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In the framework of a baryon-number-violating effective Lagrangian, we calculate improved lower
bounds on partial lifetimes for proton and bound neutron decays, including p → lþl0þl0−, n → ν̄lþl0−,
p → lþνν̄, and n → ν̄ ν̄ ν, where l and l0 denote e or μ, with both l ¼ l0 and l ≠ l0 cases. Our lower
bounds are substantially stronger than the corresponding lower bounds from direct experimental searches.
We also present lower bounds on ðτ=BÞp→lþγ , ðτ=BÞn→ν̄γ , ðτ=BÞp→lþγγ , and ðτ=BÞn→ν̄γγ . Our method relies

on relating the rates for these decay modes to the rates for decay modes of the form p → lþM and n → ν̄M,
where M is a pseudoscalar or vector meson, and then using the experimental lower bounds on the partial
lifetimes for these latter decays.
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I. INTRODUCTION

Although the Standard Model (SM) conserves baryon
number1 B, this is violated in many of its ultraviolet
extensions. This violation is natural in grand unified
theories (GUTs) [2–5], since these theories place quarks
and (anti)leptons in the same representation(s) of the GUT
gauge group. More generally, baryon-number violation
(BNV) is expected to occur in nature, because this is
one of the necessary conditions for explaining the observed
baryon asymmetry of the universe [6]. A number of
dedicated experiments have been carried out since the
early 1980s to search for proton decay and the decay of
neutrons bound in nuclei. These experiments have obtained
null results and have set resultant stringent upper limits for
the rates of nucleon decays.2

In this paper, within the framework of a baryon-number-
violating effective Lagrangian, Leff , we shall calculate
improved lower bounds on partial lifetimes for a number
of nucleon decays. Let us denote the rate for the decay
of a nucleon N (where N ¼ p or n) to a final state f.s.
as ΓN→f:s:, which is the inverse of the partial lifetime,
ðτ=BÞN→f:s: ¼ ½ΓN→f:s:�−1, where B denotes the branching

ratio for this decay mode. Our method is to derive an
approximate relation between the rate ΓN→f:s: for the decay
of a nucleon to a final state f.s., N → f:s: (where N ¼ p
or n) and the rate for the decay ΓN→f:s:0 to a different
final state, denoted f:s:0. Combining this relation with the
experimental lower bound on ðτ=BÞN→f:s:, we derive an
approximate lower bound on ðτ=BÞN→f:s:0 for each final state
f:s:0. Our theoretical framework is minimal, in the sense that
the only physics beyond the SM (BSM) that is assumed is
that which produces the basic set of local four-fermion
operators inLeff . If onewere to assume the existence of other
baryon-number-violating physics involving new particles
with masses much smaller than the GUT scale, then other
operators would become relevant, requiring a different
analysis. Although the lower bounds that we derive are
only approximate, they are useful because for many final
states f:s:0 they are more stringent than the lower bounds on
ðτ=BÞN→f:s:0 from direct experimental searches.
This paper is organized as follows. In Sec. II we discuss

the four-fermion operators in Leff . We present our lower
bounds on (τ=B) for p → lþγ and n → ν̄γ in Sec. III.
Sections IV and V contain our lower bounds on (τ=B) for
p → lþl0þl0− and n → ν̄lþl−, where l and l0 denote e
or μ, including both l ¼ l0 and l ≠ l0 cases. In Secs. VI
and VII we derive lower bound bounds on (τ=B) for
p → lþνν̄ and n → ν̄ ν̄ ν. Here and below we use a
symbolic notation in which ν may refer to an electro-
weak-doublet neutrino of some generation or to an electro-
weak-singlet neutrino; the context will make clear the
meaning. In Sec. VIII we remark on the application of our
method to other decays, including p → lþγγ and n → ν̄γγ.
Our conclusions are presented in Sec. IX and some relevant
phase-space formulas are given in the Appendix.
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1Recall that the violation of B by SUð2ÞL instantons in the SM
is negligibly small at temperatures low compared with the
electroweak scale [1].

2We shall use the term “nucleon decay” to mean the decay of a
proton or the B-violating decay of a neutron bound in a nucleus.
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II. EFFECTIVE LAGRANGIAN

Given the established experimental upper bounds on
the rates for nucleon decays, it follows that the mass
scale(s) characterizing the baryon-number-violating
physics responsible for these days must be larger than
the electroweak-symmetry-breaking scale, v ≃ 250 GeV.
Hence, one can analyze these decays using an effective
Lagrangian, Leff , that is invariant not only with respect to
color SUð3Þc, but also with respect to gauge transforma-
tions of the electroweak gauge group, GEW ¼ SUð2ÞL ⊗
Uð1ÞY . With the original SM fermions, before the addition
of any electroweak-singlet neutrinos, the four-fermion
operators Oi in Leff that contribute to nucleon decays
are as follows. We denote Qα

a;L ¼ ðQ1α
a

Q2α
a
Þ
L
¼ ðuαadαaÞL and

La;L ¼ ðL1
a

L2
a
Þ
L
¼ ðνlala ÞL, where α, β, and γ are SUð3Þc indices

and a is a generation index, with dα1 ¼ dα, dα2 ¼ sα,
dα3 ¼ bα, l1 ¼ e, l2 ¼ μ, l3 ¼ τ, etc. The operators
contributing to proton decay are3 [7,8]

