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We study baryon-number-violating processes, including proton and bound neutron decays and n — i
oscillations, in a left-right-symmetric (LRS) model in which quarks and leptons have localized wave
functions in extra dimensions. In this model we show that, while one can easily suppress baryon-number-
violating nucleon decays well below experimental bounds, this does not suppress n — 7 transitions, which
may occur at levels comparable to current limits. This is qualitatively similar to what was found in an extra-
dimensional model with a Standard-Model low-energy effective field theory (SMEFT). We show that
experimental data imply a lower limit on the mass scale M,; characterizing the physics responsible for
n — i oscillations in the LRS model that is significantly higher than in the extra-dimensional model using a
SMEFT and explain the reason for this. Our results provide further motivation for new experiments to

search for n — i oscillations.
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I. INTRODUCTION

The Standard Model (SM) conserves baryon number,
B [1,2], but baryon-number violation (BNV) is expected to
occur in nature, since this is one of the requisite conditions
for producing the observed baryon-number asymmetry in
the universe [3]. Indeed, many ultraviolet extensions of the
Standard Model, such as grand unified theories (GUTs), do
feature baryon-number violation (as well as the violation of
total lepton number, L). In addition to the AB = —1 decays
of protons and bound neutrons, another type of baryon-
number violation is neutron-antineutron oscillations, with
|AB| = 2. These n — 7 oscillations could explain baryo-
genesis [4]. Some early studies of n — 71 oscillations include
[5-11]. The same physics beyond the Standard Model that
gives rise to n —# oscillations also leads to matter
instability via AB = —2 decays of nn and np dinucleon
states in nuclei. Several generations of experiments have
searched for baryon-number-violating decays of protons
and bound neutrons (henceforth denoted simply as nucleon
decays) and have set limits on such decays [12]. There have
also been searches for n — 7 oscillations using neutron
beams from reactors [13] and for matter instability and
various dinucleon decay modes using large underground
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detectors [12]. The best current limit on matter instability is
from the Super-Kamiokande (SK) experiment [14].

The operators in the low-energy effective Hamiltonian
(in four spacetime dimensions) for proton decay are four-
fermion operators with Maxwellian (i.e., free-field) mass
dimension 6 and hence coefficients of mass dimension —2,

whereas the operators in ’Hgf" ) are six-quark operators, with
coefficients of dimension —5. Hence, if there were only a
single mass scale characterizing BNV physics, then
nucleon decays would generically be much more important
as a manifestation of baryon-number violation than n — i
oscillations and the corresponding dinucleon decays.
However, the opposite order of importance of BNV
processes may actually describe nature. In Ref. [6],
Mohapatra and Marshak presented a model using a left-
right symmetric gauge group (in four spacetime dimen-
sions) in which n — 7 oscillations occur, while proton
decay does not. In Ref. [15], Nussinov and Shrock
presented an extra-dimensional model in which proton
decay is suppressed well beyond observable levels while
n — i oscillations occur at levels comparable to experi-
mental limits. In the model used in [15], quarks and leptons
have strongly localized wave function profiles in the extra
dimensions [16,17]. In the models of both Refs. [6,15], it is
the n — 71 oscillations and the corresponding nn and np
dinucleon decays to multimeson final states that are the
main manifestations of baryon-number violation, rather
than individual BNV nucleon decays. Further examples of
models in four spacetime dimensions with baryon-number
violation but no proton decay were later given in [18].
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Recently, in [19] we studied a number of related BNV
nucleon and dinucleon decays to various final states in the
extra-dimensional model used in [15].

In this paper we investigate nucleon decays and n — 7
oscillations in an extra-dimensional model with the left-
right symmetric (LRS) gauge group
Girs =SU(3), ® SU(2), ® SUR), ® U(1)z_,. (1.1)
Our present work complements the study in Ref. [6], which
was set in four spacetime dimensions, and also the previous
studies [15] and [19], which used a low-energy effective
field theory with the SM gauge group, Ggy = SU(3), ®
SU(2), ® U(1)y rather than G| gs. Anticipating our results
in advance, we show that in the extra-dimensional LRS
model, it is easy to suppress nucleon decays well below
observable levels, but this does not suppress n — i oscil-
lations, which can occur at levels comparable with current
experimental limits. This is qualitatively similar to the
conclusions reached in [15]. Here we find an interesting
feature of the extra-dimensional LRS model that makes
n — 71 oscillations even less suppressed than in the model of
[15] with its Standard-Model low-energy effective field
theory (SMEFT). The reason for this is that the integration
of six-quark operators over the extra dimensions always led
to exponential suppression factors in the model of [15],
whereas, in contrast, we find that in the LRS model, there
are some operators for which this integration does not lead
to exponential suppression factors.

Our work here also complements our recent studies in
[20], where we derived improved upper bounds on the rates
for several nucleon-to-trilepton decay modes and in [21],
where we presented improved upper bounds on the rates for
several dinucleon-to-dilepton decay channels (see also
[22]). References [20,21] were model-independent phe-
nomenological analyses, whereas our present paper is a
study within the context of a specific type of extra-
dimensional model. Recent reviews of n — i oscillations
include [23,24].

