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Improved upper bounds are presented on the coupling |U,4|* of an electron to a sterile neutrino v, from
analyses of data on nuclear and particle decays, including superallowed nuclear beta decays, the ratios

R" —BR(z" - ¢*v,)/BR(x" = u'y,), RS R

e/u e/w

to GeV.
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Neutrino oscillations and hence neutrino masses and
lepton mixing have been established and are of great
importance as physics beyond the original Standard
Model (SM). Most oscillation experiments with solar,
atmospheric, accelerator, and reactor (anti)neutrinos
[1-10] can be explained within the minimal framework
of three neutrino mass eigenstates with values of Aml?j =
mg, —my  given approximately by Amj, = 0.74 x
107* eV? and |Am3,| = 2.5 x 1073 eV?, with normal mass
ordering m,, > m,, favored; furthermore, the lepton mix-
ing angles 6,3, 6,, and 63 have been measured, with a
tentative indication of a nonzero value of the CP-violating
quantity sin(5¢p) (for compilations and fits, see [11-16]).

In addition to the three known neutrino mass eigenstates,
there could be others, which would necessarily be primarily
electroweak singlets (sterile) [17] (see, e.g., [18]). Indeed,
sterile neutrinos are present in many ultraviolet (UV)
extensions of the SM. Whether sterile neutrinos exist in
nature is one of the most outstanding questions in particle
physics, and therefore, improved constraints on their
couplings are of fundamental and far-reaching importance.
Taking account of the possibility of sterile neutrinos, the
neutrino interaction eigenstates v, would be given by
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,and B/, decay, covering the mass range from MeV

where £ =e, u, 7; n, denotes the number of sterile
neutrinos; and U is the lepton mixing matrix [19].

Here we obtain improved upper limits on |U,;|* for a
sterile neutrino v; in a wide range of masses from the MeV
to GeV scale and point out new experiments that would be
worthwhile and could yield further improvements. For
simplicity, we assume one heavy neutrino, n, = 1, with
i = 4; it is straightforward to generalize to n, > 2. Since a
v, in this mass range decays, it is not excluded by the
cosmological upper limit on the sum of effectively stable
neutrinos, » ; m, < 0.12 eV [20]. Such a v, is subject to a
number of constraints from cosmology (e.g., [21]); how-
ever, since these depend on assumptions about the early
universe, we choose here to focus on direct laboratory
bounds. Constraints from the nonobservation of neutrino-
less double beta decay are satisfied by assuming that v, is a
Dirac neutrino [22]. Since sterile neutrinos violate the
conditions for the diagonality of the weak neutral current
[23,24], v, has invisible tree-level decays of the form
vy = viviy; where 1 <4, j<3 with model-dependent
invisible branching ratios. Because our bounds are
purely kinematic, they are complementary to bounds
from searches for neutrino decays, which involve model-
dependent assumptions on branching ratios into visible
versus invisible final states.

We first obtain improved upper bounds on |U,4|? from
nuclear beta decay data. The emission of a v, via lepton
mixing in nuclear beta decay has several effects, including
producing a kink in the Kurie plot and reducing the
decay rate [25]. For the nuclear beta decays (Z,A) —
(Z+1,A)+e +0, or (ZA)>(Z-1,A)+e" +v,
into a set of neutrino mass eigenstates v; € v,, i = 1, 2,
3 of negligibly small masses, plus a v, of non-negligible
mass, the differential decay rate is
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dN
o= Cll1 =~ |Uu?)pE(E, — EV:

+ |UuPPE(Ey — E)[(Ey — E)?* — m2, ]/
X O(Ey —E—m,,)] 2)

where p = |p| and E denote the 3-momentum and (total)
energy of the outgoing e*, E, denotes its maximum energy
for the SM case, the Heaviside 6 function is defined
as O(x)=1 for x>0 and O(x) =0 for x <0, and
C = G|V, 4|*Fp|M|?/(27*), where M denotes the
nuclear transition matrix element, V is the Cabibbo-
Kobayashi-Maskawa (CKM) quark mixing matrix, and
Fp is the Fermi function. Early bounds on |U,|> were
set from searches for kinks in Kurie plots in [25] and
analyses of particle decays [26-28], and from dedicated
experiments. For example, a search for kinks in the Kurie
plot in 2°F beta decay reported in Ref. [29] yielded an upper
bound on |U,[* decreasing from 5.9 x 107 for m,, =
0.4 MeV to 1.8 x 107 for m,, = 2.8 MeV. (Some recent
reviews of searches for sterile neutrinos include [30-35].)

