masses, and instead just
accommodates it via a correspondingly large range of
magnitudes of Yukawa couplings. This fermion mass
hierarchy is even larger when one takes into account the
tiny but nonzero masses of neutrinos. An intriguing
suggestion was that this large range of SM fermion masses
might be explained naturally if the SM is embedded in a
spacetime of higher dimension d =4 + n, with n extra
additional spatial dimensions, and SM fermions have wave
functions that are localized at different positions in the
additional n-dimensional space [26,27]. Here we will use a
model of this type in which the wave functions of the SM
fermions are strongly localized, with Gaussian profiles of
width 1/u, at various points in this extra-dimensional space
[25-27], [33-41]. As in Refs. [25-27], we do not make any
specific assumption concerning possible ultraviolet com-
pletions of the model.

In addition to giving insight into various baryon- and
lepton-number-violating processes in the context of a BSM
model, our analysis is an interesting application of effective
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field theory in a more complicated case than usual, in which
there are multiple mass scales relevant for the B and L
violation, namely u, a general scale Mpyy characterizing
baryon number violation, and the inverse distances between
the centers of the wave functions of various fermions in the
extra dimensions. For each decay with a given £ = e or y,
there are at least (§) =15 of these inverse distances,
corresponding to the five SM quark and lepton fields
Oy, ug, dg, Ly, and £, and one or more electroweak-
singlet neutrinos, v, . There is a correspondingly large
variety of multifermion operators with different structures,
which we analyze.

The present work complements our recent studies in [42],
where we derived improved upper bounds on the rates for
several nucleon-to-trilepton decay modes with AL = —1,
and in [43], where we similarly presented improved upper
bounds on the rates for several dinucleon-to-dilepton decay
channels with AL = 0. These works [42,43] were model-
independent phenomenological analyses, whereas our
present paper is a study within the context of a specific type
of extra-dimensional model.

This paper is organized as follows. In Sec. II we discuss
the extra-dimensional model and low-energy effective field
theory approach that serve as the theoretical framework for
our calculations. In Sec. III we extract constraints on the
fermion wave functions in the model from limits on nucleon
decay modes. Section IV is devoted to a review of n — 7
oscillations in the model, as mediated by six-fermion
operators. A discussion is given in Sec. V of AL =0
dinucleon decays to dileptons. In Secs. VI and VII we
analyze six-fermion operators that contribute to AL = —3
and AL = 1 nucleon decays to trilepton final states, respec-
tively. In Sec. VIII we present a general operator analysis of
eight-fermion operators that contribute to AL = —2 dinu-
cleon decays to dileptons. Applications of this general
analysis to the decays pp — £7¢'", np —» ¢£70, and
nn — U/ are given in Secs. IX—XI. Section XI also contains
a discussion of the AL = 2 dineutron decays nn — vv/.
Our conclusions are contained in Sec. XII. In the
Appendixes A, B, and D we give relevant integral formulas,
color SU(3), and weak SU(2), tensors, and present further
information on relevant operators.

II. THEORETICAL FRAMEWORK

In this section we describe the theoretical framework for
our study. Usual spacetime coordinates are denoted as x,,
v=0, 1, 2, 3, and the n extra coordinates as y,; for
definiteness, the latter are assumed to be compact. The
fermion fields are taken to have a factorized form:

P(x,y) = wx)x(y). (2.1)
In the extra dimensions the SM fields are restricted to the
interval 0 <y, < L for all 2. We define an energy corre-
sponding to the inverse of the compactification scale as

1
AL = —.

- (2.2)

We will give most results for general n, but note that only
for even n are chiral projection operators defined, since
they require there to be a y5 Dirac matrix that anticommutes
with the other Dirac gamma matrices, and this is only
possible for even n. The d = (4 + n)-dimensional fields
thus have Kaluza-Klein mode decompositions. We use a
low-energy effective field theory approach that entails an
ultraviolet cutoff, which we denote as M. The localization
of the wave function of a fermion f in the extra dimensions
has the form [26,27]

17(y) = Aer o, 23)

where A is a normalization factor and y, € R" denotes the
position vector of this fermion in the extra dimensions, with
components y; = ((yf);,.-.. (¥r),) and with the standard
Euclidean norm of a vector in R”, namely

n 1/2
Iyl = (Zy,%j) |
A=1

For n =1 or n =2, this fermion localization can result
from appropriate coupling to a scalar with a kink or vortex
solution, respectively [33]. One can also include correc-
tions due to Coulombic gauge interactions between fer-
mions [34] (see also [35,36]). The normalization factor A is
determined by the condition that, after integration over the
n higher dimensions, the four-dimensional fermion kinetic
term has its canonical normalization. This yields the result

n/4
A= z //4”/2.
V3

We define a distance inverse to the localization measure
4 as

(2.4)

(2.5)

L =

" (2.6)

X

As noted, this type of model has the potential to yield an
explanation for the hierarchy in the fermion mass matrices
via the localization of fermion wave functions with half-
width

L, <L (2.7)
at various points in the higher-dimensional space. The ratio
of the compactification scale L divided by the scale
characterizing the localization of the fermion wave func-
tions in the extra dimensions is

L
— 2.8
LA (2.8)
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The choice

E~30 (2.9)
is made for sufficient separation of the various fermion
wave functions while still fitting well within the size L of
the compactified extra dimensions. The UV cutoff M,
satisfies M, > u for the validity the low-energy field theory
analysis. The choice
Ap Z 100 TeV, (2.10)
ie., L <2.0x 107" cm, is consistent with bounds on extra
dimensions from precision electroweak constraints and
collider searches [3] and produces adequate suppression
of flavor-changing neutral-current (FCNC) processes
[39,41]. With the ratio & = 30, this yields
u~3x103 TeV, (2.11)
ie,L,=p"' =067x107 cm.

Starting from an effective Lagrangian in the d = (4 + n)-
dimensional spacetime, one obtains the resultant low-energy
effective Lagrangian in four dimensions by integrating over
the extra n dimensions. The integration over each of the n
coordinates of a vector y runs from 0 to L, but, because of the
restriction of the fermion wave functions to the form (2.3),
with L, < L, it follows that, to a very good approximation,
the domain of integration can be extended to the interval
(=00, 00): [Ld"y — [, d"y.1tis convenient to define the
dimensionless variable

n=uy, (2.12)
with components given by n = (1, ...,1,).

We first discuss the fermion mass terms. For the first
generation of quarks and charged leptons, the Yukawa
terms in the higher-dimension theory are

Ly = [M'D0rdrd + h'" Qpurg + h(e)i‘e,LeR¢]

+H.c., (2.13)
where Q; = (4),,and ¢ = (‘gﬁ) is the SM Higgs field, with
) =iopt = (f’;_) With the inclusion of the second and
third generations of SM fermions, the Yukawa couplings
hY) with f =u, d, e become 3 x 3 matrices. The diago-
nalization of the resultant quark mass matrices in the charge
2/3 and charge —1/3 sectors yields the quark masses and
Cabibbo-Kobayashi-Maskawa quark mixing matrix. For
our present purposes, it will often be adequate to neglect
small off-diagonal elements in the Yukawa matrices. The
vacuum expectation value of the Higgs field is written, in
the standard normalization, as

Bo=(, ). (2.14)

where v = 246 GeV. Given the factorization (2.1) and the
Gaussian profiles of the fermion wave functions (2.3), the
integration over the extra n dimensions of a given fermion
bilinear operator product i) (v/+/2)[f fx| resulting from
a Yukawa interaction involves the integral

A2 2 [ gy elinmng, 1P=ln=ng P
V2

v 1
= h(f>ﬁexp[—§||ﬂﬁ —’1fR||2]- (2.15)

Hence, for the fermions f = u, dand also f =¢ =e¢, u, t
(neglecting off-diagonal elements in the Yukawa matrices),
we have

) 1
my = K 7§exp [—5 iy, — 'IfRHZ] (2.16)

or, equivalently, the following constraint on the separation
distance (|17, —ny,|I:

Ky \T1/2
- = |2In .
b=l = (2 )

Note that this relation does not depend directly on the
number of large extra dimensions, n. The relation (2.17)
holds for the quarks and charged leptons. For neutrinos, the
situation is more complicated because the neutrino mass
eigenvalues and the lepton mixing matrix result, in general,
from the diagonalization of the combined Dirac and
Majorana mass terms involving electroweak-singlet neutri-
nos vs g, s = 1, ..., n,. These Majorana neutrino mass terms
violate L (as |AL| = 2 operators) and lead to potentially
observable L-violating processes. However, L violation can
occur even with very small neutrino masses, as in R-parity-
violating supersymmetric theories (e.g., [44]).

Since the relation (2.16) applies in the effective
Lagrangian above the electroweak-symmetry-breaking
scale, the values of m are the running masses evaluated
at this high scale. In accord with the idea motivating this
class of BSM theories, that the generational hierarchy in the
SM fermion masses is not due primarily to a hierarchy in the
dimensionless Yukawa couplings in the higher-dimensional
space but instead to the different positions of the wave
function centers in the extra dimensions, we will take 4\/) ~
O(1) in the higher-dimensional space for the various SM
fermions f. For technical simplicity, we actually set h/) = 1
for all f. It is straightforward to redo our analysis if one
chooses to assign some of the generational mass hierarchy to
these Yukawa couplings in the (4 + n)-dimensional space.
A calculation of the running quark masses ata scale A, = m,

(2.17)
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gives [45] m,(A,) =2.2 MeV and my(A,) = 4.5 MeV.
Combining these values with the known value v =

246 GeV from Gr/v/2 = 1/(2v?), we calculate the dimen-
sionless separation distances

1m0, =l = 4.75 (2.18)
and

110, = 14, || = 4.60, (2.19)
so that the ratio is ||ng, — n,,//|ng, = 4,|| = 1.03 [46].

As noted, a major result from this type of model was the
fact that with roughly equal dimensionless Yukawa cou-
plings hY) ~ O(1) for different generations of quark and
charged leptons, the large hierarchy in the values of
these SM fermion masses can be explained by moderate
differences in the separation distances in the extra dimen-
sions, ||, —ny,||. This extra-dimensional model is min-
imal in the sense that we do not include additional fields
aside from neutrinos that carry lepton number, such as
Majorons.

A given baryon-number-violating decay involves a set of
operators defined in four-dimensional spacetime, which,
for our applications, are k-fold products of fermion fields.
We denote these operators as O, () and write the effective
Lagrangian in usual four-dimensional spacetime that is
responsible for the BNV physics as

eff E Cr,

Each of the fermion fields in O, () has the factorized form
(2.1). We denote the correspondmg effective Lagrangian in

)+He  (220)

the d = (4 + n)-dimensional space as
Letta4n(%,¥) ZK (x,y) +H.c. (2.21)
The factorization property (2.1) implies that the O, () (x, y)
also can be factored as
Or)(x) = U, 1y (X)V 1) () (2.22)

[with SU(3),, SU(2),, and Dirac structure implicit and
with no sum on r]. We denote the integral over the extra
dimensions of V, (y) as

Iy = / d"yV, () (2.23)

This integral involves an integrand consisting of a k-fold
product of Gaussian wave functions and is given by Eq. (A2)
in Appendix A. Hence, for each r (with no sum on r)

Cr(k) = Kr iy r. k- (2.24)

The coefficient k,. ;) may depend on the generational indices
of lepton fields that occur in O, 4); this is left implicit in
the notation. In general, as a k-fold product of fermion

fields in d = 4 + n spacetime dimensions, O, () (x,y) has
Maxwellian (free-field) operator dimension
. k(d=1) k(3+n
dim(0, () = TV KEED g )

in mass units. The condition that the action in the
d-dimensional space must be dimensionless is —d 4+
dim(Kr_<k)) + d1m(0,<k>) =0, so

d-1
di Y G
lm(Kr,(k)) < 2 )

3+n
=4 -k .
+n < 5 )

It is useful to write the coefficients ,. () in a form that shows
this dimensionality explicitly:

(2.26)

_ Kr (k)
K'r,(k) - (MBNV)( (3+n)/2)—4—n’ (227)

where k, () is dimensionless and Mpyy is an effective mass
scale characterizing the baryon-number-violating physics.
Then, making use of Eq. (A2), I, ) can be written as a
prefactor b, multiplying an exponential, namely

I, = bre™>ro, (2.28)
where
o\ /2
b :Ak -n(
k H <k>
— [2"/471‘("‘2)/4k‘1/2,11(’“2)/2]". (229)

In Eq. (2.29), the factor AX arises from the k-fold product of
fermion fields, the factor u™" from the Jacobian d"y =
u~"d"n, and the factor (z/k)"/? from the integration [see
Eq. (A2) in Appendix A]. By construction, b, = 1, inde-
pendent of the number of large extra dimensions, n.
Combining these results, we can write

Cr) = Kr )

B ’_cr,(k) u (k=2)n/2 ok/4 n
= (MBNV)(3k—8)/2 MBNV ﬂ<k_2)/4kl/2

(2.30)

X e~ Sr

For each of the various types of decays discussed below,
the number k of fermions in the k-fermion operator
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products will be obvious, so henceforth, we suppress the
subscript (k) in the notation for 1, ) and ¢, ).