O1 ¼ ϵαβγ½uα T
a1;R

Cdβa2;R�½u
γ T
a3;R

Cla4;R�; ð1Þ

O2 ¼ ϵijϵαβγ½Qiα T
a1;L

CQjβ
a2;L

�½uγ T
a3;R

Cla4;R�; ð2Þ

O3 ¼ ϵkmϵαβγ½uα T
a1;R

Cdβa2;R�½Q
kγ T
a3;L

CLm
a4;L

�; ð3Þ

and

O4 ¼ ϵijϵkmϵαβγ½Qiα T
a1;L

CQjβ
a2;L

�½Qkγ T
a3;L

CLm
a4;L

�; ð4Þ

where C is the Dirac charge conjugation matrix satisfying
CγμC−1 ¼ −ðγμÞT , C ¼ −CT and i, j, k, and m are SUð2ÞL
indices. As noted in [7], four-fermion operators with
bilinears involving Dirac vector and tensor operators γμ
and σμν ¼ ði=2Þ½γμ; γν� can be transformed to the operators
listed above via Fierz identities. These operators have
ΔB ¼ −1 and ΔL ¼ −1, where L denotes total lepton
number.
After the discovery of nonzero neutrino masses and

lepton flavor mixing, a natural generalization of the
Standard Model has involved the introduction of a set of
electroweak-singlet neutrinos νs;R, s ¼ 1;…; ns, which are
necessary to form Dirac neutrino mass terms via Yukawa
couplings

P
3
a¼1

Pns
s¼1 yas½L̄a;Lνs;Rϕ̃� þ H:c:, where ϕ̃≡

iσ2ϕ� and ϕ ¼ ðϕþ
ϕ0 Þ is the SM Higgs doublet. These νs;R

neutrinos also generically form Majorana bare mass termsPns
s;s0¼1

MðνÞ
s;s0ν

T
s;RCνs0;R þ H:c:, thereby explicitly breaking

total lepton number L by 2 units. With the inclusion of
these νs;R, there are two additional types of operators for
nucleon decay, namely

O7 ¼ ϵαβγ½uα T
a1;R

Cdβa2;R�½d
γ T
a3;R

Cνs;R� ð5Þ

and

O8 ¼ ϵijϵαβγ½Qiα T
a1;L

CQjβ
a2;L

�½dγ T
a3;R

Cνs;R�: ð6Þ

The generation indices ða1; a2; a3; a4Þ in the Or with
1 ≤ r ≤ 4 and the indices ða1; a2; a3; sÞ in Or with
r ¼ 7, 8 will be left implicit in the notation.

In terms of these fields, a minimal low-energy effective
Lagrangian giving rise to nucleon decay can be written as

Leff ¼
X
r

X
faig;s

crOr; ð7Þ

where the second sum is over all of the generation indices
ða1; a2; a3; a4Þ in the operators Or, 1 ≤ r ≤ 4, and the
indices ða1; a2; a3; sÞ in O7 and O8. Since these operators
Or have Maxwellian dimension 6 (in mass units),
the coefficients cr have dimension −2, and we write
cr ¼ c̄r=ðMBNVÞ2, where MBNV denotes an effective mass
scale characterizing the baryon-number violation. In gen-
eral, c̄r depends on the generational indices of fermion
fields in Or; this is again left implicit in the notation.

III. THE DECAYS p → l+ γ AND n → ν̄γ

We begin by deriving approximate lower limits, within
this theoretical framework, on the partial lifetimes for the
decays p → lþγ and n → ν̄γ, where lþ ¼ eþ or μþ and ν̄
may be an electroweak-nonsinglet antineutrino, ν̄e, ν̄μ, or
ν̄τ, or an electroweak-singlet antineutrino, ν̄s, where
1 ≤ s ≤ ns.

4 In view of these possibilities, we omit a
subscript on ν̄ here and in similar cases below. With our
Leff , the leading contributions to the decay p → lþγ arise
from the diagrams in Fig. 1. Figure 1(a) shows a process in
which

P
r crOr in Leff (represented by the blob at the four-

fermion vertex) with 1 ≤ r ≤ 4 and a1 ¼ a2 ¼ a3 ¼ 1,
a4 ¼ 1 or 2 for lþ ¼ eþ or μþ, transforms an initial uu
pair in the proton to lþdc, and the dc annihilates with the d
in the proton to produce the outgoing photon. This figure is
also understood to include a process in which the d quark
in the proton emits the photon, transitioning to a virtual d
that undergoes the BNV process depicted by the blob,
resulting in the outgoing lþ. Figure 1(b) shows the
analogous processes involving the BNV transformation

3Two other operators vanish identically in the case a1 ¼ a2 ¼
a3 ¼ 1 relevant for nucleon decay, namelyO5 ¼ ϵαβγ½uα T

a1;R
Cuβa2;R�

×½dγ T
a3;R

Cla4;R� and O6 ¼ ðϵikϵjm þ ϵimϵjkÞϵαβγ½Qiα T
a1;L

CQjβ
a2;L

�×
½Qkγ T

a3;L
CLm

a4;L
�.

4In general, the EW-singlet interaction eigenstate ν̄s is a linear
combination of mass eigenstates. Here the statement refers to the
mass eigenstates with masses that are sufficiently small so that
they are kinematically allowed to occur in the decay. This is also
understood for the EW-nonsinglet ν̄l.
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du → lþuc. In Fig. 1(c), the initial uud quarks in the
proton are transformed via the BNV Leff to a virtual
s-channel lþ that then radiates the photon.
To proceed, we relate the amplitude for the p → lþγ