In addition to kink searches, a powerful method to set
constraints on massive neutrino emission, via lepton mix-
ing, in nuclear beta decays is to analyze the decay rates.
Since, in general, the heavy neutrino would also be emitted
in u decay, the measurement of the y lifetime performed
assuming the SM would yield an apparent (app) value
of the Fermi constant, denoted GF,app, that would be
smaller than the true value, G, given at tree level by
Gr/V2 = g*/(8m?,), where g is the SU(2) gauge coupling
[26-28]. To avoid this complication, the ratios of rates of
different nuclear beta decays are compared.

The integration of dN/dE over E gives the kinematic
rate factor f. The combination of this with the half-life for
the nuclear beta decay, t =1/, yields the product ft.
Incorporation of nuclear and radiative corrections yields the
corrected ft value for a given decay, denoted Ft.
Conventionally, analyses of the Ft values for the most
precisely measured superallowed 0t — 0" nuclear beta
decays have been used, in conjunction with the value of
G app from p decay, to infer a value of the weak mixing
matrix element, |V, ;| [36—45]. A first step in these analyses
has been to establish the mutual consistency of the Ft
values for these superallowed 0T — 0T decays. Since the
emission of a v, with mass of a few MeV would have a
different effect on the kinematic functions and integrated
rates for nuclear beta decays with different Q (energy
release) values, it would upset this mutual consistency.

Hence, from this mutual agreement of Ft values,
an upper limit on |U,4|*> can be derived for values of
m,, such that a v4 could be emitted in some of these
superallowed decays. Reference [37] obtained upper
bounds on |U,4|* ranging from 1072 down to 2 x 1073
for m,, from 0.5 to 2 MeV, while Ref. [29] obtained the
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FIG. 1. The 90% C.L. upper limits on |U,l* vs m,, from
various sources: PIBETA, pion beta decay BD1, previous limits
from beta decay [29]; BD2, beta decay with the two dashed
horizonal lines based on our analysis using [42] and [43]; PIENU

and PIENU-H, the ratio % in the kinematically allowed
)

and forbidden regions for v, emission; Pie2, n* — e'v,, peak

search [47]; KENU and KENU-H, the ratio pric=cte)
H

kinematically allowed and forbidden regions for v, emission;
Ke2, Kt — etv,, peak search [48]; Dse2, D — etv,4; and
Be2, Bt — etu,,.

in the

limits |U,4|> < 1x 1072 to |U,g|* <2 x 1073 depending
nonmonotonically on m,, from 1 to 7 MeV. The maximum
Q value in the current set of 14 superallowed 0T — 0T beta
decays used for the Ft fitin [41,42] is 9.4 MeV (for 7Rb).
A measure of the mutual agreement is the precision
with which |V,,4|? is determined, so a reduction in the
fractional uncertainty of the value of |V,,|* results in
an improved upper limit on |U 4|*. Reference [37] obtained
|V.al =0.9740 + 0.001. The recent analyses in [42]
and [43] obtained |V, =0.97420(21) and |V,4| =
0.97370(14), respectively [46]. Applying these factors of
improvement from [42] and [43] to the previous bounds in
[37], improved upper bounds are obtained as

|Ue4|2 <4 x10™ (3)
and
|U 4> <27 x 107 (4)

for v, masses in the range 1 MeV <m,, <94 MeV,
indicated in Fig. 1 as BD2. (These and other limits
presented are at the 90% confidence level.)