Before carrying out detailed analyses of various baryon-
number-violating decays, it is useful to make some rough
estimates of the expected ratios of resultant rates. The
hadronic matrix elements that are relevant for decays
mediated by operators with different numbers of fermions
have different dimensions, but in comparing decay rates,
this difference is compensated by the requisite powers of
the quantum chromodynamics (QCD) mass scale Agcp.
Thus, for the ratio of two BNV decays mediated by
operators comprised of k; and k, fermions, respectively,
we have the rough estimate

@N <[\QCD)3(kz—kl)< u )(kz—kl)n (z(kz—kl)/Zkl)n
Lk Myny Mpny alke=k)/2f,

> 6_2(<S(k2)>_<s(k1)>)’ (2.31)

where (S(;)) denotes a typical size of the exponential
factor occurring in Eqs. (2.28) and (2.30) for this decay.
In particular, relative to BNV nucleon decays such as
p— et etc., mediated by four-fermion operators, the
rough estimate (2.31) gives the ratio

E o <AQCD ) 6 ( H >2n <i> ne—z((5<a)>—<5(4)>)
Ly Mpny Mpny 3n

for decays such as (1.1)—(1.4) mediated by six-fermion
operators. Similarly, for dinucleon decays mediated by
eight-fermion operators, such as (1.6)—(1.9), Eq. (2.31)
predicts

2 4n n
T <Aocn>‘ < # ) (%) o2(S)=(5w)
Iﬁ(4) Mpny Mpny s

With Agep ~0.25 GeV, u = 3 x 10° TeV asin Eq. (2.11),

and an illustrative value Mgny ~ 10> TeV and n = 2 extra
dimensions, Eqs. (2.32) and (2.33) yield

(2.32)

(2.33)

r
In <%> ~—65.5-2((Se) — (Sw))  (2.34)

and

r
In (%) ~ =131 =2((Se)) — (S))-  (2:39)

The study of the sums S, ;) requires a detailed analysis
of the various k-fermion operators that contribute to

specific baryon-number-violating processes. We discuss
these below.

III. CONSTRAINTS FROM LIMITS
ON BARYON-NUMBER-VIOLATING
NUCLEON DECAYS

We discuss here the constraints on Standard-Model
fermion wave function positions in the extra-dimensional
model that follow from the upper limits on the rates for
baryon-number-violating nucleon decays. The analysis
begins with the observation that the mass scale character-
izing the physics responsible for these decays must be large
compared with the electroweak symmetry-breaking scale v,
and therefore the effective Lagrangian must be invariant
under the full Standard-Model gauge group Ggy. To label
the various (four-fermion) operators that contribute, we will
use the abbreviations pd and nd to refer to proton and
(otherwise stably bound) neutron decay, respectively, and
Nd to subsume both of these types of decay, with the
nucleon N = p or N = n. (The use of the same symbol, n,
to refer to neutron and the number of extra dimensions
should not cause any confusion; the context will always
make clear which is meant.) Then we can write

ng\éd) (x) = chNd)OgNd) (x) +H.c.,

r

(3.1)

where cﬁNd) are coefficients and (’)(rNd) (x) are operators.

Correspondingly, in the d = (4 + n)-dimensional space,
the effective Lagrangian is

d d
Litden(x.y) = DR

r

oM (x,y) +He.  (3.2)

We recall our notation for fermion fields. The SU(2), -
singlet and -doublet quark fields are denoted uf, d%, and
Q¢ = (%)L, where a is a color index. The SU(2), -singlet
and SU(2),-doublet lepton fields are denoted £
and L,; = (”;)L, where £ =e, u, 7. In addition, we
include electroweak-singlet neutrinos, written as v g, with
s =1,...,n,, as is necessary to form Dirac and Majorana
mass terms for the neutrinos. The upper and lower compo-
nents of the quark and lepton SU(2); doublets are indicated
by Roman indices i, j, ..., so Qi* = u¢ fori = 1, Q% = d¢
fori=2,L,, =v,fori=1,and L}, = ¢, fori =2 For
each of these fields f = Q;, ug, dg, Ly, Cg, and v g, the
wave function in the (4 4+ n)-dimensional space has the form
(2.1) with normalization factor A given by Eq. (2.5) and
Gaussian profile given by Eq. (2.3).

With the original SM fermions, before the addition
of any electroweak-singlet v, fields, the four-fermion

operators O{" in [Ig;fd) that contribute to nucleon decays
are [47-50]
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O = ey, [ CaR) [ C2 ), (33) O = ey, g CR][dy Cuy ) (39)
OéNd) = €ij€ap, (01T C O 1uy Ct¥] and
= ey, [uf" C [y CL4), (3:4)

d i ]
OE',N )= €ij€aﬂ7[QL TCQ]Lﬂ] [deTCyS’R]
Nd i j T
OV = e 64 0T CLL |, €] — 2,5, [T CAJ][dY Cu ). (3.10)

= eapy ([ CEL) = [ Cup )l Cdf]. (3.5)
For completeness, we also list a four-fermion operator

and that would be present in a multigenerational context but
vanishes identically in the case considered here with first-
O‘(‘Nd) = €;CmCapy| ZchQiﬂH 'YTCL?,L] generation quarks, namely
— ol yT T
— 2€,1/}y[uL Cdi]([uL CfL] - [dz CVf.L])v (3'6) €aﬁy[dgiRCdg2,R][”ZZ,RCVS,R]~ (3'11)
where C is the Dirac charge conjugation matrix satisfying
C;/ﬂC‘l = _(},H)T, C=-CT; and €45, and ¢;; are totally To each of the operators (95”‘” there corresponds an

antisymmetric SU(3), and SU(2), tensors, respectively.  operator O™ in Lg\:‘? +n- These are four-fermion oper-

Two other operators would be present in a multigen-  ators, and, as the k = 4 special case of Eq. (2.27), we have
erational context but vanish identically in the relevant
case here, where the quarks are all of the first generation, _(Nd)
ie., u and d: DL (3.12)
(Mpny)**"
€apy [“Z{R C”/;z,R] [dg,k Ctg] (3.7)
As noted before, in general, the coefficient K‘&Nd) may
and depend on the generational indices of fermion fields that

T il KT ot m occur in OgNd); this is left implicit in the notation. The
(€ix€jm + €imei)€apy[Qay1.CQay 1)[Qur . CLE L), (3.8) special case of Eq. (2.22) for nucleon decay is

where a;, a,, and a3 are generation indices.

Nd Nd Nd
Including electroweak-singlet neutrinos v,z with s = 05 >(X’J’) =U 5 )(X)Vg )()’>- (3.13)
1,...,n,, one has two additional types of operators for
nucleon decays, namely We have
Nd
VI (v) = A% expl={2lln = 4, |2 + lln = na, |2 + Iy = e, I23): (3.14)
Nd
vy (v) = A*expl={2lln = ng, > + lln = ma, |2 + lln = ne, I23); (3.15)
Nd
V¥ (y) = A% expl—{lln = ng, I + 1 = 1, 1> + 11 = 1 I? + I = na, |P}). (3.16)
VY (y) = A*exp[={3|ln —ng, |2 + lIn = e, |I? 3.17
Nd
VS (y) = A% expl={lln =14, I+ 2lln = na |2 + 1 = ., I} (3.18)
and
(Nd)

*}]. (3.19)

To perform the integrals over y, we use the general integration formula given as Eq. (A2) in Appendix A. Carrying out the
integration over the y components and using Eq. (2.5) for the relevant case k = 4, we obtain the following results for the
nonvanishing operators:

Ve ' (y) = Atexp[—{2|ln = no, |I* + ln = n4,|I> + 1 — 1.,
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(Nd)

IgNd)

(1
Nd
Ig ) = b4 exXp _Z{”’/[QL - an.L

T ne, =P+ e, = 10, 2 + e, — ndR||2}},

Nd
1" I

3
= byexp [— 4 ||'IQL —NL,,

1
Nd
1Y = b, exp [—Z{znnuk = g I” + 1, =100,

and

I(6Nd)

where by = (77'/2u)", from the k =4 special case of

Eq. (2.29). It is convenient to write the integral IﬁNd) in

the form

1N = b=

r = U4 5

(3.26)

where S&Nd) denotes the sum of squares of fermion wave

function separation distances (rescaled via multiplication

by u to be dimensionless) in the argument of the exponent

(Nd) (Nd)

in I;"". Thus, for example, in the case of O, ", the sum in

2, and similarly

the exponent is SgNd) = (3/4)|lng, — n,,
for the other S ﬁN'D. Then, as the k = 4 special case of (2.30),

(Nd) S U "o s
' N (IWBNV)2 (ﬂl/zMBNV> T (327)

The amplitude for the decay of anucleon N = porntoa

final state f.s. is given by (f .s.|(9é]f\f]»d)|N>. The hadronic
matrix elements for various operators have been calculated by
lattice gauge simulations [51,52]. We then use the exper-
imental lower bound for the partial lifetime (z/B)y_;, =

F;,l_)f.si for a given nucleon decay mode N — f.s. with

branching ratio B to infer upper bounds on the magnitudes of

the cgNd) coefficients. Since in our low-energy effective field

theory approach we do not assume any cancellation between

. Nd) ,~(Nd .. Nd
different terms cg )(’)5 ) occurring in Eiff ), Wwe conserva-

tively impose the bounds from a given decay individually on
each term that contributes to it. For given values of y, Mgnv,

[ 1
I = buexp |~ 2, =P+ 2 = 10+, =1

1
— buexp| =5 2lho, = 1+ 2, =16+ 1, =1, 17}

I?