decay to an amplitude for p → lþM decay, where lþ ¼ eþ
or μþ and M denotes a neutral meson containing light
quarks, such as π0, η, ρ0, or ω. Feynman diagrams for the
decay p → lþM are shown in Fig. 2. Both the isoscalar
mesons η and ω and the isovector mesons π0 and ρ0 are
relevant for this relation, since the electromagnetic current
has both isoscalar and isovector parts, as embodied in the
relation Qem ¼ I3 þ ðY=2Þ, where here I and Y denote
isospin and hypercharge, respectively. The final states
involving the vector mesons ω and ρ0 share with the final
state involving the photon the property that they are all
vector (J ¼ 1) particles. On the other hand, the final states
involving the π0 and η have ðmassÞ2 values 0.0182 and
0.301 GeV2 that are smaller than the ðmassÞ2 values of
0.602 and 0.613 GeV2 for the ω and ρ0 and hence closer to
the zero mass of the photon. In view of the complementary
similarities [in spin and ðmassÞ2] of the ω and ρ0 hadronic
final states, on the one hand, and the π0 and η hadronic final
states, on the other, to the photon, we shall use all of these
decay modes for our comparison. We list the experimental
lower bounds on the partial lifetimes (τ=B) for relevant
proton and bound neutron decay modes in Tables I and II.
These and other limits listed here are at the 90% confi-
dence level.
The phase-space factor for a decay of a nucleon N to a

two-body final state with particles of masses m1 and m2 is
given by Eq. (A5) in the Appendix. We list the values of

ð8πÞRðf:s:Þ
2 ¼ ½λð1; ðm1=mNÞ2; ðm2=mNÞ2�1=2 in Table III

for nucleon decays to various final states f.s. of
relevance here.
Because the hadronic matrix elements hMjLeff jpi and

h0jLeff jpi that enter in the respective p → lþM and
p → lþγ decays are different and the coefficients cr that
enter into Leff depend on the UV completion of the
Standard Model that is responsible for the baryon-number
violation, we will restrict our analysis to a rough estimate of
the relation between the corresponding decays. (For lattice
calculations of hadronic matrix elements, see Ref. [9].) A
similar comment applies to n → ν̄γ decays. We have

Γp→lþγ ∼ e2
�
RðlþγÞ
2

RðlþMÞ
2

�
Γp→lþM; ð8Þ

where lþ ¼ eþ or μþ and e2 ¼ 4παem is the squared
electromagnetic coupling. The ratio of phase-space factors
is included to take account of the difference in phase
space for the p → lþγ and p → lþM decay modes.
Equivalently,

ðτ=BÞp→lþγ ∼ ð4παemÞ−1
�
RðlþMÞ
2

RðlþγÞ
2

�
ðτ=BÞp→lþM: ð9Þ

Note that although the branching ratios for the various
decay modes in Eq. (9) depend on the UV completion of
the SM, the basic relation (8) is between the absolute rates
themselves, which do not depend on these branching ratios.
We next make use of the experimental lower bounds on

the partial lifetimes for various relevant proton decay
modes, as displayed in Table I. These lower bounds on

(a) (b) (c)

FIG. 1. Feynman diagrams for p → lþγ with lþ ¼ eþ; μþ.

(a) (b)

FIG. 2. Feynman diagrams for p → lþM, where lþ ¼ eþ; μþ and M denotes a pseudoscalar or vector meson.
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(τ=B) are all from the SuperKamiokande (SK) experiment;
the bounds for p → lþπ0 and p → lþη are from Ref. [10],
while the bounds for p → lþω and p → lþρ are from
Ref. [11]. In the rightmost column of Table I, we list our
estimates for the lower bounds on p → lþγ obtained by
combining the relation (9) with the experimental lower
bounds on ðτ=BÞp→lþM given in the middle column, for
lþ ¼ eþ and lþ ¼ μþ. In view of the approximate nature
of our estimated lower bounds on ðτ=BÞp→lþγ in Table I,
we list these only to one significant figure, and we follow
this format with our estimates for other nucleon decay
modes below.
Our estimates for lower bounds on ðτ=BÞp→lþγ may be

compared with lower bounds from direct experimental
searches, which are as follows. The IMB-3 experiment
obtained the limits [13] ðτ=BÞp→eþγ > 0.670 × 1033 yr and
ðτ=BÞp→μþγ > 0.478 × 1033 yr. More recently, the SK
experiment has reported the limits [15] ðτ=BÞp→eþγ >
4.1 × 1034 yr and ðτ=BÞp→μþγ > 2.4 × 1034 yr. These
comparisons are summarized in Table IV. In this table,

for each of the decay modes p → lþγ and n → ν̄γ, we list
the range of estimated lower bounds that we obtain using
Eq. (9) with all of the input bounds for p → lþM.
We proceed to carry out the corresponding analysis for

the decay n → ν̄γ. The leading Feynman diagrams con-
tributing to this decay are shown in Fig. 3. As noted above,
since the antineutrino is not observed, it could either be an
electroweak-nonsinglet, ν̄l (i.e., ν̄e, ν̄μ, or ν̄τ) or an EW-
singlet, ν̄s. The leading contributions to the n → ν̄lγ decay
arise from the relevant terms in O3 and O4 with a1 ¼ a2 ¼
a3 ¼ 1 and arbitrary a4 (where a4 ¼ 1, 2, 3 for ν̄e, ν̄μ,

TABLE II. List of (a) experimental lower bounds (at the
90% C.L.) on (τ=B), denoted ðτ=BÞn→ν̄M;exp: l:bnd:, for various
baryon-number-violating neutron decays of the form n → ν̄M,
whereM ¼ π0; η; ρ0;ω, with references, given in the first to third
columns; (b) in the fourth column, our resultant estimated lower
bounds on (τ=B) for n → ν̄γ obtained from Eq. (10), denoted
ðτ=BÞn→ν̄γ;est: l:bnd:. All limits on (τ=B) are given in units of
1033 yr. See the text for further discussion.

