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1 Introduction

In the last ten to fifteen years a lot of progress has been made in understanding supersym-

metric four dimensional effective theories, descending from smooth Calabi-Yau compacti-

fications of heterotic M-theory. In terms of model building, solutions to the theory which

give rise to a charged matter spectrum identical to that of the Minimal Supersymmet-

ric Standard Model (MSSM) have been obtained [1–25]. These were first constructed in

small numbers in the context of irreducible higher rank bundles with non-abelian structure

groups [5, 6, 8, 11, 18]. Later, the concept of Line Bundle Standard Models was introduced:

it was realized that simple sums of line bundles could be phenomenological viable in this

context [19, 20]. This work is of course complemented by extensive model building efforts

in other heterotic constructions, see for example [26–43]. This lead to very large numbers of

heterotic models being produced with exactly the standard models charged matter content.

In another advance, that will be directly relevant to this paper, good progress has been

made in understanding Yukawa couplings in this context [3, 4, 9, 13, 44–55]. Algebraic
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methods for computing tree-level superpotential trilinear couplings have long been under-

stood [3, 4, 9, 13, 44–53]. Recently, however, techniques based upon differential geometry

have been developed [54, 55] which, perhaps surprisingly, can be more powerful in many

situations. In particular, this work provides a very strong vanishing theorem on these tree-

level Yukawa couplings and also makes the computation of the moduli dependence of these

quantities more tractable in many contexts.

Although heterotic compactifications have traditionally proven to be extremely promis-

ing from the point of view of particle physics model building, they have struggled more in

the context of moduli stabilization. Nevertheless there have been a number of recent ad-

vances in understanding the N = 1 effective theories associated to these compactifications

which have lead to new moduli stabilization mechanisms in this context. Of particular

note for the current paper, it has been realized that the holomorphic poly-stable slope zero

vector bundles that appear in this context can stabilize the complex structure moduli of

the base Calabi-Yau manifold [56–60]. It is important to note in this context that concrete

examples of this effect have been provided. While it is still difficult to fix one final over-all

modulus in a controlled manner in heterotic compactifications (see [59] for example), it

is clear that progress is being made. In addition, there is much that is still not under-

stood about the effective theories’ potential — particularly at higher order in curvature

expansions.

Given this progress in model building and moduli stabilization it is natural to take

the analysis of these models to a finer level of detail. In this paper we wish to achieve

this in two particular regards. First, we wish to begin a study of how modern moduli-

stabilization mechanisms in Calabi-Yau compactifications of heterotic M-theory interact

with model building concerns. More specifically, we will examine the interplay of the moduli

stabilization of [57, 58] with Line Bundle Standard Model building [19, 20]. Using hidden

sector vector bundles to stabilize complex structure moduli, as was proposed in [57, 58],

forces the base Calabi-Yau threefold to a computable sub-locus of its moduli space. Given

this concrete knowledge as to where in complex structure moduli space the system is forced,

one can investigate how this stabilization mechanism affects model building considerations.

In particular, the bundle valued cohomologies that determine particle spectra in heterotic

theories are only quasi-topological in nature. They can jump in dimension at higher co-

dimensional loci in complex structure moduli space causing the matter spectrum of the

associated four dimensional effective theory to jump in an index preserving manner [61–65].

If the moduli stabilization mechanism of [57, 58] happens to force the system to a locus

where the bundle cohomologies associated to standard model degrees of freedom jump,

then that mechanism and model building considerations can not be divorced.

This effect can be either good or bad. If the jump causes the addition of an extra

standard model family degree of freedom and its partner from a mirror family, then the

moduli stabilization mechanism will have forced the addition of standard model exotics —

a phenomenologically undesirable result. In contrast to this, one could envisage a situation

where a model which had no Higgs, Higgs conjugate pair, was forced to a locus where

the cohomologies of such degrees of freedom where forced to jump. This would render

previously unviable models phenomenologically interesting.
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One might think that such effects would be extremely rare in heterotic models, given

the relatively uncoupled nature of the visible and hidden sector vector bundles. Never-

theless, we will show that, in the class of models we study, this interaction of moduli

stabilization and model building considerations occurs rather frequently. More precisely,

we find that, in cases where the particle spectrum of the standard model bundle is capable

of jumping, such phenomena are common in the known examples of Line Bundle Standard

Models. This indicates that one should be aware, in pursuing studies that divorce model

building from moduli stabilization, that including the latter concern may be relevant to

many of the models obtained.

It should be noted that this effect, where the system is driven to a locus in moduli

space where extra degrees of freedom occur, might be naively thought to be rather similar

in nature to the work presented in [66–72]. In fact the phenomena being considered here

are completely distinct to that work, being rather different in nature and not as ubiquitous

in effect.

The second issue we will consider in this paper concerns vanishing of Yukawa couplings.

As was mentioned above, in [54, 55] a vanishing theorem was presented wherein tree-

level trilinear couplings that are consistent with all of the obvious gauge symmetries of

the four dimensional effective theory are nevertheless zero due to seemingly topological

restrictions. We will investigate to what degree this vanishing theorem comes in to effect

in the known set of Line Bundle Standard Models [19, 20]. By the simple method of

direct computation in every model in this data set, we discern how many of the couplings

that are consistent with the symmetries of these theories, as presented in [19, 20], are

actually vanishing due to this theorem. In total 17.9% of the potentially allowed couplings

are actually zero, with some forms of interaction vanishing at the 35.4% level. This is

therefore, once again, a significant effect which should be borne in mind when constructing

heterotic standard models with an eye toward phenomenological viability. That this effect

is common was anticipated in [54, 55] — here we compute exact numbers in a standard

model building context. In addition to this straight forward computation we briefly suggest,

based on the work of [52, 53], a gauge-theoretic mechanism which may underly these

severe restrictions on the Yukawa-Couplings of these heterotic effective theories. It will

be important to understand whether this conjecture is correct going forwards as, if it is

indeed responsible for these vanishings, then one could expect many higher order couplings

to suffer a similar fate.

The structure of the rest of this paper is as follows. In section 2 we briefly review Line

Bundle Standard Models in Calabi-Yau threefold compactifications of heterotic theories.

We then review, in section 3, the mechanism by which hidden sector bundles can stabilize

complex structure moduli in this context. In section 4 we present our work combining

moduli stabilization and model building considerations in heterotic Line Bundle Standard

Models. Section 5 of the paper contains our analysis of topological vanishing of Yukawa

couplings in Line Bundle Standard Models. Finally, in section 6 we present our conclusions.

Two appendices contain details of the results from our two lines of investigation which

complement the summary data given in the main text.
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2 Heterotic Line Bundle Standard Models

Traditionally, in constructing a heterotic Calabi-Yau compactifications designed to give

rise to physics close to the MSSM, one chooses a gauge bundle VSM with a non-abelian

structure group, for example SU(3), SU(4) or SU(5). The low energy gauge group in the

visible sector is then simply the commutant of this structure group inside E8, that is E6,

SO(10) or SU(5) respectively for the examples mentioned in the previous sentence. These

precursor ‘GUT’ groups are then broken down to the standard model gauge group by

Wilson lines associated with the fundamental group of the Calabi-Yau threefold.

Line Bundle Standard Models are constructed somewhat differently. Instead of fo-

cussing on a non-abelian structure group, the gauge bundle VSM is chosen to be a simple

sum of line bundles. Taking a sum of five such objects as an example, we have the following.

VSM =

5⊕
i

Li (2.1)

The structure group of such a bundle is S(U(1)5) ∼= U(1)4. The commutant of this group

inside E8 is SU(5)×U(1)4 which is therefore, naively, the low energy gauge group. However,

the four U(1) factors are all typically Green-Schwarz massive, at least in examples with a

Kähler moduli space of high enough dimension, and thus at low energies this approach can

also give us viable GUT groups that can then be broken to SU(3) × SU(2) × U(1) by an

appropriate Wilson line.

The advantage of working with Line Bundle Standard Models over more conventional

approaches to heterotic model building largely center around proving that the gauge fields

in the compactification preserve supersymmetry. Showing that an irreducible, higher rank

bundle is slope-stable can be a time consuming and complicated affair, involving the con-

sideration of an infinite number of possible sub-sheafs of VSM. In the case of a simple sum

of line bundles such as (2.1) proving that supersymmetry is preserved is much simpler.

The equivalent condition in this case is slope poly-stability and for such a sum we need

only check that the slope of each line bundle is the same (and in fact vanishes in physical

examples). This simplification leads to a huge increase in the number of models that can

be constructed with thousands of Line Bundle Standard Models being known [19, 20] while

only a few irreducible higher rank gauge bundles have ever been constructed which give

rise to the exact charged spectrum of the MSSM [5, 11, 12, 18].

The spectrum of a Line Bundle Standard Model is determined in a two step process.

Firstly, an exercise in group theory tells us what matter can possibly appear in the four

dimensional effective theory. Secondly, what matter actually does appear is computed in

terms of bundle valued cohomology groups.

In terms of group theory, the representations of the four dimensional gauge group that

can appear are simply determined by branching rules and the fact that all of the charged

matter in ten dimensions is valued in the adjoint representation. Thus, in the SU(5) case for

example we find the following decomposition of representations under a maximal subgroup.

