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We analyze the ultraviolet to infrared evolution and nonperturbative properties of asymptotically free
SU(N) ® SU(N —4) ® U(1) chiral gauge theories with N, copies of chiral fermions transforming
according to ([2]x. 1)y—g + ([T]y [Tn—s)—n—2) + (1, (2)y_4) > Where [K]y and (k)y denote the anti-
symmetric and symmetric rank-k tensor representations of SU(N) and the rightmost subscript is the U(1)
charge. We give a detailed discussion for the lowest nondegenerate case, N = 6. These theories can exhibit
both self-breaking of a strongly coupled gauge symmetry and induced dynamical breaking of a weakly
coupled gauge interaction symmetry due to fermion condensates produced by a strongly coupled gauge
interaction. A connection with the dynamical breaking of SU(2), ® U(1), electroweak gauge symmetry
by the quark condensates (gg) due to color SU(3), interactions is discussed. We also remark on direct-
product chiral gauge theories with fermions in higher-rank tensor representations.
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I. INTRODUCTION

A problem of basic field-theoretic interest concerns the
behavior of strongly coupled chiral gauge theories. In
general, there are two types of chiral gauge theories,
namely those based on a single gauge group and those
with a direct-product (dp) gauge group of the form

Ng
Gap = ® Gi (1.1)
with N > 2. Strongly coupled direct-product chiral gauge
theories are of particular interest because they can exhibit a
phenomenon that cannot occur in a chiral gauge theory
with a single gauge group, namely the induced dynamical
breaking of a weakly coupled gauge symmetry by a
different, strongly coupled, gauge interaction. This phe-
nomenon is important not only from the point of view of
abstract quantum field theory, but also because it actually
occurs in nature. In the Standard Model (SM), with the
gauge group Ggy = SU(3). ® Ggw, where the electro-
weak gauge group is Ggw = SU(2),; ® U(1)y, the bilinear
quark condensates (gg) produced by the strongly coupled
SU(3), color gauge interaction dynamically break Ggy to
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the elctromagnetic gauge symmetry, U(1),,,. This breaking
contributes terms of the form ¢?>f2/4 and (¢*> + ¢"*)f2/4 to
the squared masses of the W and Z bosons, m$, and m2,
respectively, where g and ¢ are the SU(2), and U(1),
gauge couplings, and f, =93 MeV is the pion decay
constant. Thus, although textbook discussions usually
mention only the vacuum expectation value (VEV)

0
(o= () (1.2)
V2
of the Higgs field
"
= (%) (13)

as the source of electroweak symmetry breaking in the SM,
this breaking really arises from two different sources, one
of which is the Higgs VEV (1.2), yielding m?%, = ¢*v*/4
and m% = (¢* + ¢%)v*/4, where v =246 GeV, and the
other of which is the above-mentioned dynamical contri-
bution due to the formation of bilinear quark condensates in
quantum chromodynamics (QCD).

Although this dynamical breaking of electroweak gauge
symmetry by the SU(3), color gauge interaction is very
small compared with the contribution due to the VEV of the
Higgs field, it is important as a physical example of how, in
a direct-product chiral gauge theory, one strongly coupled
gauge interaction can induce the breaking of a weakly
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coupled one [1,2]. Indeed, a gedanken modification of the
Standard Model in which the Higgs field is removed is a
perfectly well-defined theory in which the W and Z masses
are entirely due to the dynamical breaking of the electroweak
gauge symmetry by the SU(3), interaction [2,3]. In the
Standard Model, the SU(3), gauge interaction is vectorial,
while Ggy is chiral, but this mechanism can also break a
vectorial gauge symmetry; in Ref. [3] it was shown that in
this gedanken modification of the SM without any Higgs
field, if one reversed the order of the coupling strengths of
the non-Abelian gauge interactions so that the SU(2),
coupling were much stronger than the SU(3), coupling,
then the SU(2), gauge interaction would produce bilinear
fermion condensates of quarks and leptons that would break
the vectorial SU(3),., as wellas U(1), and U(1),,,, [3], while
preserving SU(2); .

Since dynamical symmetry breaking of a weakly coupled
gauge symmetry occurs in nature, as shown by the breaking
of electroweak gauge symmetry Ggw by the (gg) quark
condensates produced by SU(3),. gauge interaction, there is
a motivation to investigate chiral gauge theories that can
exhibit this phenomenon of the dynamical breaking of a
weakly coupled gauge symmetry by a different, strongly
coupled gauge interaction. As noted above, this requires that
one consider theories with direct-product chiral gauge
symmetries. Some previous studies of strongly coupled
chiral gauge theories with direct-product gauge groups (and
without any fundamental scalar fields) include [3-13],
[14,15]. See also [16].

In this paper we shall analyze chiral gauge theories with
the direct-product gauge group

em?

G =SU(N) ® SUN—-4) @ U(1). (1.4)
This group is of the form (1.1) with N; = 3, G; = SU(N),
G, =SU(N —4), and G3 = U(1). The group (1.4) has
order o(G) and rank rk(G) given by

o(G) = 2N* — 8N + 15, rk(G) =2N -5. (1.5)
The fermion content of the theory consists of N, copies
(“flavors™) of chiral fermions transforming as

(s Dy + (s [y-a) vy + (1L 2)yca)ye - (16)
where the meaning of the notation
(RI’R2)q (17)

is as follows: the first and second entries refer to the
representation R; of G; =SU(N) and R, of G, =
SU(N —4), and the subscript ¢ is the U(1) charge of the
given fermion. The symbols [k] and (k) denote the k-fold
antisymmetric and symmetric tensor representations of
SU(N), respectively, and R; = 1 denotes a singlet of G;,

where i =1 or i =2. The fermion fields are denoted
explicitly as

([2]6, 1), l//i;j,u
(M= [T]5)-4: XiapLs
(1,(2)2)6" (‘)Z/,}L’

where i, j are SU(N) group indices, a, f§ are SU(N —4)
group indices, and p is a copy (flavor) index, running from
1 to Ny. We exclude the trivial value Ny = 0, because it
does not produce a chiral gauge theory, but instead just a set
of three decoupled pure gauge theories. There are no bare
fermion masses in the theory, since they are forbidden by
the chiral gauge symmetry. Without loss of generality, we
write the fermions as left-handed. This theory is free of
anomalies in gauged currents, as is necessary for renorma-
lizability, and is also free of global anomalies and mixed
gauge-gravitational anomalies [12,17].

We note two equivalent theories with the same gauge
group, (1.4). The first of these has all of the representations
of the left-handed chiral fermions in (1.6) conjugated. The
second has the representations of SU(M) conjugated
relative to those of SU(N), i.e., its fermion content consists
of Ny copies of the set

(1.8)

(2lns Dyea + (Wys My—sa)cvez) + (L Q) y—g)y- - (1.9)
Since these theories are equivalent to (1.4) with (1.6), it will
suffice to study only the latter.

This model is of particular interest for the following
reason. A natural construction of a chiral gauge theory with
a non-Abelian gauge group uses (left-handed -chiral)
fermions transforming according to an antisymmetric or
symmetric rank-k tensor representation of the gauge group,
together with the requisite number of fermions transform-
ing according to the conjugate fundamental representation,
so as to yield zero gauge anomaly. The simplest of these
uses kK = 2, so let us focus on these theories with k = 2.
With a special unitary gauge group, there are two such
constructions: (i) G = SU(N) and chiral fermion content
consisting of Ny copies of the set

2] + (N - 4[]y (1.10)
and (ii) G = SU(M) and chiral fermion content consisting
of Ny copies of the set

() + (M + #)[T],, (1.11)
A basic question in the analysis of chiral gauge theories is
whether one can combine these two separate single-gauge-
group theories (i) and (ii) into a single chiral gauge theory
with a direct-product gauge group that contains SU(N) ®
SU(M) such that it is again anomaly-free. The answer is
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yes, if we set M = N — 4, and the theory (1.4) with (1.6)
provides an explicit realization of this combination. Indeed,
not only does this theory successfully combine the two
separate chiral gauge symmetries SU(N) and SU(M) in an
anomaly-free manner; it also incorporates a third gauge
symmetry, namely the U(1).

A general classification of chiral gauge theories with
direct-product gauge groups was given in Ref. [13]. In this
classification, a factor group G; is labeled as G, if it has
complex representations and G, if it has (only) real or
pseudoreal representations. If a group G, has no gauge
anomaly from any of its representations, then it was
denoted as G.,, where the subscript s stands for “safe.”
In this classification, if N > 7, then the gauge group (1.4) is
of the form (G., G., G,). In contrast, if N = 6, then the
second factor group is SU(2), which has (pseudo)real
representations, so that the N = 6 special case of (1.4) is
of the form (G, G,, G.) in this classification.

In accordance with the order of labeling of the G; factor
groups, we denote the corresponding running gauge
couplings as g,(u) for G, = SU(N), g,(u) for G, =
SU(N —4), and g3(u) for Gy =U(1), where u is the
Eucidean energy/momentum reference scale where g;(u)
is measured. We further define a;(u) = g;(1)*/(4n) and
a;(n) = g:(n)*/(16x), with i = 1, 2, 3. (The argument u
will sometimes be suppressed in the notation.) As usual
with a U(1) gauge interaction, the U(1) charge assignments
in (1.6) involve an implicit normalization convention; the
physics is unchanged if one redefines g, — Aq, for each
fermion f and g3 — A7'g;, since only the product q¢93
appears in the U(1) covariant derivative.

Each of the two non-Abelian gauge interactions is
required to be asymptotically free (AF), because this
enables us to calculate the corresponding beta functions
self-consistently at a high scale u = pyy in the deep
ultraviolet (UV) region, where they are weakly coupled.
These beta functions then describe the running of the non-
Abelian couplings toward the infrared (IR) at small g,
where these couplings become larger. Since we are inter-
ested in the nonperturbative behavior of the non-Abelian
gauge interactions, we will assume the U(1) gauge inter-
action to be weakly coupled at the initial reference scale
Hyy; owing to the property that the beta function for this
U(1) interaction is nonasymptotically free, the U(1) cou-
pling a3 (1) becomes even weaker as  decreases below gy
and hence can be treated perturbatively in the full range
1 < pyy under consideration here.

In addition to the phenomenon of a strongly coupled
gauge interaction inducing the dynamical breaking of a
different gauge symmetry, a chiral gauge theory can also
exhibit a different phenomenon in which a strongly coupled
gauge interaction corresponding to a given gauge sym-
metry produces fermion condensates that break this gauge
symmetry itself [1,18]. In particular, for a given gauge
interaction corresponding to the non-Abelian gauge group

G;, as pu decreases from uyy and a;(u) grows, it may
become large enough at a certain scale, which we will
denote as 4 = A, to produce a fermion condensate that
breaks the gauge symmetry G; to a subgroup H; C G;. The
fermions involved in this condensate gain dynamical
masses of order A; and are integrated out of the low-
energy effective field theory (EFT) that describes the
physics as p decreases below A;. The gauge bosons in
the coset space G;/H; pick up dynamical masses of order
g;(A;)A; and are also integrated out of the low-energy
effective theory. This low-energy theory has a gauge
coupling inherited from the UV theory, but since the
fermion and gauge boson content is different, this gauge
coupling runs according to a different beta function. Then
this process of self-breaking of a gauge can repeat at
one or more lower scales. The final low-energy effective
field theory may be a vectorial theory that confines and
produces fermion condensates with associated spontaneous
chiral symmetry breaking (SySB) but no further gauge
self-breaking.