1
= by exp [_1{2“'@ —napll* +2llng, =,

(3.20)
(3.21)
+Ing, = I + llng, = na, I
(3.22)
(3.23)
>+ 2|14, =1, , |2}}, (3.24)
P+, = 17} (3.25)
|

and the dimensionless coefficients r<£”‘” , these constraints are

upper bounds on the integrals / ()
1 < 9, (3.28)

and hence lower bounds on the sums of squares of distances

in S<,Nd> for each operator (9<,Nd),

SN 5 gNd), (3.29)
where
b
SN — 1 <1(T4">> . (3.30)

max

When comparing lower bounds from two different nucleon
decay modes, denoted Nd1 and Nd2, to which the same
operators contribute, a general relation is

SN _ gva) 1 In [(T/ B)Ndl,min:|‘
(T/B)NdZ.min

(3.31)

min, 1 min,2 2
Some of the squared fermion separation distances |17, — 7y, II?

occurring in the individual S N sums are already fixed by

Standard-Model physics such as quark and lepton masses
and mixing, and values of, or limits on, FCNC processes.
These include the (rescaled) distances |17y, —#,, | Wwith
qr = ug. dg, and for leptons, the distances [, —n. ||

withL,; =L,;.L,1.L.; and € = eg, jig, Tg, respectively.
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For example, for # = e, the inequality S > s"9) is a

quadratic inequality in the space R spanned by the three
n-dimensional vectors 79, , 1,,, and 1,,, with one distance
llno, —nu,ll fixed by the u-quark mass. The (rescaled)
separation distances between SM fermion wave function

)

centers that enter into the S iNd
fixed by SM physics are

of this type and are not already

||’1uR — Nl ||’7uR — ey B ||7ldR —Nells
||’7QL — Neglls ||’7f.L ~ Nuglls ||’7f.L ~ Napll>
lng, —ne,, |l for £ =e,p. (3.32)

Hence, the full set of lower bounds on fermion separation

distances from all of the inequalities AR S[(rll\i]f ) contrib-
uting to nucleon decays constitutes a set of coupled quadratic
inequalities in the space spanned by the relevant fermion
position vectors. For example, the most stringent lower bound
on a partial lifetime, (z/B),_, + 9, yields coupled quadratic
inequalities in the R>" space spanned by the vectors 10, s Mug>
NagsNL, , » and 7, , and similarly with nucleon decays involving
¢ = p. With the inclusion of EW-singlet neutrino fields v, g,
the set of separation distances that affect the rates for nucleon
decay also includes

p—et

Mg, = 10,1l ng, =nu Il forg=u,d. (3.33)

The lower bounds on the partial lifetimes for some of the
simplest proton decays are [53]

1
l—‘N—>f.5. = M/dR2|AN—>f.&|2

1 1 ( u
_2mN (MBNV)4 ﬂl/zMBNv

where an average over initial spin and sum over final spins
is understood. As noted above, the dimensionless coeffi-
cients i"c(,Nd) depend on the UV completion of the extra-
dimensional theory and the associated BSM physics
responsible for the baryon number violation and are not
determined within the framework of our low-energy effec-

tive field theory. We take RN O(1) and note that it is
straightforward to recalculate bounds on separation dis-
tances in the context of a specific UV completion with
different values of the dimensionless coefficients &\ .
Given these sources of uncertainty, we limit ourselves to
correspondingly rough estimates of lower bounds on
fermion separation distances. From the most stringent

bound on a two-body proton decay to £ -+ meson, namely

) 2n

(2/B) pserpo > 1.6 X 103 yr (3.34)

and

7/B),_ 0 > 0.77 x 10°* yr. 3.35
pouta

These and the other bounds quoted here are at the
90% confidence level. Other bounds of comparable sen-
sitivity include, e.g., (z/B),_,+, > 1.0x 10* yr and
(¢/B) ey > 047 x 10** yr  [54]. Comparable lower
bounds apply for baryon-number-violating neutron decays,
such as (7/B),_ - >0.53x10% yr [53], (¢/B),_,p- >
0.35 x 10°* yr [54], and (z/B),_;0 > 1.1 x 10°* yr [55]
(see also [56]). These bounds can easily be satisfied by
separating the positions of the wave function centers of the
quarks and first two generations of leptons [26].

The calculation of the rate for a nucleon decay to a given
final state, I'y_ ., depends on the ultraviolet physics

responsible for the operators O§d> and their coefficients

KﬁNd) in the effective Lagrangian. In particular, it involves

the integration of the square of the matrix element
(f.s.|Lest|N) with respect to the n-body phase space.
Since this ultraviolet physics is not determined in the
context of our low-energy effective Lagrangian approach, it
is not possible to actually perform this integral precisely,
but this will not be necessary for our estimates. Because the
most stringent lower bounds on partial lifetimes of nucleon
decays are for two-body final states, these two-body modes
will determine the distance constraints, and hence we will
only need the two-body phase-space factor R, (see
Appendix C). The rate for the decay N — f.s. is

2
ST'#Ne S £ s | O INY| R,

r

(3.36)

[
(7/B) et in (3.34) and (7/B),_ .+ in (3.35), using
estimates of the hadronic matrix elements from Ilattice
calculations [51,52] (and setting rcﬁN‘” =1 as above), we
derive the approximate lower bound, applicable for both of
these types of decays:

S, > (S ine (3.37)
where
L S P b _Mpny
(87 Jmin 2 M2 700 Tev
M
—nln <ﬂ> (3.38)
U
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The most direct bound on fermion separation distances

arises from the contribution of the operator OgNd)

integral If‘Nd) involves a single fermion separation distance,

llng, —ne,, || for a given lepton generation £ = e or £ = pu.
In this case, from the inequality (3.37) with (3.38), we
obtain the lower bound, for both e™ and u™ decay modes,

8 [/ M
- 25 62 — 2 BN
lng, =ne., 7> 62 =3 Il(100 TeV

8
__1n<@>.
3 H

In a model having n =2 extra dimensions [and value
u=3x10° TeV, as given in (2.11)], with the illustra-
tive value Mpyy = 100 TeV, this is the inequality
Ino, = ne,, || > 8.4, while for Mpyy = p, this is the inequal-

ity |lng, —ns,, |l > 7.3. Since Sl(ﬁf ) depends only logarith-

mically on the mass scale Mpyy, it follows that the lower
bounds on the fermion separation distances also depend only
logarithmically on Mgyy, i.e., only rather weakly on this
scale. A very conservative solution to the coupled quadratic
inequalities would require that each of the relevant distances
lny, —ny, | inEq. (3.32) forboth £ = e and £ = p would be

larger than the square root of the right-hand side of Eq. (3.38):

, since the

(3.39)

g = 11 W10, =121 10, = el 0, =710, I+
Nd
e, =1y > (Sl V2. (3.40)

That is, this set of inequalities is sufficient, but not
necessary, to satisfy experimental constraints on the model
from lower limits on partial lifetimes for nucleon decays.

With inclusion of electroweak-singlet vy fields
with small enough masses so that they could occur in
nucleon decays involving (anti)neutrinos, an analogous
conservative choice would be to impose the same lower
bounds as in Eq. (3.40):

H’//LfL - ﬂuR

’ ’

|} > [Sdyi2
(3.41)

N = 10, s 112, = 110,11 1m0, = 10,

for all s such that the v g can occur in nucleon decays. We
will assume that these inequalities on fermion separation
distances hold in the following. It is straightforward to use
Eq. (3.29) to calculate lower bounds on fermion wave
function separation distances with values of Mpyy different
from the illustrative value used above.

The limits on two-body nucleon decays involving
(anti)neutrino emission are somewhat less stringent than
the limits on nucleon decays yielding charged leptons. For
example, (z/B), ;> 3.9x10% yr and (7/B),_;» >
1.1 x 10*? yr [55]. Hence, they do not add extra informa-
tion to the constraints that we have derived on fermion

separation distances involving the L,; and £ fermions
with £ = e or £ = u. However, since a nucleon is kine-
matically forbidden from decaying to a real final state
containing a 7 lepton, these experimental limits are useful
for deriving constraints on separation distances involving
the L., and 7, fermions. The relevant operators that would

contribute to such decays would be the (’)(,Nd> listed above
that contain L, ; or 7. The BSM physics responsible for
baryon number violation determines the magnitude of the
corresponding coefficients xﬁN"’) . Since the quark fields in
these four-fermion operators are all of the first generation, a
usual expectation would be that the resultant coefficients
for operators in which the lepton field is of the third
generation would be smaller than if the lepton field is of the
first or second generation. However, to be as conservative
as possible, we consider the possibility of substantial
coefficients for such four-fermion operators with a third-
generation lepton field, namely v, (see also [57]). Using the
above-mentioned experimental lower bounds on (z/B) for
the p — on" and n — o2 decays in conjunction with

Egs. (3.31) and (3.38), we obtain the bound (SﬁNd)) b

min,z
(SﬁN’ﬁ)min —2, where (SﬁNd))min refers to decay modes
such as p — et7® and p — u*2° and was given in
Eq. (3.38). This can be satisfied conservatively with the

inequality

g, =neell ng, = ne,lls ng, =ne., Il lng, =, II}

> [(SND) i V2 for g = . d. (3.42)

IV. n -5 OSCILLATIONS AND DINUCLEON
DECAYS TO HADRONIC FINAL STATES

In this section we review the striking finding in Ref. [25],
that in this extra-dimensional model, even with nucleon
decays suppressed well below experimental limits, n — 7
oscillations can occur near to their experimental limits.
Thus, let us consider a general theory in which BSM
physics leads to n — 7 transitions and let us denote the

relevant low-energy effective Lagrangian in 4D as [Igf)

and the transition matrix element |m| = |<ﬁ|££'f1f")|n>| In
(field-free) vacuum, an initial state which is |n) at time
¢ = 0 has a nonzero probability to be an |7) state at a later
time ¢ > 0. This probability is given by P(n(t) =n) =
|(A|n(1))|> = [sin®(t/7,5)]e”"/*, where 7, is the mean life
of the neutron. The current direct limit on z,; is from an
experiment with a neutron beam from a nuclear reactor
at the Institut Laue-Langevin (ILL) in Grenoble: 7,; >
0.86 x 10 sec, i.e., [om|=1/7,; <0.77x 1072 MeV [10].

As noted above, a nonzero n — i transition amplitude
(71| Lege|n) has the consequence that the resultant physical
eigenstate for the neutron state in matter has a small

component of 7, i.€., 1)y = C€088,;|n) + sin6,;|7).
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The nonzero |72) component in |n),, . leads to annihilation
with an adjacent neutron or proton, and hence to the decays
to zero-baryon, multimeson final states, consisting domi-
nantly of several pions: nn — pions and np — pions.
A number of experiments have searched for the resultant
matter instability due to these dinucleon decays and have
set lower limits on the matter instability (m.i.) lifetime 7z ;.
[12-16]. This is related to 7,; by the formula 7,,,; = R72;,
where R ~ O(10%) MeV, or, equivalently, R ~ 10> sec™!,
depending on the nucleus. The best current limit on matter
instability is from the SuperKamiokande (SK) water
Cherenkov experiment [16],

Tmi > 1.9 x 103 yr. (4.1)
Using the value R ~ 0.52 x 10> sec™! for the '°0 nuclei in
water (see, e.g., [31] and references therein), the SK
experiment gives the lower limit

Ty > 2.7 x 108 sec, (4.2)

or, equivalently,

|om| < 2.4 x 1073 MeV. (4.3)
This lower bound on 7,; in (4.2) from the SK experiment
[16] is comparable to, and stronger by approximately a
factor of 3 than, the direct lower bound on 7,; from the
ILL experiment [10]. The SK experiment has also searched
for specific dinucleon decays and has obtained the
limits [17]

-l o> 1.70x10%% yr (4.4)

np—

and

-l >4.04 x 102 yr.

nn—mn-m

(4.5)

An improvement in the search for n —# oscillations
is anticipated if a new n — i1 search with requisite sensi-
tivity could be carried out at the European Spallation
Source [31].

The effective Lagrangian (in four-dimensional space-
time) that mediates n — 71 oscillations is a sum of six-quark
operators:

4
L5 (x) =3 ™o (x) + Hee,

r=1

(4.6)

As with Egs. (3.1) and (3.2), there is a corresponding
Lagrangian in the (4 4 n)-dimensional space:
Kg'"_')O(,M) (x,y) +H.c.