E8 = SU(5)× SU(5) (2.2)

248 = (24,1)⊕ (1,24)⊕ (5,10)⊕ (5,10)⊕ (10,5)⊕ (10,5)
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If we take the first SU(5) factor to be the low energy GUT group and the second SU(5)

factor to be that in which the structure group of the bundle resides we can then read

off what representations we can possibly obtain in four dimensions. Here, for example,

we could potentially obtain the 24,1,5,5,10 and 10 representations of SU(5). In the

case of Line Bundle Standard Models, we can also, of course associate a series of U(1)

charges to the matter multiplets which we have omitted in (2.2) in the interests of keeping

the expressions uncluttered. We follow the convention of including all five U(1) charges

associated to S(U(1)5) despite the fact that only four of these gauge factors are independent

as this simplifies many of the resulting equations.

In order to see how many copies of each representation we obtain in the low energy

spectrum (if any) we must compute the appropriate bundle cohomology groups. In fact,

we wish to incorporate a Wilson line and work out the spectrum at the level of the four

dimensional theory with standard model gauge group. Since most Calabi-Yau that we

know how to construct are simply connected, this we typically obtain a compactification

manifold with non-trivial fundamental group that can support a Wilson line by quotienting

some ‘upstairs’ space X by an appropriate freely acting discrete symmetry Γ. The bundle

must be chosen to be equivariant with respect to this symmetry in order that it too is

compatible with the quotient. Indeed, following [19, 20] we will consider the case where

each line bundle Li in VSM is equivariant individually. The spectrum on the ‘downstairs’

quotient manifold X̂ = X/Γ can then be given in terms of just a few pieces of data.

As described in [19, 20], if the discrete group Γ is a product of abelian factors of

the form Γ =
⊗

r Zmr (as will be considered here), then the definition of the Wilson line

proceeds via the choice of two sets of integers pr and p̃r. These integers must satisfy the

conditions

3pr + 2p̃r = 0 mod mr ∀r such that pr 6= p̃r for at least one r (2.3)

We can then define some representations W (g) =
⊗

r e
prg2πi/mr and W̃ (g) =

⊗
r e

p̃rg2πi/mr .

These representations encode all of the information we require about the Wilson line in

order to complete a spectrum computation. Indeed, if we combine this information with

the characters of Γ, χ∗i , which define the equivariant structure associated to the line bundle

Li, we can write down the spectrum of the Line Bundle Standard Model associated to

these choices, as given in table 1. Note that in this table we use the same notation for the

(potentially anomalous) U(1) charges as given in [19, 20]. That is, the ei are unit vectors

such that, for example 10e1 has a single unit of positive charge under the first abelian factor.

Note that, because these five U(1) factors are related in S(U(1)5), a combination of fields

that has a single unit of charge under each factor is a gauge invariant. We will frequently

specify the spectrum of a Line Bundle Standard Model by giving a set of GUT multiplets

with U(1) charges. Such a notation is consistent because, despite the fact that the different

standard model degrees of freedom that would form a single irreducible SU(5) multiplet all

descend from different ten-dimensional antecedents and thus no such symmetry is present

in the four-dimensional theory, the standard model multiplets do arise in complete GUT

multiplets.
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SU(5) repr. GSM repr. name cohomology

10ei (3,2)1 Qi h1(X,Li, χi ⊗W ∗ ⊗ W̃ ∗)
(3̄,1)−4 ui h1(X,Li, χi ⊗W ∗ ⊗W ∗)
(1,1)6 ei h1(X,Li, χi ⊗ W̃ ∗ ⊗ W̃ ∗)

5̄ei+ej (3̄,1)2 di,j , Ti,j h1(Li ⊗ Lj , χi ⊗ χj ⊗W )

(1,2)−3 Li,j , Hi,j h1(Li ⊗ Lj , χi ⊗ χj ⊗ W̃ )

5−ei−ej (3,1)−2 T̄i,j h2(Li ⊗ Lj , χi ⊗ χj ⊗W )

(1,2)3 H̄i,j h2(Li ⊗ Lj , χi ⊗ χj ⊗ W̃ )

1ei−ej (1,1)0 Si,j h1(Li ⊗ L∨j , χi ⊗ χ∗j )

Table 1. Cohomologies which determine the downstairs spectrum of Line Bundle Standard Models.

The cohomological notation including a representation after a comma simply denotes that only

the piece of the cohomology forming that representation under the discrete group Γ should be

considered. The representations W , W̃ and χi are described in the text. The number of mirror

particles is determined by the second cohomology valued in the same bundles and representations.

A key point for the latter sections of the current paper is that the cohomologies ap-

pearing in table 1 are complex structure dependent. At higher codimension loci in complex

structure moduli space, the dimensions of these cohomology groups, and thus the matter

spectrum of the resulting four dimensional theory can jump in an index preserving manner.

We will consider a particular existent Line Bundle Standard Model data set [19, 20]

built over Calabi-Yau manifolds which can be described as quotients of complete intersec-

tions in products of projective spaces (CICYs) [73–79]. Note that analogous constructions

could be pursued over different base spaces, such as quotients of gCICYs [80, 81] (for re-

lated work see [82]) or toric hypersurfaces [83–87]. It would be interesting to see if such

constructions mirror the structure that we will describe in this paper.

A family of CICYs can be represented by a configuration matrix of the following form.

X =


Pn1 q1

1 q1
2 . . . q1

k

Pn2 q2
1 q2

2 . . . q2
k

...
...

...
. . .

...

Pnm qm1 qm2 . . . qmk

 , (2.4)

Here, the first column specifies the ambient space A in which the Calabi-Yau manifold

X will be defined, A = Pn1 × · · · × Pnk . The manifold X is defined within this ambient

space as the common zero locus of a set of k defining polynomials. The remaining columns

each determine the multi-degree of one of these defining polynomials. In a given column

each row specifies the degree of that defining relation with respect to the homogeneous

coordinates of the corresponding ambient space factor. Throughout this paper we will

denote by xr,a the ath homogeneous coordinate on the rth ambient space projective factor.

The dimension of a complete intersection described by a configuration matrix of the

form (2.4) is simply
∑

r nr − k. That is, the dimension is simply given as the dimension

– 6 –
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of the ambient space minus the number of constraints being imposed. The condition for a

vanishing first Chern class for X, meaning that the manifold is indeed Calabi-Yau, can be

achieved if the following condition is met.

nr + 1 = Σk
l=1q

r
l ∀ r (2.5)

The CICYs are all simply connected and therefore, in order to accommodate Wilson

line breaking, quotients of these manifolds by appropriate freely acting discrete symmetries

are considered. Braun has classified all such actions, allowing for a set of defining relations

which respect the symmetry while remaining transverse, that descend from a linear action

on the ambient spaces A that appear in the original classifying list of such constructions [88].

Having specified the Calabi-Yau manifolds to be utilized X̂ in the above way, in [19, 20]

the authors then produce Heterotic Line Bundle Standard Models by specifying appropriate

sums of line bundles on X. These are chosen to be equivariant under the symmetries by

which the manifolds are quotiented and to give rise to spectra on X̂ which precisely match

that of the standard model in the sector charged under SU(3)×SU(2)×U(1). If one works

with favorable CICYs, where all of H1,1(X) descends from forms dual to divisors on the

ambient space, general line bundles on X can be specified by the following notation.

L = OX(p1, p2, . . . , pk)⇔ c1(L) =
∑
r

prJr (2.6)

Here Jr is the Kähler forms of the rth ambient space factor, restricted to the Calabi-Yau

threefold. These are the restriction of the analogous line bundles on the ambient space

OA(p1, p2, . . . , pk)) to X. The bundle VSM is then taken to be an equivariant sum of five such

objects. In fact, in the data set of [19, 20], each line bundle in VSM is taken to be equivariant

individually. As we will see in concrete examples in later sections, the cohomology of various

products of these line bundles can be computed using a combination of a theorem due to

Bott, Borel and Weil and the Koszul sequence [89, 90]. For a discussion of equivariance in

this setting, and induced symmetry actions on cohomology see for example the appendices

of [20]. Once the cohomology, and its representation content, of the line bundles is known,

the spectrum of the associated heterotic theory can be read off from table 1.

Using such a construction, in [19, 20], a data set of 2012 Line Bundle Standard Models

was produced. It is properties of this data set that will be examined in the rest of this

paper. It would certainly be interesting to apply a similar analysis to larger data sets of

this type which could be obtained by extending the work of [21], for example.

3 Moduli stabilization, potentials and couplings

The moduli stabilization mechanism we will consider in this paper concerns the complex

structure degrees of freedom and was presented in [57, 58] (a similar description of moduli

stabilization in Type II was considered in [91]). We will be particularly interested in the

mechanism for fixing these particular moduli in the current work as the cohomology groups

determining the spectrum of a model, as presented in the previous section, depend upon

these degrees of freedom. The basic mechanism is as follows.

– 7 –
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An N = 1 compactification of heterotic string theory on a Calabi-Yau threefold X

includes a gauge connection on a gauge bundle V which satisfies the Hermitian Yang-Mills

equations.

gabFab = 0 , Fab = Fab = 0 (3.1)

Starting with a good solution to these equations, one can consider a perturbation of

all of the degrees of freedom of the problem about that vacuum. In particular, focusing

on the holomorphy condition Fab = 0, we can perturb the complex structure and gauge

connection and ask what constraints maintaining supersymmetry places on those variations.