Besides being of abstract field-theoretic interest, this
mechanism of gauge self-breaking has been used in con-
structions and studies of reasonably ultraviolet-complete
models of dynamical electroweak symmetry breaking
(EWSB) and fermion mass generation [4-8], [11]. In these
constructions, one starts with an asymptotically free chiral
gauge theory that undergoes either self-breaking or a
combination of self-breaking and induced symmetry break-
ing in a sequence of three different scales, A; > A, > Aj,
with an associated breaking of the UV chiral gauge
symmetry Gyy — Hy - H, — H;, where the H; sym-
metry is vectorial. At a lower scale Ay of order 1 TeV,
the H; gauge interaction confines and produces condensates
that break Ggy. It also produces a spectrum of H;-singlet
bound states. Gauge bosons in the coset space Gy /H; gain
dynamical masses of order A, while gauge bosons in the
coset spaces H,/H, and H,/H5 gain dynamical masses of
order A, and Aj, respectively. Exchanges of these three
different types of massive vector bosons produce the three
generations of quark and lepton masses. More complicated
exchanges can also produce light neutrino masses via an
appropriate seesaw mechanism [5]. This scenario has the
potential to naturally explain the generational hierarchy in
fermion masses, which reflects the hierarchy of self-break-
ing scales A;, i =1, 2, 3. This construction is also an
ultraviolet completion of low-energy effective Lagrangians
for dynamical EWSB that use four-fermion operators [19]
and predicts the coefficients of these four-fermion operators.

Our theory does not include any fundamental scalar
fields. Thus, the pattern of possible dynamical gauge
symmetry breaking depends only on the gauge and fermion
content, and the initial values of the gauge couplings at the
reference scale pyy. This is in contrast with theories in
which gauge symmetry breaking is produced by VEVs of
Higgs fields, because in these latter theories, the nature of
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the symmetry breaking depends on various parameters
in the Higgs potential, which can be chosen at will, subject
to the constraint that this Higgs potential should be
bounded from below [20,21].

An alternate application of strongly coupled chiral gauge
theories was to efforts at modeling the quarks and leptons as
composites of more fundamental fermions, commonly
called preons. This involved a scenario in which it was
envisioned that the strongly coupled gauge interaction
would produce confinement of the preons in gauge-singlet
composite fermions, but no spontaneous chiral symmetry
breaking. The presumed absence of SySB was necessary in
order for the composite fermions to be very light compared
to the inverse of the spatial compositeness scale Agpp =
1/reomp For this purpose, theories were constructed that
satisfied certain matching conditions of chiral symmetries
between preons and the composite fermions [22,23]. In the
present paper we will focus on studying possible patterns
of bilinear fermion condensate formation and resultant
dynamical gauge symmetry breaking in the strongly coupled
gauge theory (1.4) with (1.6) and (1.12)—(1.13) rather than
on possible scenarios with light composite fermions.

In addition to our analysis of the general theory (1.4)
with (1.6), we will study the N = 6 special case in detail.
This N = 6 theory, with the gauge group

Gy—s = SU(6) ® SU(2) ® U(1), (1.12)
is of particular interest because it is the lowest non-
degenerate member of this family. [If N =5, then the
SU(N —4) group is trivial.] It is also special in two related
aspects, namely that (i) as mentioned above, the resultant
second factor group is SU(2), with (pseudo)real represen-
tations, in contrast to the situation for N > 7, where the
SU(N — 4) group has complex representations; and (ii) the
symmetric rank-2 tensor representation (2), of SU(2) is
the adjoint representation. The fermion content for this
N = 6 theory, comprised of N, copies of

(2]6: D2+ (Mg [T]) s + (1, (2)5),  (1.13)
can also be conveniently expressed in terms of the
dimensionalities of the representations as

(15,1), + (6,2)_, + (1,3)s. (1.14)

Owing to property (ii) above, we will often use the
equivalent isovector notation @ .. for the wzﬁ ;. fermion.
Thus, the theory (1.4) with (1.6) and, in particular, the
N = 6special case, provide valuable theoretical laboratories
for the study of nonperturbative properties of chiral gauge
theories, including self-breaking of a strongly coupled chiral
gauge symmetry, induced breaking of a weakly coupled
gauge symmetry by a strongly coupled gauge interaction,
and the sequential construction of low-energy effective field

theories. This paper is organized as follows. The general
methods used in our analysis are described in Sec. II.
In Sec. Il we analyze the UV to IR evolution, possible
fermion condensation channels, and corresponding gauge
symmetry breaking patterns of the theory (1.4) with (1.6). In
Secs. IV=VII we present a detailed analysis of the N = 6
theory. Some remarks on related constructions of direct-
product chiral gauge theories with fermions in higher-rank
tensor representations are given in Sec. VIII. Our conclu-
sions are contained in Sec. IX.

II. RENORMALIZATION-GROUP EVOLUTION
AND FERMION CONDENSATES

A. Beta functions

In this section we discuss the general methods that are
used for our analysis. We first explain our application of the
renormalization group (RG). Recall our labeling conven-
tions given above for the gauge couplings, namely g, (¢) for
SU(N), g»(u) for SU(N —4), and g3(u) for U(1). The
evolution of the three gauge couplings g;(u), or equiv-
alently, the corresponding «;(p) with i =1, 2, 3, is
determined by the RG beta functions

da;(p)
= . 2.1
po, = it 1)
These have the series expansions
G S
Bg, = —8za; |:b(1f,[z?ai + Z bgf;igjaiaj
j=1
° (Gi)

+ Z b3f£ijkaiajak + - :| , (22)

Jok=1

where an overall minus sign is extracted, the dots ...
indicate higher-loop terms, and there is no sum on repeated
i indices in the square bracket. Here, bgg‘l) is the one-loop
(12) coefficient, multiplying a; inside the square bracket in
(2.2); bg;’l)j is the two-loop coefficient, multiplying a;a; in
the square bracket, and so forth for higher-loop terms. The
one-loop coefficients b(lgl) are scheme-independent.

We focus on the beta functions for the two non-Abelian
gauge interactions, since these determine the upper bound
on N and are relevant for the formation of various possible
fermion condensates as a; (4) or a, () become large in the
infrared. The one-loop coefficients in Eq. (2.2) are

1
pSUM) _ F 1IN = 2N, (N =3)]. (2.3)
SU(N-4 1
pSUN-4) _ FIIN =4) 2N, (N = 1)), (24)
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and

4

biey) = =3 NN(N=1)(N =3)(N ~4). (2.5)

As mentioned before, we assume that the U(1) gauge
interaction is weakly coupled at the UV reference scale
Uyy; then its gauge coupling decreases as u decreases from
the UV to the IR, and hence can be treated perturbatively.

The requirements that the SU(N) and SU(N — 4) gauge
interactions must be asymptotically free are that bgiﬂw)) >0

and b(lfog(N_4)) > (. These impose the respective upper

limits Ny < Ny ;. and Ny < N’ ., where

1IN
N - 2.6
f.blz Z(N _ 3) ( )
and
11(N - 4)
N’ =—" 2.7
f.blz 2(N _ 1) ( )

where we use a prime to indicate the upper limit on N from

the condition bS,U(N_A‘)) > 0. The upper bound (2.7), is
more restrictive than the upper bound (2.6), as is clear,

since the difference

N e — N, = % (2.8)

is positive for all of the relevant values of N under
consideration here. Hence, we restrict

11(N - 4)

Ny <y =Y
I =N ST)

(2.9)

The (nonzero) values of N, that are allowed by the
inequality (2.9) depend on N and are as follows:

() 1<N;<2if6<N<T

(2) 1<Ny<3if8<N<LI2

(3) T<N,<4if I3<N<34

(4) 1<Ny<5if Ny >35.

As N — oo, the upper limit on N, (formally generalized to a
non-negative real number) approaches 11/2, thus allowing
physical integral values up to 5, inclusive, as indicated
above.

In general, the set of equations (2.2) is comprised of three
coupled nonlinear first-order ordinary differential equations
for the quantities ;, i = 1, 2, 3. The solutions for the three
a; (1) depend on N and the three initial values a;(uyy) at
the UV reference scale pyy. Since we do not assume that
the group (1.4) is embedded in a single gauge group higher
in the UV, we may choose these initial values «;(uyy)
arbitrarily, subject to the constraint that for u = gy, the

values are sufficiently small that the perturbative calcu-
lation of the beta functions g, are self-consistent. To
leading order, i.e., to one-loop order, the differential
equations making up this set decouple from each other,
and one has the simple solution for each i = 1, 2, 3:

b(l(;i? Ha
) = e =32 m(). 210

where we take p; < u,.

At the level of two loops and higher, due to the fact that
each of the fermions has nonzero U(1) charge and one of
the fermions, y; , , 1., is @ nonsinglet under both of the non-
Abelian gauge groups, there are mixed terms a;a;, a;a;ay,
etc., that involve different gauge interactions, in the three
beta functions f, , so that the three beta functions become
coupled differential equations. In view of the mixing terms
in (2.2) at the two-loop level, it is natural to focus first on
two special cases, namely those in which one of the non-
Abelian gauge interactions is much stronger than the other.
This can be arranged by specifying appropriate initial
values of o (uyy) and a,(pyy) at the UV scale pyy. In
these two cases, one can neglect the two-loop term that
mixes these two non-Abelian gauge interactions in
Eq. (2.2), so that, to two-loop level, these interactions
decouple, and the corresponding beta functions have the
form, to this level,

SU(N SU(N
ﬂ(ll = m = —87ra1 [b(lf,l( >)a1 + bgf;l(] ))aﬂ (21 1)
and
da, (SU(N-4)) (SUN-4)) 5
ﬁaz — ding =—-8ra, [blf,Z a,+ b2f;22 az], (2. 12)

where the one-loop coefficients b(ls;lw)) and bgsfg(N_“))

were given above in Egs. (2.3)—(2.5), and the two-loop
coefficients are

1
i) = 68N = N (N = 3)(290N? = 3N - 12)
(2.13)
and
(suv—4) _ 1
x (29N* — 229N + 440)]. (2.14)

Both of these two-loop coefficients for the non-Abelian
gauge couplings are positive for small N, and decrease
with increasing Ny, eventually passing through zero to
negative values. We denote the values of N (formally
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generalized from positive integers N > 6 to positive real

numbers) at which bg‘}ﬁ(fv ) and bgsfg(zlv_“)) pass through
zero as N;S}EJZ(ZN ) and N;?,ijz(év_4)>. These are
(SUN) _ 68N°
N = 2.15
fb2z (N —3)(29N? = 3N — 12) (2.15)
and
SU(N—4 68(N —4)°
NN = (2.16)

~ (N = 1)(29N? — 229N + 440)°

As N — oo, N;?;jz(?/)) approaches 68/29 = 2.34483 from

(SU(N-4))

above, while Ny, approaches the same value

from below.