n → ν̄M ðτ=BÞn→ν̄M;exp: l:bnd: Ref. ðτ=BÞn→ν̄γ;est: l:bnd:

n → ν̄π0 1.1 [12] 10
n → ν̄η 0.158 [13] 1
n → ν̄ω 0.108 [13] 0.4
n → ν̄ρ0 1.9 × 10−2 [14] 0.07

TABLE I. List of (a) experimental lower bounds (at the
90% C.L.) on (τ=B), denoted ðτ=BÞp→lþM;exp: l:bnd:, for various
proton decays of the form p → lþM, where lþ ¼ eþ or μþ and
M ¼ π0; η; ρ0;ω, with references, given in the first to third
columns; (b) in the fourth column, our resultant estimated lower
bounds on (τ=B) for p → lþγ obtained from Eq. (9), denoted
ðτ=BÞp→lþγ;est: l:bnd:. All limits on (τ=B) are given in units of
1033 yr. See the text for further discussion.

p → lþM ðτ=BÞp→lþM;exp: l:bnd: Ref. ðτ=BÞp→lþγ;est: l:bnd:

p → eþπ0 16.0 [10] 2 × 102

p → μþπ0 7.7 [10] 0.8 × 102

p → eþη 10.0 [11] 0.7 × 102

p → μþη 4.7 [11] 30
p → eþρ0 0.720 [11] 2
p → μþρ0 0.570 [11] 1
p → eþω 1.60 [11] 5
p → μþω 2.80 [11] 7

TABLE III. Reduced two-body phase-space factors ð8πÞRðf:s:Þ
2

for two-body proton decays to the indicated final states ( f.s.).

Decay ð8πÞRðf:s:Þ
2

p → eþγ 1.000
p → μþγ 0.987
p → eþπ0 0.979
p → μþπ0 0.966
p → eþη 0.658
p → μþη 0.632
p → eþρ0 0.316
p → μþρ0 0.241
p → eþω 0.304
p → μþω 0.222
n → ν̄γ 1.000
n → ν̄π0 0.979
n → ν̄η 0.659
n → ν̄ρ0 0.318
n → ν̄ω 0.306

TABLE IV. Table listing (a) experimental lower bounds (l.bnd.)
(at the 90% C.L.) on (τ=B) for various nucleon decays, denoted
ðτ=BÞexp: l:bnd: with references, given in the first to third columns;
and (b) our theoretical estimated lower bounds on the partial
lifetimes for these nucleon decays, denoted ðτ=BÞest: l:bnd:. The
units of (τ=B) are 1033 yr. The abbreviation NA means “not
available.” See the text for further details.

Decay mode ðτ=BÞexp: l:bnd: Ref. ðτ=BÞp→lþγ;est: l:bnd:

p → eþγ 41 [15] ∼10–102
p → μþγ 24 [15] ∼10–102
p → eþγγ 1.00 [16] ∼104
p → μþγγ NA NA ∼104
n → ν̄γ 0.55 [17] ∼1–10
n → ν̄γγ 2.19 [13] ∼103
p → eþeþe− 0.793 [13] ∼104
p → μþeþe− 0.529 [13] ∼104
p → eþμþμ− 0.359 [13] ∼104
p → μþμþμ− 0.675 [13] ∼104
n → ν̄eþe− 0.257 [13] ∼103
n → ν̄μþμ− 0.079 [13] ∼103
n → ν̄μþe− 0.083 [13] ∼1011
p → ν̄eþνe 0.17 [18] ∼1012
p → ν̄μþνμ 0.22 [18] ∼1012
n → ν̄νν̄ 0.58 × 10−3 [19] ∼1011
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and ν̄τ), namely the term −ϵαβγ½uα T
R CdβR�½dγ T

L Cνa4;L� in O3

and the term −2ϵαβγ½uα T
L CdβL�½dγ T

L Cνa4;L� in O4. The
leading contributions to n → ν̄sγ arise from the term
ϵαβγ½uα T

R CdβR�½dγ T
R Cνs;R� in O7 and the term 2½uα T

L CdβL�
½dγ T

R Cνs;R� in O8. Our procedure is again to obtain an
approximate relation between the rates for n → ν̄γ and
for n → ν̄M. In Figs. 4(a) and 4(b), we show diagrams
contributing to the decay n → ν̄M. By the same method as
we used above, we obtain the approximate estimate

ðτ=BÞn→ν̄γ ∼ ð4παemÞ−1
�
Rðν̄MÞ
2

Rðν̄γÞ
2

�
ðτ=BÞn→ν̄M

∼ ð4παemÞ−1
�
1 −

m2
M

m2
n

�
ðτ=BÞn→ν̄M: ð10Þ

We make use of the experimental lower bounds on (τ=B)
for relevant decays n → ν̄M, displayed in Table II.5 In the
rightmost column of Table II, we list our estimates for
the lower bounds on n → ν̄γ obtained by combining the
relation (10) with the experimental lower bounds given in
the middle column. As is again evident from this table, our
approximate lower bounds on ðτ=BÞn→ν̄γ using the exper-
imental limits on n → ν̄π0 and n → ν̄η are stronger than

the bound from a direct experimental search, which is
ðτ=BÞn→ν̄γ > 0.550 × 1033 yr [17].