The following condition is obtained [57, 58].

δJ d
[a F

(0)

b]d
+ 2iD

(0)
[a δAb] = 0 (3.2)

Here δJ ∈ H1(TX) is a variation of the complex structure tensor, δA is the pertur-

bation in the gauge connection and objects with a superscript (0) are constructed from

unperturbed quantities. What (3.2) states is that a complex structure fluctuation is a true

low energy degree of freedom only if there exists a gauge field fluctuation which solves

this constraint. Otherwise, such a variation of complex structure will necessarily cause the

bundle to become non-holomorphic, breaking supersymmetry.

Equation (3.2) can be interpreted cohomologically as saying that the complex structure

moduli of the base Calabi-Yau threefold that are true massless degrees of freedom of the

four dimensional effective theory are given as the following kernel.

ker

(
H1(TX)

F (0)

−→ H2(End0(V ))

)
(3.3)

The allowed deformations of the connection are much easier to understand. A gauge field

fluctuation living in the usual cohomology describing the bundle moduli, δA∈H1(End0(V )),

satisfies (3.2) for a vanishing δJ and is therefore always consistent with holomorphy as one

would expect.

The permitted combined deformations of the base complex structure and bundle mod-

uli of holomorphic vector bundles is in fact very well studied in the mathematics literature.

Indeed, the above discussion is simply a field theory manifestation of Atiyah’s discussion

of the tangent to the moduli space of holomorphic bundles [92]. Atiyah states that the

allowed deformations are given by H1(Q) where the bundle Q is defined by the following

short exact extension sequence.

0→ End0(V )→ Q→ TX → 0 (3.4)

Analyzing the long exact sequence in cohomology associated to (3.4) one then finds the

following,

H1(Q) = H1(End0(V ))⊕ ker
(
H1(TX) −→ H2(End0(V ))

)
, (3.5)

which agrees with the field theoretic analysis given above.
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The above discussion shows in general terms a choice of bundle can restrict complex

structure moduli via the requirement of holomorphy of that object. However, it will be

crucial for the purposes of this paper to construct explicit examples of such bundles and

compute to exactly which locus in complex structure moduli space the system is con-

strained.

Fortunately such examples have indeed been provided in the literature [57, 58, 60].

Perhaps the simplest such examples take the form of bundles of SU(2) structure group

which are constructed as extensions of a line bundle and its dual. To see how this works it

is simplest to look at an explicit case. The example that follows was first presented in [60].

As a base manifold, let us consider a freely acting quotient X̂ of the the following

CICY,

X =


P1 2

P1 2

P1 2

P1 2

 , (3.6)

by the following Z2 × Z4 symmetry action.

γ1 : xr,a → (−1)a+r+1xr,a (3.7)

γ2 : xr,a → xσ(r),a+r+1 where σ = (12)(34)

It will useful going forward to know the most general form of the polynomial defining

relation for X that is consistent with the symmetry (3.7). This is explicitly given by the

following expression.

p = c1x1,0x1,1x2,0x2,1x3,0x3,1x4,0x4,1 + c9

(
x2

1,0x3,0x3,1x4,0x4,1x
2
2,0 + x2

1,1x3,0x3,1x4,0x4,1x
2
2,0

+x2
1,0x

2
2,1x3,0x3,1x4,0x4,1 + x2

1,1x
2
2,1x3,0x3,1x4,0x4,1

)
+ c3

(
x2

1,1x2,0x2,1x4,0x4,1x
2
3,0

+x1,0x1,1x
2
2,1x3,1x

2
4,0x3,0 + x1,0x1,1x

2
2,0x3,1x

2
4,1x3,0 + x2

1,0x2,0x2,1x
2
3,1x4,0x4,1

)
+

c4

(
x1,0x1,1x

2
2,0x4,0x4,1x

2
3,0 + x2

1,1x2,0x2,1x3,1x
2
4,0x3,0 + x2

1,0x2,0x2,1x3,1x
2
4,1x3,0

+x1,0x1,1x
2
2,1x

2
3,1x4,0x4,1

)
+ c5

(
x1,0x1,1x

2
2,1x4,0x4,1x

2
3,0 + x2

1,0x2,0x2,1x3,1x
2
4,0x3,0

+x2
1,1x2,0x2,1x3,1x

2
4,1x3,0 + x1,0x1,1x

2
2,0x

2
3,1x4,0x4,1

)
+ c6

(
x2

1,0x2,0x2,1x4,0x4,1x
2
3,0

+x1,0x1,1x
2
2,0x3,1x

2
4,0x3,0 + x1,0x1,1x

2
2,1x3,1x

2
4,1x3,0 + x2

1,1x2,0x2,1x
2
3,1x4,0x4,1

)
+

c7

(
x2

1,1x
2
2,1x

2
3,0x

2
4,0 + x2

1,0x
2
2,1x

2
3,1x

2
4,0 + x2

1,1x
2
2,0x

2
3,0x

2
4,1 + x2

1,0x
2
2,0x

2
3,1x

2
4,1

)
+

c8

(
x2

1,0x
2
2,1x

2
3,0x

2
4,0 + x2

1,0x
2
2,0x

2
3,1x

2
4,0 + x2

1,1x
2
2,1x

2
3,0x

2
4,1 + x2

1,1x
2
2,0x

2
3,1x

2
4,1

)
+

c2

(
x1,0x1,1x2,0x2,1x

2
3,0x

2
4,0 + x1,0x1,1x2,0x2,1x

2
3,1x

2
4,0 + x1,0x1,1x2,0x2,1x

2
3,0x

2
4,1

+x1,0x1,1x2,0x2,1x
2
3,1x

2
4,1

)
+ c10

(
x2

1,1x
2
2,0x

2
3,0x

2
4,0 + x2

1,1x
2
2,1x

2
3,1x

2
4,0 + x2

1,0x
2
2,0x

2
3,0x

2
4,1

+x2
1,0x

2
2,1x

2
3,1x

2
4,1

)
+ c11

(
x2

1,0x
2
2,0x

2
3,0x

2
4,0 + x2

1,1x
2
2,0x

2
3,1x

2
4,0 + x2

1,0x
2
2,1x

2
3,0x

2
4,1

+x2
1,1x

2
2,1x

2
3,1x

2
4,1

)
(3.8)

Here the coefficients c are general constants which form a redundant description of the

complex structure moduli of the manifold.
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Over this base we construct the extension,

0→ L → V → L∨ → 0 , (3.9)

where L is the line bundle that descends from the object OX(−2,−2, 1, 1) on the covering

space in the language outlined in the previous subsection. This line bundle is equivariant

with respect to the Z2 × Z4 symmetry and thus the construction does indeed respect the

symmetry being quotiented by. The non-trivial nature of the bundle (3.9) is controlled

by extension group Ext1(L∨,L) = H1(X,L2), or rather by the appropriately transforming

piece of this that survives in the downstairs theory. For the line bundle specified here,

this cohomology vanishes for a generic enough choice of complex structure of X. As such,

generically, the only extension of the form (3.9) is the split bundle which has structure

group S(U(1) × U(1)). However, at higher codimension loci in complex structure moduli

space the cohomology H1(X,L2) jumps in dimension to non-zero values. At such loci, one

can define a non-split SU(2) bundle of the form (3.9). Different types of jumping, not in

dimension but rather in chiral ring structure, can also occur [81, 89, 93].

The essential idea, then is to start with a background wherein the complex structure is

fixed to a jumping locus of H1(X,L2) and the vector bundle V is taken to be an irreducible

rank 2 object of the form (3.9). One would expect that complex structure fluctuations that

took the system off of this loci would not lie in the kernel (3.3) as there would then be

no appropriate SU(2) bundle to perturb to and going to the split bundle would be more

than an infinitesimal perturbation of the gauge connection. It was shown in [58] that this

is indeed the case. In such a situation, the requirement of bundle holomorphy stabilizes

the system to the jumping locus of the extension group.

In fact, the computations that one performs to explicitly find the stabilization locus

associated to such a bundle reveal an extremely rich structure. To perform such calculations

one examines the Koszul sequence which, in the current example, takes the following form.

0→ N∨ ⊗ L2
A → L2

A → L2
X → 0 (3.10)

Performing sequence chasing on the long exact sequence in cohomology associated to (3.10)

and using some facts associated to the specific example we have described above one can

find that the cohomology group describing the extension classes of (3.9) is given by the

following expression.

H1(X,L2) = ker
(
H2(A,N∨ ⊗ L2

A)→ H2(A,L2
A)
)

(3.11)

In the case at hand, we can denote a general element of the cohomology H2(A,N∨⊗L2
A) =

H2(A,O(−6,−6, 0, 0)), in polynomial language via the Bott-Borel-Weil theorem, as follows.

s1

(
1

x2
1,0x

2
1,1x

2
2,0x

2
2,1

)
+ s3

(
1

x4
1,0x

2
2,0x

2
2,1

+
1

x4
1,1x

2
2,0x

2
2,1

+
1

x2
1,0x

2
1,1x

4
2,0

+
1

x2
1,0x

2
1,1x

4
2,1

)

+s2

(
1

x3
1,0x1,1x3

2,0x2,1
+

1

x1,0x3
1,1x

3
2,0x2,1

+
1

x3
1,0x1,1x2,0x3

2,1

+
1

x1,0x3
1,1x2,0x3

2,1

)
(3.12)

+s4

(
1

x4
1,0x

4
2,0

+
1

x4
1,1x

4
2,0

+
1

x4
1,0x

4
2,1

+
1

x4
1,1x

4
2,1

)
.
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Here the sk are arbitrary coefficients. Given this, via (3.11) any potential extension class

can be represented by an object of the form (3.12).