With these inputs, we can investigate the presence or
absence of an IR zero in the respective two-loop beta
functions for the SU(N) and SU(N — 4) theories. The two-
loop beta function for SU(N) has no IR zero for Ny = 1 or
Ny = 2; it does have an IR zero for higher values of N, as
allowed by the asymptotic freedom requirement for a fixed

N. With a given N, for the range of N, such that bﬁiﬂ(m) >

0 and bgi;tjl(lN ) <0, the IR zero of the two-loop SU(N) beta
function occurs at

N[N — 2N /(N — 3)]
N/(N=3)(29N? =3N — 12) — 68N*"

QALIR2e = (2.17)

Similarly, given a value of N, for the range of N/ such that

bS5 0, while b5y~ <0, the two-loop SU(N—4)

beta function has an IR zero at
8n(N —4)[11(N —4) —2Nf(N— 1)]
Nf(N — 1)(29N2 — 229N +440) — 68(N — 4)3 '
(2.18)

Q) IR2¢ =

As N — oo, the rescaled IRFP values of the SU(N) and
SU(N —4) gauge interactions have the same limit:

lim a IRZfN = lim Xy IR 2/N
N—oo 77 N—oco 7777

_ 8x2(11-2N))

2.1
29N, — 68 (2.19)

We will analyze the UV to IR evolution using these beta
functions below.

B. Global flavor symmetries

The theory (1.4) with (1.6) has the classical global flavor
(cgb) symmetry

Gcgb = U(Nf)y/ ® U(Nf))( ® U(Nf)aw (220)
where, for each fermion f = l//jiL, Xiapr» and @, 1, the
elements of the group U(Ny) ¢ act on the flavor indices p,
leaving all gauge indices unchanged. Each U(Ny), factor
group in (2.20) can equivalently be written as SU(Ny), ®
U(1);. The instantons present in the SU(N) gauge sector
break both of the global Abelian symmetries U(1),, and
U(1),. Separately, the instantons in the SU(N —4) gauge
sector break both the U(1), and U(1),, symmetries.

There are two special cases that will be of particular
interest, namely the respective cases in which one non-
Abelian gauge interaction is much stronger than the other.
First, let us consider the case in which the SU(N) gauge
interaction is much stronger than the SU(N —4) gauge
interaction, which, like the U(1) interaction, is weakly
coupled. In this theory, the effects of instantons in the
SU(N —4) gauge sector are exponentially suppressed and
can be neglected [24]. Although the SU(N) instantons break
the global U(1),, and U(1), flavor symmetries, one can
constructa current which is alinear combination of the U(1),,
and U(1)y currents and is conserved in the presence of the
SU(N) instantons (see, e.g., Sec. Vof [25]), which we denote
as U(1),,. The effective nonanomalous global flavor
(gb) symmetry of this theory is thus G, = SU(N;), ®
SU(Ny), ® U(1),,, ® U(Ny),,. Similarly, in the other case,
in which the SU(N) and U(1) gauge interactions are weak,
and the SU(N — 4) gauge interaction is strong, the effects of
SU(N) instantons are exponentially suppressed and are
negligible. Although the SU(N — 4) instantons break the
global U(1),, and U(1), flavor symmetries, one can con-
struct a current which is a linear combination of the U(1),,
and U(1)y currents and is conserved in the presence of the
SU(N) instantons, which we denote as U(1),,,. The effective
nonanomalous global flavor symmetry of this theory is
thus Gy, = SU(Ny),, ® SU(Ny), x U(1),, ® U(Ny),.

C. UV to IR evolution and fermion condensates

We next discuss the UV to IR evolution of this theory
and the general analysis of possible fermion condensate
formation in various channels. We begin with the two
respective cases in which one of the two non-Abelian gauge
interactions is much stronger than the other and then
remark on the case where both are present with comparable
strength. Let us denote the dominant coupling as ;(u).

As the reference scale u decreases below pyy, the
coupling «a;(u) for this interaction increases. There are
two general possibilities for the associated beta function,
Bq,: (1) itdoes not have an IR zero or (ii) it has an IR zero. In
the first case, (i), the coupling continues to increase with
decreasing u until it eventually exceeds the range where it
can be calculated with the perturbative beta function. This
can then lead to the formation of (bilinear) fermion
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condensates. In the second case, let us denote the value of
a; at this IR zero as o, and consider a possible con-
densation channel,

RxR - R, (2.21)
where R and R’ denote fermion representations under the
strongly coupled gauge symmetry G;, and R, denotes the
representation of the condensate under G;. Assuming that
this is an attractive channel, we denote the minimal critical
coupling for condensation in this channel as a.,. If the beta
function does not have an IR zero, then «a; will certainly
exceed a,, as u decreases to some scale. If the beta function
Pa, does have an IR zero, then there are two subcases: (iia)
aRr > a., and (iib) ar < a,,. In case (iia), the condensate
can form, similarly to case (i), while in case (iib), this
condensate will not form. For the possible condensation
channel (2.21), an approximate measure of its attractiveness
(motivated by iterated one-gluon exchange) is

AC, = C(R) +C(R") - C(R,), (2.22)
where C,(R) is the quadratic Casimir invariant for the
representation R [26]. Among several possible fermion
condensation channels, the one with the largest (positive)
value of AC, is commonly termed the most attractive
channel (MAC) and is the one that is expected to occur.

Approximate solutions of Schwinger-Dyson equations
for the fermion propagator in a vectorial theory have shown
that if one starts with a massless fermion, it follows that if
a> a,,, where 3a..C,(R)/x =1, then the Schwinger-
Dyson equation has a solution with a dynamically gen-
erated mass, indicating spontaneous chiral symmetry
breaking and associated bilinear fermion condensate for-
mation [27]. In a vectorial gauge theory such as quantum
chromodynamics, the condensate is a gauge-singlet, so
AC, = 2C,(R). Hence, one can write the condition for the
critical coupling in the form that can be taken over for a
chiral gauge theory, namely 3a.,AC,/(2z) = 1, so that

2
a., = .
T 3AC,

(2.23)

Because this is based on a rough approximation (an iterated
one-gluon exchange approximation to the Schwinger-
Dyson equation), it is used only as a rough estimate.

Since without loss of generality we write all fermions as
left-handed, the Lorentz-invariant bilinears involving two
fermion fields f; and f’ are of the form f7Cf’, where C is
the Dirac charge-conjugation matrix satisfying Cy, Cc!'=
—(y,)". If f, and f} transform according to the same
representation R; of a symmetry group G; and R, of a
symmetry group G,, then we may write the bilinear
fermion operator product abstractly as

i Clri (2.24)
where gauge group indices are suppressed in the notation,
‘R denotes the representations under the gauge groups, and,
as before, p and p’ are flavor indices. From the property
CT = —C together with the anticommutativity of fermion
fields, it follows that the bilinear fermion operator product
(2.24) is symmetric under interchange of the order of
fermion fields and therefore is symmetric in the overall
product

H(Ri X R;)|Ry;,

1

(2.25)

where R, abstractly denotes the symmetry property under
interchange of flavors [13]. For our theory, with its two
non-Abelian groups, this means that the fermion bilinears
are of the form
(s,s,s), (s,a,a), (a,s,a), or (a,a,s), (2.26)
where here s and a indicate symmetric and antisymmetric,
and the three entries refer to the representations R; of Gy,
R2 of Gz, and Rfl

If, as u decreases through a scale A; and the coupling
a;(p) of the strongly coupled gauge interaction correspond-
ing to the factor group G; increases beyond «,, for the
condensation channel (2.21) and the condensate forms,
then the fermions involved in the condensate gain dynami-
cal masses of order A; and are integrated out of the low-
energy effective field theory that describes the physics as y
decreases below A;. If this condensate either self-breaks the
G, symmetry or produces induced breaking of a weakly
coupled gauge symmetry G; to a respective subgroup H; C
G; or H; C G;, then the gauge bosons in the respective
coset spaces G;/H; or G;/H ; pick up dynamical masses of
order g;(Ay)A; or g;(A;)A, respectively. Hence, like the
fermions with dynamically generated masses, these now
massive vector bosons are integrated out of the low-energy
effective field theory applicable as p decreases below A.

III. THEORY WITH GENERAL N

In this section we analyze possible fermion condensation
channels in the general-N theory (1.4) with fermion
content (1.6).

A. SU(N) gauge interaction dominant

We begin by focusing on the case where the SU(N)
gauge interaction is much stronger than the SU(N —4)
[and U(1)] gauge interactions. This theory is labeled
SUND, standing for “SU(N) dominant.” Although we
keep a, and a; nonzero, we note parenthetically that if
one were to set a, = a3 = 0, then the resultant theory
would be the k = 2 special case of a family of chiral gauge
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theories analyzed in Ref. [25] with a single gauge group
G =SU(N) and an anomaly-free content of chiral
fermions transforming as [k]y and np copies of [1]y,
where np=(N-3)!(N-2k)/[(N—=k—=1)!(k—=1)!] [plus
SU(N)-singlet fermions]. Since the SU(N) gauge inter-
action is asymptotically free, @ () increases as y decreases
from the initial reference scale uyy in the UV. We focus on
the subset of values of N such that the beta function f,,
either has no IR zero at the two-loop level or has an IRFP at
a sufficiently large value that fermion condensation can
take place.

There are three possible (bilinear) fermion condensation
channels. We give shorthand names to these based on the
fermions involved in each condensate. The first is the yy
channel,

wr: ([2lns Dy-a x ([Tly, [T]N_4)_<N_2) = ([ Ty-a) -2
(3.1)

with associated condensate

<WZ.5C)(j,ﬂ,p’,L>’ (3-2)

where i, j are SU(N) group indices and f is an SU(N — 4)
group index. The condensate (3.2) transforms as the
fundamental ([1],) representation of SU(N) and the con-
jugate fundamental ([1],_,) representation of SU(N — 4),
so it self-breaks SU(N) to SU(N — 1) and produces an
induced breaking of the weakly coupled SU(N —4) to
SU(N - 5). Since the condensate (3.2) has a nonzero U(1)
charge, ¢q,, = =2, it also breaks U(1). Thus, here the

residual gauge symmetry in the effective field theory that is
applicable as u decreases below A; is

TABLE L.