L4 y) = (4.7)

Since the mass scale characterizing the |AB| = 2 baryon
number violation is large compared with the electroweak
symmetry-breaking scale, these six-quark operators must
be invariant under the Standard-Model gauge symmetry. As

indicated in Eq. (4.6), there are four Oﬁnﬁ) of this type,
namely

OV = (T,) pyipo 1T Cul][dy CA)[d Cdg).  (4.8)
O™ = (T) gt Cdl) [l CdB][do! CalS] (4.9)
2 s)apyopol”R RIL"™R RII¥R R :

Ognﬁ) = eij(Ta)aﬁyépa[ lL{lTCQL/}] [MgTCdi} [d%TCd%}
= 2(Ta )aﬂ}/épa {MZTCd/Z] [MQTCd(IS?] [d%TCd(IH ’ (4 10)

and

ni ia j k m p o
O™ = €i161m(T ) opyspe QLT COPOF T COPO [ Ca]

= T ) apyspo T Cdf |} CdY)[df Cdg),  (4.11)
where, as before, Greek indices a, f3, ... are SU(3), color
indices; i, j... are weak SU(2), indices; and the SU(3),
color tensors are

(Ts>(1/)’y5/)o- = €/)ay€0ﬁ5 + €aay€p[}'§

+ €pﬂy€6a5 + eaﬂyepaﬁ (4 12)

and

(Ta)a/})/S/m = €/)a/3€(7y5 + €(m/3€/)y5 . (4 13)

(See Appendix B for the symmetry properties of these

tensors.) )
To each of these operators there is a corresponding i

function, as defined by Eq. (2.22). For example,

V%nﬁ) _ Vénﬁ)

= A% exp[—{2lln = m, |I* + 4lln = ng [P}, (4.14)
and so forth for the other two operators. The resultant integrals
(2.23) over the extra n dimensions comprise three classes. The

(nit)

integration of the V" functions for the operators O(r”ﬁ) with

r =1, 2 are the same, defining class C (l"m:

I(nﬁ)

4
& = boexp| =3~ | @19

where bg = (2 -37"/22714?)" from the k = 6 special case of
Eq. (2.29) and I<C"kﬁ) =1 - The operator Og"ﬁ) yields a

second class:
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1
) = boexp |~ 2o, = I+ Slng, =, I

+ 31 —ndkllz}} (4.16)
Finally, the operator (’)f‘”h) yields the third class:
nn 4
187 = bgexp [_§||’1QL _77dR||2:|- (4.17)

From the k = 6 special cases of Egs. (2.23)—(2.30), it follows
that

_ —(n;’) 2 2 n it
o = 5\ 2172 . 2 s, (4.18)
(MBNV) 31/ aMgny
where
ni 4
st >:§\|;1MR — g > for r=1,2, (4.19)
S = L2010, =ty P + 6llng, =14
3 6 Mo, = Muy Mo, = Nay,
+ 3[7, = 14,1} (4.20)
and
nn 4
s¢" =3 Ing, = na, 1> (4.21)
Then
1= Gt (i) (577)”
nm| =
(Mgnv)® \Mpny 312%
x| Y &M e S (n] OV ) . (4.22)

Reference [25] used, as a specific framework, a model with
n =2 and, in addition to the values of |ny, —1,,|| and
lng, = na,ll from (2.17), also the value |n,, —n,4,| =7
from [27]. It was shown in [25] that, with this input,
the contributions of the OW with »r =1, 2, 3 are small

compared with the contribution of Oflnﬁ)

1™ (7| O™ |n); ie., only the r = 4 term in Eq. (4.22) is
non-negligible. The sum Sg"ﬁ) is fixed, viaEq. (2.17), by the d
quark mass, so, for the given y and an input value of Myyy

(and with Kf‘"'_’) ~ 1), the coefficient c‘(‘"ﬁ) is also fixed. The

. Hence, [6m| =

matrix elements (72| O\"™" |n) have dimensions of (mass)®, and
since they are determined by hadronic physics, one expects on
general grounds that they are NAgCD, where, as above,

Aqcp ~0.25 GeV. This is borne out by quantitative
studies [8,9,58]. Requiring that |5m| must be less than the
experimental upper bound (4.3) yields a lower bound on
Mpgny (denoted My in [25]). With the illustrative value n = 2,
this is

- 1/9 p 4/9
M 44 TeV 2
pav > (44 Te )<2.7 x 108 sec> <3 x 103 TeV>

—1 ~(nit) 1/9
x <7|<"|Og |”>|> " (4.23)
Agep
Thus, as pointed out in [25], for values of Mgyy in the range
relevant to our extra-dimensional model, although nucleon
decays could easily be suppressed well below experimental
limits, n — 7 oscillations could occur at a level comparable to
current limits.

Since the value of the separation distance |17, — 714, || is
not determined by quark masses or mixing (since these
arise from bilinear operator products of Q; with uy and
dg), it is of interest to inquire what range of values this
distance can have, subject to the condition that |5m| be
smaller than the experimental upper limit (4.3). With the
input value of u given in Eq. (2.11) and for a value of
Mpgny = 50 TeV, we find the bound ||, — 14,/ % 4.6.
As noted in Sec. III, because constraints on fermion
separation distances enter in the sums SE""), the lower
bounds on these distances depend only rather weakly
(logarithmically) on Mgy .

V. AL=0 DINUCLEON DECAYS TO DILEPTONS

The same baryon-number-violating physics that leads to
n — 71 oscillations and hence also to the dinucleon decays
nn — pions and np — pions also leads to dinucleon decays
to dilepton final states. These decays are of several different
types, characterized by different AL values: AL =0,
AL = -2, and AL =2. The AL =0 dinucleon decays
are on a different footing from the AL = £2 decays,
because a AL =0 dinucleon decay can occur via a
combination of a AB = —1 n — 7 transition followed by
Standard-Model processes, namely the annihilation of the 7
(i) with a neighboring n to produce, respectively, a virtual
photon or Z which then creates a final-state £*¢~ or vy,
or (ii) with a neighboring p to produce a virtual W, which
then creates the final-state £ v,.

In [43] we calculated rough lower bounds on the partial
lifetimes for the above AL = 0 dinucleon-to-dilepton
decays by relating their rates to the rates for the decays
nn — 71°2°% nn — 22, and np — n*7° and using exper-
imental lower bounds on the partial lifetimes of the latter
dinucleon decays. Our study in [43] was a general
phenomenological analysis and did not assume a particular
BSM theory such as the extra-dimension model used in the
present work. We obtained the estimated lower bounds
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(T/B)yporip- 2 5% 103 yr for £ = e, u,

(5.1)

(2/B) o, 22 x 108 yr - for vy = v, 1,0, (5.2)

(t/B)yports, 2 104 yr  for £ = e, u, (5.3)
and
(2/B),peet, 2 107 yr. (5.4)

These bounds are considerably stronger than the correspond-
ing experimental bounds from searches for these decays.
Experiments use the notational convention of referring to
their limits as limits on (z/B) fornn — 72°2°, n — 7t 7™, and
np — xtz° although their limits actually apply to the
nuclei in their detectors. We follow this convention here.
These experimental bounds are as follows: (z/B),,,_, ,+p- >
4.2 x 10 yr and (z/B),,_,+,~ > 44 x 103 yr from SK
[23] (per %O nucleus in the water); (7/B),,_;y > 1.4 X
10 yr from KamLAND [14,59] (per ')C nucleus in
the liquid scintillator), and (z/B),,_,+, > 2.6 x 10°% yr,
(2/B), x> 2.2 x 10% yr [21] (per '°O nucleus), where
x denotes a neutrino or antineutrino. Reference [19] used
data from searches for dinucleon decays into multilepton
final states involving e and x™ plus (anti)neutrinos to
obtain the bound (z/B),,,_+; > 1x10% yr. A dedicated
search by the SK experiment yielded the bound [21]
(7/B)poeiy > 2.9 % 103! yr, where, as above, x is a neutral,
weakly interacting fermion, assumed to have a negligibly
small mass. This subsumes the cases in which x is an
electroweak-doublet neutrino or antineutrino of some unde-
termined flavor, or possibly an electroweak-singlet (sterile)
neutrino.

VI. AL= -3 NUCLEON DECAYS
TO TRILEPTONS

In this section we consider the AL = —3 nucleon decays
to trileptons (1.1) and (1.2). We use the constraints on
distances derived in Sec. III to obtain generic expectations
for lower bounds on partial lifetimes for these decays in the
extra-dimensional model. Operators that contribute to the
decays (1.1) and (1.2) are six-fermion operators. In terms of
fermion fields, the operators that we discuss comprise eight
classes, which are listed in Table I. We denote these with a
superscript (pm3), (nm3), or (pm3, nm3), corresponding
to the decays (1.1) and (1.2) to which the operator
contributes, where pm3 stands for “proton decay to
tripleptons, with AL equal to minus 3” and similarly for
nm3. We list these operators below (with £ = e or p),
together with the class to which they belong:

TABLE I.  Structures of classes C,(CN"'3> of operators contributing

to AL = —3 nucleon decays to trileptons. The first column lists the
class number; the second column lists the number N, of SU(2),
doublets in the operators in this class; and the third column lists the
structure of operators in the class. As in the text, we use the
abbreviations pm3 for p — ¢/ and nm3 for n — vi/'t". The
abbreviations used for the fermion fields are Q = Q;, L = L,
u=ug,d=dy, ¢ =g, andv = vy ;. The primes distinguishing
different v fields are suppressed in the notation.

Class C\"") Ny Structure
clrm) 0 udev
anm3) 0 ud*v?
ctrm3) 2 Q*utr?
) 2 02d>
Cgpmlnm:i) 2 OLud?
Cépm3<,nm3) 2 OLu*¢tv
clpm3am3) 4 03L1?
Clpm3am) 4 Q’L*uv

8

O™ = €, [T Clg][uly CLRIWT xCuy 5] € CF™,

(6.1)
m3 a m3
OF"™ = ey ugl CaRllug Cu, g)[€7Cry a] € €™,
(6.2)
nm3 a nm3
Og ) = €aﬁy[”RTCdlﬂ?] {d;lleTCUs.RHUQRCUs”,R} € Cg ),
(6.3)

Oé(lp’n3> = €ij€aﬁy[QiaTCQiﬁ} [M}I/QTCKR] [UszCVs’,R]
= 2, [T Cdl | [ CLR)VT 1 Cuy 4] € CY™,
(6.4)

m3 o j
ng ) = eijeaﬁy[QL TCQiﬂ} [M}I/QTCVS,R] [l/ﬂﬁcys’,R]

= ey " Ca] i Cu ] 5 Cr] € ™,

(6.5)
0(6’"”3) = eijeaﬂy[ ZGTCQ;;/}] [dETCVS'R] [DZ’,R CUS”.R]
— e, 5T Cl [ Cuy o Co ] € €I,
(6.6)
m3,nm3 ia ;
ng = €ii€”/"7[QLTCL]/.LH“QTC%] Vs RCuy &]
= eap ([uf" C21) = [df7 Cup )i Cd]
x U] xCuy ] € CP™) (6.7)
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m3,nm3 ia j
Oép ) = €ij€aﬁy[QL TCLJK,L][ué}?TCUS.RdeTCUs’,R]

= oy ([T CEL) = [dST Cup ) [y Cuy g

x [d Cuy z] € P33, (6.8)
m3,nm3 ia i T T
Oép ) = eijeaﬂy[QL TCLJt”,LH”?? CfRH”% CVS.R]
= e ([uf"Ct1] - [d47 Cupr ][ CEr]
x U Cv, z] € C"), (6.9)
m3,nm3 ia j kyT m
O ") = ;161 [0 COPYQTT CLE, W] 1Cry 4]
= 2e,, [T Cd})([u}] CC,) — [d} Cuy 1))
x [V xCuy 5] € CF™") (6.10)

m3,nm3 ia 1 k m
0(1[17 ) = €ij€km€aﬂy[ LTCL;’.L}[ LﬁTCLf’,LHuﬁTCVs,R]
= €a/1y([”ZTCfL] - [dZTCVf.L])
x ([uf €] = [d7) Copr 1)) [y Cugg]

e clminm3), (6.11)

The contributions of the operators are determined by
the integrals over the n extra dimensions, which, in turn,
only depend on the class to which a given operator belongs.
A general remark relevant for these operators and also
operators for other BNV processes is the following: in
enumerating relevant operators contributing to some proc-
ess, it is sometimes of interest to demonstrate that they are
all linearly independent. However, for our present pur-
poses, this is not necessary, since our actual analysis is
based on the classes of operators and their resultant
integrals, and these classes are manifestly independent of
each other, since they are comprised of different fermion
fields. This remark is also relevant for relations involving
other operators with different Dirac structure.