By performing an explicit computation, examples of which can be found in [57, 58, 60]

or later sections of this paper, one can obtain a set of loci, that is a reducible algebraic

variety, in a combined space of complex structure moduli and potential extension classes

of (3.9). In the case at hand, the generators of this reducible variety are as follows.

c7s1 + c2s2 + c8s3 + c10s3 + c11s4, c8s1 + c2s2 + c7s3 + c11s3 + c10s4, c9s1 + c1s2 + 2c9s3

+ c9s4, c10s1+ c2s2+ c7s3+ c11s3+ c8s4, c11s1+ c2s2+c8s3+c10s3+c7s4, c3s1+ c4s2+c5s2

+ c6s3, c4s1 + c3s2 + c6s2 + c5s3, c5s1 + c3s2 + c6s2 + c4s3, c6s1 + c4s2 + c5s2 + c3s3,

c10s1 + c2s2 + c7s3 + c11s3 + c8s4, c7s1 + c2s2 + c8s3 + c10s3 + c11s4, c9s1 + c1s2 + 2c9s3

+ c9s4, c11s1+c2s2+c8s3+c10s3+c7s4, c8s1+c2s2+c7s3+c11s3+c10s4, c5s1+c3s2+c6s2

+ c4s3, c3s1 + c4s2 + c5s2 + c6s3, c6s1 + c4s2 + c5s2 + c3s3, c4s1 + c3s2 + c6s2 + c5s3, c2s1

+ c7s2 + c8s2 + c10s2 + c11s2, c2s1 + c7s2 + c8s2 + c10s2 + c11s2, c1s1 + 4c9s2, c2s1 + c7s2

+ c8s2 + c10s2 + c11s2, c2s1 + c7s2 + c8s2 + c10s2 + c11s2, c4s1 + c3s2 + c6s2 + c5s3, c6s1

+ c4s2+ c5s2+ c3s3, c3s1+ c4s2 + c5s2+ c6s3, c5s1 + c3s2 + c6s2 + c4s3, c8s1 + c2s2 + c7s3

+ c11s3 + c10s4, c11s1 + c2s2 + c8s3 + c10s3 + c7s4, c9s1 + c1s2 + 2c9s3 + c9s4, c7s1

+ c2s2 + c8s3 + c10s3 + c11s4, c10s1 + c2s2 + c7s3 + c11s3 + c8s4, c6s1 + c4s2 + c5s2 + c3s3,

c5s1 + c3s2 + c6s2 + c4s3, c4s1 + c3s2 + c6s2 + c5s3, c3s1 + c4s2 + c5s2 + c6s3, c11s1 + c2s2

+ c8s3 + c10s3 + c7s4, c10s1 + c2s2 + c7s3 + c11s3 + c8s4, c9s1 + c1s2 + 2c9s3 + c9s4,

c8s1 + c2s2 + c7s3 + c11s3 + c10s4, c7s1 + c2s2 + c8s3 + c10s3 + c11s4

Essentially, if one substitutes in a specific complex structure into these equations then the

possible solutions for the sk specify all of the possible extensions classes at that point in

moduli space in terms of the description given in (3.12).

Next, this reducible algebraic variety can be primary decomposed to find its irreducible

pieces. A discussion of the methods that we use for computations such as this can be

found in, for example, [94, 95]. We utilized the specific implementations found in [96–102]

in this work. Each of these pieces can then be processed further by an elimination of the

variables sk describing the possible extension classes. This provides a set of irreducible

varieties in complex structure moduli space which are the loci to which the associated

choices of extension classes stabilize the system. There can be a great many such loci. For

example, in [60], it was shown for the example described above that there are 25 such loci

in complex structure moduli space to which one could be stabilized, varying from points

to 7 dimensional surfaces. The specific loci that were found in that work are reproduced

in table 2.

Finally one should check, for each locus that the system could be stabilized to, that for

a generic enough choice of complex structure moduli in that set the Calabi-Yau manifold

is smooth. This can be quite constraining, especially for quotients of CICYs, and in fact

only one of the loci for the example being discussed here, of dimension 4, turns out to

correspond to a smooth threefold (see table 2).
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Equations Dimension Singular

c3−c4−c5+c6 =c2−c7−c8−c10−c11 =c1−4c9 =0 7 singular

c3+c4+c5+c6 =c2+c7+c8+c10+c11 =c1+4c9 =0 7 singular

c9 =c2 =c1 =c7+c8+c10+c11 =c4+c5 =c3+c6 =0 4 singular

c7−c8−c10+c11 =c4−c5 =c3−c6 =c2 =c1 =0 5 singular

c7−c8−c10+c11 =c6 =c5 =c4 =c3 =c1c8−2c2c9+c1c10 =0 4 singular

c11 =c10 =c9 =c8 =c7 =0 5 singular

c9 =c6 =c5 =c4 =c3 =c2 =c1 =c8+c10 =c7+c11 =0 1 singular

c9 =c2 =c1 =c8+c10 =c7+c11 =c5+c6 =c4+c6 =c3−c6 =0 2 singular

c9 =c2 =c1 =c8+c10 =c7+c11 =c5−c6 =c4−c6 =c3−c6 =0 2 singular

c11 =c10 =c9 =c8 =c7 =c2 =c1 =c3−c4−c5+c6 =0 2 singular

c11 =c10 =c9 =c8 =c7 =c2 =c1 =c3+c4+c5+c6 =0 2 singular

c11 =c10 =c9 =c8 =c7 =c2 =c1 =c4+c5 =c3+c6 =0 1 singular

c11 =c10 =c9 =c8 =c7 =c2 =c1 =c4−c5 =c3−c6 =0 1 singular

c11 =c10 =c9 =c8 =c7 =c2 =c1 =c5+c6 =c4+c6 =c3−c6 =0 0 singular

c11 =c10 =c9 =c8 =c7 =c2 =c1 =c5−c6 =c4−c6 =c3−c6 =0 0 singular

c10−c11 =c8−c11 =c7−c11 =c6 =c5 =c4 =c3 =0 3 singular

c10−c11 =c8−c11 =c7−c11 =c6 =c5 =c4 =c3 =c2c9−c1c11 =0 2 singular

c10−c11 =c8−c11 =c7−c11 =c4+c5 =c3+c6 =c2c9−c1c11 =0 4 smooth

c10−c11 =c8−c11 =c7−c11 =c5+c6 =c4+c6 =c3−c6 =c2c9−c1c11 =0 3 singular

c10−c11 =c8−c11 =c7−c11 =c5−c6 =c4−c6 =c3−c6 =c2c9−c1c11 =0 3 singular

c8−c10 =c7−c11 =c6 =c5 =c4 =c3 =c2c9+50c1c10+50c1c11 =0 3 singular

c10+c11 =c9 =c6 =c5 =c4 =c3 =c2 =c1 =c8+c11 =c7−c11 =0 0 singular

c10+c11 =c9 =c2 =c1 =c8+c11 =c7−c11 =c4−c5 =c3−c6 =0 2 singular

c10+c11 =c9 =c2 =c1 =c8+c11 =c7−c11 =c5+c6 =c4+c6 =c3−c6 =0 1 singular

c10+c11 =c9 =c2 =c1 =c8+c11 =c7−c11 =c5−c6 =c4−c6 =c3−c6 =0 1 singular

Table 2. A table of results taken from [60] showing the loci in complex structure moduli space to

which the Calabi-Yau three-fold X̃/(Z2 × Z4) can be stabilized by the bundle V in equation (3.9).

The column “Dimension” denotes the complex dimension of the given locus. The column “Singular”

specifies whether the Calabi-Yau three-fold associated with a generic complex structure in each locus

is singular or smooth.

4 Particle spectrum jumping due to moduli stabilization

In this section we will consider the interplay between bundles constructed in the visible

sector in order to engineer a standard model like spectrum in the low energy theory, and

bundles inserted into the hidden E8 in order to stabilize complex structure moduli. In

particular, we will be investigating to what degree hidden sector bundles can force the

complex structure of the Calabi-Yau threefold to a locus in moduli space where the visible

sector is forced to jump. Such an effect could be either beneficial (in introducing a Higgs

doublet pair into a model which previously had none for example) or undesired (for example

in causing additional generations and anti-generations to appear).

There are several possibilities for intersection of the jumping locus of the standard

model sector and hidden sector bundles in complex structure moduli space. These are
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Figure 1. Three possible situations involving intersection between the locus in moduli space ΣH

where the hidden sector bundle stabilizes the complex structure and the locus ΣSM where the

spectrum of the standard model bundle jumps. The only case in which the moduli stabilization

mechanism forces the standard model spectrum to change is the last, as discussed further in the

text.

depicted in figure 1. In the first situation depicted in the figure, the locus of jumping of

the standard model bundle lies inside the locus of jumping of the hidden sector one. In the

second situation the two loci intersect at a higher codimension locus in complex structure

moduli space. In both of these cases, the moduli stabilization mechanism does not force the

standard model matter sector to change from that found at an arbitrary point in complex

structure moduli space, where most such models are analyzed during their construction.