SU(N — 1) ® SU(N -5). (3.3)
If N = 6, then the residual gauge symmetry is just SU(5).
For this channel we calculate

(N-2)(N+1)

N (3.4)

(ACZ)W;{ = CZ([z]N> =

For this and other possible fermion condensation channels,
we record these properties in Table I. This table refers to the
possible initial condensation patterns at the highest con-
densation scale; subsequent evolution further into the
infrared is discussed below.

The second possible channel is the yy channel,

wy (2l Dya X (25 Dy—g = ([@]y, 1)2(N—4)' (3.5)

Note that [4]y ~ [N — 4]y, where R ~ R’ means that the
representations R and R’ are equivalent. The associated
condensate is

€. . ktmn <W];KLTCW;':/}:[L>a (36)

where the antisymmetric tensor € _;,,,, has N indices, four
of which are indicated explicitly, with the rest implicit.
From the general group-theoretic analysis in [25,28], it
follows that since the condensate (3.6) transforms as a [4]
of SU(N), it breaks SU(N) to SU(N —4) ® SU(4). Since
the %/, are singlets under the original SU(N — 4) group in
(1.4), this condensate is obviously invariant under this
SU(N —4). Furthermore, since this condensate has a
nonzero U(1) charge [namely, g,,, = 2(N —4)], it breaks
the U(1) gauge symmetry. Hence, the condensate (3.6)
breaks G to

Properties of possible initial (highest-scale) bilinear fermion condensates in the UV theory (1.4) with (1.6) for N>7. The

shorthand name of the condensation channel is listed in the first column, and the corresponding condensate is displayed in the second
column. The third and fourth columns list the values of AC, with respect to the SU(N) and SU(N —4) gauge interactions. The entries in
the fifth, sixth, and seventh columns indicate whether a given condensate is invariant (inv.) under the SU(N), SU(N —4), and U(1) gauge
symmetries, respectively, or breaks (bk.) one or more of these symmetries. The entry in the eighth column gives the representation
(R1,R;) 4 of the condensate under the group (1.4), following the notation of Eq. (1.7). The ninth column lists the continuous gauge
symmetry group under which a given condensate is invariant. The tensors € _z,,, and e"™" are antisymmetric SU(N) tensors, while
€% is an antisymmetric SU(N —4) tensor. These results are for the case N r=1and for N;>2 with condensates symmetrized over the
flavor indices, which are suppressed in the notation. The yy channel is the MAC for the SU(N)-dominant case, while the y@ channel is
the MAC for the SU(N —4)-dominant case in this N>7 range. See text for further discussion.

Name Condensate (ACy)suyy (ACh)gyv—sy SU(N) SU(N-4) U(1) (R1,R,), Hiy

vr WCr) N=2)(N+1) 0 bk. bk. bk. ([}]N,[i]N_4)_2 SU(N-1)®SU(N-5)

X0 T .Caf) 0 % bk. bk. bk, ([T]x.[1]y_s)> SU(N-1)®SU(N-5)

WY e e (W Cup") aiien) 0 bk. inv. bk ([4]y.1)yv-a) [SU(N-4)®SU(4)]
®SU(N—-4)

e P o Cnpr) N N bk. bk. bk (R2]y, 2ly_s)ov-z) [SUN-2)@SU2)]®

®[SU(N-6)®SU(2)"]
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[SUN-4) ® SU4)] ® SUN —4), (3.7)
where we have inserted brackets to distinguish the two
different SU(N — 4) groups. The measure of attractiveness
for this condensation channel is

(AC),, =263(2)y) - Co(fly) = D (ag)
The third possible channel is the yy channel,
o (My mN—4)—(N—2) x ([ mN—4)—(N—2)
= (2ly- ly-4) 2v-2)- (3.9)
with associated condensate
e g p L Chnppf L) (3.10)

where e and €% are antisymmetric tensors under
SU(N) and SU(N —4), respectively, with two indices
shown explicitly and the rest understood implicitly. From
the general group-theoretic analysis [25,28], it follows that
since the condensate (3.10) transforms as a [2]y representa-
tion of SU(N), it breaks SU(N) to SU(N —2) ® SU(2)’,
and similarly, since it transforms as a [2]_, representation
of SU(N —4), it breaks SU(N—4) to SUN-6)®
SU(2)". Here we append a single prime to the first SU(2)
and a double prime to the second SU(2) to distinguish them
and also to distinguish them from the SU(2) group of the
N = 6 theory (1.12). Since the condensate (3.10) carries a
nonzero U(1) charge [namely, g,, = —=2(N — 2)], it breaks
the U(1) gauge symmetry. Thus, this condensate (3.10)
breaks G to the group

[SUN —2) ® SU(2)'] ® [SUN — 6) ® SU(2)"], (3.11)

where the square brackets here are inserted to indicate the
origin of the different factor groups from the original SU(N')
and SU(N — 4) factor groups in (1.4). We find

N+

(ACy),, = 2C,([1]y) = Co([2]w) (3.12)

From these results we calculate the relative attractiveness
of these three possible fermion condensation channels in
this SU(N)-dominant case. We compute the differences

(AC),, - (ACy),, = MZINED 543
and
(ACY),, — (8Cy), =T ED (31

whence
N-=3)(N+1)
(ACz)W — (ACZ)M = % (3.15)
and the ratios
AC -2
(AC)y N (3.16)
(ACz)W 4
and
AC
(ACo)y _,, (3.17)
(ACQ))()(
whence
AC
By _ s, (3.18)
(ACy),,

Therefore, in this SU(N)-dominant case with N > 7, the yy
channel is the MAC, with greater attractiveness than
the yy channel, which, in turn, is more attractive than the
xy channel. Summarizing,

SU(N) — dominant with N > 7

= yy channel is the MAC. (3.19)

One interesting feature of these comparisons is that the
ratio (AC,),,,/(AC,),, is independent of N. As is evident
from these results, in the lowest nondegenerate case,
namely N =6, the ywy and wy channels are equally
attractive, and are a factor 4 more attractive than the yy
channel. Thus,

SU(N) — dominant withN = 6 = yy and

ww channels are the MACs. (3.20)

We focus here on the range N > 7; a detailed analysis of
the N = 6 case will be given below. Since the yy channel is
the MAGC, it is expected that as the Euclidean reference
scale u decreases below a value that we denote as A, the
coupling a; (1) increases sufficiently to cause condensation
in this channel. This condensation self-breaks SU(N) to
SU(N — 1) and breaks the weakly coupled gauge symmetry
SU(N —4) to SU(N —5) and also the Abelian symmetry
U(1). Without loss of generality, we may choose the SU(N)
group index i in the condensate (3.2) to be i = N and the
SU(N —4) group index to be @ = N — 4. The condensate
(3.2) also spontaneously breaks the global flavor group G,
for this theory, producing a set of Nambu-Goldstone bosons
(NGBs). Earlier works in related chiral gauge theories have
studied the resultant change in counts of the UV versus IR
degrees of freedom [25], [29-32]. Here we focus on
the dynamical self-breaking and induced breaking of gauge
symmetries, together with the construction of resultant
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low-energy effective field theories. The fermions involved
in the condensate (3.2), namely W;Y]L :—WﬁVL with1 <j <
N—1and yjy_4, 1 with 1 <j<N -1, gain dynamical
masses of order A;. The 2N — 1 SU(N) gauge bosons in the
coset space SU(N)/SU(N — 1) gain dynamical masses of
order g;(A;)A,, while the 2N —9) SU(N —4) gauge
bosons in the coset space SU(N —4)/SU(N —35) gain
dynamical masses of order g,(A;)A;. Finally, the U(1)
gauge boson picks up a dynamical mass of order g3 (A;)A;.
These massive fields are integrated out of the low-energy
effective field theory that describes the physics as the
reference scale u decreases below A;.
This low-energy effective field theory that is applicable
as u decreases below A; is invariant under the gauge
symmetry (3.3). The massless gauge-nonsinglet fermion
content of this EFT consists of
¢)) 1//?,,_ with 1 <i,j<N-1, 1 <p <Ny, forming
N copies of a ([2]y_;. 1) representation under the
group (3.3),

() yjppr with 1<j<N-1, 1<p<N-35, and
1 < p' <Ny, comprising N copies of the ([1]y_;,
[1]y_s) representation of (3.3), and

(iii) @, with 1 <a,f<N-5and 1 <p <Ny, com-

prising N copies of (1, (2)y_s)-
[We do not list the U(1) charges, since there is no U(1)
gauge symmetry in this low-energy effective theory.] The
condensation process then repeats, with the yy condensa-
tion channel again being the MAC in this SUN - 1) ®
SU(N —5) theory. One can treat the successive self-
breakings and induced dynamical breakings iteratively at
the various steps.

B. SU(N -4) gauge interaction dominant, N > 7

Here we analyze the case in which the SU(N — 4) gauge
interaction is strongly coupled and dominates over the
SU(N) gauge interaction [as well as the weakly coupled
U(1) gauge interaction]. We restrict our analysis to the
range N > 7 here and will consider N = 6 in detail below.
It will sometimes be convenient to use the quantity M =
N —4 as defined before. We will denote this theory as
SUMD, standing for “SU(M) dominant.” If we were to
completely turn off the SU(N) and U(1) gauge interactions,
then this theory would be equivalent to a chiral gauge
theory with an SU(M) gauge group, and N, flavors of
chiral fermions transforming according to the anomaly-free
set (2),, + M + 4 copies of [1],,, which has been studied in
[29-32]. However, here we do not completely turn off the
SU(N) or U(1) gauge interactions.

There are two possible (bilinear) fermion condensation
channels. The first is

xo: [Ty, HN—4)—(N—2) x (1, (2)y_a)y =

[
= (M- [x-a)2- (3.21)

with associated condensate

T af
i,a,p,L pr’_L>7

(3.22)

where i is an SU(N) group index and a, f§ are SU(N —4)
group indices. The value of AC, for this condensation, as
produced by the SU(N — 4) gauge interaction, is

(AC2>;((U,SUMD = CZ((Z)N—4>
_(N-2)(N-5)

N in SU(N — 4).

(3.23)

This condensate transforms as ([1]y, [1]y_4), and hence
self-breaks SU(N — 4) to SU(N — 5) and produces induced
breaking of the weakly coupled symmetries SU(N) to
SU(N —1) and of U(l). It leaves invariant the same
residual gauge symmetry, (3.3), as the yy condensate
(3.2), which is the MAC for the SU(N)-dominant case
(3.3). By convention, one may choose the SU(N — 4) index
S in the condensate (3.22) to be f = N — 4 and the SU(N)
index i to be i=N. Then the fermions yy,,; and

w?)‘/f“ with 1 <a <N -4, 1 <p,p' <N, involved in
the condensate pick up dynamical masses of order A;.
The dynamical mass generation for the SU(N) and
SU(N —4) gauge bosons in the respective coset spaces
SU(N)/SU(N —=1) and SU(N —4)/SU(N —35) is the
same as described above in the SU(N)-dominant scenario,
as is the dynamical mass generation for the U(1) gauge
boson.

