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1. Introduction

The violation of baryon number, B, is expected to occur in
nature, because this is one of the necessary conditions for gener-
ating the observed baryon asymmetry in the universe [1]. Baryon
number violation (BNV) is, indeed, predicted in many ultraviolet
extensions of the Standard Model (SM), such as grand unified the-
ories. A number of dedicated experiments have been carried out
since the early 1980s to search for proton decay (and the decay of
neutrons bound in nuclei). These experiments have obtained null
results and have set resultant stringent upper limits for the rates
of such AB = —1 baryon-number-violating nucleon decays.

A different type of baryon number violation has also received
attention, namely n — n oscillations, which have |AB| =2 [2-16].
It was observed early on that n — n oscillations might provide the
source of baryon number violation necessary for baryogenesis [2].
The same operators that mediate n — n transitions also lead to
matter instability via the dinucleon decays from nn and np ini-
tial states to respective multipion final states. Let us denote the
low-energy effective Hamiltonian responsible for n — 7 oscillations
as HS}?). We will assume a minimal framework in which HS};)
incorporates all of the physics beyond the Standard Model rel-
evant for n — n oscillations. Rates for these dinucleon decays in
matter are calculated by taking into account that in the presence
of a nonzero transition amplitude (ﬁl?—[i’};)ln), the physical state
[n) pnys. contains a small but nonzero |f1) component. This leads to
a nonzero amplitude for annihilation of the |n) component with a
neighboring neutron or proton in a nucleus.
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The operators in the low-energy effective Hamiltonian for pro-
ton decay are four-fermion operators with Maxwellian mass di-
mension 6 and hence coefficients of mass dimension —2, whereas
the operators in Hé?;) are six-quark operators, with coefficients of
dimension —5. Consequently, if one were to assume that there is
a single high mass scale Mpyy characterizing the physics respon-
sible for baryon number violation, proton decay would be much
more important as a manifestation of baryon number violation
than n — n oscillations and the corresponding dinucleon decays.
However, such an assumption of a single BNV mass scale may well
be overly simplistic [3]. Ref. [7] presented an explicit example of
a theory in which proton decay is suppressed well beyond ob-
servable levels while n — n oscillations occur at levels comparable
to existing experimental limits. In such a model, it is the n —n
oscillations and the corresponding nn and np dinucleon decays
to multi-meson final states that are the main manifestations of
baryon number violation, rather than individual proton and bound
neutron decays. Further examples of models with baryon number
violation but no proton decay were given in the later work [10].

Here we point out that existing upper bounds on the rates for
the hadronic dinucleon decays nn — 27°, nn — 77—, and np —
7+ 7% imply upper bounds on the rates for the dinucleon to dilep-
ton decays nn — e*e~, nn — utu=, nn — vy, and np — £ vy,
where ¢ =e, i, 7. We present estimates for these upper bounds.
Our upper bounds are considerably stronger than direct limits on
the rates for these decays.

2. n —n oscillations and dinucleon decays to hadronic final states

We recall some basic results on n — n oscillations that are
needed for our analysis (for further details, see, e.g., [11]). Let us
consider a general theory in which there is baryon-number violat-
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ing physics beyond the Standard Model (BSM) that leads to n —n
transitions and let us denote the corresponding transition ampli-
tude as

sm= (MY} In) . (1)
In (field-free) vacuum, one is thus led to diagonalize the matrix of
the Hamiltonian in the basis (|n), |n)),

My —iky/2 dm 2)
sm mp—iky/2 )’

where A, = 7, ! is the decay rate of the free neutron and the
equality m = m, follows from CPT invariance. The eigenstates
of this matrix are |n+) = (jn) % |A))/+/2, with mass eigenvalues
my = (mp &£ 8m) — iA,/2. Hence, if one starts with a pure |n) state
at t =0, then there is a finite probability for it to be an |n) at t #0
given by

P(n(t) =) = |(iln(t))|* = [sin®(t/Taa) Je ™", 3)

where 1,; = 1/|6m|. The current limit on 7,; from an experiment
with a neutron beam from a nuclear reactor at the Institut Laue-
Langevin (ILL) in Grenoble is 7,7 > 0.86 x 108 s, i.e., |6m| =1/Tp7 <
0.77 x 10722 MeV [6]. (This and other limits discussed here are at
the 90% confidence level.)