This paper is organized as follows. In Sec. II we briefly
review the properties of the left-right symmetric model that
will be needed for our analysis. In Sec. III we discuss the
extra-dimensional model and low-energy effective field
theory approach that serve as the theoretical framework for
our calculations. In Sec. IV we extract constraints on the
fermion wave functions in the model from limits on BNV
nucleon decay modes. Section V contains our analysis of
n —n oscillations. Our conclusions are presented in
Section VI.

II. LEFT-RIGHT SYMMETRIC MODEL

In this section we recall some basic properties of the left-
right symmetric model [6,25-27] that will be relevant here,
and define our notation for the fermion and Higgs fields in
the theory. The Lagrangian is invariant under the gauge

group Girs in Eq. (1.1), with corresponding SU(2),,
SU(2)g, and U(1),z_, gauge fields ALW A'R,M and U,,
and respective gauge couplings g;, g, and gy. The quarks
and leptons of each generation transform as

O (3.2,1)1/315

Or: (3,1,2)y5x (2.1)

and

Lept (1,2,1) ., Legt (1,1,2) 45 (22)
where the numbers in the parentheses are the dimension-
alities of the representations under the three non-Abelian
factor groups in Gy gg and the numbers in the subscripts are
the values of B — L. (No confusion should result from the
use of the symbol L for both “lepton” and “left”’; the
context will make clear which meaning is intended.) For
our purposes, we shall only need the first-generation quark

fields, which are, explicitly,

Qa ( u(l ) Qa < u(l )
L\ go L’ R\ ga R’
where Greek indices a, f3, etc. are SU(3),. color indices. The
explicit lepton fields are

124 12%
L,; = , L,pr= , 2.4
a (D) () e

where ¢ = e, u, . We denote SU(2), and SU(2), gauge
indices as Roman indices i, j... and primed Roman indices
i',j..., respectively, so, e.g., Q% =u¢ for i =1 and

v = d% for i’ = 2. The electric charge is given by the
elegant expression Q,,, = T3; + T3 + (B — L)/2, where
T, and Ty denote the SU(2) , and SU(2), weak isospin
generators.

The Higgs sector contains a Higgs field ® transforming
as (1,2,2),, which can be written as ®"/', or equivalently, in

matrix form, as
@_(w M)
¢y #

The Higgs sector also contains two Higgs fields, commonly
denoted A; and Ag, which transform as (1,3,1), and
(1,1, 3),, respectively. Since the adjoint representation of
SU(2) is equivalent to the symmetric rank-2 tensor repre-
sentation, these may be written as (A;)Y = (A,)/ and
(AR)"7 = (Ag)’" or, alternatively, as (traceless) matrices:

(2.3)

(2.5)

4,

(®N5 Ay

A? —A;/\/i>’ y=L,R. (2.6)
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The minimization of the Higgs potential to produce vacuum
expectation values (VEVs) has been analyzed in a number
of studies [27-32]. With appropriate choices of parameters
in the Higgs potential, this minimization yields the follow-
ing vacuum expectation values of the Higgs fields:

@0=5 (% o) )
(A)o = \2 (ULS%,A 8) (2.8)

and
(Ag)o = % (i 8). (2.9)

(Here, the choices of which VEVs are real are made with
the requisite rephasings.) The spontaneous symmetry
breaking of the Girg gauge symmetry occurs in several
stages. At the highest-mass stage, Ar picks up a VEV,
thereby breaking the SU(2), ® U(1)z_, subgroup of Gy gs
to U(1)y, where Y denotes the weak hypercharge, i.e.,

SU2)r ® U(1)_, = U(1),. (2.10)

This gives the Wj a large mass, which, to leading order, is
My, = grVR/ /2. The second stage of symmetry breaking,

SU2), ® U(1)y = U(1),,, (2.11)

occurs at a lower scale and results from the VEVs of the ®
field. This gives a mass my, = g, vgw/2, where vgy =

VK3 + k3 = 246 GeV is the electroweak symmetry break-
ing (EWSB) scale. The neutral gauge fields As;, Asg, and
U mix to form the photon, the Z, and a much more massive
Z'. Since the VEV v, of the SU(2), Higgs triplet A; would
modify the successful tree-level relation p =1, where
p = my,/(m%cos® Oy) = 1, one takes v, < ki ,. It is also
possible to consider dynamical breaking of the LRS gauge
symmetry (e.g., [33,34]), but the conventional scenario
with Higgs fields will be assumed here.