IV. p → l+l0 +l0 − DECAYS

In this section we calculate estimated lower bounds on the
partial lifetimes of several proton decays of the form
p → lþl0þl0−, where l and l0 denote e or μ, including
both of the cases l ¼ l0 and l ≠ l0. Graphs for the above-
mentioned decays are shown in Fig. 5. As discussed above,
our theoretical framework for this and our other estimates is
a minimal one in which we assume only the baryon-number-
violating physics beyond the Standard Model that gives rise
to Leff . If one were to assume other BSM physics involving
new particles with masses much smaller than the GUT
scale, then other graphs and operators would become
relevant (e.g., [20]). We denote the four-momenta of the
p, lþ, l0−, and l0þ as p, p3, p2, and p1, respectively, and
set q ¼ p1 þ p2 ¼ p − p3. Let us first consider the qq̄
annihilation producing a virtual photon, as indicated in
Figs. 5(a) and 5(b). If the total angular momentum of the
qq̄ system is J ¼ 0, then the matrix element for this
subprocess is proportional to qλ½ūðp2Þγλvðp1Þ� [where
ūðp2Þ and vðp1Þ are Dirac spinors], which vanishes. In
the corresponding terms involving Z exchange, if the angular
momentum J of the qq̄ subsystem is zero, then the matrix
element for the subprocess is proportional to qλ½ūðp2Þγλ
f−ð1=2ÞPL þ sin2 θWgvðp1Þ�, where PL ¼ ð1 − γ5Þ=2. In
this case, the vector part of the neutral current gives zero
contribution and the axial-vector part gives a small term
∝ 2ml0 ½ūðp2Þγ5vðp1Þ�. Thus, the dominant contributions
from these graphs are expected to arise from qq̄ con-
figurations with J ¼ 1. For these J ¼ 1 terms, the

(a) (b)

FIG. 3. Feynman diagrams for n → ν̄γ.

(a) (b)

FIG. 4. Feynman diagrams for n → ν̄M, where M denotes a pseudoscalar or vector meson.

5Since the experiments do not observe the ν̄, these exper-
imental bounds are more general. For example, the lower bound
on the partial lifetime for n → ν̄π0 actually applies to any decay
of the form n → x0π0, where x0 is a neutral, weakly interacting
particle or antiparticle that does not decay in the detector, and
similarly for the other decay modes n → x0M. These subsume the
case where x0 ¼ ν̄ or x0 ¼ ν.
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contributions to the amplitude from the graphs with a virtual
photon are expected to dominate over the contributions from
the graphs with a virtual Z by a factor ∼e2=ðGFm2

pÞ ∼ 103.
The contribution from the virtual photon in the graph of
Fig. 5(c) is similarly dominant over that from the virtual Z.
It is thus natural to use, for comparison, proton decays to
vector mesons, p → eþρ0 and p → eþω. In contrast to the
case with the p → lþγ decays, this comparison connects a
decay to a two-body final state to a decay with a three-body
final state. Because the integral (A1) for the decay into a
three-body final state involves details of Leff in a nontrivial
integration, while the corresponding integral for the decay
into a two-body final state only involves a trivial angular
integration (since the magnitudes of the three-momenta
of the two final-state particles are fixed), it is difficult to
make a precise comparison between the rates for these two
decays. For a rough approximation, we will simply take into
account the differences in phase space for these decays, via
the ratios of the two-body and three-body phase-space
factors. Since the three-body phase-space factor has dimen-
sions of ðmassÞ2 and the mass scale is set by the initial
nucleon mass, we will introduce a dimensionless three-body
phase-space factor for a decay to a given final state f.s.,

denoted R̄ðf:s:Þ
3 , as defined in Eq. (A4) in the Appendix. This

quantity has the value 1=ð28π3Þ if all of the three final-state
particles have zero or negligibly small masses. Expressions

for ð28π3ÞR̄ðf:s:Þ
3 for relevant final states with non-negligible

masses are given in Eqs. (A11)–(A13) in the Appendix.
We are thus led to the estimate

Γp→lþl0þl0− ∼ ð4παemÞ2
�
R̄ðlþl0þl0−Þ
3

RðlþMÞ
2

�
Γp→lþM ð11Þ

or equivalently,

ðτ=BÞp→lþl0þl0− ∼ ð4παemÞ−2
�

RðlþMÞ
2

R̄ðlþl0þl0−Þ
3

�
ðτ=BÞp→lþM:

ð12Þ
Substituting the experimental lower bounds ðτ=BÞp→eþρ0 >
0.720 × 1033 yr and ðτ=BÞp→eþω > 1.60 × 1033 yr [11] in
Eq. (12) and taking account of the ratios of phase-space
factors, we obtain estimated lower bounds on ðτ=BÞp→eþeþe−

of 0.9 × 1037 and 2 × 1037 yr, respectively. These are much
stronger than the lower bound on the partial lifetime for this
decay from a direct experimental search, which is [13]
ðτ=BÞp→eþeþe− > 0.793 × 1033. Substituting the experi-
mental lower bounds ðτ=BÞp→μþρ0 > 0.570 × 1033 yr and
ðτ=BÞp→μþω > 2.80 × 1033 yr [11] in Eq. (12) and comput-
ing the ratios of phase-space factors, we obtain estimated
lower bounds on ðτ=BÞp→μþeþe− of 0.6 × 1037 and
3 × 1037 yr, respectively. We conservatively list these as
ðτ=BÞp→μþeþe− ≳ 1037 yr in Table IV. Again, these are
much stronger than the experimental lower bounds from
direct searches, namely ðτ=BÞp→μþeþe− > 0.529 × 1033 and
ðτ=BÞp→μþμþμ− > 0.675 × 1033 [13]. These estimated lower
bounds on partial lifetimes are summarized in Table IV, in
comparison with the current lower bounds from direct
experimental searches.
With regard to these and other nucleon decay modes for

which our estimates yield lower bounds on the partial
lifetimes that are much greater than existing bounds from
direct experimental searches, we stress that this does not
mean that these decay modes are not worth searching for
in further experiments. If, for example, in the future, the
decays p → eþπ0 and p → eþeþe− are both observed and
the value of ðτ=BÞp→eþeþe− is significantly lower than a
range estimated from Eq. (12), this would be doubly
interesting, as evidence not only of baryon-number viola-
tion incorporated in Leff , but also of additional relevant
physics beyond the Standard Model. This comment also
applies for the other nucleon decay channels to be dis-
cussed below, for which our lower bounds on partial
lifetimes are much higher than the lower bounds from
direct experimental searches.