In both situations, if the stabilization mechanism forces the complex structure to a generic

enough point in ΣH, then ΣSM will miss this point.

On the other hand, the third situation in figure 1, or its extreme limit where ΣH = ΣSM

is of interest to us here. In this case, wherever we are on the hidden sector locus the

standard model spectrum jumps from that which is observed at a generic point in complex

structure moduli space. As such, if model building was carried out without thinking about

the moduli stabilization mechanism, then incorrect conclusions would be reached about

the particle content of the four dimensional effective theory.

Naively, one might think that such a phenomenon would be extremely rare. After all,

the visible and hidden E8’s of heterotic string or M-theory are rather separate in nature

and are only coupled to each other gravitationally. Given this, why should the locus of

jumping of a bundle in one sector lie exactly inside that of another (ΣH ⊂ ΣSM)? There are

some conditions linking the two bundles, however, and we will find that these are strong

enough to make the phenomenon we are talking about surprisingly common.

The first condition we will consider is the standard one following from requiring inte-

grability of the Bianchi Identity.

ch2(VH)a + ch2(VSM)a − ch2(TX)a + [W ]a = 0 ∀a (4.1)

Here the indices a = 1, . . . , h(1,1)(X) label the harmonic (2, 2) forms on the Calabi-Yau

threefold, VSM and VH are the visible and hidden sector bundles respectively, X is the

Calabi-Yau manifold and [W ] is a form proportional to the dual of the class of the (in

general reducible) curve wrapped by NS five-branes/M5 branes in the vacuum configuration
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being considered (in the heterotic string/heterotic M-theory respectively). Allowing for M5

branes that preserve supersymmetry, and thus lead to a class [W ] that is effective, (4.1)

leads us to the following inequality.

ch2(VH)a + ch2(VSM)a ≤ ch2(TX)a ∀ a (4.2)

In addition to the second Chern character constraint (4.2), there is the constraint that

both the visible and hidden sector bundles must be slope poly-stable and slope zero for the

same choice of four dimensional Kähler moduli. Due to the warping of heterotic M-theory,

there is a slight difference between the polarizations experienced between the two bundles,

but nevertheless this is easy to account for. As with (4.2), providing that both bundles

are indeed stable in reasonably large chambers of the Kähler cone, this constraint is not

seemingly too difficult to satisfy.

Although the inequality (4.2) and the requirement for simultaneous stability of the

hidden and visible sector gauge bundles may not seem like a very strong set of constraints,

in some cases it can become so once one considers quotienting the Calabi-Yau manifold in

order to introduce Wilson lines.1 The issue is that equivariance constraints, ensuring that

the gauge bundles are consistent with the symmetry by which the Calabi-Yau threefold is

being quotiented, can mean that quite a few bundles are not available in building models

and hidden sectors. The resulting combination of equivariance, stability and second Chern

class constraints can be quite restrictive.

4.1 A systematic investigation of a class of bundle constructions

To illustrate the issues discussed above, and to obtain an idea of how commonly moduli

stabilization affects the visible sector spectrum, at least in a class of examples, we will

look at specific types of construction of visible and hidden sector bundles. The visible

sector will be taken to be a sum of line bundles (more specifically a line bundle standard

model). The hidden sector will be taken to be a simple extension of two line bundles of

the following form.

0→ L → VH → L∨ → 0 (4.3)

Constructions of the type (4.3) are perhaps the simplest types of bundles that can lead

to complex structure stabilization of the type described in section 3. They have structure

group SU(2) and the only simpler possibility, that of an abelian structure group, is ruled

out by the fact that sums of line bundles do not exhibit this phenomenon.

In considering examples of such hidden and visible sector bundles, one immediately

sees one compatibility constraint that arises. Consider a line bundle sum VSM in the visible

sector containing a line bundle L1. That same line bundle can not be used in creating an

extension of the form (4.3) for the hidden sector bundle VH. The issue is simply one of

stability. As can be seen from the defining sequence (4.3), if L = L1 then that line bundle

injects into VH. It must therefore be of negative slope if VH is to be stable. However, on the

1Which has been shown to be essentially the only way to break the GUT group in such compactifica-

tions [103]
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locus in Kähler moduli space where VSM is poly-stable µ(L1) = 0 and thus the visible and

hidden sectors can’t simultaneously preserve supersymmetry in such a situation. Similarly

one can not set L = L∨1 . In such a situation we find an exactly analogous situation when

we consider the stability of V ∨H . Since VH is stable iff V ∨H is, this leads us to the same

conclusion.

Overall, the observation of the previous paragraph can be quite a big constraint on

the possible hidden sectors that can be included to complete a line bundle standard model

and stabilize complex structure moduli. As stated earlier, there are frequently not many

choices of equivariant line bundles that can be included in an extension such as (4.3) in

the hidden sector without violating the bound on ch2(VH) imposed by integrability of the

Bianchi Identity and supersymmetry. Given that all of the line bundles that appear in the

line bundle standard model (and their duals) are ruled out on grounds of stability, in some

cases one can be left with very few, or even no, possibilities.

Assuming simultaneously stable hidden and visible sector bundles can be found we

must then study the relevant jumping loci in complex structure moduli space and compare

them. Ideally the procedure would be as follows, using the discussion of section 3.

1. Find the locus in complex structure/potential extension space to which the hidden

sector bundle forces the system.

2. Primary decompose that locus to find its irreducible components. For each individ-

ual locus, eliminate the degrees of freedom corresponding to potential extensions to

obtain a variety living purely in complex structure moduli space ΣH
I . We will denote

the reducible variety composed of all of these irreducible components ΣH =
⋃
I ΣH

I .

3. In a similar manner, find the locus in complex structure moduli space, ΣSM on which

the visible sector matter spectrum jumps.

4. For each irreducible piece of ΣH ask if that locus is contained in ΣSM. I.e. check

whether there exists an ΣH
I such that ΣH

I ⊆ ΣSM.

Unfortunately, in practice the above procedure is often prohibitively computationally

intensive. The problem is that the jumping cohomology of relevance for ΣH is H1(L2)

where L is an equivariant line bundle. This cohomology very often involves large numbers

in the first Chern class of L2 and this leads to a primary decomposition which is extremely

costly in the second step in the list just given.

If at all computationally feasible, we use the above procedure when analyzing examples.

However, if this computation can not be completed in practice, then we carry out the

following analysis instead.

1. Find a set of example points in complex structure moduli space lying on ΣSM.

2. Determine if these points also lie on ΣH.

3. For those that do, if any, perform a linear perturbation analysis around that point in

complex structure moduli space to determine if the hidden sector locus ΣH
I on which

it lies is localized within ΣSM.
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We will give more details as to how this is achieved in the examples we will present

going forward. In this manner, we can check whether any of the random points in ΣSM that

were picked lie on a component of the hidden sector locus such that ΣH
I ⊂ ΣSM. When we

do find such points it is most likely that we have found a case where the equidimensional

hulls of the two reducible varieties in complex structure moduli space coincide. We should

mention in addition that, throughout the work presented in this section, we check the

smoothness of the Calabi-Yau threefolds involved at both the specific points we chose and

the loci we consider in complex structure moduli space.

Applying the procedure described above provides us with a, presumably rather weak,

lower bound on the frequency with which the hidden sector bundle can cause the standard

model matter content to jump. We will see later that this is already good enough to

illustrate one must be cautious in combining moduli stabilization and model building. We

note that we start by finding points on ΣSM rather than ΣH here because the line bundles

involved then tend to have smaller entries in their first Chern class. This leads to a more

tractable computation.

4.2 An example

Let us illustrate the above general discussion with a concrete example. We will work on

a freely acting Z2 quotient of CICY number 6777 which is described by the following

configuration matrix.

X =


P1 1 1 0 0

P1 0 0 0 2

P1 0 0 2 0

P1 2 0 0 0

P3 1 1 1 1

 . (4.4)

We label the homogeneous coordinates of the four ambient space P1 factors as xr,a
where r = 1, . . . , 4 runs over the projective spaces and a = 0, 1 labels the homogeneous

coordinates on each factor. The homogeneous coordinates of the P3 factor are labeled as

x5,α where α = 0, . . . , 3. Given this notation, we can write the ambient space coordinate

action of the Z2 symmetry by which we will quotient as follows.

ΓxZ2
: (xr,a : x5,α)→ ((−1)a+1xr,a : (−1)max(2α,3)x5,α) (4.5)

In addition, the symmetry has a non-trivial normal bundle action, or equivalently action

on the defining polynomials. Labeling the four defining relations corresponding to the

columns of (4.4) as pA where A = 1, . . . , 4, we have the following.