This LRS model has several interesting features as a UV
extension of the Standard Model. The relation for Q,,,
entails charge quantization. Furthermore, one may impose
left-right symmetry at some high ultraviolet (UV) scale, so
the running gauge couplings for SU(2), and SU(2), are
equal, i.e., g, = gr at this scale, thereby reducing the
number of parameters in the model. The left-right sym-
metry in the Lagrangian is of conceptual interest since it
means that parity violation is due to spontaneous symmetry
breaking, rather than being intrinsic, as in the Standard
Model. The nonobservation of any right-handed charged
currents in weak decays and the lower limits (of order

several TeV) from the Large Hadron Collider on a W and
Z' can be accommodated by making vy sufficiently large.
Since the Ap has B — L charge of 2, its VEV, wvg,
breaks B — L by two units. The gauge group Gygrg has a
natural UV extension to a theory with gauge group
G =SU(4)ps ® SU(2), ® SU(2)g, where the Pati-
Salam (PS) gauge group SU(4) ¢ [35] contains SU(3), ®
U(1)z_; as amaximal subgroup. In turn, G, is a maximal
subgroup of the SO(10) GUT group, since SO(10) 2
SO(6) ® SO(4) ~ SU(4) ® SU(2) ® SU(2). There are
also supersymmetric extensions of the LRS model
(e.g., [36]). However, since the LHC has not yet observed
evidence of supersymmetric partners, and since we use a
low-energy effective field theory framework for our analy-
sis, the nonsupersymmetric version of the LRS model will
be sufficient for our study.

III. EXTRA-DIMENSIONAL FRAMEWORK

In this section we describe the extra-dimensional model
that we use. Some aspects of this discussion are similar to
those of Refs. [15,19], but to make our presentation self-
contained, we reiterate these here. The particular type of
extra-dimensional model that was used for the study of
n — i oscillations in [15,19] has the appeal that it can
naturally explain the large hierarchy in quark and lepton
masses by requisite properties of fermion wave functions in
the extra dimensions, without the need for a large range of
dimensionless Yukawa couplings in the fundamental
theory [16,17].

A remark is in order concerning a difference in our use of
the extra-dimensional model here and the use in Refs. [15]
and [19]. Because the scale of baryon-number violation
responsible for n — 71 oscillations is larger than the electro-
weak scale, Refs. [15] and [19] used a low-energy effective
field theory analysis with six-quark operators that are
invariant under the Standard-Model gauge group, Gy,
i.e., an extra-dimension SMEFT. As noted above, in the
Standard Model, B is a global symmetry, and the baryon-
number-violating physics that gives rise to n — 71 oscilla-
tions is encoded in the six-quark operators and their
coefficients. In contrast, in the LRS model, B and L are
both gauged, as the combination B — L in the U(1),_,
factor group of Gpgrs. This gauge symmetry is sponta-
neously broken by the VEV of the Ay, field at the high scale
vg. As mentioned above, since Ay has charge 2 under
U(1)g_,, this VEV wvp breaks U(1),_, by two units. For a
process that has AL = 0, this means that it breaks B as
|AB| = 2. It follows that the mass scale, M,;, character-
izing the physics responsible for n — i1 oscillations is vg:

M,; = vg. (31)
We shall analyze n — 7 oscillations in this theory by writing
down the relevant Gj gg-invariant operators, which are six-
quark operators multiplied by (Ag)’, and then focusing on
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the resultant six-quark operators resulting from the VEV
of (AR)T.

Proceeding with the description of the extra-dimensional
model, the usual spacetime coordinates are denoted as x,,
with v = 0, 1, 2, 3, and the n extra coordinates as y; with
1 < 1 < n; for definiteness, the latter are assumed to be
compact. The fermion and boson fields are taken to have a
factorized form. For fermions, this form is

P(x,y) = yw(x)x(y), (3.2)

where here W(x,y) is a generic symbol standing for
0r(x,¥), Qr(x.y), Lgr(x,y) or Lyg(x,y). In the extra
dimensions these fields are restricted to the interval 0 <
v, < L for all 2. We define an energy corresponding to the
inverse of the compactification scale as A; = 1/L.

Starting from an effective Lagrangian in the
d = (4 + n)-dimensional spacetime, one obtains the result-
ant low-energy effective Lagrangian in four dimensions by
integrating over the extra n dimensions. We use a low-
energy effective field theory (EFT) approach that entails an
ultraviolet cutoff, which we denote as M,. In accordance
with this low-energy EFT approach, as in Ref. [17], we
focus on the lowest Kaluza-Klein modes of the boson
(gauge and Higgs) fields and take these to have flat profiles
in the extra dimensions. Recall that the Maxwellian mass
dimension of a boson field in a d = 4 + n dimensional
spacetime is d, = (d —2)/2 =1+ (n/2). Therefore, in
order to maintain canonical normalization of boson fields in
four spacetime dimensions, a Higgs field in 4 + n dimen-
sions with a flat profile in the extra dimensions, generically
denoted ¢4 ,,, has the form

Gain(x,y) = (AL)"Pp(x) = L2¢(x).  (3.3)

It is readily seen that the integration of the quadratic terms
in the Higgs field over the n extra dimensions yields the
correct normalization for the resultant quadratic terms in
the Lagrangian in four spacetime dimensions:

A " VTR pan] = LYL TR D)) = Tr(g7 ).
(3.4)

The coefficients of higher-power products of Higgs fields
can be expressed using similar methods. For example, the
coefficient 4, 4, of the quartic term [Tr(®(x, y) ®(x, y))]?
has dimensions d; , =4 —d = —n, and hence we set
Main = N["A; = L"A; so that the integration over the
extra dimensions yields the standard quartic term in the
Lagrangian:

Mraen / " T @, y) (. y)2

= (L") (L") (L") Tr(D(x) '@ (x))]

= [Tr(®(x) @ (x))]. (3.5)
and similarly with other terms in the Higgs potential.
Corresponding statements apply for the covariant derivative
terms. The VEV of the higher-dimensional Higgs field
(AR)4y, is thus
((AR)asn)o = (AL)"Pvg = L™ vp. (3.6)
Since the Higgs fields are taken to have flat profiles in the
extra dimensions as in [17] and since we will only need to
make use of their VEVs for our purposes, we may simply
replace the various Higgs fields by these VEVs in the four-
spacetime-dimensional Lagrangian and deal only with the
dependence of the fermion fields on the y coordinates. This
simplified procedure will be followed henceforth.
The localization of the wave function of a fermion f in
the extra dimensions has the form [16,17]
1) = A=yl (3.7)
where A is a normalization factor and y, € R" denotes the
position vector of this fermion in the extra dimensions, with
components y; = (ysy....,yr,) and with the standard
Euclidean norm of a vector in R”, namely |/y/||=
oo, yj%’/l)l/z. For n =1 or n = 2, this fermion localiza-
tion can result from appropriate coupling to a scalar
localizer field with a kink or vortex solution, respectively
[37-43]. Corrections due to Coulombic gauge interactions
between fermions have been studied in [44]. The normali-
zation factor A is determined by the condition that,
after integration over the n higher dimensions, the four-
dimensional fermion kinetic term has its canonical nor-
malization. This yields the result

n/4
A= % /,u”/z.
a3

We define a distance inverse to the localization measure y
as L, = 1/u. The fermion wave functions are assumed to
be strongly localized, with half-width L, < L at various
points in the higher-dimensional space. We define
§=L/L, =p/A.. As in the earlier works [15,19], the
choice £~ 30 is made for sufficient separation of the
various fermion wave functions while still fitting well
within the size L of the compactified extra dimensions. The
UV cutoff M, is taken to be much larger than any mass
scale in the model, to ensure the self-consistency of the
low-energy effective field theory analysis. The choice
A7 Z 100 TeV is consistent with bounds on extra dimen-
sions from precision electroweak constraints and collider

(3.8)
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searches [12] and produces adequate suppression of flavor-
changing neutral-current processes [45] (see also [46,47]).
With & = 30, this yields g ~ 3 x 10° TeV. (The models
considered here with SM fields propagating in the large
extra dimensions are to be contrasted with models in
which only the gravitons propagate in these dimensions
(e.g., [48-51]) and models with noncompact extra dimen-
sions and a warped metric [52,53].)

For integrals of products of fermion fields, although the
range of integration over each of the n coordinates of a
vector y is from 0 to L, the strong localization of each
fermion field in the Gaussian form (3.7) means that, to a
very good approximation, the restriction of the fermion
wave functions to the form (3.7), the range of integration

can be extended to the interval (—oo0,00): [Fd"y —
ff"oo d"y. We define the (dimensionless) vector
n=uy. (3.9)

We next discuss the Yukawa terms and resultant mass
terms for quarks in this extra-dimensional LRS model.
These are

Ly = Z[Qa (V8@ + B ®) 0y 4] + Hec.,
a,b=1

(3.10)

1
V2

|:[1_4L(y(1?’<1 + hg?)Kzem“’)”R] +

Note that although one may impose left-right symmetry in
the deep UV, this symmetry is broken at the scale vg, so at
this EWSB scale, 7, is expected to be different from 7, .
In accordance with the original motivation for this type of
extra-dimensional model, namely that the generational
hierarchy in the quark and charged lepton masses is not
due primarily to a hierarchy in the dimensionless Yukawa
couplings, but instead to the different positions of the wave
function centers in the extra dimensions, one may take

W0 ~0(1) and h\? ~ O(1). Then

(q) (4) .. ,i0 1/2
yi1 Ky + hyy ke
R e

and

—i ()
b’g({)’ﬁe o hij K1|>} 172
— = (2In . (3.15
||’7QL nQRH |: < \/§ ., ( )

For given k; and «,, the two Yukawa couplings y(lql) and

hg?, and the phase factor e can be chosen to satisfy these

[, (7D kpe % 4 1Dy )] | e

where a, b are generation indices and ® = 7,®*z,, and

here yi‘f} and hgqb) are Yukawa couplings. Inserting the VEV
of @ from Eq. (2.7) and performing the integration, over the
extra dimensions, of the quark bilinears gives the mass
terms