For a neutron bound in a nucleus, the Hamiltonian matrix be-
comes

My eff. ém ) 4
( ém m,:,’eff, ( )

with my epf = my + Vy and my efr. = my 4 Vi3, where the nuclear
potential V, is real, V, = Vg, but Vi has an imaginary part:
Vi = Viag — iVi. In the presence of the n — n mixing, the resul-
tant physical eigenstate for the neutron state in matter has a small
component of |n), i.e.,

[) phys. = €OS Ona|1) + sinbps|n) (5)

where tan(26p7) = 26m/|my eff — My eff|. In contrast to the situa-
tion in field-free vacuum, where 6 = 7 /4 and the mixing is max-
imal, in matter, because the diagonal elements of the Hamiltonian
matrix are different, |0| << 1. However, this is more than com-
pensated for by the large number of nucleons in a proton decay
experiment such as SuperKamiokande (SK). The nonzero |n) com-
ponent in |n)phys. leads to annihilation with an adjacent neutron
or proton, and hence to the decays to zero-baryon, multi-meson
final states consisting dominantly of several pions, nn — pions and
np — pions. The rate characterizing matter instability (m.i.) due to
these dinucleon decays is

1 20mPVal
Tmi. (Vnr — Var)? + Vr%l '

Cm.i

(6)

Hence, Tmi x (8m)~2 = 'anﬁ. A common convention is to introduce
a multiplicative factor R and write T = anzﬁ (see, e.g., the re-
view [11]). As is evident from this relation, together with Eq. (6),
the factor R reflects the different nuclear potentials felt by an n
and 7 in a nucleus and has the value R ~ 0(10%) MeV, or equiv-
alently, R ~ 1023 s~1, dependent on the nucleus. Lower limits on
Tm.i that yield equivalent lower bounds on 7,7 in the 108 s range
have been obtained from the Kamiokande [13], Soudan [14], SNO
(Sudbury Neutrino Observatory) [15], and SK [16] experiments. The
best current limit on matter instability (from SK) is [16],

Tmi > 1.9 x 10°% yr, (7)

and hence, taking into account the uncertainty in the calculation
of R ~0.52 x 1023 s~ for the 10 nuclei in water [9,11], the SK
experiment has inferred the limit [16]

T > 2.7 x 108 s, ie., |8m| <2.4x 10739 MeV. (8)

(From this and the value |myp eff — My eff| ~ 102 MeV, it follows
that |0n7] < 10731)

There have also been searches for dinucleon decays to spe-
cific final states. Reflecting the dominance of the strong interac-
tions over the electroweak interactions, these decays lead mainly
to hadronic final states. From null searches for the decays >6Fe —
e+t [12], 10 - 0+ 279 [17], and %0 - “N+ 7+ 70
[17], experiments have set upper bounds on the rates I';, or equiv-
alently, lower bounds on the partial lifetimes (7;/B;) = Fi’l for
these decays, where B; denotes a branching ratio. The experiments
use the notational convention of referring to these as nn — 77—,
nn — 279, and np — wt7% We will follow this convention, but
note that a conversion would be necessary to compute the rate for
an individual pair of neighboring nucleons to undergo these de-
cays. The limit from the Fréjus experiment [12] is

(T/B)unsm+n- > 0.7 x 10 yr, 9)

and the limits from the SK experiment [17] are

(T/B)pns 00 > 4.04 x 10°% yr (10)
and
(T/B)ypsmrn0 > 1.70 x 10%% yr . (11)

We use the two more stringent bounds (10) and (11) for our anal-
ysis. The multiplicities of pion final states that would be detected
in the SK detector are determined by the strong reactions, includ-
ing absorption, of the pions from the initial n annihilation with a
neighboring n or p as these pions propagate through the oxygen
nucleus; Ref. [17] reported total and charged pion multiplicities
of 3.5 and 2.2, respectively. For the purposes of our estimates,
these are sufficiently close to the two-pion multiplicity of the
nn — %79 and np — wt7® decays that we do not attempt to
introduce further effective multiplicity correction factors.