ΓpZ2
: (p1, p2, p3, p4)→ (−p1, p2, p3,−p4) (4.6)

Given the action (4.5) and (4.6), the most general defining relations for the configura-
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tion matrix (4.4) that are compatible with the symmetry are as follows.

p1 = c1,7x1,1x5,0x
2
4,0 + c1,8x1,1x5,1x

2
4,0 + c1,1x1,0x5,2x

2
4,0 + c1,2x1,0x5,3x

2
4,0 (4.7)

+c1,3x1,0x4,1x5,0x4,0 + c1,4x1,0x4,1x5,1x4,0 + c1,9x1,1x4,1x5,2x4,0 + c1,10x1,1x4,1x5,3x4,0

+c1,11x1,1x
2
4,1x5,0 + c1,12x1,1x

2
4,1x5,1 + c1,5x1,0x

2
4,1x5,2 + c1,6x1,0x

2
4,1x5,3

p2 = c2,1x1,0x5,0 + c2,2x1,0x5,1 + c2,3x1,1x5,2 + c2,4x1,1x5,3

p3 = c3,1x5,2x
2
3,0+c3,2x5,3x

2
3,0+c3,3x3,1x5,0x3,0 + c3,4x3,1x5,1x3,0+c3,5x

2
3,1x5,2 + c3,6x

2
3,1x5,3

p4 = c4,1x5,0x
2
2,0+c4,2x5,1x

2
2,0+c4,3x2,1x5,2x2,0+c4,4x2,1x5,3x2,0 + c4,5x

2
2,1x5,0 + c4,6x

2
2,1x5,1

In these expressions, the c’s are arbitrary coefficients associated to the complex structure

moduli space. We call the manifold obtained by quotienting X by the symmetry action (4.5)

and (4.6) X̂.

On the quotient manifold described above we now define the visible sector bundle (first

constructed in [19, 20]). On X we define,

VSM =

5⊕
i=1

Li , (4.8)

where

L1 = O(1,−1, 1,−1, 0) , L2 = O(0, 1, 1, 1,−1) , L3 = O(0, 1,−2, 1, 0) , (4.9)

L4 = O(0,−1, 0,−2, 1) , L5 = O(−1, 0, 0, 1, 0) .

Each line bundle in VSM is individually equivariant, and thus this does indeed define a line

bundle standard model, with bundle V̂SM, on the quotient X̂. We take the parameters

defining the Wilson line and equivariant structure on the sum of line bundles, as described

in section 2 to be W = 1, W̃ = −1, χi = 1 for i = 1, 3 . . . , 5 and χ2 = −1. With these

choices, the downstairs standard model charged matter spectrum, expressed concisely in

terms of GUT multiplets as described earlier, is as follows at a general point in complex

structure moduli space.{
2 10e3 ,10e4 , 2 5e1,e4 ,5e2,e3 ,5−e1,−e2 ,5e1,e2

}
(4.10)

The multiplicity of 5e2,e3 representations in this example has the potential to jump

(along with the multiplicity of 5−e2,−e3 multiplets in an index preserving manner) at higher

dimensional loci in complex structure moduli space. To see this, we must consider the

cohomology H1(X̂, L̂2 ⊗ L̂3) = H1(X̂, Ô(0, 2,−1, 2,−1)), the dimension of which counts

the multiplicity of these degrees of freedom (here hatted bundles correspond to projections

of the associated upstairs objects). To compute this jumping, we work on the covering

space X with the cohomology of the associated equivariant bundles and then pick out the

relevant subspace (which descends to the cohomology on X̂) by comparing representation

content of that space with the Wilson line and equivariant structure.

To calculate the cohomology H1(X,L2⊗L3) = H1(X,O(0, 2,−1, 2,−1)) we make use

of the Koszul sequence

0→ ∧4N∨ ⊗ L2 ⊗ L3 → ∧3N∨ ⊗ L2 ⊗ L3 → · · · → L2 ⊗ L3|A → L2 ⊗ L3|X → 0 (4.11)
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This long exact sequence can be broken into several short exact sequences as follows.

0→ ∧4N∨ ⊗ L2 ⊗ L3 → ∧3N∨ ⊗ L2 ⊗ L3 → K1 → 0 (4.12)

0→ K1 → ∧2N∨ ⊗ L2 ⊗ L3 → K2 → 0
...

0→ K3 → L2 ⊗ L3 → L2 ⊗ L3|X → 0

Here the Ki where i = 1, . . . 3 are kernels and cokernels of the relevant maps. The ambient

space cohomologies of all of the line bundles appearing in the sequences (4.12) (excluding

those of the K’s) are vanishing with two exceptions: h5(A,∧4N∨ ⊗ L2 ⊗ L3) = 8 and

h5(A,∧3N∨ ⊗ L2 ⊗ L3) = 6. Chasing the associated long exact sequences in cohomology

we find the following.

H1(X,L2 ⊗ L3) ∼= ker
(
H5(A,∧4N∨ ⊗ L2 ⊗ L3)→ H5(A,∧3N∨ ⊗ L2 ⊗ L3)

)
(4.13)

Thus, at a generic enough point in complex structure moduli space, we find that h1(X,L2⊗
L3) = 2, leading to the single 5e2,e3 representation in (4.10), after quotienting by the Z2

symmetry, by applying the correspondence of table 1.

In order to present concrete formula which are concise, we will focus on calculating the

locus in complex structure moduli space where the subspace H1(X, L̂2⊗L̂3, χ2⊗χ3⊗W̃ ) ∈
H1(X, L̂2⊗L̂3) jumps in dimension (corresponding to a jump in the number of left handed

SU(2) doublets in the four dimensional effective theory). To do this, we need to study the

map in (4.13) in more detail. We now form an explicit description of the cohomologies

in (4.13) as polynomials in ambient space coordinates, take the relevant subset of such

objects that are picked out in the downstairs cohomology of interest by the choice of

equivariant structure and Wilson line, and study the map in more detail.

A general element of the relevant subspace of the source cohomology group in (4.13)

can be written as follows.

S =
s1

x3,0x5,0
+

s2

x3,0x5,1
+

s3

x3,1x5,2
+

s4

x3,1x5,3
. (4.14)

Here the sk are arbitrary coefficients. Note that h6(A,∧4N∨ ⊗ L2 ⊗ L3) = 8 and we are

dividing by a Z2 symmetry, so the four dimensional space obtained in (4.14) is as expected.

Next we consider the target space in (4.13). We have that

∧3N∨ ⊗ L2 ⊗ L3 = O(−2, 0,−1, 0,−4)⊕O(−2, 2,−3, 0,−4) (4.15)

⊕ O(−1, 0,−3, 2,−4)⊕O(−1, 0,−3, 0,−4) .

Given this, the only contribution to h6(A,∧3N∨⊗L2⊗L3) comes from h6(A,O(−2, 2,−3,

0,−4)), with the other three cohomologies vanishing. The map from (4.14) to this co-

homology is given by multiplication by the fourth defining relation, followed by delet-

ing terms in the resulting polynomial that are not of the correct degree to appear in

h6(A,O(−2, 2,−3, 0,−4)). Performing this computation we obtain the following image of
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the general source element (4.14).

Im(S) =
s1c4,1x

2
2,0

x3,0
+
s2c4,2x

2
2,0

x3,0
+
s3c4,3x2,1x2,0

x3,1
+
s4c4,4x2,1x2,0

x3,1
+
s1c4,5x

2
2,1

x3,0
+
s2c4,6x

2
2,1

x3,0

(4.16)

In order to find the kernel of the map, we then simply require that the coefficients of each

of the rationomes in (4.16) vanishes. Doing so we obtain the following constraints on the

sk, in terms of the complex structure choice cA,γ in (4.7), in order for an element of the

source of the form in (4.14) to be in the kernel.

s1c4,5 + s2c4,6 = 0 , s3c4,3 + s4c4,4 = 0 , s1c4,1 + s2c4,2 = 0 (4.17)

Writing these conditions in matrix form we obtain the following. c4,5 c4,6 0 0

0 0 c4,3 c4,4

c4,1 c4,2 0 0

 ·

s1

s2

s3

s4

 = 0 (4.18)

Given (4.18), it is easy to see that for a generic choice of complex structure the kernel

will be one dimensional as stated earlier. However, on the locus ,

c4,2c4,5 − c4,1c4,6 = 0 , (4.19)

the rank of the matrix in (4.18) changes from 3 to 2, and thus the dimension of the kernel

will change from one to two. Therefore, on this special locus the number of SU(2) doublets

descending from the 5e2,e3 representation increases. Naturally, in order for the index to be

preserved, there is also an increase in the number of associated anti-doublets on the same

locus in complex structure moduli space.

Next we turn our attention to the hidden sector and the bundle which is added to

constraint the complex structure of the compactification. In searching for bundles of the

form (4.3), we find that the following two possibilities

L = O(−2,−1, 1, 1, 0) and L = O(1,−1, 1,−2, 0). (4.20)

are equivariant and satisfy all of the constraints given earlier in this section.

To examine this in more detail we first note that the second Chern class of X can be

presented as a two index quantity, where we expand the (2, 2) form in a redundant basis

given by products of (1, 1) forms spanning H1,1(X). We can then contract this description

of the Chern class with the intersection form to get a description of c2(X) as a vector of

length h1,1(X) = h2,2(X). When we do this we obtain the following.

c2(X) = (24, 24, 24, 24, 56) (4.21)

The second Chern class of the standard model we are examining here, expressed in the

same manner is:

c2(VSM) = (12, 12, 12, 12, 32) . (4.22)
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Finally, the second Chern classes of the extensions (4.3) of the L’s given in (4.20) are

respectively the following.

c2(VH) = (4, 12, 4, 4, 20) or c2(VH) = (4, 12, 4, 4, 20). (4.23)

It is easy to see that the SU(2) bundles we are choosing satisfy the second Chern character

condition (4.2).