3

1 .
NG S [0, (69 k1 + h kre %0 )y gleSroer
a,b=1
’4;
7 Z K e 19®+h( )Kl)db,R]e_S“Q-“”—i—H.c.,
,b=1
(3.11)
where
! 2
Sy0ar = 5IM0,, =10, |I* (3.12)

For our study of n — 71 oscillations in this model, we will
only need to deal with the first-generation quark fields,
0,1 and Q; . Consequently, we will omit the generation
indices on these fields, with the understanding that they
are first-generation quarks: Q; = (%), and Qg = ().
Neglecting small Cabibbo-Kobayashi-Maskawa mixings,
the relevant quark mass terms are then

(1/2)lIng, =noeI* 1 H.c. (3.13)

relations. Taking v\’ ~ O(1) and 2!? ~ O(1) as above, and
using the values of the running quark masses m, and m, at
the EWSB scale from Ref. [54], one can then compute a
value of ||y, — 1o, that satisfies Eqs. (3.14) and (3.15).
For our purposes, we will take the value

lno, —no,ll ~4.7. (3.16)

For our analysis of baryon-number-violating processes,
let us consider a generic operator product of fermion fields
in the four-dimensional Lagrangian consisting of k fermion
fields multiplied by a coefficient ¢, ;, which we denote as
O, We denote the corresponding operator in the

= (4 + n)-dimensional space as O, ;(x,y). The coeffi-
cient of this operator, k,;, can be written in a form that
exhibits its mass dimension explicitly, namely

’?rk
Ky = - D 2—d—n (317)
r (MBNV)k(3+ )/2—4

where k&, is dimensionless and Mgyy is a relevant mass
scale for the BNV process (nucleon decay or n—i
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oscillations). We denote the integral over the extra dimen-
sions of this fermion operator product as I,;. Using
Eq. (A2) of Ref. [19], we have I,; = bye~5+, where

T\ /2
b, = Ak -n(Z
k H <k>

— [2k/4ﬂ—(k—2)/4k—I/Zﬂ(k—Z)/Z]n' (318)
Then, as in [19],
il = Kk ( U >(k—2)n/2
' T (M) BR82 \ My
2k/4 n
X (”(](_2)/4161/2> e_S’*k. (319)

For cases where the number k is obvious, we will some-
times suppress this subscript in the notation.

IV. CONSTRAINTS FROM LIMITS ON BARYON-
NUMBER-VIOLATING NUCLEON DECAYS

In this section we analyze the constraints on fermion
wave functions that can be derived from the experimental
upper limits on the rates for baryon-number-violating
nucleon decays. We denote the relevant BNV mass scale
Mgny as My,, where Nd stands for “nucleon decay.” We
assume that My, is large compared with the highest gauge-
symmetry breaking scale in the LRS model, namely v, so
that the effective Lagrangian is invariant under the LRS
gauge group, Gigs.

For the effective Lagrangian that is relevant for nucleon
decays, we write

LG () =D MO (x) + Hec.,

r

(4.1)

where cﬁNd) are coefficients, and OgNd) (x) are the various

four-fermion operators. Correspondingly, in the d =
(4 + n)-dimensional space, the effective Lagrangian is

Nd Nd
‘Ce(sz,4)+n (x,y) = Kg

1oV (x,y) +He.  (42)

Four-fermion operators O in ng\gd) that contribute to
nucleon decays in this LRS model and are invariant under
Gyrs are listed below [where the unprimed and primed
Roman indices are SU(2), and SU(2), gauge indices, as
defined above]:

Nd io ] kyT m
O(LL ) = gaﬁyeijekm[ LTCQJLﬂH Ly CLf.L]

= 2€4p, [MZTCdﬁ]([uETCfL] - [dZTCVK.L])v (4.3)

Nd i 1 AKYT '
OE?R : = €apy €€k m' [Q}eaTCQfe/H Ry CL’I;},R]

= 2y, [uf! Cdp)([u} C¢4] = dy Cupr]), (4.4)

Nd ; i i'yT ~p
O<LR) = €qpy €€y [Q’L“TCQiﬁH }ey CLJK,R]

= 2€a/iy[uzTCd/Ii]([u§€TCfR} - [d%TCVf,RD (4.5)

Nd ia i i i
OI(QL) = €aﬂy€i’j’€ij[QR TCQfeﬂH LyTCL]f,L]
= Zeaﬂy[u%TCdg]([ul}:TCfL] - [d}LTCVf,LD? (4-6)

where C is the Dirac charge conjugation matrix satisfying
Cy,C"'=—(y,)7, C=—CT; and €,4,, €;j, and €;; are
totally antisymmetric SU(3) ., SU(2), , and SU(2) tensors,
respectively.