We next discuss upper bounds from two-body leptonic
decays of charged pseudoscalar mesons (generically
denoted as M™) [25,26]. This method is quite powerful
because the signal is a monochromatic peak in dN/dp,,
and for M™ — e"v, (denoted M,) decays, the strong heli-
city suppression in the SM case is removed when a heavy
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neutrino is emitted. The presence of a massive v, also
changes the ratio of branching ratios BR(M™ — e*v,)/
BR(M" — u*v,) from its SM value, and this was used to
set further bounds [25,26,49]. A number of dedicated
experiments have been performed to search for a peak
due to heavy neutrino emission and also to measure
BR(M" — e*v,)/BR(MT — ptv,) with z},, K,, and
B},, where ¢ = e, u [47-60].

In the SM with only the three known neutrinos with
negligibly small masses, the ratio

R _ BR(M* - ¢Tv,) (5)
el — BR(M+ N f/+l/f/>
is given by
2 (M)72

) _myl=0,
Ry)psm = P L — 500 (1 + 6gre)s (6)

f/
where 80" = m2/m2, and Sgc is the radiative correction

(RC) [61-66].
We denote the ratio of the experimental measurement of

R;A//[; to the SM prediction as

o RO
Reppr =—00 - (7)
¢)¢' SM

(x)

The most precise measurement of R e/ is from the

PIENU experiment at TRIUMF, with the result Ri /L
(1.2344 £ 0.0023, £ 0.0019y) x 10~* [58]. Including
[67-69], the resultant PDG world average is Ri’Z‘ =
(1.2327 £ 0.0023) x 10~* [11], in agreement with the
SM prediction with RC, R = (1.2352%0.0002) x

10~* [62,63,65], resulting in

R = 0.9980 % 0.0019. (8)

The ratio RE»I/{; has recently been measured by the

NA62 experiment at CERN [56], dominating the world
average [11]

RY) = (2.488 +0.009) x 10~°. (9)

The SM prediction with RC [63,66] is

R

) s = (2477 £0.001) x 1075, (10)

resulting in

ﬁ(aﬁM,éii”)) > 1 over much of the interval I,

RY) = 1.0044 £ 0.0037. (11)

With emission of a heavy neutrino v, the ratio RZ(/, / ;,
for general ¢, ¢’ changes to

M
o _ [[(1=1UnP)p(",0) + UsiPp(s,", 6"
Reye = 2 (1)
(1 - |Uf’4| )ﬂ( f’ s )+ |Uf/4| ( 7 ,51,4 )
x (1 + ége), (12)
where 5,(2@ = m3, /m3;, and the kinematic function p(x, y)
is [25,26]

p(x.y) =[x+y—(x=y)?|A(L.x.y)]"2  (13)

with
Mz, x,y) =x2 +y* + 22 =2(xy + yz +zx).  (14)

Thus, in the SM case, p(x,0) = x(1 — x)?. Here and below,
it is implicitly understood that p(50",6{") =0 if
m,, > my — mg, where the decay M~ — £, is kinemat-
ically forbidden. We define

plxy) =222 - px) (15)
SO

200 _ 1= U+ [UnPp(3.". 62

f/f/ M .
1= |Upa* + |Upal*p (f/ ,554))

(16)

With no loss of generality, we order £ and ¢’ such that

mg > m, and define the mass intervals (i) IEM)

iy —mp, (i) 1
(M)

(i) 1377 im,, > my —myg.
contributes to both M7, and M},

m,, € IgM)

im,, <

imy —mp < m,, < my —mg; and

Thus, a v4 with m,, elgM)

decays, while if

, then v, contributes to M}, but not to M},

decay, and if m,, € IgM)

M7, or M, decay.
If for a given m,, one knows, e.g., from peak-search
experiments, that |Ugy4|* is sufficiently small that the

denominator of (16) can be approximated well by 1, then

(M)
¢/

upper bound on |Uy4|*. Thus, one has the bound

, then v, cannot be emitted in either

an upper bound on the deviation of R}/, from 1 yields an

p(M)
f/)f” - 1

— T form, €I, (17)
P62 60") — 1 o

|Upa|* <

This gives very stringent upper limits on |Uy4|* because
(M)
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(M)