Since all line bundles are equivariant with respect to the Z2 symmetry we are consid-

ering, the only constraint that we have left to consider is that of stability. It is straight

forward to show [60] that an extension of the form (4.3) is stable iff µ(L) < 0, that is if the

slope of L is strictly negative.

We recall the expression for the slope of a line bundle,

µ(Li) =

h1,1(X)∑
r,s,t=1

drstc
r
1(Li)tstt = 0 , (4.24)

and give a definition of a set of variables σr:

σr =

h1,1(X)∑
s,t=1

drstt
stt . (4.25)

Then, examining the standard model bundle given in (4.8) and (4.9), we obtain the fol-

lowing conditions for the slopes of the line bundles involved to vanish (a necessary and

sufficient condition for its poly-stability).

σ1 − σ2 + σ3 − σ4 = 0 , σ2 + σ3 + σ4 − σ5 = 0 , σ2 − 2σ3 + σ4 = 0 , (4.26)

−σ2 − 2σ4 + σ5 = 0 , −σ1 + σ4 = 0

The general solution to these equations is given by the following.

σ1 = σ2 = σ3 = σ4 , σ5 = 3σ1 (4.27)

We can now ask about the slope of the possible L’s given in (4.20) on this locus, and

thus about the stability of the hidden sector bundles. We find that,

µ(O(−2,−1, 1, 1, 0)) = −σ1 < 0 , µ(O(1,−1, 1,−2, 0)) = −σ1 < 0 . (4.28)

Thus, the proposed hidden sector extensions are indeed stable on the same locus in Kähler

moduli space as the VSM and our last constraint is satisfied.

To proceed further we will focus on L = O(1,−1, 1,−2, 0), although a similar analysis

can be followed for the other possibility in (4.20). The next step is to study the jumping

locus of the extension group defining (4.3) and compare this jumping locus to that of VSM.

The extension class of (4.3) lies in H1(X,L2). Performing an analogous chasing of Koszul

sequence to the one we performed for the visible sector bundle, we arrive at the following

description of this cohomology.

H1(X,L2) ∼= ker(H5(A,∧4N∨ ⊗ L2)→ H2(A,L2)) (4.29)
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In fact, we will be interested in the associated cohomology on the quotiented manifold

X̂. For simplicity in this example we choose the trivial equivariant structure on L2, and

thus this will correspond to simply considering the invariant elements in the cohomology

groups concerned under the naive transformation induced from the coordinate action of the

symmetry. This choice is consistent with non-trivial equivariant structures on the normal

bundle such as (4.6) in this example. More generally in this work we consider all possible

choices of equivariant structure.

A general element of the down-stairs cohomology describing the source space of the

map corresponding to (4.29) is found to be the following.

S =
s1

x2
2,0x

4
4,0

+
s4

x2,0x2,1x3
4,0x4,1

+
s2

x2
2,0x

2
4,0x

2
4,1

+
s7

x2
2,1x

2
4,0x

2
4,1

+
s5

x2,0x2,1x4,0x3
4,1

(4.30)

+
s6

x2
2,1x

4
4,0

+
s3

x2
2,0x

4
4,1

+
s8

x2
2,1x

4
4,1

Where, as in previous examples, the sk are a set of arbitrary constants. The map itself, from

an examination of (4.29), should be built out of a combination of four defining relations.

This map is in fact constructed in a somewhat non-trivial fashion as follows:

f = εαβγδp1αp2βp3γp4δ, (4.31)

Here εαβγδ is the totally antisymmetric tensor and pAα denotes the partial differentiation

of pA with respect to the variable x5,α where α runs from 0 to 3. It is easy to see that f

then has multi-degree (2, 2, 2, 2, 0) which is precisely what is needed to match the source

and target degrees in (4.29).

As in the computation of the kernel in (4.13), we can now multiply the general source

polynomial (4.30) by the map polynomial (4.29) and demand that all of the coefficients

of terms appearing in the target space vanish. When we do so we obtain a very long

expression depending upon the sk in (4.30) and the coefficients in the defining relations

cA,γ . While there are only 14 constraints obtained in this manner, which we will denote

by Iα where α = 1, . . . 14, they are over two pages in length and so we do not reproduce

them here.

For general defining relations, the kernel of this map is found to be trivial. For special

loci in complex structure moduli space, however, a non-trivial kernel is obtained, and thus

the question arises how best to find this locus. As discussed earlier in this subsection,

ideally we would like to primary decompose the ideal associated to these constraints and

analyze each irreducible component of the associated variety separately. However, in the

case at hand, this method is too computationally intensive, especially as part of a large

scan over cases.

Given this situation, this is an example where we follow the methodology outlined ear-

lier for cases where primary decomposition is too slow. We begin by finding a set of points

in complex structure moduli space lying on the jumping locus ΣSM of the Standard Model

sector bundle VSM. In other words, denoting the generators of the ideal that define the

locus in complex structure moduli space where the cohomology of VSM jumps as Sκ(cA,γ),

we find sets of cA,γ = c0
A,γ such that Sκ(c0

A,γ) = 0 ∀ κ. This is achievable in almost all
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cases we encounter, as the standard model bundle ideal is somewhat less complicated than

its hidden sector cousin. This is simply due to the fact that the extension classes of (4.3)

is the first cohomology of L2, and the square that appears tends to make the associated

ideals larger.

Next we ask whether any of the solutions c0
A,γ also lie on the variety describing the

kernel of the map (4.29) for some non-vanishing value of the sk. That is we plug each

solution cA,γ = c0
A,γ into I(cA,γ , sk) and get a new ideal I ′(sk):

I(cA,γ , sk)
cA,γ=c0A,γ−−−−−−→ I(c0

A,γ , sk) ≡ I ′(sk) . (4.32)

We then find sets of points sk = s0
k which lie on the locus described by I ′(sk), that is,

we find a series of associated possible kernel elements of (4.29), if any non-trivial solutions

exist. Assuming all of this can be achieved, which it can in the example at hand, we end

up with a set of solutions, each comprised of a set of values cA,γ = c0
A,γ , which lie on the

jumping locus of both VSM and VH, along with some associated non-trivial examples of

kernel elements for (4.29) given by the sk = s0
k.

Given these sets of points common to ΣSM and ΣH , we must now decide which of the

cases given in figure 1 these points lie on. We are most interested in the third possibility

depicted in that figure where the component of the hidden sector jumping locus that the

starting point we have isolated lies on is a subset of the standard model jumping locus:

ΣH
I ⊂ ΣSM. It is in this case that the moduli stabilization mechanism will cause the

standard model spectrum to jump.

To ascertain if the situation described in the last paragraph is indeed the one we

have, we perform a linearized perturbation analysis of the equations given by setting the

generators of the relevant ideal to zero. To do this, we substitute cA,γ = c0
A,γ + δcA,γ and

sk = s0
k + δsk into I(cA,γ , sk) and keep only the linear terms in δcA,γ and δsk to obtain a

new set of generators for an ideal I ′′(δcA,γ , δsk). For this ideal, the generators are nothing

but a set of linears in the variables δcA,γ and δsk, and thus it is very easy to perform an

elimination on the variables δsk and obtain a set of constraints, S ′(δcA,γ), purely in terms

of the δcA,γ . Now our task is to compare the two ideals S(cA,γ) and S ′(δcA,γ), If all the

solutions of S ′(δcA,γ) = 0 solve S(c0
A,γ + δcA,γ) = 0 up to linear terms in δcA,γ , then we

can conclude that, at least under infinitesimal perturbation, some irreducible component

ΣH
I of ΣH lies on ΣSM.

In the case at hand, the locus on the standard model side is as follows.

S = c4,2c4,5 − c4,1c4,6 = 0 (4.33)

Assuming that c0
4,1 6= 0 we can then use the following solution for S:

c0
4,1 = a, c0

4,2 = b, c0
4,5 = c, c0

4,6 =
bc

a
(4.34)

The other complex structure coefficients cA,γ in the problem can be taken to be any number

since no constraint arises on them.
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Substituting these solutions into the equations I on the extension side, we obtain an

I ′ which can easily be seen to have the following solutions for s0
k:

s0
4 = 0, s0

5 = 0, s0
6 = −a

c
s1, s

0
7 = −a

c
s2, s

0
8 = −a

c
s3. (4.35)

Here we can take s1,s2 and s3 to be any value.

Now that we have some points in moduli space common to both jumping loci, the next

step is the linear perturbation analysis. Substituting cA,γ → c0
A,γ +δcA,γ and sk → s0

k+δsk
into I, keeping up to linear terms in the perturbations and eliminating the δsk we arrive

at the following single constraint on the δcA,γ .