To each of these operators (’)(rNd) there corresponds an

operator oM in ng\;ﬂ) 4 These are four-fermion oper-

ators, and, as the k = 4 special case of Eq. (3.17), we have

(Nd) l?gNd)
Ky = W . (47)

(Nd)

The dependence of x; ' on the generational index of the

lepton field that occurs in OSNd) is left implicit. From the
factorized form of fermion fields in Eq. (3.2), it follows that

(Nd) (Nd)

0r " (x,y) = Uy o

(X ) V" (y ) ’
where r = LL,RR, LR, RL. To perform the integrals over
v, we use the general integration formula given as Eq. (A2)
in Ref. [19]. Carrying out the integration over the y
components and using Eq. (3.8) for the relevant case
k = 4, we obtain the following results for the nonvanishing
operators:

(4.8)

3
I(L[{d) = byexp [— 4 ||’7QL —NL,, ||2} ) (4.9)

d 3
Ig\l/e ) = by exp {—Z ||77QR - 77L,>.R||2:|’ (4.10)

130 = buexp |~ 2o, =, I + 2, =, P
+ oy =1, )| (@.11)
and
1s? = buesp |~ 2o, =, I + 2, =, P
o, =, P} (“.12)

where by = (77'/2u)", from the k =4 special case of
Eq. (3.18). It is convenient to write the integral 1" in
the form
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IV = pes™, (4.13)

where SgNd) denotes the sum of squares of fermion wave

function separation distances (rescaled via multiplication
by u to be dimensionless) in the argument of the exponent

in 1" Thus, for example, in the case of O(L[\p

. o(Nd
the exponent is S(LL ) = (3/9)ng, =, |
. Then, as the special case of (3.19) with

, the sum in

2, and similarly

for the other SﬁNd)

k =4,

(Nd) S H ")

P = S (4.14
(MNd)2 <71'1/2MNd) ( )
We use the experimental lower bound [12] on the partial

lifetime (z/B)y_ss = [yL;, for a given nucleon decay

mode N — f.s. with branching ratio B to a final state denoted

f.s. to infer upper bounds on the magnitudes of the cSNd)

coefficients. The strongest lower bounds on these partial
lifetimes that are relevant here include (z/B) ,_, .+ 0 > 1.6 X
10°* yrand (z/B),_ .+, > 0.77 x 10°* yr [55]. The limits
for the analogous decays of neutrons are (7/B),_ +, >
0.53 x 10** yr and (z/B),_ .+, > 0.35x 10 yr [56].
(These and other experimental limits quoted in this paper
are at the 90% confidence level.) Since we do not not assume

any cancellation between different terms c(rNd)OiNd) occur-

ring in ﬁgf\;d), we impose the bounds from a given decay
individually on each term that contributes to it. For given
values of u, My, and the dimensionless coefficients f<<rNd>,

these constraints are upper bounds on the integrals / £N") and

hence lower bounds on the sums of squares of distances in

SsNd) for each operator OgNd). Our analysis of these lower
bounds on fermion separation distances in Ref. [19] can be
taken over, with appropriate changes, for our present study;
we refer the reader to [19] for the details. We find, for each r,
S(rNd) > (S(rNd)

)imins Where

(Nd) n My,
SNy 39 My ol ol
(5 Juin 2 n(lO“TeV)

M
_nm(ﬂ)
u

The most direct bounds on fermion separation distances

(4.15)

arises from the contribution of the operators O(L[Zd) and
(Nd)

O%d), since, for a given ¢ (= e or u), the integrals /, ;" and
155;” each involve only one fermion separation distance,

namely |lng, —n.,, || and |lng, — 1., ||, respectively, for a
given lepton generation £ = e or £ = . In this case, for the
illustrative case of n = 2 extra dimensions, we obtain the
lower bound

8 M 8. (M
- 25 50— 2nf N} _ O ( 2Nd
||’7Q)( ;/IL{/J(H > 3 n<104 TeV 3 n ﬂ

for y=L,R and for £ = e, pu. (4.16)

With the illustrative value My, = 10* TeV, these are the
inequalities |79, —#;, || > 6.8 for each of the four pos-
sibilities y = L, R and £ = e, u. A conservative solution to
the coupled quadratic inequalities would require that each
of the relevant distances ||, — ;|| in Eq. (4.16) for both
¢ = e and £ = p would be larger than the square root of the
right-hand side of Eq. (4.15):

{llng, —n,,

g, = e, I} > (S8 ) ial /2.

s 1Mo =ML, M1 1Mo, — ML,

s

(4.17)

That is, this set of inequalities is sufficient, but not
necessary, to satisfy experimental constraints on the model
from lower limits on partial lifetimes for nucleon decays.