Using our general formula (8.18), we calculate the integrals

and for these classes. With the notation / (Cp]m3 =1 L), We have
1
3 1
18" = bsexp {—gmm = g P 20 =1 P 2, =, 12 2, =, NP g =, P
Rl N e e e N [ e PN | i | 7y P [ o [ P IIZ}} : (6.12)
1
167" = beexp [—5{2”% Py = 2 =10 P i = 2+ 2, = |
dR - I./S/_R dR - l/s”.R Vs R - Vs’.R Vs R - l/x//R y:/,R - D:”‘R K *
+ 2014, =m0, P+ 200, =10 S H e =0, P+ 0 =10 P+ N1, =0, |17) (6.13)
1
3
12" = bgexp [—E{ZIInQL — |1 + 2lng, = ne, 1> + 2lng, = m, 1>+ 2lng, =mo, NI + Ity = 12,112
g = 1o, |1+ Wy =110, N+ 12 =10, I+ 12 =10, P A 0y =10, IIZ}] , (6.14)
nm3 1
18 = by exp [—5{2”"/& =4I +2lng, =y, I +2lng, =, > +2lng, =10 I+ 114, =10, |17
a1y I Mgy =1 7 A 10 = 10y P 0 = 10 I+ N0, = ms,/_,ellz}] : (6.15)
3.0m3 1
1" = bsexp [—6{||nQL =, P+ Ing, =12 + llng, = na | + Ing, =i, [1* + ling, =, I
e, =P 4w, = na P + e, = m P4, =10, 1P+ 0, = 14,117
A g = 10, I Wi = 10, P A W = 10 P+ 10 =100, 1P D00, = m,_,‘,ellz}] : (6.16)
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12" = pgexp {—é{l\m — 1, 1P+ 2lng, = 1> + g, = ne > + llng, = mu,  I* 4 2, , = 1, 1P
me,, =1l + M., =t P 4 2000, = 11>+ 2000, =10, 11>+ 12, — 10,113 (6.17)
17" = bsexp [—é {3ling, = e, 17+ 3ling, =y, |1* + 3llng, =y I + e, =11
e, =y I+ s — mx,ﬁnﬂ , (6.18)
and
18" = bgexp [—é{ztanL =1, P+ 2lng, =g I? + 2lng, = e, |* + 2z, = 1|
2y, = gl — ny,,,R||2}]. (6.19)

Using these calculations and typical values of fer-
mion separation distances obeying the constraints from
nucleon decays discussed in Sec. III, we find that these
AL = -3 nucleon decays are strongly suppressed rel-
ative to nucleon decays mediated by four-fermion
operators. Making reference to the comparison of rates
in Eq. (2.32) and the illustrative numerical example in
Eq. (2.34), we find that the difference (S)) — (S4)) is
positive, adding to the suppression from the prefactor.
The basic reason that the AL = —3 decays to trilepton
final states are strongly suppressed in this model, while
n — i oscillations can occur at levels comparable to
current limits, is BNV nucleon decays can be sup-
pressed by making the separation between quark and
lepton wave function centers sufficiently large. This
does not suppress n — i oscillations but considerably
suppresses these AL = —3 decays, since they involve
outgoing (anti)leptons. This reason also explains the
suppression that we will find for the various types of
BNV nucleon and dinucleon decays in the following
sections.

Thus, we find that the resultant expected predictions for
partial lifetimes for these AL = —3 nucleon decays are
compatible with existing experimental limits. These limits
include (7/B) ,_ o+, > 0.58 x 10% yr[20], (z/B) ,_,+, >
0.58 x 10° yr[20], and (z/B),_ ., > 0.58 x 10°* yr [22],
where here x denotes an unobserved neutral, weakly
interacting fermion with negligibly small mass that does
not decay in the detector. Thus, for example, the lower limit
on (t/B) for the decay p — ¢ xx applies to all of the decays
p — 70U (with AL = =3), p - £"u/ (with AL = —1),
and p — ¢tw/ (with AL =1) for £t =" or ut, and
similarly, the lower bound on n — xxx applies to all neutron
decays to combinations of (anti)neutrinos with AL ranging
from AL = -3 to AL = 43. Further searches for these

|

and other types of nucleon decays are worthwhile
(e.g., [60-62]). In addition to continued data taking
at SuperKamiokande, future searches for nucleon decays
are planned at HyperKamiokande [63] and in the liquid
argon detector in DUNE (Deep Underground Neutrino
Experiment) [64].

VII. AL=1 NUCLEON DECAYS
TO TRILEPTONS

Here we study the AL =1 nucleon decays to tri-
lepton final states (1.3) and (1.4). These decays are
mediated by six-fermion operators, as was the case with
the AL = -3 nucleon decays to trilepton final states
analyzed in Sec. VI. Our procedure for analyzing these
decays is analogous to the procedure we used in
Sec. VI. Indeed, there is a one-to-one correspondence
between the operators here and a subset of the operators

in that section, namely ON™) ith r=1, 3, 4, 6, 7,
obtained by the replacement of an EW-singlet neutrino
bilinear by one with each v,y field replaced by
(vsr)¢ = (1), (the charge conjugation reverses the
chirality), i.e., by replacing [v]zCuyg] by [V5]CL5 ],
We denote these with a superscript (pl), (nl), or
(pl,nl), corresponding to the decays (1.3) and (1.4)
to which the operator contributes, where p1 stands for
“proton decay to tripleptons, with AL equal to 1” and
similarly for nl. The charge conjugation leaves the
position of the fermion unchanged, so n, g =1, .

Consequently, the five classes to which the operators
for the AL = 1 nucleon decays to trileptons belong are
in one-to-one correspondence with five of the seven
classes to which the operators for the AL = —3 nucleon
decays to trileptons belong, and the corresponding
integrals are equal:
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C(1P3) < C(1p1>, C<2”3> < C(z"l)7 Cglﬁ) < Cgpl),
Cf(ﬁ) < Cz(tnl)’ Cgp3,n3) N Cgpl,nl)’ (71)

where here the symbol <> means replacement of a vv bilinear
by a vv° bilinear. The integrals satisfy the equalities

I(qu) — I(P’”3> I(C{'ZI) — I(”m’;) ]((/{;1) — I(Pm3)’
nl nm3 l,nl m3,nm3
R I S (7.2)

Operators mediating these AL = 1 dinucleon decays to
trileptons are

O(lpl) _ G(I/Jy[M%TCdg] [MQTCKR][VE,YI:CI/?’,R} S C(ll’l)7 (73)
O = e ! Cap)ldy! Cu a7, € ] € G5 (7.4)
O = €60, QT COP iy CER)Iv €5 ]
= 26 " Cll) i} CE )T € JeCYY. (15)
Oz(tnl) aﬂ}’[QlaTCQJL.ﬂ] [dgCUS’R} [Vs’ LCU " ]
= Qe 5" C [l Cu, AT, €5 ) € €5,
(7.6)
and
I,nl c
(ng’ ) =¢, €ap O TCLfL][uR Cdgllvih Cvs ]
= oy ([T CL) = [d5T Cup ) [y CR] T s ]
c Cgﬂl,nl)_ (7.7)

We summarize these classes in Table II. Owing to the
equalities (7.2), our conclusions concerning upper bounds
on the rates for these AL = 1 nucleon decays to trilepton

TABLEII.  Structures of classes C,iNl) of operators contributing

to AL = 1 nucleon decays to trileptons. The first column lists the
class number; the second column lists the number N, of SU(2),
doublets in the operators in this class; and the third column lists
the structure of operators in the class. As in the text, we use the
abbreviations pl for p — ¢Twv/ and nl for n— /v
The abbreviations for fermion fields are the same as in Table I.
The primes distinguishing different v fields are suppressed in the
notation.

N1)

Class C( Ny Structure
ciPy 0 utde?
Cg'“) 0 ud’vi*
Cgm) 2 Q*uti?
Cinl) 2 0*dui?
¢t 2 QLudv?

final states are the same as for the AL = —3 nucleon decays
to trileptons.

VIII. AL= -2 DINUCLEON DECAYS TO
DILEPTONS: GENERAL OPERATOR ANALYSIS

In this section we carry out a general operator analysis of
the AL = —2 dinucleon decays to dileptons (1.5)—(1.8). In
later sections, we shall use our results to obtain approxi-
mate estimates of expected rates for these decays in the
extra-dimensional model. As is obvious from the selection
rule AL = -2 for these decays, they arise differently from
the AB = -2, AL =0 dinucleon-to-dilepton decays for
which we set bounds in [43]. The process by which the
AB = -2, AL =0 dinucleon-to-dilepton decays occur
involves a local six-fermion operator that mediates the
n — 7 transition, in conjunction with n# annihilation leading
to a virtual y, Z, or ip annihilation leading to a virtual W,
The virtual y, Z, or W then produce the final-state lepton-
antilepton pairs, namely £¢~, v,0,, and £ " v, respectively.
Although the amplitudes involve eight external fermion
lines, the lepton-antilepton operator product is bilocal with
respect to the six-quark operator product (separated by a
Euclidean distance ~1/fm for the y, ~1/m  and ~1/my, for
the processes with a virtual Z and W, respectively; i.e.,
these AB = -2, AL =0 amplitudes do not dominantly
involve local eight-fermion operator products.

Proceeding with our analysis, we first discuss the general
structure of an effective Lagrangian for the AB = -2,
AL = -2 dinucleon-to-dilepton decays. For labeling pur-
poses, we shall introduce the superscript NN’, which takes
on the respective values (NN') = (pp) for pp —» £+¢'+
decays, (NN') = (np) for np — £ decays, and (NN') =
(nn) for nn — vv/ decays, with the dilepton final state kept
implicit in the notation. This effective Lagrangian has the
form

£$NI>(x) = chNN/)OgNN/)(x) +H.c.

r

K&NN/)/d”yOWN’)(x,y) + H.c.

r

= SO ) [anvio) 4 e
=SNG Gy e, (8.1)

r

where, in accord with the general notation (2.23),

M = / aryvi"™ (), (8.2)

Various sets of operators 0£NN>

NN L .
I 5 ), so they can be organized into certain classes, as we

will discuss below.

yield the same integrals
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By the same logic as for the four-fermion operators
contributing to individual nucleon decays and the six-quark
operators contributing to n — 72 oscillations and dinucleon
decays to mesonic final states, since existing limits imply that
the mass scale characterizing the physics responsible for
these dinucleon-to-dilepton decays must be large compared
with the electroweak symmetry-breaking scale v, it follows
that the eight-fermion operators 05NN/) (x,y) mustbe singlets
under the Standard-Model gauge group Ggy.

Six of the eight fermions in these operators are quark
fields. The color indices of the six quark fields, denoted as
a, f,v, 8, p, and o, are coupled together to make an SU(3),
singlet. This can be done in any of three ways, correspond-
ing to the color tensors (7) in Eq. (4.12), (T,)

in Eq. (4.13), and

affyépo apydpo

(TaS)a/}y(S/m = €pap€oys — €oap€pys- (83)
Some properties of these tensors are reviewed in
Appendix B. As discussed in [9], there are also color
tensors related to these by redefinition of indices, such as
T 02/ (saa) a0d T 12 (45q) In Egs. (3.4) and (3.5) of [9], but these
will not be needed here.