A second possible condensation channel is the yy
channel (3.9), with associated condensate (3.10). This
condensate breaks G to the group given above in
Eq. (3.11). The measure of attractiveness of this conden-
sation channel, as produced by the SU(M) = SU(N —4)
gauge interaction, is

(Acz)u = 2C2([I]M) - Cz([z]M) = %
N -3

Comparing the attractiveness measure of the channels
(3.21) and (3.9), we calculate the difference

N?—-8N +13
(ACy),, = (AGy), =—F——  (3.25)
and the ratio
ACy),, (N=2)(N=5
( 2))( _ ( )( ) (326)
(ACZ);(;( N-3
For the range N > 6, the difference (AC,),,, — (AC,),, is

positive and, equivalently, the ratio (AC,),,,/(AC),, > 1.
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Hence, the yw channel is always more attractive than the yy
channel in this SU(N — 4)-dominant case. Thus,

SU(N —4) — dominant with N > 7:

= yo channel is the MAC. (3.27)

In addition to breaking gauge symmetries, the MAC
condensate (3.22) spontaneously breaks the global sym-
metry G, for this theory, yielding a set of NGBs. Here we
focus on the gauge symmetry breaking. We have restricted
our analysis to the range N > 7; as will be discussed below,
the MAC is different in the special case N = 6, where it is
the ww channel.

Although the yy channel is not the MAC, we comment on
its symmetry properties. It breaks SU(N —4) to SUN—6) ®
SU(2) and also breaks U(1), since the condensate
has nonzero U(1) charge g,, = —2(N —2). In terms of
SU(N —4), the associated condensate has the form

e <ZZa,p,L C)(j,/},P/-L>’ (328)
where €% is an antisymmetric SU(N — 4) tensor and we
have indicated N — 6 of the indices implicitly with dots. For
this yy channel, as regards the SU(N) and flavor symmetry,
there are two channels and corresponding condensates. The
(3.9) channel that involves an antisymmetric structure for
SU(N) group indices is

((M]y- [I]N—4)—(N—2) x ([1] [I]N—4)—(N—2) -

- ([Q]N’ [Q]N—4)—2(N—2)’ (3.29)
with corresponding condensate
€“'mnel“aﬁ&Z,(l,p.LC)(n,ﬂ,p/.L>' (330)

Here €™ is an antisymmetric tensor under SU(N), e~*
was defined, and we indicate the rest of the indices in each
tensor implicitly with dots. This condensate is automati-
cally symmetrized in the flavor indices p and p’ and is of
the form (a, a, s) in the classification of Ref. [13]. The (3.9)
channel that involves a symmetric structure for SU(N)
group indices is

((M]y- [I]N—4)—(N—2) x ([T [I]N—4)—(N—2) -

= ((2)ns [Q]N—4)—2(N—2)’ (3.31)
with corresponding condensate
e Bl Chippr) — (PP (3.32)

Because this condensate is antisymmetrized in flavor
indices, it is automatically symmetric in SU(N) group

indices and is thus of the form (s, a, a) in the classification
of Ref. [13].

C. SU(N) and SU(N —4) gauge interactions
of comparable strength

Finally, we analyze the situation in which the SU(N) and
SU(N — 4) gauge interactions are of comparable strength at
the scale relevant for the initial condensation. We restrict to
N > 7 here and will discuss the N = 6 theory below. The
value of AC, for the most attractive channel, yy, in the
SU(N)-dominant case was given in Eq. (3.4), and the value
of AC, for the MAC yw in the SU(N — 4)-dominant case
was given in Eq. (3.23) above. The difference is

4(N - 2)

(AC),, sunp — (AC2),, sump = NN=2)" (3.33)

Since this is positive for the relevant range of N considered
here, it follows that, as the reference scale decreases and the
SU(N) and SU(N —4) couplings increase, the minimal
value of a for condensation is reached first for the SU(N)-
induced yy condensate, at a scale y that we may again
denote A, where a;(A) exceeds a., for the yy conde-
nsation. At a slightly lower scale, A{ < Ay, the SU(N—4)
gauge interaction, of comparable strength, increases
through the slightly larger critical value for condensation
in the yw channel. These condensates both break the gauge
symmetry in the same way, to the residual subgroup
SU(N — 1) ® SU(N —5), as given in Eq. (3.3). We have
described the fermions and gauge bosons that gain dynami-
cal masses from the yy and y® condensations above, and
we combine these results here. By convention, one may
choose the SU(N) index i and the SU(N —4) index a
in the ywy condensate <y/;fLT CYjap.1) in Eq. (3.2) to be
i = N and a = N — 4, respectively. The fermions involved
in this condensate are then u/gjL and y;jy_4, With 1 <
Jj < N — 1. These gain dynamical masses of order A;. The
2N —1SU(N) gauge bosons in the coset SU(N)/SU(N—1)
and the 2M — 1 =2N -9 SU(M) gauge bosons in the
coset SU(M)/SU(M — 1) = SU(N —4)/SU(N —5) gain
dynamical masses of order ~g;(A;)A; and ~g,(A;)A,
while the U(1) gauge boson gains a dynamical mass
~g3(A;)A;. Avacuum alignment argument [1,33] suggests
that the condensation process would be such as to preserve
the maximal residual gauge symmetry, with gauge group of
the largest order, thereby minimizing the number of gauge
bosons that pick up masses. In the present case, one can use

this argument to infer that in the condensate (y], , Ca)‘;/,; L)

in Eq. (3.22), the SU(N) index is the same as the
unmatched index in the <l//;,]Z CYjap.) condensate,
namely i = N, and the f index is the same as the unmatched
SU(N —4) index a in the yy condensate, namely N — 4, so
that these two condensates break the initial UV gauge
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group G in the same way, to the subgroup SUN — 1) ®
SU(N —5) in Eq. (3.3). Then the fermions involved in the

x® condensate, yy 4, and a);’f , with 1 <a <N -4 and

f = N —4, gain dynamical masses of order A; and A.
The resultant low-energy effective field theory that
describes the physics as the reference scale u decreases
below A contains the following massless fermions that are
nonsinglets under the residual gauge group SUN — 1) ®
SU(N - 5):
(1) wy, with 1 <i,j<N-1, 1 <p <Ny, forming
N/ copies of a ([2]y_;. 1) representation under the
group (3.3),
@) Xjapr with 1<j<N-1, 1 <B<N-35, and

1 < p' <Ny, forming N, copies of the ([1]y_;,

[1]y_s) representation of (3.3), and
(3) o, with 1 <a,f <N -5, forming N copies of
the (1, (2)y_s) representation of the group (3.3).
This theory also includes certain massless fermions that are
singlets under the gauge group (3.3), €.2., YN .N-4p.L-

IV. N=6 THEORY

A. Beta function and constraints on Ny

In this section we study the lowest nondegenerate case of
the chiral gauge theory (1.4) with the fermions (1.6),
namely the N = 6 theory, for which the fermion content
was given in Eq. (1.13). From the general formulas (2.3)
and (2.4), it follows that the one-loop coefficients for the
SU(6) and SU(2) gauge interactions in this theory are

Su(6
bSO —2(11 - N)) (4.1)

and

2

su(2

pSI) — F(11=5N)). (4.2)
Substituting N = 6 into the upper bound on N in Eq. (2.9),
we find that N, < 11/5, i.e., for physical integral values,

N=6=N,=1,2, (4.3)

in accord with the general result given in Sec. II. When
discussing the Ny =1 case, we will suppress the flavor
indices in the notation, since they are all the same.

For the study of the UV to IR evolution of this theory, we
substitute N = 6 into the general formulas (2.13) and (2.14)
to obtain the two-loop coefficients in the SU(6) and SU(2)
beta functions, which are

1
by =5 (816 — 169N,) 4
and
1
biray = ¢ (272 =2T5N,). 43

V. N=6 THEORY WITH SU(2) GAUGE
INTERACTION DOMINANT

A. RG evolution from UV

As before, it is natural to begin by analyzing the UV to IR
evolution in the case where one non-Abelian gauge inter-
action is much stronger than the other. We start with the
situation in which the SU(2) gauge interaction is much
stronger than the SU(6) interaction, so that, to first approxi-
mation, we may treat the SU(6) [as well as U(1)] gauge
interaction perturbatively. By analogy with our notation
above, this will be denoted as the SU2D case, where again, D

stands for ‘“dominant.” Then, since b(lsfg(z)) > (0 while

b(zsfg(zz)) < 0, the two-loop beta function f3,, for the SU(2)
gauge interaction has an IR zero at

4mbSYR)
X IR2¢ = — W
2022

_ 16z(11 5Nf). (5.1)
275N, =272
For Ny =1, aygss = 327 = 100.5, while for Ny =2,
) 1goe = 87/139 = 0.181. The IRFP value for Ny =1
is too large for the two-loop calculation to be considered to
be quantitatively accurate, but it does indicate that the theory
becomes strongly coupled in the IR. The IRFP value for
Ny =2 is considerably smaller than the estimates of the
critical values a,., for any of the three attractive condensation
channels (which will be given below). Hence, this theory
with Ny = 2 is expected to evolve in the IR limit to an exact
IR fixed point (IRFP) in a scale-invariant and conformally
invariant non-Abelian Coulomb phase (NACP), without any
spontaneous chiral symmetry breaking or associated fer-
mion condensate formation. We therefore focus on the
Ny =1 case. Since the flavor subscripts p, p" are always
equal to 1, they are suppressed in the notation.