V. n—-ni OSCILLATIONS AND DINUCLEON
DECAYS

In this section we analyze n — 71 oscillations and the
resultant AB = —2 dinucleon decays in this extra-dimen-
sional LRS model. We refer the reader to Refs. [15] and
[19] for relevant background; here we will review this
background briefly. We consider a general theory in which
baryon-number-violating physics can produce n — 7 tran-
sitions. We denote the relevant low-energy -effective
Lagrangian in 4D as Eg'f'fn ), and the transition matrix
element as |5m| = | (@£ |n)|. In (field-free) vacuum,
an initial state which is |n) at time 7 = 0 has a nonzero
probability to be an |i1) state at a later time ¢ > 0. This
probability is given by P(n(t) = i) = |(ii|n(t))]> =
[sin’(¢/7,5)]e”"™, where 7,; = 1/|6m| and 7, is the mean
life of the neutron. The current direct limit on 7,5, from a
reactor experiment at the Institut Laue-Langevin (ILL) in
Grenoble is 7,; > 0.86 x 10% sec, ie., |om| < 0.77 x
1072 MeV [13]. Because of the nonvanishing n — 7
transition amplitude, the physical eigenstate for the
neutron state in matter has a small component of 7, i.e.,
1) phys. = €08 0,5 |n) + sin 6,,5|71), with |6,,;] < 1. In turn,
this leads to annihilation with an adjacent neutron or
proton, and hence to AB = —2 decays to nonbaryonic
final states, predominantly involving pions. Experiments
have searched for the resultant matter instability due to
these dinucleon decays and have set lower limits on the
matter instability (m.i.) lifetime, 7,,;. This lifetime
is related to 7,; by the formula 7,; = Rr2;, where
R~ O0(10*) MeV, or equivalently, R=~10% sec”!,
depending on the nucleus. The best current limit on matter
instability is from the Super-Kamiokande water Cherenkov
experiment [14], namely 7,,; > 1.9 x 10* yr. Using the
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value R ~0.52 x 10% sec™! for the '%0 nuclei in the water,
Ref. [14] obtained the lower bound 7,,; > 2.7 x 10% sec, or
equivalently,

|om| < 2.4 x 10730 MeV. (5.1)

As mentioned above, we shall analyze n — 7 oscillations
in this theory by writing down the relevant Gy rg-invariant

that mediates n — i oscillations is a sum of six-quark
operators,
¢ o) (x) + H.c.

e’flfn( )_ (52)

r

The corresponding Lagrangian in the (4 + n)-dimensional
space is

operators, which are six-quark operators multiplied by £y N ) ) T He 53
(Ag)", and then focusing on the resultant |[AB|=2 ettan (¥:) - 0wy e (53)
six-quark operators resulting from the VEV of (Ag)'. )
The effective Lagrangian (in four-dimensional spacetime) ~ We find, for the set O the operators
|
O™ = (T,)apyipa €nerm + €pperm)epregy +eqrep ) QT COPIIOK T COROQRTCO AL, (54)
Oénﬁ) - (Ta)a/)'yﬁ,mei’j’ek’m’ (ep/r,eq/sl +ey €y )[Q’ aTCQ;;/}H kyTCQm 5][ P/)TCQ%G](AT) (5'5)
O™ = (T ) apsspoCij€itm (€ + e e,9) ][0T COPIORT COM QT CQL (AL (5.6)
3 a)apydpctijCk'm qs qrep's L R R R R ’ .
ni io i k rs
Oft ' = (Ta) apyopoCij€im(€preqy +egreyy)Of TCQJL/H yTCQ dll ppTCQ ](A};) ) (5.7)
OL™ = (T ) apyipae I 0T col oy cop g CoF A (5.8)
5 apydpc\€ik€jm + €ik€im)\€p'r€ys + €qr€ps Q QL Q Q .
|
where the SU(3),. color tensors are with 7 = 1, 2 are the same, defining class C\"", where the

(Ts)aﬂy5po‘ = €pay€ops + €say€pps
=+ 6/)/3;/66(15 =+ 66/376/)(15 (5 9)
and
(Ta>aﬂy§pa = €pap€oys + €sap€pys- (510)

To obtain the six-quark operators that mediate n — 7
transitions, we replace the Ay field by its VEV, vg. To each

of these n — i1 transition operators ol
We have

there corresponds

(nit (Nd)
an operator O0,"" in Leﬁ dn

_(nn)
(nin) Kr

To each of these operators there is a corresponding v

function; for example,
Vi = Vi = Al expl=6lln —ng, . (5.12)
and so forth for the others. The integrals of these functions

over the extra n dimensions comprise two classes. The

(nit)

integration of the V" functions for the operators (95""”

subscript s is appended to distinguish this and the other
classes from the classes calculated in terms of the Ggy-
based low-energy effective field theory in [15,19]:

(5.13)

where bg = (2-37"/277142)" from the k = 6 special case
of Eq. (3.18) and IC"k V=1 el The integrals of the

operators o
second class,

with r =3, 4, 5 are equal and yield a

nn 4
1 = boexp| =5 o, o, |- (514

From the special case of Eq. (3.19) with k = 6, together
with Eq. (3.1), it follows that

_ —("h) 2 2 n nii
o B () s (5.15)
vy \3'2z0}

5
where

S =0 for r=1,2 (5.16)

and

095012-8



NUCLEON DECAY AND N — N OSCILLATIONS IN ...