(see Figs. 3-5 in [26]). If m,, € I3, then (16) reduces to
M) _

R(f/f’ =(1=[UnP)/(1=[Upl), so if [Upyl* <1 in
this interval, then the upper limit is

UpP <1-RY, form, ™. (18)

¢/

We now apply this analysis to RQ”L, using (17) and (18)
with M+ = z%, ¢ = e, and ¢’ = pu. From previous ﬂlfz peak
search experiments [47,48,50-60] and the calculation of
P8, 857), it follows that |U ,4|? is sufficiently small for

(7)

m,, € I, that we can approximate the denominator of

Eq. (16) by 1. From RE)”L in Eq. (8), using the procedure
from [70], we obtain the limit Ri’;ﬁl < 1.0014. Then, for
v, € Ig”), we find

(1) 1

an
|Ups* < <
e o) -

- 0.0014
1oped.e) -1

(19)

This bound is labeled as PIENU in Fig. 1. If m,, € 1Y), i.e.,
m,, > 139 MeV, then, using (18), we obtain the upper
bound on |U,4|?* given by the flat line labeled PIENU-H
in Fig. 1.

We next obtain a bound on |U,,|? by applying the same
(K)
e/n

[48,51,57] and the calculation of p(é,(lK), 5,(,10 ), [Uual is
sufficiently small that we can approximate the denominator
of Eq. (16) well by 1. Using Eq. (11) forv, € Igm, we find

type of analysis to R, ;. From K ,, peak search experiments

. R -1 0.010
|Upsl? < -

< .
p(8l), 80y =1 ps, sy -1

(20)

This upper limit on |U,4|? is labeled KENU in Fig. 1. For
m,, €1, ie., m, > 493 MeV, using ((18), we obtain
the flat upper bound labeled KENU-H in Fig. 1.

One can also apply these methods to two-body leptonic
decays of heavy-quark hadrons. We first consider D} —
¢*v, decays [71], using (17) and (18) with M = D],
¢ = e,and ¢’ = t. Experimental data from CLEO, BABAR,
Belle, and BES have determined BR(D{ — u'v,) =
(549 +£0.17) x 1073 and BR(D{ — ttv,) = (5.48 +
0.23) x 1072 [72-76]. Furthermore, searches by CLEO
[72], BABAR [73], and Belle [74] have yielded the limit

BR(D} —ety,) <0.83x 107, Hence, R\)? <1.6x 107>,
For R(el/);), using the results of [62], we calculate

1 4 0gc = 0.948. Substituting this in Eq.
M =D, ¢=e, £ =1, we find

(6) with

D, _
R =229 % 107, (21)

Therefore, Rgl;;) < 7.0 x 102, For Ril/);’), the interval IgD") is
191 MeV < m,, < 1.457 GeV. Actually, we restrict m,, to
a lower-mass subset of this interval because for sufficiently
great m,,, even though the D — e*v, decay is kinemat-
ically allowed to occur, the momentum p, (in the D rest
frame) would be below the minimal value set by exper-
imental cuts in the BES III event reconstruction.
With p, o = 0.8 GeV [77], this means that m,, must be
less than 0.85 GeV for the event to be accepted. Thus, we

consider 0.191 GeV < m,, < 0.85 GeV. Substituting the

experimental limit on Ril/); )

M =Dy, ¢ = e, ¢’ = t and using the fact that |U4|> < 1
for this m,, mass range [11], we obtain a resultant limit
from (17). For m,, =0.191 GeV, p(s),60%)) =
1.37 x 10°, increasing to p((SgD"'),(S,(,?‘>) = 1.83 x 10° for
m,, = 0.85 GeV. We thus obtain the upper bound on
|U.,4|?* labeled Dy, in Fig. 1.