3. Dinucleon decays to dilepton final states

The same baryon-number-violating physics that leads to n —n
oscillations and hence also the dinucleon decays nn — pions and
np — pions also leads to dinucleon decays to leptonic final states,
in particular, to dileptons:

nn— €4~ fort=e, u (12)
nn— vevy forve =ve, vy, V¢ (13)
and

np— LTy, foré=e, u, 7. (14)

As is evident, these are AB = —2, AL =0 decays, where L denotes
total lepton number. We will derive upper bounds on the rates
for these decays by relating them to hadronic dinucleon decays
and using the upper bounds on rates for the latter. We utilize a
minimal theoretical framework for our analysis, namely to assume
the BSM physics responsible for the n — n oscillations, but then
apply only Standard-Model physics to derive these relations. With
this framework, we identify and estimate the leading contributions
to these dinucleon decays to dileptons. These contributions involve
amplitudes each of which consists of a combination of two parts:



S. Girmohanta, R. Shrock / Physics Letters B 803 (2020) 135296 3

=

£+

Fig. 1. Feynman diagram for nn — ¢*¢~ with ¢ =e, u.

(a) The basic BNV part, involving a six-fermion operator resulting
from physics operative at a mass scale Mgyy >> v, where v =
250 GeV is the electroweak-symmetry-breaking (EWSB) scale, and
a second part involving SM physics, with a virtual timelike photon,
Z,or W.

We begin with the decay nn — £7¢~. This decay can occur
as follows: the |f1) component in a [n)ppys. Neutron in a nucleus
leads to annihilation with a neighboring neutron to yield a vir-
tual photon in the s channel, which then produces the final-state
£+~ pair in (12). A much smaller contribution involves a diagram
with a virtual Z in the s-channel. Equivalently, one can envision
this as being due to a transition in which an initial n changes
to a n with transition matrix element (1), and then the n anni-
hilates with the neighboring n to produce the virtual photon or
Z, as shown in Fig. 1. Up to small corrections due to the bound
state Fermi momenta of the nucleons, the center-of-mass energy
is /s =my + mp =2my in this transition, and the ¢+ and ¢~ are
emitted back-to-back, each with a total energy in the lab frame
equal to my. We denote the four-momentum of the virtual pho-
ton or Z as q and the four-momenta of the £~ and ¢* as p, and
p1, with ¢ = p1 +p> and g% = s = (2my)2. Here and below, we ne-
glect small effects due to Fermi momenta. The conversion reaction
e +n— e+n has been discussed in [18].

To leading order, the amplitude for nn — £7¢~ is the sum of
the terms due to virtual (v) photon and Z exchange in the s-
channel:

Amnosere- = Amos ety + Aotz (15)
with
AMﬁﬁrW=wmn%mﬁmmm%wwﬂmwmn (16)
and
A e+e—z
=V2GF (8m) (0| J%n) [a(pzm[a —4sin® Oy ) — ys]v<p1>],
(17)

where the ém factor represents the initial n — n transition medi-
ated by HS};): Jim and J% = J%, — sin?6w J%, denote the elec-
tromagnetic and neutral weak currents; and e = /47T e, and Gp
denote the electromagnetic and Fermi couplings.

We first consider the contribution from Ap,_, ¢+¢-;,. Since the
annihilation occurs on a scale of order ~ 1 fm, a reasonable ap-
proximation is to consider the initial nn state by itself, independent
of the other nucleons in the nucleus. Let us denote the wavefunc-
tion of this state as |nn) = ¢;¢ps ¢y, where I, S, and L denote
the strong isospin, the spin, and the relative orbital angular mo-
mentum L of the nn pair. (To maintain standard notation, we use
the same symbol, L, for orbital angular momentum and total lep-
ton number; the context will always make clear which is meant.)
This wavefunction must be antisymmetric under interchange of
neutrons. The |nn) state has strong isospin I =1, and the lowest-
energy configuration has L =0, so the ¢; and ¢; wavefunctions for

this configuration are both symmetric under interchange of neu-
trons. Hence, ¢s is antisymmetric, corresponding to spin S =0 and
hence total angular momentum J = 0 for the nn pair. Since Cg}?)
is a Lorentz scalar, the n — n transition matrix element (ﬁlﬂg}'}) [m)
does not change the neutron spin, so the value of S (as well as L)
for the resultant nn dinucleon is the same as for the initial nn din-
ucleon. (This is obvious in Eq. (5).) The matrix element (O|]{}m|nﬁ)
is related by crossing symmetry to the matrix element (nl]ém\n),
which involves Dirac and Pauli form factors F f") (g% and Fé") ).
For the ] =0 nn state, the only four-momentum on which the
matrix element (0| J%,|nf1) can depend is g*, so (0] J%,[nft) o< g*.
But g* [u(p2)y.v(p1)] =0, so that this contribution to the am-
plitude vanishes. Another contribution arises from an excited |nn)
state with L =1 and an antisymmetric ¢, so that ¢s is symmetric,
corresponding to S = 1. Then the quantum mechanical addition of
L and S to yield a total angular momentum j =L+S can yield
J=0,1, or 2. The J =0 state gives zero contribution, as before,
so the amplitude arises from the initial nn states with nonzero J.
We denote the probability of the nn dinucleon to be in a state
with J # 0 as Ppn,jx0. Given that J # 0 so that Ap;_p+¢- #0,
it follows that in |Apn_, ¢+¢-., |2 the (1/s)? factor from the photon
propagator is cancelled by kinematic factors of order s2.