PHYS. REV. D 101, 095012 (2020)

nn 4
s =3 lng, ~ng,|* forr=3.45.  (5.17)

An important result from this calculation is that because

S(,"'_l) =0 for r=1, 2, there is no exponential wave
function suppression from the integration over the n extra

dimensions for 0" with r = 1, 2.

Then
1 u 2n 2 n
om| = — | — 172
vx \VR 3V

S & e o) )|

r

X

(5.18)

The dominant contribution to |5m| comes from the oper-

ators Oﬁ”’” with r =1, 2 (provided that the coefficients
7" with r = 1,2 are not negligibly small), since 5" = 0
for r = 1, 2, so these operators do not incur any exponential

suppression factors from the integration over the extra
dimensions. The matrix elements (71O |n) have dimen-
sions of (mass)®, and since they are determined by hadronic
physics, one expects on general grounds that they are
NA((’)CD’ where, as above, Agcp =~ 0.25 GeV. This expect-
ation is confirmed by quantitative calculations [10,11,57].
Taking rcﬁ””) ~ O(1) for r =1, 2 and the illustrative value
n = 2 extra dimensions, and requiring that |§m| must be
less than the experimental upper bound (5.1), we then
derive the following lower bound on M,; = vpg:

Thin

1/9
2.7 x 108 sec)
)4/9(|<ﬁ|0§7§”|n>|>1/9 5.19)

6
Adep

vg > (1 x103 TeV)(

8 I
(3 x 103 TeV

Thus, our analysis shows that, while it is easy to suppress
AB = —1 nucleon decay far below observable levels in this
model by making the fermion wave function separation
distances in Eq. (4.17) sufficiently large, this does not
suppress the |[AB| = 2 n — i1 oscillations, which can occur
at a level comparable with current experimental limits. We
have used this fact to deduce the lower bound (5.19) on vg
and hence the scale of |[AB| = 2 baryon-number violation
in this model. A similar comment applies to AB = -2
dinucleon decays (occurring primarily to multipion final
states), since these are induced by the fundamental n — 7
oscillations.

It is of interest to compare our new results for the extra-
dimensional LRS model with the results that were pre-
viously obtained in Ref. [15] and studied further in [19] for
an extra-dimensional model that used a Standard-Model
low-energy field theory. A striking feature that is common
to both of these types of models is that although one can
easily arrange the fermion wave function separation dis-
tances to suppress nucleon decays, this does not suppress

n — i oscillations. A basic difference between the model
used in Refs. [15,19] and the present LRS model is that in
the SM effective field theory framework of [15,19], baryon
number is a global symmetry, while in the LRS model, B
and L are gauged via the U(1),_, symmetry, and the VEV
of the Ap field spontaneously breaks B by 2 units in
processes for which AL = 0. Hence, while the SM Higgs
VEV preserves B (and L), here the scale of baryon-number
violation is set by vg, as given in Eq. (3.1). We recall the
corresponding limit from Ref. [15] (updated in [19] with
the newer limit on 7,; from the Super-Kamiokande
experiment [14]), namely

Tnin

1/9
2.7 x 108 sec)

(e O\ (RO N o
3x 103 TeV Adcp

for SMEFT.

M,; > (44 TeV)(

(5.20)

The main reason why the lower bound on M,; = v in
Eq. (5.19) is substantially higher than the lower bound on
M, in Eq. (5.20) is that all of the integrals of six-quark
operators in the extra dimensions in the model of
Refs. [15,19] involved exponential suppression factors,

whereas, in contrast, here, Sg"ﬁ) =0 for r =1, 2, so the

integrals of these operators 0<,"ﬁ) over the extra dimensions
do not produce any exponential suppression factors.

VI. CONCLUSIONS

In this paper we have studied n — 7 oscillations in a left-
right-symmetric model in which Standard-Model fermions
have localized wave functions in extra dimensions. We
have shown that in this extra-dimensional LRS model, even
with fermion wave function positions chosen so as to
render the rates for baryon-violating nucleon decays much
smaller than experimental limits, n — 71 oscillations can
occur at rates comparable to current bounds. Thus, this
feature is common to both the present LRS model and the
model with a SM low-energy effective field theory studied
in [15,19]. An interesting difference between these models
that we find is that certain six-quark operators in the LRS
model are not suppressed by exponential factors resulting
from the integration over the extra dimensions, in contrast
to the SMEFT model of Refs. [15,19], where this integra-
tion yields exponential suppression factors for all six-quark
operators. These findings provide further motivation for
new experimental searches for n — 7 oscillations. In the
future, one may look forward to such experiments using a
neutron beam at the European Spallation Source [24] and
searching for resultant matter instability in the water
Cherenkov detector in Hyper-Kamiokande [58] and the
liquid argon detector in the Deep Underground Neutrino
Experiment, DUNE [59,60].
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