V. n → ν̄l+l− AND n → ν̄l+l0 − DECAYS

In this section we analyze the neutron decays
n → ν̄lþl− and n → ν̄lþl0−, where l;l0 ¼ e, μ.
Feynman diagrams for n → ν̄lþl− decays are shown in
Fig. 6. In the graphs in Figs. 6(a) and 6(b), the ν̄ could be an
EW-doublet or an EW-singlet antineutrino, while in the
graphs of Figs. 6(c) and 6(d), the ν̄ ¼ ν̄l is an EW-doublet
antineutrino. Since an experiment would not observe the ν̄,

(a) (b) (c)

FIG. 5. Feynman diagrams for p → lþl0þl0− with l;l0 ¼ e, μ.
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it would not distinguish between these possibilities. In the
graphs of Figs. 6(a)–6(c), the charged (anti)leptons are
of the same generation, while in Fig. 6(d), l0− may be
of a different generation than lþ. As discussed before,
the contributions of the diagrams with a virtual Z in
Figs. 6(a)–6(c) are very small compared with the contri-
butions of the diagrams of Figs. 6(a) and 6(b) with a virtual
photon. This is also true of the graph with a virtual W in
Fig. 6(d). Therefore, by arguments similar to those used for
the analysis of p → lþl0þl0− decays, we estimate

ðτ=BÞn→ν̄lþl− ∼ ð4παemÞ−2
�

Rðν̄MÞ
2

R̄ðν̄lþl0−Þ
3

�
ðτ=BÞn→ν̄M: ð13Þ

For the same reasons discussed in connection with the p →
lþl0þl0− decays, when applying the relation (13), we will
use n → ν̄M decays with M being a vector meson, ρ0 or ω.
As an illustrative example, we consider the decay
n → ν̄eþe−. Since m2

e=m2
n ¼ 3.0 × 10−7 is negligibly

small, it follows that, to very good accuracy, R̄3 ¼ R̄3;0

[see Eq. (A10)]. Therefore, Eq. (13) takes the explicit form

ðτ=BÞn→ν̄eþe− ∼ ð4παemÞ−2
�
Rðν̄MÞ
2

R̄ðν̄eþe−Þ
3

�
ðτ=BÞn→ν̄M

∼ ð4παemÞ−2
�
ð25π2Þ

�
1 −

m2
M

m2
n

��
ðτ=BÞn→ν̄M:

ð14Þ

Of the two n → ν̄M decay channels, the experimental lower
bound on the channel with M ¼ ω is the stronger one,
so we focus on it. Substituting the lower bound
ðτ=BÞn→ν̄ω > 1.08 × 1032 from Ref. [13] in Eq. (13) and
evaluating Eq. (14), we obtain the estimated lower bound
ðτ=BÞn→ν̄eþe− ≳ 1.2 × 1036 yr. This is much stronger

than the lower bound from a direct search, namely
ðτ=BÞn→ν̄eþe− > 2.57 × 1032 yr.
Next, again using the same experimental lower bound on

ðτ=BÞn→ν̄ω and computing the ratio of phase-space factors
using Eqs. (A5) and (A13) in the Appendix, we obtain
the estimated lower bound ðτ=BÞn→ν̄μþμ− ≳ 1.6 × 1036 yr.
This is a much more stringent lower bound than the one
from a direct experimental search, which is ðτ=BÞn→ν̄μþμ− >
0.79 × 1032 yr.
Finally, we discuss the decay n → ν̄e�μ∓. Only the

Feynman diagram of Fig. 6(d) contributes to this decay,
so we obtain the estimate

ðτ=BÞn→ν̄e�μ∓ ∼ ðGFm2
nÞ−2

�
Rðν̄MÞ
2

R̄ðν̄e�μ∓Þ
3

�
ðτ=BÞn→ν̄M: ð15Þ

Using the experimental lower bound on ðτ=BÞn→ν̄ω again,
we obtain the estimate ðτ=BÞn→ν̄e�μ∓ ≳ 1 × 1044 yr. This
is much stronger than the bound from the direct search
for a decay of this type, namely ðτ=BÞn→ν̄μþe− >0.83×
1032 yr [13].

VI. p → l+ νν̄

In this section we derive an estimated bound for
several different types of proton decays which are exper-
imentally indistinguishable, namely (i) p → lþνl0 ν̄l0 ;
(ii) p → lþνlν̄l0 ; and (iii) p → lþνlν̄s. We will refer
collectively to these as p → lþνν̄. Experimentally, these
are all of the form p → lþ þmissing, where “missing”
denotes two neutral weakly interacting particles, antipar-
ticles, or a particle-antiparticle pair, which do not decay in
the detector. Experimental papers often use the symbolic
notation p → lþνν for all of these decays. Graphs that
contribute to the decays (i)–(iii) are shown in Fig. 7. The

(a) (b) (c)

(d)

FIG. 6. Feynman diagrams for n → ν̄lþl− and n → ν̄lþl0− with l;l0 ¼ e, μ.
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graphs in Figs. 7(a)–7(c) contain an internal Z line and
contribute to decays of type (i) and the subset of the decays
of type (ii) in which νl ¼ νl0 . The graphs in Figs. 7(d) and
7(e) contain an internal W line and contribute to decays of
the form (ii) and (iii), depending on whether the ν̄ emitted
from the effective four-fermion BNV vertex is an EW-
doublet antineutrino or an EW-singlet antineutrino.
Within the context of our theoretical framework, our

relation for decays of this type is

ðτ=BÞp→lþνν̄ ∼ ðGFm2
pÞ−2

�
RðlþMÞ
2

R̄ðlþνν̄Þ
3

�
ðτ=BÞp→lþM: ð16Þ

Using the experimental lower bounds on ðτ=BÞp→lþω given
in Table I, we obtain the estimate ðτ=BÞp→lþνν̄ ≳ 1045 yr
for lþ ¼ eþ; μþ. This is much stronger than the lower
bounds from direct searches, which are ðτ=BÞp→eþνν̄ >
1.7 × 1032 yr and ðτ=BÞp→μþνν̄ > 2.2 × 1032 yr [18].