A dedicated peak-search experiment to search for the
heavy-neutrino decay D} — e*v, would be worthwhile
and could improve the upper bound on |U,,|?. Similarly, a
search for leptonic D decays like D™ — ey would be
valuable and will be discussed elsewhere. The very large
values of ﬁ(é&D‘), 5£f‘)) and /')(5<eD), 55,?)) over a large
portion of the kinematically allowed ranges of m,, in
D} — e'vyand D — e"v, mean that there would be quite
strong kinematic enhancement of the heavy neutrino decay
relative to the corresponding (Dy),, and D}, decays. In
particular, these searches could be performed by the
BES III experiment, which recently reported results from
a data sample of 3.19 fb~! and expects to collect consid-
erably higher statistics.

Finally, we consider B™ — ¢*v, decays. There is an
upper limit BR(B* — e*v,) < 0.98 x 107 from Belle [78]
and BABAR [79]. For the other two leptonic decay modes,
BR(B' — uty,) = (6.46 +£2.22, £ 1.60y) x 1077 from
Belle [80], with a recent update BR(B" —=u*v,)=(53+
2,040 £0.95) x 1077 [81,82], and BR(B' — ztv,) =
(1.09 £ 0.24) x 10 from BABAR [83] and Belle
[84,85]. The measured values of BR(B* — u*v,) are in
agreement with the SM prediction BR(B" — u*v,)gy =
(3.80 +£0.31) x 1077 [80]. The measured value of
BR(B" — 7'v,) is also in agreement with the SM predic-
tion BR(BT — 771, )qy = (0.757039) x 10~* [85,86].

We focus on data from a B}, peak search experiment by
Belle [59]. In general [25],

in the special case of (16) with

BR(M* — ¢Fu,) |Uf4|2.5(5;M)’5£14w))
BR(M™ = ¢Fvs)sm a 1= |Upl?

(22)
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For m,, in the range from 0.1 GeV to 1.4 GeV, the Belle
experiment obtained an upper limit on BR(B™ — e*v,) of
2.5 x 107, while in the interval of m,, from 1.4 GeV to
1.8 GeV, this upper limit increased to 7 x 1076, In the range
of m,, from 0.1 to 1.3 GeV, the Belle experiment obtained
(nonmonotonic) upper limits on BR(B" — utu,) of
approximately 2—4 x 1079, and in the interval of m, , from
1.3 GeV to 1.8 GeV, it obtained upper limits varying from
2x 107 to 1.1 x 1073, Substituting the BR(B* — eTvy)
limits in Eq. (22) with M = B and £ = e, we obtain the
upper limits on |U,4|? shown as the curve B,, in Fig. 1 [87].
From the BR(B™ — e™v,) limits we infer upper limits on
|U,4|* that decrease from 0.83 to 3.4 x 1072 as m,,
increases from 0.1 GeV to 1.2 GeV. Further peak searches
for Bt - ¢*v, with £ =¢, u at Belle II would be
worthwhile as a higher-statistics extension of [59].

We briefly remark on other constraints on a Dirac v, in
the mass range considered here. From the results of [23,88],
it follows that there is a negligibly small contribution to
decays such as u — ey and y — eee. Similarly, there is no
conflict with bounds on neutrino magnetic moments
[11,89], and contributions to invisible Higgs decays [90]
are well below the current upper limit of BR(H — invis) <
19% [91].

In this work, improved upper limits on |U,4|? have been
presented covering most of the range from m,, ~ 1 MeV to

m,, ~ 1 GeV, representing the best available laboratory
bounds for a Dirac neutrino v, that do not make model-
dependent assumptions concerning visible neutrino decay
modes. Over parts of this range, the bounds obtained are
competitive with those that assume specific visible v,
decays. For example, for m,, = 30 MeV, our upper bound
is |U,4|* < 0.8 x 1075, while the best bound for this value
of m,, from experiments searching for neutrino decays is
|U,4|*> <1 x 107 [92]. New peak search experiments to
search for D — eTv, and DT — ety, as well as a
continued search for BT — e, and continued searches
for 7t - ety, [47] and KT — eTvy [48] would be
valuable; these could improve the bounds further. Other
constraints on sterile neutrinos, such as from 7+ — z%*v,
decay, and a detailed report of the results presented here
will be published elsewhere.
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