B. Condensation at scale A,

We proceed to determine the most attractive channel for
the formation of bilinear condensates of SU(2)-nonsinglet
fermions in this Ny = 1 case. There are, a priori, several
possible channels. The first is

ww: (1,Adj)s x (1,Adj)s = (1,1);,, (5.2)
where Adj is the adjoint (triplet) representation of SU(2)
and the notation follows Eq. (1.7). The shorthand name for
this channel, ww, follows from the condensate, which is

(@I C-ayp). (5.3)
In terms of dimensions of the SU(2) representations,
this channel has the form 3 x 3 — 1. The measure of
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. . ) 3
gtté?zc)tléz?legis i?lfetrzlcstig}:la?snd due to the strongly coupled AC, = 2C,((T],) = 5 for 2 2 — 1inSU(2). (5.8)
AC, =2C,(Adj) =4 for3x3 —1inSU(2).  (5.4)  From (2.23), we find that the minimal critical coupling for
condensation in this channel is a,, ~ 47/9 = 1.4. From the
general structural analysis of fermion condensates given
above, it follows that, since the SU(2) tensor €* is anti-
symmetric, the condensate must be of the form (a, a, s). [It

The rough estimate of the minimal (critical) coupling ~ cannot be of the form (s. a.a) because with Ny = 1, this
ay(u) = a,, for this channel is given by Eq. (2.23) as would vanish identically.] Hence, un_der SU(6), it trans-
a., ~n/6 = 0.5. Since the condensate involves the SU(6)- ~ forms as [4]¢, or equivalently, as [2]¢, as indicated in
singlet fermion @, it obviously preserves the SU(6) gauge ~ Eq. (5.7). Consequently, it is proportional to
symmetry. As a scalar product of the isovector @; with
itself, this condensate is also invariant under the strongly elikimneal (ot CnpL)s (5.9)
coupled SU(2) gauge symmetry. Because the condensate

has a nonzero U(1) charge (namely, ¢ = 12), it breaks the  \here i, j, k, £, m, n are SU(6) indices and a, 8 are SU(2)
U(l) gauge symmetry. The continuous gauge symmetry jndjces. This condensation channel thus preserves SU(2)
under which the condensate (5.3) is invariant is therefore while breaking U(1). As regards SU(6), from a general
group-theoretic analysis [25,28], one infers that the con-
densate (5.9) breaks this SU(6) gauge symmetry to the
subgroup SU(4) ® SU(2)’, where we mark the SU(2) with
a prime to distinguish it from the SU(2) in the original
gauge group (1.12). Hence, the full continuous gauge
symmetry under which the condensate (5.9) is invariant is

This is the most attractive channel:

SU(2) — dominant = ww channel is the MAC. (5.5)

SU4) ® SU(2). (5.6)

This residual symmetry group has order 38 and rank 6. For
this and other possible fermion condensation channels, we
record these properties in Table II. This table refers to the
possible initial condensation patterns at the highest con-
densation scale; subsequent evolution further into the
infrared is discussed below [SU(4) ® SU(2)] ® SU(2), (5.10)
A second possible condensation channel is
where we insert the brackets to indicate the origin of the
20t (s [15) s < ([(Mgs [11)—s = (2]6s 1) s> (5.7) [SU(4) ® SU(2)'] group from the breaking of the original
SU(6) in (1.12). This residual symmetry group has order 21
where the shorthand name yy reflects the associated ~ and rank 5.

condensate, ¢ <)(z?:a,L Cx;p.)- Since SU(2) has only pseu- A third type of condensation channel is

doreal representations, this channel has the form2 x 2 — 1 L _

with respect to SU(2). The measure of attractiveness of this xo: ([, [1]5)_4 x (1,Adj)g = ([1s, [1]2)2  (5.11)
channel due to the strongly coupled SU(2) gauge inter-

action is where the shorthand name yw reflects the condensate

TABLE II.  Properties of possible initial bilinear fermion condensates in the UV theory (1.12) with (1.13). The shorthand name of the
condensation channel and the condensate in this channel are displayed in the first and second columns. The third and fourth columns list
the values of AC, with respect to the SU(6) and SU(2) gauge interactions. The entries in the fifth, sixth, and seventh columns indicate
whether a given condensate is invariant (inv.) under the SU(6), SU(2), and U(1) gauge symmetries, respectively, or breaks (bk.) one or
more of these symmetries. The entry in the eighth column gives the representation (R;, R,) o of the condensate under the group (1.12),
following the notation of Eq. (1.7). The ninth column lists the continuous gauge symmetry group under which a given condensate is
invariant. These results are for the case Ny =1 and for Ny = 2 with condensates symmetrized over the flavor indices, which are
suppressed in the notation. The yy and yy channels are the MACs for the SU(6)-dominant case, while the ww is the MAC for the SU(2)-
dominant case. See text for further discussion.

Name Condensate (ACy)su)  (ACy)sypy SUMG) SUR) U1)  (Ri,Ry), Hiy

) (@I C- &) 0 4 inv. inv. bk, (1,1), SU(4) ® SU(2)

wy <wiLjTij,/s,L> 1 0 bk. bk. bk.  ([1]s,[1],)_, SUG)

qo T .Col) 0 2 bk. bk. bk. ([T, [1],),  SUG)

vy Eijemn (Wi TCym) L 0 bk. inv. bk.  ([2]. 1), [SU(4) ® SU(2)'] ® SU(2)
xx likimneaf (ot o Ctnp) 1 3 bk. inv.  bk. (2. 1) [SU(4) ® SU(2)'| ® SU(2)
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T LCoff). (5.12)
With respect to SU(2), this channel is 2 x 3 — 2. The
measure of attractiveness for this channel due to SU(2)
gauge interactions is

AC, = Cy(Adj) =2 for 2 x3 - 2inSU(2). (5.13)
The corresponding estimate of the critical coupling from
Eq. (2.23) is a,., = x/3. Evidently, this channel is more
attractive than the yy channel (5.7), but less attractive than
the ww channel (5.2).

All of these three types of fermion condensation exhibit
the phenomenon of a strongly coupled gauge interaction
producing condensate(s) that dynamically break a more
weakly coupled gauge interaction, namely U(1). Further-
more, the condensate in the yy channel (5.7) dynamically
breaks not only the U(1) gauge symmetry, but also the more
weakly coupled SU(6) gauge symmetry. If a condensate
were to form in the yw channel (5.11), it would self-break
the strongly coupled SU(2) symmetry, as well as breaking
the weakly coupled SU(6) symmetry. However, as will be
shown below, a condensate is not likely to form in the yw
channel.

Since the ww channel (5.2) is the MAC, one expects that,
as this theory evolves from the UV to the IR, at a scale that
we denote y = A; where the running coupling a,(u)
increases above the critical value for condensation in this
@ channel, the condensate (5.3) forms, breaking the U(1)
gauge symmetry, but leaving the SU(2) and SU(6) sym-
metries intact. As the condensate (! C - @;) in Eq. (5.3)
maintains the SU(2) symmetry, all of the three components
of the fermion @; involved in this condensate gain equal
dynamical masses ~A; and are integrated out of the low-
energy effective field theory that describes the physics as
the reference scale y decreases below A;. The U(1) gauge
field gains a mass ~g3(A;)A;. With these fermion and
vector boson fields integrated out, the one-loop and two-
loop coefficients in the SU(2) beta function in the low-
energy effective theory have the same sign, so as the
reference momentum scale y decreases below A, the
coupling a,(p) continues to increase. Because the @
fermions have been integrated out at the scale A;, they
are no longer available to form a condensate in the yw
channel (5.11) in the low-energy effective theory below A;.

C. EFT below A, and condensation at scale A,

In Ref. [32] it was proved that if one starts with a chiral
gauge theory with gauge group G that is free of gauge and
global anomalies, and it is broken dynamically to a theory
with gauge group H C G, with some set of fermions
gaining dynamical masses and being integrated out, then
the low-energy theory with the gauge group H is also free
of gauge and global anomalies. As a special case of this
theorem, the low-energy theory that is operative here as y

decreases below A; is also an anomaly-free theory. One
easily checks that it is chiral.

As p decreases below a lower scale that we denote as A,,
a,(u) increases past the critical value for the attractive yy
condensation channel (5.7), which is the MAC in this low-
energy effective theory, and the condensate (5.9) is
expected to form. As noted above, this leaves SU(2)
invariant and breaks SU(6) to SU(4) ® SU(2)’. By con-
vention, one may label the SU(6) indices i, j of the
fermions in the condensate (5.9) as m =5 and n = 6.
Then the fermions ys,; and yep ;. that are involved in this
condensate gain dynamical masses of order A, and are
integrated out of the low-energy effective theory applicable
for 4 < A,. Furthermore, the gauge fields in the coset space
SU(6)/[SU(4) ® SU(2)| gain dynamical masses of order
g1(A)As.

D. EFT below A, and further condensation

By the same theorem as before, this low-energy theory is
anomaly-free and one can again check that it is chiral. The
low-energy effective theory below A, thus has a gauge
symmetry [SU(4) ® SU(2)'] ® SU(2), where the SU(2)’
arises from the breaking of the SU(6) and the second SU(2)
was present in the original theory. The fermions that have
gained masses and have been integrated out are no longer
dynamical. The elements of the residual SU(4) subgroup of
SU(6) operate on the indices 1 < i < 4, while the elements
of SU(2)" operate on the indices i =15, 6. Thus, the
massless fermions in this effective field theory below A,
are as follows, where we categorize them with a three-
component vector, indicating the representations with
respect to the group (5.10) in the indicated order:

(1) w{ with 1<i,j<4, forming a (self-conjugate)
([2]4,1,1) representation of the group SU(4) ®
SU(2) ® SU(2) in (5.10),

(2) w% and yS, forming a ([1],, [1]y1, 1) representation
of (5.10),

(3) Jiar With 1 <i <4, forming a ([1]4,1, [1],) repre-
sentation of (5.10).

In this low-energy EFT below A,, the MAC for SU4)-

induced condensate formations is [2], x [2], — 1 with the

self-conjugate v/ transforming as [2], of SU4), producing
the condensate

4

ij T~ kt
E €ijkf<l//L Cyrt >
ij.kf=1

(5.14)

This is a singlet under the SU(4) gauge symmetry and is
obviously invariant under the two other gauge symmetries,
SU(2)" ® SU(2), since the fermions in (5.14) are singlets
under these groups. Let us denote the scale at which this
condensate forms as Az. The SU(4)-induced condensation

producing this condensate (5.14) has AC, = 5. The 1//?
with 1 <i,j <4 involved in this condensate pick up

055009-14



ULTRAVIOLET TO INFRARED EVOLUTION AND ...

PHYS. REV. D 100, 055009 (2019)

dynamical masses of order A3 and are integrated out of the
low-energy EFT that is operative below Aj;. The SU(4)
gauge interaction can also produce the condensate

4
> Wi TCria)

i=1

(5.15)

where r =15, 6. This condensate is invariant under
SU4) and breaks SU(2)" ® SU(2) [since it involves the
uncontracted SU(2)’ index r and the uncontracted SU(2)
index a]. For this condensation, AC, = 15/4. With these
condensates, only the SU(4) gauge symmetry remains, and
all SU(4)-nonsinglet fermions have picked up dynamical
masses. This vectorial SU(4) theory confines and produces
a spectrum of SU(4)-singlet bound state hadrons.

VI. N=6 THEORY WITH SU(6) GAUGE
INTERACTION DOMINANT

A. RG evolution from UV

In this section we analyze the N = 6 theory for the case
in which the SU(6) gauge interaction becomes strongly
coupled and is dominant over the weakly coupled SU(2)
[and U(1)] gauge interactions. We denote this as the SU6D
case. The one-loop and two-loop terms in the beta function
were given above in Egs. (4.1) and (4.4). For both of the
cases allowed by the requirement of asymptotic freedom
for the SU(6) and SU(2) gauge interactions, namely N, =
1 and Ny = 2, these coefficients have the same sign, so that
the two-loop beta function of this SU(6) theory has no IR
zero. Hence, as the scale u decreases from pyy to the IR,
a;(u) increases until it eventually exceeds the range of
values where it can be calculated perturbatively.