We next consider the contribution from Ap,_,+¢-.z. The
square, |A,,,1_>,3+,@7;Z|2, is negligible because of suppression
by the factor ~ (Gps)®2 = 1.7 x 107°. The cross term
Re{Ann s ¢+e-1y A:n—uﬁr;z} is also small because of the factor
~ Gps = 4.11 x 107>, Thus, although for the J = 0 initial nn
state, the axial-vector part of J; has a nonzero contraction
q*[i(p2)yaysv(p1)] = 2mg[ii(p2) ysv(p1)], this contribution is sup-
pressed both by the smallness of 2my//s = my;/my and by the
Grs factor in the amplitude.

The two-body phase space factor for a decay of an initial state
with mass +/s to final-state ( fs) particles with masses m; and my
is

1
Ry = — (1. mi/s.m3/5)]' (18)
where
AX Y. 2) =X+ y*+ 22 —2(xy + yz+2X) . (19)

Hence, for the relevant case m; =my=m, Ry = (87)~'/1 —4m?/s.
The square root is equal to 0.9896, 1.0000, and 0.9937 for the re-
spective decays nn — 2%, nn — ete~, and nn — utp-.

We are thus led to the estimate

R(zﬂz—)
4

Pans e+¢= ~ Prn, j20 €7 — o Tan a0

2

~ Pnn, 0 e* | T (20)

rey  pr® .
where we have used the fact that R, /R5 is very close
to unity for both £ =e and ¢ = p. Utilizing the lower limit on
(T/B)pn—270 in Eq. (10) together with the estimate (20), we thus
obtain the following estimates for lower limits on the partial life-
times for dinucleon to dilepton decays per !0 nucleus:

(T/Bmnse+e- 2 (P, j20) "' (5 x 10*% yr)
Z5x10%yrfort=e, u, (21)

where the final inequality follows from the fact that Py, jx0 < 1.
Even without inserting an estimated value for the suppression fac-
tor due to Pyp, 0, our bound (21) is stronger than the direct limits
on these two decays, which are (from the SuperKamiokande exper-
iment) [21]:
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Ve

Fig. 2. Feynman diagram for nn — v, Vg, where vy = ve, vy, vr.

(T/B)pnoete- > 4.2 x 1033 yr (22)
and
(T/Bnn p - > 44 x 102 yr. (23)

We next consider the decay nn — v,v,;, where vy = ve, vy, Or
vr. This decay arises from a process in which the [i1) in [n)ppys.
annihilates with a neighboring neutron to produce a virtual Z bo-
son in the s-channel, which then yields the final-state vy v, pair, as
shown in Fig. 2. Here and below, we shall refer to this as a tree-
level process, having integrated out any loops in a BSM model to
obtain the local four-fermion operators in the low-energy effective
Hamiltonian 7—{2""). (More precisely, it is a tree-level process as re-
gards SM fields.) One may again analyze the contributions of the
J =0 and J # 0 initial nn states. For the | =0 initial state, by
the same argument as above, the vector part of the neutral cur-
rent gives a vanishing contribution, and the axial vector part gives
a negligibly small contribution to the amplitude proportional to
neutrino masses. Hence, the decay arises from the J # O initial
dineutron states. We thus obtain the rough estimate

Cnns v, ~ Prn, 120 (GFS)? Tpns 050 - (24)

Combining this with the experimental limit (10), we obtain the
rough lower bound, per 0 nucleus,

(T/Bhinsveie 2 P 20 2 x 108 yr)
22x 10" yr for vy = ve, vy, Vg . (25)

For comparison, there is a bound from a direct search by the Kam-
LAND experiment,! namely [22]

(T/B)nn—inv. > 1.4 x 103 yr (26)

per '2C nucleus, where “inv.” denotes an invisible final state, e.g.,
one with two neutral, weakly interacting particles which do not
decay in the detector (and which could be vv, vy, or VD, with un-
determined flavors). Since the final-state (anti)neutrinos were not
observed, the limit (26) applies to all of these possibilities. For the
case where the final state is vgVy, our estimated lower bound in
(25) is considerably stronger than the direct experimental limit
(26).