The eight-fermion operators can be classified according
to how many of the eight fermions are SU(2), nonsinglets;
the possibilities are 0, 2, 4, 6, and 8. For operators
containing a nonzero number (2, 4, 6, or 8) fermions in
SU(2), nonsinglets, there are various ways to contract the
SU(2),; weak isospin indices. One way is to contract each
pair of weak isospin-1/2 indices antisymmetrically to make
singlets, using the ¢;; tensor for two SU(2); indices, and so
forth for other SU(2), indices. Alternatively, one can
combine pairs of weak isospin-1/2 fields symmetrically
to make adjoint (i.e., weak isospin 1) representations of
SU(2), and then contract these to obtain an SU(2), singlet.
For example, starting with four weak isospin 1/2 repre-
sentations with SU(2), indices (i, j), (k, m), the (i, j) and
(k,m) indices can each be combined symmetrically, and
then the resulting two isovectors can be contracted to make
an SU(2), singlet. This is done with the SU(2), tensor

(Iss)ijkm =

For operators with six fermions in SU(2), doublets,
another relevant SU(2), tensor involves symmetric combi-
nations of two pairs of isospin-1/2 representations com-
bined with an antisymmetric combination of the third pair
of isospin-1/2 representations, via the tensor

(8.4)

(€ik€jm + €im€jr)-

(Issa)ijkmnp = (eikejm + eimejk)enp’ (85)
where the subscript (ssa) refers to this symmetric-
symmetric-antisymmetric structure of SU(2), contractions.
Finally, one can also use a set of SU(2), contractions in
which all pairs of isospin-1/2 representations are combined
symmetrically. The SU(2), tensor that does this is

Isss = €ik(€jn€mp + €mn€jp) + €im (ejnekp + €kn€jm)

+ €jk(€in€mp + €mn€ip) + €jm(€in€kp + €kn€ip)’ (86)
where the (sss) subscript refers to the threefold symmetric
set of contractions.

Since there is a one-to-one correspondence between an
operator O in ng\;N ) and an operator 0" in £${Zln,
one can use either of these for a structural analysis; we will
use the (’)gNN ). We will determine a general set of classes of
operators that yield the same integrals / (,NN >, as defined in
Eq. (8.2). A given class typically contains several different
individual operators. However, since it is the integrals
IﬁNN) that control the contribution to the amplitude, the
natural organization for our analysis is in terms of these
classes, rather than the individual operators.

We proceed with the general structural analysis of the
AL = -2 dinucleon-to-dilepton decays. The eight fermions

that comprise a given operator OﬁNN/) are comprised of
six quarks and two leptons, namely wud, uud,¢*,¢'t,
uud, ddu, V0, and ddu,ddu,p,v for the decays (1.5),
(1.7), and (1.8), respectively. As discussed above, the quarks
can be chosen from the SU(2), -doublet Q; or the SU(2), -
singlets up and dp, and the leptons can be chosen from the
SU(2),-doublets L, ; and L, ; and the SU(2), -singlets £,
¢, and v, r. We can abstractly represent a generic eight-

)

fermion operator product (’)gNN as

OMY) = QUL A (87)
where we have suppressed the arguments y and # in the
fermion fields, have suppressed the difference between
lepton fields with and without primes, and have left the
chiralities of the fermions implicit in the exponents. The fact
that the operator involves eight fermions is the condition

nog+np+n, +ny+n,+n, =8 (8.8)

The condition that the initial state is a dinucleon is that

ng +mn, +ny, =2N. =6, (8.9)

where N, = 3 is the number of colors. With the color
contractions discussed above, this condition is sufficient for
the operator be an SU(3), singlet. The condition that the
final state has L = —2, i.e., is comprised of two antileptons,
is that

np+ny+n, =2. (8.10)

Note that only two of the three equations (8.8)—(8.10) are
linearly independent. The requirement that O must be
invariant under the SM gauge group implies that it must
have zero weak hypercharge and that it must be a singlet
under SU(2),. The condition that it must have weak
hypercharge ¥ = 0 is that rnyYy =0, or, explicitly,
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ng <%> +ny(-1) +n, <g> + ny (—%) +n,(-2) =0.

(8.11)

The condition that the operator must be an SU(2), singlet
requires that the number of SU(2), doublets must
be even:

ng+n, =(0,2,4,6, or8). (8.12)

Equations (8.8)—(8.12) comprise five linear equations,
of which four are linearly independent, in the six
(non-negative, integer) unknown numbers, ng, ny, n,, ng,
ng, and n, , with the constraint that each number must lie in
the range [0, 8]. The solutions to these equations with the
given constraint determine the general structures of the
operators for dinucleon-to-dilepton decays with AL = —2.
‘We have obtained these solutions, which we list in Table III.
The abbreviations used for the fermion fields are Q = O,

TABLE IIL  Structures of classes C\"") of operators contribut-

ing to dinucleon-to-dilepton decays with AL = —2. The first
column lists the class number; the second column lists the number
of SU(2), doublets in the operators in this class; and the third
column lists the structure of operators in the class. The abbrevia-
tions in the superscripts on the classes are pp for pp — ¢/, np
fornp — ¢*0,and nnfornn — ov/. The abbreviations for fermion
fields are the same as in Table I. The primes distinguishing
different lepton fields are suppressed in the notation.

Class CiNN) Ny Structure
Cgpp) 0 Wi
anp) 0 wdtv
C g"") 0 u*d*?
Cipp) 2 0*udde?
anﬁ) 2 Q*ud*tv
Cénn) o) 0ud’1?
Cgpp,np) 2 QLu3d*¢
cyrm 2 OLu2dy
C[()"P) 2 L2133
cir 4 04t
CYIP) 4 Q*udtv
CY;") 4 0 dPr?
cipr) 4 Q’Lu’dt
ey 4 O Lud
C(llsw,np,nn) 4 QL2 d?
C(llép-np-nn) 6 0*L%ud
ng;p,np) 6 Q’Lut
clirm) 6 0°Ldv
c\pp-npnn) 8 0°L?

19

L=L;,u=ug, d=dg, ¢ ="7Cg,and v = v . The first
column lists the class number; the second column lists the
number of SU(2), doublets, denoted N,; and the third
column lists the general structure. Primes distinguishing
different lepton fields are suppressed in the notation. In
checking candidate solutions of Egs. (8.8)—(8.12), it is
necessary to verify that they do not vanish identically
because of combined SU(3), and SU(2), tensors. We find
that one class with N, = 6, of the abstract form Q6f1/,
contains no nonvanishing operators of our type. We denote a
given class symbolically as C,(CNN/). These contribute as
follows:

pp— 50+ M) k=1,4,7,10,13,15,16,17,19,

(8.13)
np — ¢+ M),
k=2.57.8.9,11,13,14,15.16,17.18.19,  (8.14)

and

. C(NN/)

nn—o: C ', k=3,6,8,12,14,15,16,18, 19.

(8.15)

As is evident in these lists, some classes of operators only
contribute to one type of AL = —2 dinucleon-to-dilepton
decay, while others contribute to two or three of these decays.
We will sometimes indicate this explicitly, writing, for

example, C(lNN/) = Cgpp), CgNN/) = Cé"m, CgNN/) = ann),
CgNN') _ Cgpp‘nm, CéNN/> _ Cénp.nn)’ and C(}];/Nr) _
C(lgp P \where abbreviations for superscripts are pp

for the decays pp — £7¢'", np for np - 0, and nn

for nn — oY/, For brevity, we will also sometimes suppress
the superscript (NN') on C,((NN )
notation / (éVN/)

k

, writing simply C}, as in the

= IC(NN’) .

. k. NN') . .
The integrand function of a class of operators C ,({ in this
table with a given set of exponents (ng, n, ., n,, ng, ng,n,) is

of the form

V) = aexp|-Snln-n P (810
{r}
. (NN") . .
The integral of V;" " ’(y) over the extra spatial coordi-
nates is
1) = / d"yvI"™(y). (8.17)
This gives
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(NN)

1
Ie —bgexp[—— ST nnpllny—npl?|. (8.18)

ffif#f ord

where the sum is over all of the types of fermion fields in
the operator product, in an ordered manner, as indicated in
Eq. (A2). The prefactor bg = (2'/2773/23)",  from
Eq. (2.29). As noted in connection with Eq. (A2), for an

(NN)

operator Oy containing N different types of fermion

fields, the integral I(C[ZNI)

depends on (A;f ) different sepa-
ration distances |lny —np|.
As the k = 8 special case of Eq. (2.30), the coefficient

NN'
cg ) can be expressed as

_(NN) ,
(NN') ((NN') Ky b —5VND
(M) T
_I_c(rNN’)< 21/2'”3 )ne—SiNN/)

=— .
Mgny 7T3/2M]33NV

Then the decay rate for one of the three dinucleon-to-
dilepton decays (1.5)—(1.8) is

1 1 2\ u 6n
F T _ S _— _
N <2mN> (M 113(1)\1\/) <7T3> <M BNV)

S ' (15, | OV NN

r

(NN')
Cr = Kr r

(8.19)

2
x R,, (8.20)

where S is a symmetry factor, S = 1/2 for decays with
identical leptons in the final state and R, is the phase-space
factor.

IX. pp —» £+¢'+* DECAYS

In this section we apply our general analysis to the AL =
—2 dinucleon decays pp — £t of Eq. (1.5), where ¢
and ¢’ can be e, u, or 7, as allowed by phase space. Thus,
these are the decays pp — (eTe®,utut,etu™, ez, or
utt™). The pp — eTe™ decay is related by crossing to
hydrogen-antihydrogen transitions (ep) — (e p) [65].
These decays are of particular interest because if an
experiment were to observe any of them, this would be
not only an observation of baryon number violation with
AB = =2, but also an observation of the violation of total
lepton number by AL=-2 [66]. In contrast, since an experi-
ment does not observe any outgoing (anti)neutrino(s), the

AL = -2 decay np — ¢ is experimentally indistin-
guishable from the AL =0 decay np — ¢"v. For the
same reason, the AL = —2 decay nn — oo/, the AL =0

decay nn — v/, and the AL =2 decay nn — v/ are
all indistinguishable experimentally. Furthermore, an
experiment cannot determine whether a final-state neutrino
is an EW-doublet neutrino of some generation (v,, v,
or v,), or whether it is an EW-singlet, v;.