B. Highest-scale condensation channels

We examine the various possible fermion condensation
channels produced by the strongly coupled SU(6) gauge
interaction. The first is the ywy channel

yw: ([2l6, 1)z % (26, 1)2 = ([4l6, Da = (2], 1)ss (6.1)
with associated condensate
1]kfmn<l//p L Cl// > (62)

This condensate is automatically symmetrized in the flavor
indices. Since it transforms as a [2]¢ representation of
SU(6), it breaks SU(6) to SU(4) ® SU(2)". Because the
constituent fermion fields in (6.2) are singlets under SU(2),
this condensate is obviously SU(2)-invariant. Finally,
owing to the property that the condensate (6.2) has nonzero
U(1) charge, it also breaks U(1). The residual subgroup of
the original group (1.12) that is left invariant by the
condensate (6.2) is thus [SU(4) ® SU(2)'] ® SU(2) [see

Eq. (5.10)], as in the condensation process (5.7). The
condensation (6.1) thus provides another example of an
induced, dynamical breaking of one gauge symmetry,
namely U(1), by a different, strongly coupled, gauge
interaction in a direct-product chiral gauge theory. The
measure of attractiveness of this condensation channel
involving the SU(6) gauge interaction is

AC, = Cy([Bg) = for [2]g x [2]g —

: 2] in SU(6).

(6.3)
From the rough estimate for the minimal critical coupling
strength to produce this condensate, (2.23), one has a,, ~
z/7 = 045.

A second possible condensation channel is

wr: (2 1o x (e [12) s = (W, [Th)-2 (6.4)
with associated condensate
<l//pLCZjﬁp L> (65)

This condensation breaks SU(6) to SU(5) and also breaks
SU(2) and U(1), so that the residual invariance group is
SU(5), with order 24 and rank 4. The total number of
broken generators is thus 15 and the reduction in rank is
by 3. Again, this illustrates the dynamical breaking of more
weakly coupled gauge symmetries by a strongly coupled
gauge interaction in a direct-product gauge theory. The
measure of attractiveness of this channel (6.4) is

AC, = Cy([2]¢) = 13—4 for [2]¢ x [1]¢ = [1]¢in SU(6).

(6.6)

Evidently, this is the same as the attractiveness for the
channel (6.1), so the critical coupling a,., is also the same as
for that channel. This AC, = 14/3 is also larger than the
AC, for the third channel (to be discussed below), so that,
as was stated above in (3.20), for this N = 6 theory, with
SU(6) being the dominant gauge interaction, the yy and
wy channels are the MACs.

A third condensation channel produced by the dominant
SU(6) gauge interaction is

xr: [l x [1lg = [2lg = [4]inSU6)  (6.7)
with condensate
eijkfmn <)(rTn,a,p,LC)(n,ﬁ$p/.L>' (68)

Although we use the same shorthand name, yy, for this
channel as in Eq. (5.7), it is understood that here it is the
SU(6) gauge interaction that is responsible for the for-
mation of this condensate, rather than the SU(2) gauge
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interaction in (5.7). The measure of attractiveness for
this condensation, as produced by the SU(6) gauge inter-
action, is

A, =26,([T]g) - Cal[2]g) =

for [1]s x [1]¢ — [2]¢in SU(6). (6.9)
This AC, is a factor of 4 smaller than the common value
AC, = 14/3 for the condensation channels (6.1) and (6.4)
and hence is predicted not to occur in this SU(6)-dominant
case. We proceed to discuss in greater detail the two
different patterns of UV to IR evolution for the most
attractive condensation channels in this SU(6)-dominant
case.

C. yy condensation channel

Here we consider the ywy condensation channel (6.1),
ie., (2. 1), x ([2]. 1), = ([2]¢. 1),. We denote the scale
at which the condensate (6.2) forms as A;. [To avoid
cumbersome notation, we use the same symbol for this
highest-level condensation as we did in the subsection
dealing with the case where the SU(2) gauge interaction is
dominant, but it is understood implicitly that this scale has
generically different values for these different cases.]
Without loss of generality, one may choose the SU(6)
group indices of the y fermions involved in the condensate
(6.2) to be k,Z,m,n € {1,2,3,4} and the uncontracted
indices in (6.2) to be i, j € {5, 6}. The y fermions involved
in the condensate (6.2) gain dynamical masses of order A;.
The gauge bosons in the coset SU(6)/[SU(4) ® SU(2)]
pick up dynamical masses of order g; (A)A;, and the U(1)
gauge boson picks up a dynamical mass ~g3(A;)A;. These
massive fermion and vector boson fields are integrated out
of the low-energy effective field theory that describes the
physics as the reference scale x4 decreases below A;. The
resultant low-energy effective theory contains the following
massless fermions: (1) SU(4) ® SU(2)-nonsinglets ¢,
with 1 <i<4, a€{5,6}, and 1 <p < Ny, which are
singlets under SU(2); (2) SU(4) ® SU(2)-nonsinglets
Xiapr With 1 <i <4, a=1, 2, and 1 < p < Ny, which
are singlets under SU(2)’; and (3) SU(2)’ ® SU(2)-non-
singlets y;, ,; with i =35, 6, which are singlets under
SU(4). There are also the massless fermions y%, with
1<p< Nf, which are singlets under all three factor
groups in (5.10). The fermions (1) transform as 2N,
fundamental representations F = [1], of SU(4), while the
fermions (2) transform as 2N, conjugate fundamental
representations F = [1], of SU(4), so that the SU(4) gauge
symmetry is vectorial. Combining this property with the
fact that the SU(2)" and SU(2) groups have only real
representations, it follows that this low-energy theory is
vectorial. The action of an element U € SU(4) is

ia _ 77i,,J0
v =Uw,

)(ia,p.L = (UT){){ja,p.L’ (610)

with fixed a =35, 6 and 1 < p < N;. The elements of
SU(2) operate on the indices a = 5, 6 of the fermions (1)
and (3). [The operation of the elements of SU(2) on the a,
indices has already been discussed.] The couplings of the
SU4) and SU(2)" gauge interactions start out equal at
u = Ay, as descendents of the gauge coupling a; of the UV
gauge coupling for the SU(6) gauge interaction.

As the theory evolves further into the IR, several possible
patterns of gauge symmetry breaking are possible. The
SU(4) gauge interaction can produce a condensate in the
1], x [1], = 1, i.e., F x F - 1 channel:

(6.11)

4
<Z W;;?LTCZi,a,p’.L > ’
i=1

where, as indicated, the sum on i is over the active SU(4)
gauge indices, while the other indices take on the values
a=5,6,a=1,2, and 1 < p,p" <N;. The measure of
attractive of this condensation, as produced by the SU(4)
gauge interaction, is AC, = 2C,([1],) = 15/4 = 3.75.
This condensate preserves the SU(4) gauge symmetry
and breaks the SU(2)" gauge symmetry operating on the
indices a = 5, 6 and the SU(2) gauge symmetry operating
on the indices a = 1, 2.

In contrast, the SU(2)’ gauge interaction could produce
the condensate

6
ia ib
> ewlwiICyll ). (6.12)

a,b=5

The measure of attractiveness for this condensation, as
produced by the SU(2)" interaction, is AC, = 3/2. Since
the fermions involved in this condensate are SU(2)-singlets,
it obviously preserves SU(2). With the contraction on the
SU(2)" indices a, b € {5,6}, it also preserves SU(2)". If
Ny = 1, then the condensate is automatically symmetric in
the single flavor index, so it has the form (a,a,s) in the
notation of Eq. (2.26) and hence transforms like the [2],
representation of SU(4). This breaks SU(4) to SU(2)" ®
SU(2)", where we use repeated primes to indicate that
these SU(2) subgroups of SU(4) are distinct from both the
original UV SU(2) symmetry and the SU(2)" symmetry. If
Ny =2, then there are two possibilities; (a,a,s) if one
constructs a linear combination that is symmetrized in
flavor indices, and (a, s, a), if one antisymmetrizes over
flavor indices. For each of these possibilities, one can track
the evolution further into the IR using the same methods
as above.
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D. yy condensation channel

Here we consider the yy condensation channel (6.4), i.e.,
([2]6: 1) x ([1s. [1]2) _4 = ([16. [1]2)_, with the associ-
ated condensate <l//p 1 Cxjpp.r) in Eq. (6.5). By conven-

tion, we may choose the SU(6) index i = 6 and the SU(2)
index f# = 2 in this condensate. Then the fermions involved
in the condensate, namely y/f,’ pandyj, v withl <j <5
gain dynamical masses of order A and are integrated out of
the low-energy effective theory applicable for u < A;. The
11 SU(6) gauge bosons in the coset SU(6)/SU(5) gain
dynamical masses of order g;(A;)A;, while the SU(2) and
U(1) gauge bosons gain masses of order g;(A;)A; with
i = 2, 3, respectively. These fields are integrated out of the
low-energy effective theory applicable for u < A;.

For this channel, the low-energy effective theory that
describes the physics as u decreases below A; has an SU(5)
gauge symmetry with (massless) SU(5)-nonsinglet fer-
mions ), and y; , ., where 1 <i,j<5 and 1< p,
p' < Ny. In addition, there are massless SU(5)-singlet
fermions y 4, ; and a)pL with 1 <a,f<2 and 1<
p.p' £ Ny remaining from the UV theory.

In this low-energy theory, the SU(5) gauge coupling
inherited from the SU(6) UV theory continues to increase
as u decreases below A, and is expected to trigger a further
fermion condensation

[2]5 x [2]s = [1];s (6.13)
with AC, = 24/5 and associated condensate
5
Z €ijktm l//p L Cl// > (614)

i,j.k,¢ m=1

where the indices i, j, k, Z, m are SU(5) group indices. By
convention, we may choose the uncontracted SU(5) group
index in (6.14) to be i = 5. This condensate breaks SU(5)
to SU@). The fermions /Y, with j, k € {1,2,3.4} and
1 < p <Ny gain dynamical masses of order A,. The 9
gauge bosons in the coset SU(5)/SU(4) gain dynamical
masses of order g; (A,)A,. All of these fields are integrated
out of the low-energy effective theory that describes the
physics at scales y < A,.

The low-energy theory that is operative for y < A, has a
gauge group SU(4) and (massless) SU(4)-nonsinglet fer-
mion content consisting of y/g’L with 1 <i,j <4 and
1 < p < N;. However, this representation, [2],, in SU(4)
is self-conjugate, i.e., [2], ~ [2],, so this theory is vectorial.
The two-loop beta function for this theory has no IR zero
and as u continues to decrease, the SU(4) coupling
inherited from the SU(5) theory continues to increase.
Because of the vectorial nature of this descendent SU(4)
theory, the condensate that forms is in the channel
[2], x [2], = 1, with condensate

4

} : T kf
€ijke l//pL >

i,j.k, =1

(6.15)

with AC, =5, where here, i,j, k, & are SU(4) group
indices. This condensate preserves the SU(4) gauge sym-
metry, while breaking global chiral symmetries sponta-
neously. The fermions involved in this condensate pick up
dynamical masses of order the condensation scale. This
theory confines and produces a spectrum of SU(4)-singlet
bound state hadrons.