VII. n → ν̄ ν̄ ν

Finally, we consider the decays of the generic form
n → ν̄ ν̄ ν. Graphs that contribute to these decays are shown
in Fig. 8. In the processes depicted in Figs. 8(a) and 8(b),
the ν̄ that emanates from the BNV four-fermion vertex can
be either an EW-doublet antineutrino (of any flavor) or an
EW-singlet antineutrino, while the νν̄ pair produced by the
virtual Z are EW-doublet (anti)neutrinos. In Fig. 8(c), the
two antineutrinos and the neutrino are all of EW-doublet
type. We estimate

ðτ=BÞn→ν̄ ν̄ ν ∼ ðGFm2
nÞ−2

�
ð25π2Þ

�
1 −

m2
M

m2
n

��
ðτ=BÞn→ν̄M:

ð17Þ
Using the experimental lower limit ðτ=BÞn→ν̄ω > 1.08 ×

1032 yr [13], as listed in Table I, we obtain the estimate
ðτ=BÞn→ν̄νν̄ ≳ 1044 yr. This is much stronger than the
lower bound from a direct experimental search, namely

(a) (b) (c)

(d) (e)

FIG. 7. Feynman diagrams for p → lþνν̄ with lþ ¼ eþ; μþ.

(a) (b) (c)

FIG. 8. Feynman diagrams for n → ν̄ ν̄ ν decay.
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ðτ=BÞn→inv: > 0.58 × 1030 yr [19]. This experimental
lower bound was set by the KamLAND experiment from
a search for gamma rays from the deexcitation of the 11C
nucleus that would result from the n → inv: decay of a
neutron in a 12C atom in its liquid scintillator detector.

VIII. OTHER DECAY MODES

Our method can also be applied to other nucleon decay
modes, such as p → lþγγ and n → ν̄γγ, where here the γγ
part of the final state are “continuum” photons, i.e., not
photons that arise from a cascade decay such as p → lþπ0

followed by π0 → γγ or p → lþη followed by η → γγ.
Graphs for these decays with continuum diphotons are
obtained from those for p → lþγ in Fig. 1 and for n → ν̄γ
in Fig. 3 and hence are not shown separately. Using the
same methods as before, we obtain

ðτ=BÞp→lþγγ ∼ ð4παemÞ−2
�
RðlþMÞ
2

R̄ðlþγγÞ
3

�
ðτ=BÞp→lþM ð18Þ

and

ðτ=BÞn→ν̄γγ ∼ ð4παemÞ−2
�
Rðν̄MÞ
2

R̄ðν̄γγÞ
3

�
ðτ=BÞn→ν̄M

∼
�
ð25π2Þ

�
1 −

m2
M

m2
n

��
ðτ=BÞn→ν̄M: ð19Þ

Using the experimental lower bounds on p → eþM and
p → μþM listed for M ¼ ρ0;ω in Table I, the more
stringent of which are for p → lþω, we obtain the
estimates ðτ=BÞp→eþγγ ≳ 2 × 1037 yr and ðτ=BÞp→μþγγ ≳
3 × 1037 yr. An experimental lower bound from a direct
search is p → eþγγ decay mode, namely ðτ=BÞp→eþγγ >
1.0 × 1032 yr [16]. Our estimated lower bound is much
stronger than this direct limit. We are not aware of any
published experimental lower bound on ðτ=BÞp→μþγγ.
By similar methods, we obtain the estimated lower

bound ðτ=BÞn→ν̄γγ ≳ 1036 yr. An experimental lower bound
is ðτ=BÞn→ν̄γγ > 2.39 × 1032 yr from the IMB3 experiment
[13]. This was an inclusive search for any events of this
type, which also allowed for the possibility that the
invariant diphoton mass was equal to mπ0 or mη to within
the detector resolution [21]. Our estimated lower bound is
again much stronger than this direct limit. These results are
summarized in Table IV. One can also apply these tech-
niques to relate other baryon-violating processes to each
other. We have done this to derive improved bounds on
certain ΔB ¼ −2 dinucleon decays. These results are
reported elsewhere.

IX. CONCLUSIONS

In this paper we have calculated estimated lower bounds
on the partial lifetimes for several nucleon decays, includ-
ing p → lþl0þl0−, n → ν̄lþl0−, p → lþνν̄, and
n → ν̄ ν̄ ν, where l and l0 denote e or μ. We assume a
minimal theoretical framework in which the only physics
beyond the SM is that which produces the four-fermion
operators in the baryon-number-violating effective
Lagrangian responsible for these nucleon decays. Thus,
if nucleon decays were to be observed with lower partial
lifetimes than the bounds derived here, this would be of
interest not only as evidence of baryon-number violation,
but also as evidence of BNV mass scales lower than the
GUT-type scales assumed in the minimal framework used
here. Our method relies on relating the rates for these
decay modes to the rates for decay modes of the form
p → lþM and n → ν̄M, where M is a pseudoscalar or
vector meson, and then using the experimental lower
bounds on these latter decays. Although our estimates are
rough, our lower bounds are substantially stronger than
lower bounds on the partial lifetimes for these decays
from direct experimental searches. We also present
corresponding estimated lower bounds on partial lifetimes
for the radiative decays p → lþγ, n → ν̄γ, p → lþγγ,
and n → ν̄γγ. There are strong motivations for pushing
the search for nucleon decay to greater sensitivity in many
channels. It is hoped that this search will be carried out
with current data and with future nucleon decay
experiments.
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APPENDIX: PHASE-SPACE FORMULAS