Because six-quark operators of the form uuduud have
nonzero charge (Q,,, = 2), they cannot, by themselves, be
a singlet under Ggy;. However, a subset of the six-quark
operators is invariant under SU(2),. The fact that the six-
quark parts of these operators are invariant under SU(2),
implies that the lepton bilinears must also be invariant
under SU(2),, and this fixes them to be of the form
[£RC£%]. For this set we list the following operators,
together with the class to which they belong, as defined
in Table III:

OV = (T apyap [T Cll [ Cug][d Cag][£hC ] € C, (9.1)
OF") = (T, ) apyspalu! Cg] [ CaR) [y Cug[¢5CE4) € CT7, (9:2)
O(PP) = (T aTCd/f }’TCdS PTC o fTCf/ C(PP) 93
3 = (Ta)apyspo(uk Cdgllug Cdyllul Cugl[fRCER] € C1, (9.3)
O(PP) =¢e. (T iaTC Jp J’TCdé /)TC o LﬂTCf/ C(PP) 94
4 €ij(Ta)apyspe| QL COT ug Cdplluy Cugl[fxCER] € Cf, (9.4)
O(PP) — o T iaTC JjP k}’TC mo /’TC c fTCLM C(I’P) 95
5 €ij€km(Ta) apyops| Q1 COL [ 07" ][u Cug][¢rCey] € Ciy ", (9.5)
and
0(1’1’) = (] B T iaTC /4 kJ/TC mé /)TC o fTCf/ C(PP) 96
6 (Lss)ijion (Ts) apyopo Q1 COL Q" COTPl[uy Cugl[£rCER] € Ciy. (9.6)

The remark concerning linear (in)dependence of oper-
ators given above after Eq. (6.11) also applies here. There
are also operators contributing to pp — £%¢ in which one
or both of the lepton fields is (are) contained in SU(2),

[
doublets rather than being SU(2),-singlets. Although
we have carried out an enumeration of these other oper-
ations, this enumeration is actually not necessary for our
analysis. Instead, as before, the key observation is that the
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Applying our general formula (8.18), we calculate the
following integrals for the classes of operators contributing
to pp = £1¢£'", as listed in Table IIT and Eq. (8.13). For
the superscript (NN'), we list all of the AL = —2 dinucleon
decays to which the class contributes. In accord with our
general formula (8.18), we calculate the integrals

contribution of a given operator OﬁNN/> to the amplitude for
the diproton-to-dilepton decay is determined by the inte-
grand function (8.17), given in general by Eq. (8.2). Since
there are substantially fewer classes of integrand functions,
and hence integrals, than the total number of operators
contributing to pp — £7¢'*, this simplifies the analysis.

|

1
18" = byexp [—g{snnuk 114y |+ 4l = 12,2 + A, = 1, |1
+ 2|1y = 12,1+ 2lna, = ne P+ e, = ne 17} (9.7)

1
18 = byexp [—§{6||nQL gl +2ling, = na,I? + 2lng, = ne, |2 + 2llng, = ney I + 3llma, = na, I

+ 31, = 1, I + 3l = 1 |7 + I, = 12 |P + 0 = 1, 1> + llne, = nf;IIZ}] ; (9:8)

I(ppﬂp

1
2077 = byexp| g (g, =1, P + 31, = 1P + 2, = P

+ [Ing, =ne 1> +3llne,, =, lI?

2012, = g P+ 0, =1y 1P+ 6l = 1, |+ 301y = 1, > + 2l = ng}], (9.9)
1
18] = byexp [—g{snng =g+ 4ling, = ne,I* +4ling, —ne, |2

+ 201, = 1 )1P 4 2000, = 1 1P+ 2 — 112, P} (9.10)

1
1 = by [—g{SllﬂeL 1w, I+ Oling, =1yl + 3lng, = 11a, 1P +3ling, = ey I + 2., =, |
s, = a2 4 ey = P+ 2, = 10 20, = 1P+ I, = mHZ}], 9.11)
1
I(C’jf’"”’"”) = bgexp [—§{2||’7QL —n,, 1> +2llng, - ’7Lm||2 + 4lng, = nulI* + 4lng, = na > + llne,, — ﬂLf/ALHz
20, = gl 2l =P+ 2, =P+ 2, =4, 2+ 4l - ndRHZ}], 9.12)
1
10" = byexp [—§{4||nQL =, 1P+ 4lng, =1, I+ 4lng, =i + 4ling, = naylI* + e, = e, I
s = gl ey = a4 T, =g 2 W, = a4 i, = nanZ}], 9.13)
1
12777 = byexp| = {Slha, =1, P+ Sliio, =P+ S, =, + 1, = g
S L A R e A (9.14)
and
. 1
17" = byexp [—g{6||'7QL =1, |7 +6lng, = e, |> + lIne,, —ne,., 17} (9.15)
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Next, we use the lower bounds on the distances sepa-
rating the centers of fermion wave functions in the extra
dimension that we inferred from lower bounds on partial
lifetimes of proton decay modes. We substitute these lower
bounds on separation distances into the integrals / P) and
Eq. (8.20) to obtain upper bounds on the rates for the pp —
£t decays. Using the lower bounds on the distances
separating centers of fermion wave functions that we
derived from limits on nucleon decay, we find that the
resultant values of (7/B),, sy = (Upppie)™" pre-
dicted by the extra-dimensional model are easily in agree-
ment with current experimental lower bounds on these
AL = -2 dinucleon-to-dilepton decays. As embodied in
Egs. (2.33) and (2.35), this result follows because of the

lower bounds on the exponent sums sier), together with the

fact that the amplitude is much more highly suppressed, by
the prefactor 1/M%yy, as compared with the prefactor
1/M%y that enters in the amplitude for AL = —1 nucleon
decays such as p — £+ 7°, where Mgy . The lower bounds
(from the SK experiment) are [23]

(2/B) pposeter > 4210 yr, (9.16)

(¢/B) pposyiiyt > 44 x 10% yr, (9.17)
and

(2/B) ppoet e > 44 x 103 yr (9.18)

per %0 nucleus in the water.

X. np - ¢*v DECAYS

In this section we proceed to apply the same methods to
set upper bounds on decay rates for the decays np — 10,
where £+ canbe e, u™, or z* and U can be an electroweak-
doublet antineutrino of any generation or an electroweak-
singlet antineutrino. Several of the classes of integrals for
np — £7D are the same as those for pp — ¢"v decays,
which we have already analyzed. These are the C,iNNI) with
k=17,13,15,16, 17, 19. For the other classes, we calculate
the integrals

1
1¢)) = byexp [—§{9||m,R = 4y |+ 30 = 16,1 + 3ty =10, P + 30, = 1, |

+ 310ay = 1o, |17+ 112 =10, 117} (10.1)
. 1
18 = bgexp {—g{“ﬂm — 1P +4lng, = na > +2llng, = ne 1>+ 2lng, = o N> + 4, — na,lI?
+ 20ty = 12y 1P+ 2000, = 10 1P 4 2000, = 1,17+ 2004, = 10, |17+ 12, — m.‘_,?llz}], (10.2)
, 1
1E7") = by exp [—S{HnQL =11, I+ 2ling, = M| + 3lng, =4, + 1o, = > +2llne,, =, |1
+3n,, = a1 + e, = 1o, 1P + 6l = 12 1> + 2l = 10, I + 310, = 10, |2}}, (10.3)
1
16" = byexp [_g{”’hm 11, P4 31, = 1l + 3l = a2+ 30, = 10,12
+3lne,,, = na > + N, = na, 1P} (10.4)
, 1
167 = byexp {—gmum = g >+ 4, = 4 I+ 4o, = e I+ 4, =, I+ 1y =1, I
T P | | e e o | P M | o [/ P IZ}], (10.5)
nn 1
187" = bgexp [_§{3H’7QL =11, 1P+ 3o, = muI* + 6llng, = na, 1> + 3llng, = mu, 1> + 1, =, |12
+20me,, =1 lP + e, =Moo IP 4 2000 = 101>+ g = 10,117 + 20114, = m.h,?llz}} : (10.6)
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and

I(np,nn)

1
c. = bgexp _§{5||’7QL - 'ILK,LHZ +5llng, = na l* + 5llng, — Mo,

| 2

+ ||an.L - ’/II/S_R + ||’/IdR - nyJR

Although it is not necessary for our analysis, one can
construct explicit operators of each class, as we have done
for the operators contributing to pp — £7¢'*. Some of
these contribute to decays with EW-singlet antineutrinos,
while others contribute to decays with EW-doublet
|

2}.

I (&

+lne,, = na,

(10.7)

[
antineutrinos, but since these decays are indistinguishable
experimentally, we include all of these operators together.
For example, there are several operators in which all
fermions are SU(2), singlets:

O = (1) gy T Curf [y Ca3) [} Cag)[£5Cu, k) € €T, (10.8)
O("l’) — (T aTCdﬂ YTCdé PTCda 2 N6, C("P) 10.9
2 (Ts) apyopolu Cdylluy Cdylluy CdR|[€rCursg] € C;, (10.9)
O(”I’) — (T aTCd/f J’TCd5 PTCdO' Z¥e C("P) 10.10
3 (T0)apyspe Uk Cdg]lug Cdglluy Cdgl[¢RCrig] € C, (10.10)
O = (T W) apyapo QI COY iy CR) i CaF) 7 Cus] € €5, (10.11)
O(”I’) — T iaTC Jp k}’TC mo pTCd” l/ﬁTC C(”P) 10.12
5 €ij€im(Ta)apyops Q1 COL Q1" COT°|[uly CdR][€RrCryr] € Cyy, (10.12)
and
O(”P) = (] B T iaTC Jp kYTC mo /’TCda l/ﬁTC C(”P) 10.13
6 (ss)ljkm( s)a/iy(s,m[QL o0, COP°l[uy CaRl[¢rCuyr] € Cyy. (10.13)

There are also operators contributing to np — 70 in
which one or both of the lepton fields is (are) contained in
SU(2), doublets rather than being SU(2), singlets. We
have constructed these explicitly, using the same methods
that we used for the corresponding operators contributing
to pp = 0.

Proceeding as in Sec. IX, we have calculated the
resultant rates for the AL = -2 decays np — £70.
Using the lower bounds on distances between fermion
wave function centers in the extra dimensions that we have
derived in Sec. III, we find that the resultant lower bounds
on the partial lifetimes are in agreement with the current
experimental lower bounds on these decays. Furthermore,
as noted earlier, since an experiment would not observe the
outgoing antineutrino, it would not be able to distinguish
the AL = -2 decay np — £*0 from the AL = 0 decay
|

I(nn)

+ M, =1, N7+ =10, [P

np — ¢*v. As discussed in [43], the latter decay can occur
via the combination of a six-quark BNV vertex with SM
fermion processes and hence is generically much less
suppressed than the AL = -2 dinucleon-to-dilepton
decays.

XI. nn — v’ AND nn — v/ DECAYS

In this section we consider the AL = —2 dineutron decay
nn — vt/ and the corresponding AL = 2 decay nn — vv/.
Of the classes of eight-fermion operators contributing to the
AL = -2 dineutron decay nn — o7/, the six resultant / ECNN/)
integrals have already been given above, namely those for
k=8, 14,15, 16, 18, and 19. The remaining three integrals
are for k = 3, 6, 12. We calculate the integrals

1
¢o = byexp | = A8llmu, = 1?2l = 1o, 17+ 2, = 10, 1+ A1, =12, 2

(11.1)
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1
18 = byexp [—g{znm 14y |+ 6ll, = |2 + 2lng, =1, I* + 2ling, =1, I + 31, = 1a,

+ Hrluk - ’/IyS_R

and

I("”)

+ 20nd, = 1y N7+ M1y =10, P}

Applying our lower bounds on the distances between
centers of fermion wave functions in the extra dimension
from Sec. III, we find that these AL = —2 dinucleon decays
are highly suppressed, similar to what we showed for the
pp = £Y¢" and np — 10 decays.

One can also consider the AL = 2 dineutron-to-dilepton
decays nn — v/ in Eq. (1.9). Given that v, » is assigned
lepton number L = 1, there is a corresponding charge-
conjugate field, (v,z)° = (v§), with lepton number
L = —1. The eight-fermion operators that contribute to
the decays (1.9) are obtained from those for the decay nn —
o/ by replacing the [v!Cuyg] neutrino bilinear by
[(15)7C(15),]. There are thus three classes of operators,
which are the results of this change applied to the classes
C,(("") with k = 3, 6, 12 for nn — v/ decays. Carrying out
the resultant analysis, we reach the same conclusions as we
did for the AL = —2 dinucleon-to-dilepton decays con-
cerning the highly suppressed rates.

A general comment concerning both of these AL = £2
dineutron decays is that since an experiment would not
observe the outgoing (anti)neutrinos, it could not distin-
guish these decays from the AL =0 dineutron decays
nn — vu decays, which can occur via a six-quark BNV
operator combined with SM processes and hence are
generically much less suppressed than the AL = —2 decays
nn — v’ [43].