Finally, we derive a relation between the rates for np — 7 +m0
and np — €7 v, where ¢T =et, ut, . At tree level, the ampli-
tude np — ¢+ v, arises from the process in which the |1) compo-
nent in |n)ppys. annihilates with a neighboring proton to produce a
virtual W boson which then yields the final-state £* v, pair. This
is shown in Fig. 3. Denoting the four-momenta of the v, and ¢+
as pp and p1, we write

! The KamLAND bound was obtained via a search for the decays of the resultant
10¢ nucleus [22]. Although our bound applies to an '®0 nucleus rather than '2C
nucleus, one does not expect the rates to differ very much between these nuclei
with almost equal numbers of nucleons. A weaker bound, (7 /B)un—inv. > 1.3 x 1028
yr. per '60 nucleus has been obtained by the SNO+ experiment [23].

Ve

w+

n

E‘F

Fig. 3. Feynman diagram for np — €% v, where ¢ =e, u, T.

G -
Anps v, = (3m)7; (01 Ip) [E(p2) v (1 — ys)v(pD] . (27)

The initial np state is a mixture of I =0 and I =1 isospin states.
The I =0 state is analogous to the deuteron, with S =1 and dom-
inantly L =0, whence J =1. The I =1 np state has dominantly
L=0, S=0, and hence J =0, leading to severe helicity suppres-
sion of the decays if ¢ =et or £F = u¥, although this helicity
suppression not so severe for np — Tt v;. In contrast, the decays
np — €+v, from the initial np states with J # 0 are not helicity-
suppressed. This is similar to the fact that there is no helicity
suppression in the leptonic decays of a real W boson. It is thus
expected that the dominant contribution to np — £¥ v, arises from
the | =0, J =1 component of the initial np state. We thus esti-
mate

(L ve)
2 2

an—>e+ve ~ (Gfs) W an—>n+n0 (28)

2
The phase space factor for np — ¢Tv, decay is R(zﬁ"“ =
@m)~ 11 - m%/(ZmN)Z]. The expression in square brackets has
the respective values 1.0000, 0.9969, and 0.1047 for £ =e, w, T.

0

In the decay np — 7+7° R ™ = (87)~1(0.9893). Combining
Eq. (28) with these values for the phase space factors and the ex-
perimental limit (11), we obtain the rough lower bounds, per 160
nucleus,

(T/B)npetv, 2108 yrs fort=e, p (29)
and
(T/B)nps v, 2 10% 1. (30)

The SK experiment has reported the limits [20]

(T/B)npsety > 2.6 x 1032 yr (31)
and
(T/B)nps x> 2.2 x 1032 yr (32)

per %0 nucleus, where x denotes a neutrino or antineutrino (of
undetermined flavor). For the cases in which x = v, in (31) and
X = vy in (32), our bounds are much stronger than these limits
from direct experimental searches. It was pointed out in [19] that
data from existing searches for nucleon and dinucleon decays into
multilepton final states involving e™ and p* plus (anti)neutrinos
could be retroactively analyzed to set a limit on the decay np —
¥, since the ™ could decay as T+ — V£Tv, with £ =e or
¢ = . Ref. [19] carried out such an analysis and obtained a lower
bound (t/B)ny—7+5, > 1 x 1030 yr per 160 nucleus. Subsequently,
from a direct search, SK obtained the limit [20]

(T/B)posrix >2.9x 10T yr (33)
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per 180 nucleus, where x is a neutrino or antineutrino (of unde-
termined flavor). For the case in which x = v, our bound (30) is
much stronger than this direct limit. As is evident from our deriva-
tions, our limits constrain dinucleon decays that have AL = 0.
They do not constrain dinucleon decays with AL # 0, such as the
AL = —2 decays nn — v,y and np — TV, or the AL =+2 de-
cay nn — vyv,. Using similar methods, we have derived improved
upper bounds on several decay models of individual protons and
bound neutrons. These are reported elsewhere [24].
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