In general, the decay rate of a parent particleN with four-
momentum p satisfying p2 ¼ m2

N to a final state (f.s.)
consisting of n particles with four-momenta pi, 1 ≤ i ≤ n,
is given by

ΓN→f:s: ¼
S

2mN

Z
dRnjAN→f:s:j2; ðA1Þ

where a sum over polarizations of final-state particles
and an average over the polarizations of the parent particle
are understood; AN→f:s: denotes the amplitude for the
decay; S is a symmetry factor to take account of possible
identical particles in the final state; and the integration over
the n-body final-state phase space is given by
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Z
dRn ¼

1

ð2πÞ3n−4
Z �Yn

i¼1

d3pi

2Ei

�
δ4
�
p −

�Xn
i¼1

pi

��
:

ðA2Þ

For the nucleon decays of interest here we have mN with
N ¼ p or N ¼ n, and we denote p2

i ¼ m2
i .

It is useful to consider the phase-space integration by
itself, defining an n-body phase-space factor Rn as

Rn ¼
Z

dRn: ðA3Þ

For our applications, we will sometimes want to explicitly
indicate the final-state particles, and for this purpose, we

will use the notation Rðf:s:Þ
n . For example, for p → eþπ0,

this phase-space factor is written as Rðeþπ0Þ
2 , and so forth for

other decays.
The quantity Rn has mass dimension 2ðn − 2Þ, so we

define a dimensionless phase-space factor

R̄n ≡ ðmNÞ−2ðn−2ÞRn: ðA4Þ
In general,

R2 ¼
1

8π
½λð1; δ1; δ2Þ�1=2; ðA5Þ

where

λðx; y; zÞ ¼ x2 þ y2 þ z2 − 2ðxyþ yzþ zxÞ ðA6Þ

and

δi ¼
�
mi

mN

�
2

: ðA7Þ

In the case where m2
i =m

2
N ≪ 1 for all i, we denote the

resultant Rn as Rn;0. A general formula is

R̄n;0 ¼
1

24n−5π2n−3ΓðnÞΓðn − 1Þ for n ≥ 2; ðA8Þ

where ΓðnÞ is the Euler gamma function. In particular, for
n ¼ 2 and n ¼ 3,

R2;0 ¼ R̄2;0 ¼
1

23π
ðA9Þ

and

R̄3;0 ¼
1

28π3
: ðA10Þ

For final states of nucleon decays in which an e� occurs,
its mass satisfies the above condition of being negligibly
small with respect tomN . For leptonic final states involving
one or two μ� and a third particle of zero or negligibly
small mass, we will make use of two formulas for R̄3.
These follow from the general formula for the three-body
phase space, R̄3 with one massless final-state particle,
which is [22]

ð28π3ÞR̄3ðm1; m2; 0Þ ¼ ð1þ δ1 þ δ2Þ½λð1; δ1; δ2Þ�1=2 þ 2jδ1 − δ2j ln
�
δ1 þ δ2 − ðδ1 − δ2Þ2 þ jδ1 − δ2j½λð1; δ1; δ2Þ�1=2

2
ffiffiffiffiffiffiffiffiffi
δ1δ2

p
�

− 2ðδ1 þ δ2 − 2δ1δ2Þ ln
�
1 − δ1 − δ2 þ ½λð1; δ1; δ2Þ�1=2

2
ffiffiffiffiffiffiffiffiffi
δ1δ2

p
�
: ðA11Þ

Note that this is symmetric under the interchangem1 ↔ m2

and thus δ1 ↔ δ2.
The first special case of (A11) that we will need is for

m1 ¼ m, with m2 and m3 zero or negligibly small, so
δ1 ¼ ðm=mNÞ2 ≡ δ. This case applies for decays such as
p → μþeþe− and n → ν̄μ�e∓. For this case we have

ð28π3ÞR̄3ðm; 0; 0Þ ¼ 1 − δ2 − 2δ ln

�
1

δ

�
: ðA12Þ

Numerically, the right-hand side of Eq. (A12) has the value
0.889 for m ¼ mμ with parent particle p or n. The second
special case of (A11) that we will need is for
m1 ¼ m2 ¼ m, so δ1 ¼ δ2 ¼ ðm=mNÞ2 ≡ δ. This case
applies for decays such as p → eþμþμ−, n → ν̄μþμ−.
We have

ð28π3ÞR̄3ðm;m; 0Þ

¼ ð1þ 2δÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4δ

p
− 4δð1 − δÞ ln

�
1 − 2δþ ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 4δ
p

2δ

�
:

ðA13Þ

Numerically, the right-hand side of Eq. (A13) has the value
0.782 for m ¼ mμ with parent particle p or n.
Since the form of Leff in Eq. (7) depends on the unknown

detailsof thebaryon-number-violatingBSMphysics,aknowl-
edge of this BSM physics would be necessary to calculate
the full convolution of jAj2 weighted with the three-body
phase space in the n ¼ 3 case of Eq. (A1). This may be
contrasted with the case in μ decay to massive neutrinos,
where such calculations have been performed for both
V − A charged currents and general Lorentz structure [23].
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