One also expects similar suppression in this extra-
dimensional model for B- and L-violating decays involving
trinucleon initial states, such as ppp — £Tatz™ and
ppn — £ x", mediated by ten-fermion operators, or
ppp = " and ppn - €7¢'D, mediated by 12-
fermion operators. Recent experimental bounds on trinu-
cleon decays include [67,68].

XII. CONCLUSIONS

In this paper we have studied several baryon-number-
violating nucleon and dinucleon decays in a model with
large extra dimensions, including (i) the AL = —3 nucleon
decays p — o/ and n — oo/'U”; (ii) the AL = 1 nucleon

12 A W = 0y [P+ 30, = 10 [P 4 3l = 10y P+ Wy = 10y P}

I?

(11.2)

1
¢, = bgexp |:_8{8||77Q,‘ =g >+ 4llng, =y >+ 4ing, =, N+ 2lna, =m0, |17

(11.3)

|

decays p —» ¢Tv/ and n — /v’ (iii) the AL = -2
dinucleon decays pp — (eTet,utu®, etu®, etz or
utth), np - ¢*o, and nn - v/, where £ = e, ut, or
7+; and (iv) the AL = 2 dineutron decays nn — v/, The
decays of type (i) and (ii) are mediated by six-fermion
operators, while the decays of type (iii) and (iv) are
mediated by eight-fermion operators. Motivated by the
earlier finding in Ref. [25] that, even with fermion wave
function positions chosen so as to render the rates for
baryon-number-violating nucleon decays much smaller than
experimental limits, n — 72 oscillations could occur at rates
comparable to experimental bounds, we have addressed the
generalized question of whether nucleon and dinucleon
decays to leptonic final states mediated by six-fermion and
eight-fermion operators are sufficiently suppressed to agree
with experimental bounds. To investigate this question, we
have determined constraints on separations between wave
functions in the extra dimensions from limits on the best
constrained proton and bound neutron decay modes and then
have applied these in analyses of relevant six-fermion and
eight-fermion operators contributing to the decays (i)—(iv).
From these analyses, we find that in this extra-dimensional
model these decays are strongly suppressed, in accord with
experimental limits. The reason that n — 71 oscillations can
occur at a level comparable with current limits, while the
decays (i)—(iv) are suppressed well below experimental
limits on the respective modes can be traced to the fact that
nucleon decays can be suppressed by making the separations
between quark and lepton wave function centers sufficiently
large. This procedure does not suppress n — 71 oscillations
but considerably suppresses the baryon-number-violating
decays of nucleons and dinucleons considered here. In
addition to its phenomenological value, our analysis pro-
vides an interesting example of the application of low-
energy effective field theory techniques to a problem
involving several relevant mass scales. Here, these mass
scales include the fermion wave function localization
parameter p, the overall mass scale of baryon number
violation, Mgy, and the multiple inverse separation dis-
tances [|ys, = yy, | =" between various fermion wave function

centers in the extra dimensions.
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APPENDIX A: SOME INTEGRALS

We record here some relevant formulas that are used for
our calculations. First, with 7 a real variable and the (real)
constants a; > 0, i = 1, ..., m, we have

o = T V2 = >t ex @i (ny, =g, )
dnexp [— a~(11—77~_)2} = {} exp{ T : } (A1)
/—oo ; l 7 zm=1 a; Zs:l as
The sum » 7.y ajai(ng, — ny,)* contains (%) terms, where (") = m!/[r!(m — r)!] is the binomial coefficient.
Second, now generalizing 7 to an n-dimensional vector 7 € R" with components 7;, j=1,...,n, and norm
Il = [>25= n7]'/%, and denoting [[T7, [, dn;]F(n) = [ d"nF(n), we have
“ 7 n/2 = ek ajarllng, —ny 12
[amess|= 3 aln=ng | = || exp | T A L, (42)
i=1 i=1 " s=1"s
Thus, for example, for m = 3,
[ amespiailn=ng |+ asln =, I+ aslly =y, 1)
_ r n/2 exp —(ayaslng, —np, 1P + avaslng, —np, I* + asaq|lng, —ny, |I?) (A3)
a1—|—a2—|—a3 a1+a2+a3 ’

APPENDIX B: PROPERTIES
OF COLOR TENSORS

The tensors 7'y and T, in Egs. (4.12) and (4.13) were
defined and used in [8]; in [9] their properties were
discussed further and a third type of color tensor, denoted
T3, was defined and applied. In this Appendix we review
the properties of these tensors. We use the notation (a, b)
and [a, b] to mean, respectively, symmetry and antisym-
metry under the interchange a <> b, where a and b can be
single SU(3),. indices or sets of indices. The tensor 7'; has
the properties

(Ts)a/}yépzy: (C{, ﬁ)’ (y’ 5)’ (p’ 6)’

(ap.78). (vé.po). (ap.po).  (BI)
Thus, in a contraction of Ty with a product of six funda-
mental (3) representations of SU(3),, the first two pairs are
each combined as (3 x 3), =6, i.e., in terms of Young
tableaux, ((0x[)s = [1J; then the resultant two 6 represen-
tations are combined symmetrically as (6 X 6), = 6, ie.,
(CO x ) = [T, and finally this 6 is combined with the 6
resulting from the third pair (3 x 3), = 6 to make an SU(3),
singlet.
The tensor 7', has the properties

(ap.ys). (B2)

(Ta)a/jyépn: [a»ﬂL [%6]9 (,0, 6)’

|
Hence, in a contraction of 7, with a product of six
fundamental representations of SU(3),, the first two pairs
are each combined as (3 x 3), = 3, then the resultant two 3
representations are combined as (3 x 3), = 6, and finally,
this is combined with the 6 from the (po) combination to
make an SU(3),. singlet. To indicate more explicitly these
(anti)symmetry properties, Ref. [9] introduced the notation
(Ta)aﬂyépy = (Taas)a/}yépa’ (B3)
where the subscript (aas) refers to the antisymmetry on the
first two pairs of color indices and symmetry on the last
pair. In an obvious notation, there are two other related
color tensors, T, and Ty,,.

As noted in [9], there is a third way to couple six
fundamental representations of SU(3), together to make a
singlet, namely to couple each pair antisymmetrically, via
the tensor 7,3 given in Eq. (8.3). This tensor was not
needed in the analysis of n — 71 oscillations in [8] but did
enter in the analysis of six-quark operators involving higher
generations in [9]. It has the properties

(Ta3)aﬂy5p6: [a’ ﬁ]’ [7? 5]’ [p’ 6]’

[ap.ydl.  [vb.pol,  lap.po]. (B4)

APPENDIX C: PHASE-SPACE FACTORS

For an initial state with invariant mass /s decaying to an
n-body final state f.s., the phase-space factor is
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et~z [z (o= ()

where p is the four-momentum of the initial state and E;
and p; denote the energies and four-momenta of the final-
state particles, respectively. We define the Lorenz-invariant
phase-space factor as

R, — / dR,. (€2)
We will only need R,, which is
1
Ry =< [2(1,61,8,)]'/2, (C3)
7

where A(x,y,z) =x>+y*+7>=2(xy+yz+zx) and §; =
m?/s. If m?/s is zero or negligibly small for all particles
i in the final state, then R, = 1/(8z). If §; = 6, = 4, then

APPENDIX D: OPERATORS
CONTRIBUTING TO pp — £+¢'*

Although our results 1n this paper depend only on the
classes of operators C and the resultant integrals of

(NN)

fermion fields over the extra dimensions, / =1 ), it
Cy C](‘ )

is worthwhile, for illustrative purposes, to display various
explicit operators that contribute to the AL = —2 diproton
decays pp — £T¢'F. We have listed operators of this type
in which all fermions are SU(2), singlets in the text. Here
we give operators contributing to pp — £7¢'" in which
one or both of the lepton fields is (are) in SU(2), doublets.
As remarked after Eq. (6.11) in the text, since our analysis
only depends on the classes of operators (defined by the
integrals), which are manifestly independent, since they are
comprised of different fermion fields, it is not necessary to
work out all linear independence properties among these
explicit operators.

Operators with one lepton field arising from an SU(2),
doublet and the other an SU(2), singlet include the

= (87)7'V1 —46. following. The first of these is
|
OF """ = €T apyopo Q17 CL [ Cai ][ Cuf)l T C 3] € €7, (D1)
Carrying out the SU(2), contractions in OY”"") explicitly, one has
ngpﬁp) = (TAY)(I[)’y(?/)U([uZTCfL] - [dzTCl/f.LD[ugTCdg][M%TCM/I)'(’] [d?-?TCf;Q] (DZ)

Of the two terms in Eq. (D2), the one containing the [u$” C£; ] fermion bilinear contributes to pp — ££'", while the other
term contributes to np — £'*0,. Since it is straightforward to determine which dinucleon-to-dilepton decays each operator
contributes to, we do not indicate this explicitly. Other operators include

OFP"™) = €(T,) apyipe| QLT CLY |y Ci) [ Cy)[ugr L) € CF7"P), (D3)
OFP") = €11(T ) apyipo QFTCLL [l Cutly) [ Cl][ugf C Y] € C7", (D4)
OBP™) = €,1(T ) aprips| QT CLL , [ty Cdi] [l Cu)|dgl C Y] € CFP, (D5)
OFP™) = (T ) aprons| QT CLL iy Cali) [l Cdfy)[uG L) € CFP™, (D6)
OBP") = €€ (T ) aprans QT COPNOYT CLE 1 Cug)[dyf CEy) € CHP™, (D7)
O(P!’s”!’) — .. T laTC JP kJ’TCL /’TCdo §TCLﬂ/ C(PP,"P) D8

13 €ij€m(Ta)aprops O COL][Q] 7 l[uk Caglluy CeRl € Ci3 ™, (D8)
OUBP™) = € 6um(Ta3) apyops| QT COPIIOYT CLY |1y Cag)[uif C) € CH™, (D9)
O(PPJ’P) - . T zaTC V4 kYTC mo ”/)TCLP (TTCZ/ﬂ/ C(PP-"P) D10

15 _eljekmenl?( )a/}y&/)o'[Q QL][ Q H L f,LHuR R]e 17 ’ ( )
OPP™) = (1) it (T apsns [T COPNQYT CLE N Cug)ldf CEy) € CEP™) (D11)
OB = (1)1 (T aprone QT COPNQYT CLY 1! Cag[uf CF) € CRPP, (D12)
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OR"™) = €61 (Ty) apyspe| QT CLL  10F CLY Vi Cud] [ty Cdg) € CEP"™, (D13)
OB = €61 (T aprine| QFTCLL N[O CLY: |l Ca) [y Cdg) € CLP ™ (D14)
X" = € i1n(T ) gyl QF T CLL QKT CLY [ugT Caf) i C) € CBP "™ (D15)
OFP"PM) = €1y (Ta) gyl QT COPNQY CLY 1101 CLY, 1y Cd}) € ClpP ™, (D16)
OB = (1) i (T apyape | Q1T CLL QT CLE i Cuf) [ Cag] € CEP"™) (D17)
OLP"PM) = (1) (T Dyl QT CLL QYT CLE, i CaR) [ Cag] € CEP"™) (D18)

OSP ) = (s iy (T apono [ QKT COPNIQY T COPNQITCLY gl C ] € CHP ™ (D19)
OLP"P™ = (Is Vi (T apyon | QT COPNQYT CLE Q4T CLE, | i Cy) € CEP"P™, (D20)
O™ = (Lsa)mapi (Ta apyopo Q1T COPY QYT CLE 11047 CLY, i Cd}) € ClEPP™, (D21)
L (1 i (T )aprons QT COPNQY T CLY Q4T CLY, Vi Cd3) € CRP"™) (D22)

and

O™ = eeimenpeaTa)apapa Q1T COPNOTT COPLIOYT CLY JIOYTCLY ] € CI™™. (D23)
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