VII. N=6 THEORY WITH SU(6) AND SU(2) GAUGE
INTERACTIONS COMPARABLE IN STRENGTH

A. General discussion

In this section we consider the situation in which both the
SU(6) and SU(2) gauge interactions are of comparable
strength and hence must be treated together [with the U(1)
gauge interaction still being weak]. In this case, one cannot
neglect the mixing terms at the two-loop and higher-loop
level in the beta functions f, , Eq. (2.2), so the calculation
the evolution of the gauge couplings down from the initial
reference point ¢ = pyy in the UV is more complicated.
For our present purposes, it will suffice to consider a case in
which (i) 2~ ay (1) =~ O(1) at a lower scale u. Since the
SU(2) interaction by itself would evolve to a relatively
weakly coupled IRFP if Ny = 2, expected to be in the non-
Abelian Coulomb phase, we will assume N, =1 here, to
guarantee that not just the SU(6) interaction, but also the
SU(2) interaction become strongly coupled in the infrared.

B. Analysis of possible condensation channels

1. Condensation(s) involving SU(6)-nonsinglet fermions

We have shown above that the most attractive conden-
sation channels are different in the simple situations where
either the SU(6) or the SU(2) gauge interactions are
dominant. Specifically, in the SU(2)-dominant case, the
MAC is the ww channel, with AC, = 4, while in the SU(6)-
dominant case, the MACs are the ywy and wy channels,
with the same measure of attractiveness, AC, = 14/3 =
4.7. One would thus expect that as the reference scale
decreases, the first condensate(s) to form would be in the
wy and/or yy channels, as produced by the SU(6) gauge
interaction. Since the yy channels involves SU(2)-singlet
fermions, it would not be affected by the fact that the SU(2)
gauge interaction is also strongly coupled. The other SU(6)
MAC, namely the yy channel involves the SU(2)-singlet
fermion yw and the SU(2)-nonsinglet fermion y, so the
binding is only caused by the SU(6) interaction. Since the
wy condensation leaves the residual gauge symmetry group
SU(5), of order 24, while the yy condensation would leave
the residual gauge symmetry (5.10), of order 21, a vacuum
alignment argument suggests that the yy condensation
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channel is preferred over the yy channel. Thus, the yy
condensate (6.5) is expected to form at a scale that we will
denote as A;, self-breaking SU(6) to SU(5) and also
producing induced dynamical breaking of U(1). The 11
gauge bosons in the coset SU(6)/SU(5) gain dynamical
masses of order g, (A)A;, and the U(1) gauge boson gains
a mass of order g3(A;)A;.

2. EFT below A

Next, one would expect that condensation would occur
in the ww channel, as produced by the strong SU(2) gauge
interaction. Owing to the fact that the value of AC, for this
condensation is equal to 4, slightly less than the value of 4.7
for the yy condensation, one expects that this occurs at a
slightly lower scale. Because this second condensation
would give dynamical masses to the @ fermions, which
would thus be integrated out of the low-energy theory
applicable below this condensation scale, it would preclude
the formation of an SU(2)-induced condensate in the yw
channel.

There remains the yy condensation channel. Although
the value of AC, for this condensation, as produced by the
SU(6) interaction, is 7/6, which is a factor of 4 smaller than
the value of 14/3 for the MACs, and although the value of
AC, for this condensation, as produced by the SU(2)
interaction, is 3/2, considerably smaller than the value
AC, = 4 for the SU(2)-induced MAC channel, oo, the yy
channel has the special property that it involves both the
SU(2) and SU(6) gauge interactions, in contrast to all of the
other possible condensation channels (yy, wy, oo, and
y®), each of which only involves one of these two non-
Abelian gauge interactions. If a; (4) = a,(u) and one were
simply to add the two terms (7/6)a; (i) + (3/2)ar (1) =
(8/3)a; (), the effective AC, would be 8/3 = 3.7, which
is still less than values for the MACs for both the SU(6)-
induced condensates and the SU(2)-induced condensates.

VIII. RELATED CONSTRUCTIONS

At the beginning of this paper we remarked on how the
theory (1.4) with (1.6) successfully combines two different
(anomaly-free) chiral gauge theories, SU(N) with N,
copies of (1.10), and SU(M) with N, copies of (1.11),
where M = N —4. A natural question concerns related
constructions of direct-product chiral gauge theories with
fermions in higher-rank tensor representations of the factor
groups. The next step up in complexity involves rank-3
antisymmetric and symmetric tensor representations for the
fermions. Two theories with these rank-3 representations
use a gauge group of the form

SU(N) ® SUM) ® U(1), (8.1)
where now M can take on two different values as a function
of N, namely M =N -3 or N =N — 6. In both cases,

the fermion content consists of N, copies of the set
[12,17]

([Bln> D) gy + (12lw (I)M)q21 + ([ (2)ar)g,, + (1, (3)M)q03

(8.2)
with
M =N =3 = (q30, 921,912, 903) =
=(=(N=3),(N=2),=(N=1).N)  (83)
and
M =N -6 = (q30.921-912- 903) =
= (=(N=6),(N=4),—(N=2),N). (8.4)

Owing to the presence of the factor group SU(M) in (8.1),
the lowest nondegenerate cases are N =5 if M =N -3
and N=8if M =N —6.

As before, there are equivalent theories. One has all of
the representations of the (left-handed chiral) fermions
conjugated. The second has the SU(M) representations
conjugated relative to the SU(N) representations, i.e., it has
a fermion content comprised of N, copies of the set

([Bly> D gy + (12ln- (D) g, + ([ (Z)M)q]z +(1,(3)a1) gy
(8.5)

Since these are equivalent to the theory with gauge group
(8.1) and fermions (8.2), with the indicated U(1) charges
for M = N —3 and M = N — 6, it suffices to discuss only
the latter theories.

However, none of these theories satisfies the requisite
condition for our analysis, that both the SU(N) and SU(M)
gauge interactions are asymptotically free (AF). The reason
for this is as follows. In the theory (1.4) with (1.6), the one-
loop term in the SU(N) and SU(N —4) beta functions
involves the trace invariants for the fundamental and
symmetric or antisymmetric rank-2 representations.
While 7([2]y) = (N —2)/2 and T((2),) are linear func-
tions of N and hence enter the one-loop coefficients in the
beta functions with the same polynomial degree as the
pure gauge contribution, 7([3]y) and T((3),,) are quad-
ratic functions of N and M, respectively, namely T'([3]y =
(N=3)(N—=4)/4) and T((3),,) = (M+3)(M+4)/4.
The most stringent restriction arises from the constraint
that the SU(M) beta function be negative. The one-loop
coefficient in this beta function is

3 2

(M+2)2(M+3)H‘

1 N(N -1
B = {1 1M - Nf{g +N(M+2)

_|_

(8.6)
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For the theory with M = N — 3, this is

S -3
bSOV = SN =3) —2N,N(N = 1)]. (8.7

W] =

This one-loop coefficient is negative if Ny > Ny i, 4345
where

11(N -3)
N, =— 7 8.8
f.blzk3a IN(N—1) (8.8)
We find that Ny, 43, < 1 for all N in the relevant range
N >5. Hence, the AF constraint does not allow any
nonzero value of Ny. Similarly, for the theory with
M =N -6,

bSO = Z[11(N = 6) = 2N, (N2 = 4N +3)].  (8.9)

W —

This one-loop coefficient is negative if Ny > Ny 1. 4355
where

11(N - 6)
N(N? —4N +3)°

Nypizp = > (8.10)

The value of N 1, 135 is less than 1 for all N in the relevant
range, N > 8. Therefore, the AF constraint does not allow
any nonzero value of N,. We recall that N, must be
nonzero in order for the theory to be a chiral gauge theory,
since if Ny = 0, then the theory degenerates into decoupled
purely gluonic sectors. Thus, in neither of these theories
with rank-3 fermion representations and M =N —3 or
M = N — 6 is the SU(M) gauge interaction asymptotically
free. Similar comments apply to SU(N) ® SU(M) ® U(1)
theories with fermions in sets of representations containing
antisymmetric and symmetric rank-k tensor representations
of the non-Abelian gauge groups with k> 4. As was
discussed above, the requirement of asymptotic freedom
of both of the non-Abelian gauge interactions was imposed
because of (i) the purpose of studying the strong-coupling
behavior of one or both of these interactions as the theory
evolves from the UV to the IR and (ii) the necessity to be
able to carry out a self-consistent perturbative calculation of
the beta functions for these interactions at a reference
scale, puyy.

IX. CONCLUSIONS

In nature, the SU(2); ® U(1), electroweak symmetry is
broken not only by the vacuum expectation value of the
Higgs field, but also dynamically, by the (gg) quark
condensates produced by the color SU(3). gauge inter-
action. Moreover, sequential self-breakings of strongly
coupled chiral gauge symmetries have also been used in
models of dynamical generation of fermion masses. In this
paper we have investigated a chiral gauge theory that serves
as a theoretical laboratory that exhibits both induced
breaking of a weakly coupled gauge symmetry via con-
densates formed by a different, strongly coupled gauge
interaction, and also self-breaking of strongly coupled
chiral gauge symmetries. We have studied an asymptoti-
cally free chiral gauge theory with the direct-product gauge
group SU(N) ® SU(N —4) ® U(1) and chiral fermion
content consisting of N, flavors of fermions transforming

according to the representations ([2]y.1)y_s + ([1]y.

[1y—4)—v=2) + (1, (2) y_4) y- One of the reasons for inter-
est in this theory is that it may be viewed as a combination
of two separate (anomaly-free) chiral gauge theories,
namely (i) an SU(N) theory with fermion content consist-
ing of N flavors of fermions in the [2]y and N — 4 copies

of [1]y, and (ii) an SU(M) theory with fermions consisting
of N flavors of fermions in the (2),, and M + 4 copies of

[1],, with M = N —4, which also incorporates a U(1)
gauge symmetry. We have analyzed the UV to IR evolution
of this theory and have investigated patterns of possible
bilinear condensate formation. A detailed discussion of the
lowest nondegenerate case, N = 6 was given. This analysis
involved a sequential construction and analysis of low-
energy effective field theories that describe the physics as
the theory evolves through various condensation scales and
certain fermions and gauge bosons pick up dynamically
generated masses. Our findings provide new insights into
the phenomenon of induced breaking of a weakly coupled
gauge symmetry by a different, strongly coupled gauge
interaction, and self-breaking of a strongly coupled chiral
gauge symmetry.
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