−a2δc4,6 + abδc4,5 + acδc4,2 − bcδc4,1 = 0 (4.36)

In principle we now should solve this constraint for, for example δc4,6 and substitute

the result into S to see if that set of equations is also solved by these fluctuations to linear

order. In fact this is not necessary in this case, as it can easily be observed that (4.36) is

precisely the linearization of (4.33) around the starting points we have chosen. In this case

this hidden sector locus does not merely lie inside ΣSM, it is identical to it.

Thus, even though we don’t know the full information about the primary decomposition

and elimination of I, it is still possible to show that some of its components lie on the

standard model jump locus. In fact, in this example, we find a locus on the extension side

which is precisely ΣSM. As a final check, one can verify that for a generic enough choice of

complex structure of the form given in (4.34) the cohomology on the extension side does

indeed jump, from h∗(X,O(2,−2, 2,−4, 0)) = (0, 0, 12, 0) to h∗(X,O(2,−2, 2,−4, 0)) =

(0, 5, 17, 0). An examination of the representation content of the larger first cohomology

group which is obtained shows that three of these five elements survive to the quotient.

This is in agreement with the freedom found in (4.35) above.

4.3 Results of a systematic scan over a class of heterotic Line Bundle Standard

Models

As we have seen in the last subsection, moduli stabilization can indeed influence the stan-

dard model physics we observe in heterotic compactifications. The question we wish to

answer is how common are such phenomena in known examples of heterotic standard

model compactifications. That is, how often is it the case that the hidden sector bundle

can effect the visible sector spectrum in this manner. To investigate this we have run a scan

over the known data set of Heterotic Line Bundle Standard Models [19, 20]. To summarize,

for each Line Bundle Standard Model in the data set, we do the following.

• First, we scan over all of the standard model multiplets to find those which have the

potential to jump by using an analagous calculation to that found in section 4.2.

• Second, for all the standard models which are found in the first step to have spectra

which can jump, we find all the extension bundles of the form (4.3) which satisfy

the relevant consistency conditions, such as equivariance under the symmetry being

considered and (4.2).
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• Third, we calculate the jumping locus for the cohomology on the standard model side,

and if it is possible, find the jumping locus on the extension side by using primary

decomposition and elimination. If this is not practical in a given case, then we employ

the linear perturbation analysis described in section 4.2.

By using this process, we scanned over all of the 2012 cases in the data set of [19, 20].

The resulting data detailing which standard model constructions have spectra which can

be influenced by moduli stabilization are given in table 3.

Of the 2012 models in the data set, only 100 of them, approximately 5%, can be

influenced by the moduli stabilization mechanism. This percentage is not very high but

this figure is somewhat misleading. The issue is that in most cases in this list the standard

model spectra is based upon line bundle cohomologies that do not jump on any locus in

complex structure moduli space. If we focus on the 182 standard models which do have a

spectrum that can jump at sub-loci of moduli space (which are listed in appendix A), 100

is suddenly a large fraction. Perhaps a more useful figure then is that, within this data

set, if the standard model spectrum can jump, then there is a 55% chance that it will be

forced to by the moduli stabilization mechanism. Clearly, in such a situation one should

not consider moduli stabilization and model building separately. One should check if the

cohomologies involved in model building can jump, and if they can it is important to check

the effect of the hidden sector bundle on the spectrum.

We would like to emphasize that the above figure of 55% can in some respects be

regarded as a lower bound on the frequency at which this effect occurs in the line bundle

standard model data set. As detailed above, we have not been able to perform a complete

primary decomposition analysis of the jumping loci in all examples, and have had to restrict

our attention to more crude analyses in many cases. These computations can easily miss loci

associated with the hidden sector bundle that force the standard model spectrum jump.

As such, interplay between moduli stabilization and model building structures could be

even more pronounced than indicated here.

5 Topological vanishing of Yukawa coupling in heterotic Line Bundle

Standard Models

The tree level superpotential Yukawa couplings of Heterotic compactifications on Calabi-

Yau threefolds are given by the following formula.

λIJK ∝
∫
X
ωI ∧ ωJ ∧ ωK ∧ Ω. (5.1)

Here I, J,K label the matter fields whose coupling is being computed and the ω’s are the

bundle valued one forms to which those matter fields are associated. The gauge structure

of (5.1) has been suppressed here: it is a gauge invariant combination of the three ω’s

that appears in the expression. We have left a ‘proportional to’ sign explicitly in (5.1)

to emphasize that the absolute value of such a superpotential coupling is not physically

meaningful in absence of knowledge of the Kähler potential. However, this formula can
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CICY. Num. Mod. Num Sym. Num. Multiplet Extension Line

6784 6 3,4,5,6 5e1,e5 , O(−1, 2, 2,−1) O(−1, 1, 1,−1)

6784 51 3,4,5,6 5e4,e5 , O(−3, 2, 2,−1) O(−1, 1, 1,−1)

6784 54 3,4,5,6 5e1,e5 , 5e2,e5 , O(−1, 2, 2,−1) O(−1, 1, 1,−1)

6828 1 2 5e1,e2 , O(2,−3, 2,−1) O(1,−1, 1,−1)

6828 2-5 2 5e1,e2 , O(2,−1, 2,−1) O(1,−1, 1,−1)

6828 7 2 5e1,e2 , O(2, 2,−1,−1) O(1, 1,−1,−1)

7435 1 2

10e5 , O(−2,−2, 0, 1) O(0, 1, 1,−1)

5e1,e2 , O(4, 2,−2,−1) O(0, 1, 1,−1)

5e3,e5 , O(−3,−2, 1, 1) O(1, 1, 0,−1)

5e4,e5 , O(−3,−2, 1, 1) O(1, 1, 0,−1)

7435 2 2

10e5 , O(−2, 0,−2, 1) O(0, 1, 1,−1)

5e1,e2 , O(4,−2, 2,−1) O(0, 1, 1,−1)

5e3,e5 , O(−3, 1,−2, 1) O(1, 0, 1,−1)

5e4,e5 , O(−3, 1,−2, 1) O(1, 0, 1,−1)

7435 3 2

5e1,e5 , O(−2, 4, 2,−1) O(1, 0, 1,−1)

5e2,e4 , O(1,−3,−2, 1) O(0, 1, 1,−1)

5e3,e4 , O(1,−3,−2, 1) O(0, 1, 1,−1)

7435 4 2

5e1,e5 , O(−2, 2, 4,−1) O(1, 1, 0,−1)

5e2,e4 , O(1,−2,−3, 1) O(0, 1, 1,−1)

5e3,e4 , O(1,−2,−3, 1) O(0, 1, 1,−1)

7435 5 2

10e5 , O(−2,−2, 0, 1) O(0, 1, 1,−1)

5e1,e2 , O(2, 4,−2,−1) O(1, 0, 1,−1)

5e3,e5 , O(−2,−3, 1, 1) O(1, 1, 0,−1)

5e4,e5 , O(−2,−3, 1, 1) O(1, 1, 0,−1)

7435 6 2

10e5 , O(−2, 0,−2, 1) O(0, 1, 1,−1)

5e1,e2 , O(2,−2, 4,−1) O(1, 1, 0,−1)

5e3,e5 , O(−2, 1,−3, 1) O(1, 0, 1,−1)

5e4,e5 , O(−2, 1,−3, 1) O(1, 0, 1,−1)

6732 1-2,34-35 1,2 5e1,e4 , O(0, 2, 2,−1,−1) O(0, 1, 1, 0,−1)

6732 3-4 1,2 5e1,e2 , O(2, 0, 2,−1,−1) O(1, 0, 1, 0,−1)

6732 15-17 1,2 5e3,e5 , O(2, 0, 2,−1,−1) O(1, 0, 1, 0,−1)

6732 19 1,2
5e1,e5 , O(−1, 2, 0, 2,−1) O(0, 1, 0, 1,−1)

5e2,e4 , O(1,−2, 1,−3, 1) O(0, 1, 0, 1,−1)

6732 26-28 1,2 5e2,e5 , O(0,−2,−2, 1, 1) O(0, 1, 1, 0,−1)

6732 30-31 1,2 5e1,e2 , O(2, 0, 2,−1,−1) O(1, 0, 1, 0,−1)

6732 32 1,2 5e4,e5 , O(−2, 0,−2, 2, 1) O(1, 0, 1, 0,−1)

6732 33 1,2
5e1,e2 , O(2,−1, 0, 2,−1) O(1, 0, 0, 1,−1)

5e4,e5 , O(−2, 1, 1,−3, 1) O(1, 0, 0, 1,−1)

6732 36 1,2 5e3,e4 , O(0,−2,−2, 2, 1) O(0, 1, 1, 0,−1)

6770 13 1,2 5e1,e2 , O(1, 1,−2,−2, 0) O(−1,−1, 0, 1, 1)

6770 14 1,2 5e1,e2 , O(1, 1,−2, 1,−2) O(−1,−1, 0, 1, 1)

6777 17 1,2,3,4 5e1,e3 , O(1, 1,−2,−3, 1) O(0, 0, 1, 1,−1)

6777 20 1,2,3,4 5e2,e3 , O(0, 2,−1, 2,−1) O(1,−1, 1,−2, 0)

6890 1-2 16-17 1,2 5e1,e4 , O(0, 2, 2,−1,−1) O(0, 0, 1, 1,−1)

6890 5 1,2 5e1,e3 , O(1, 1,−2,−3, 1) O(0, 0, 1, 1,−1)

6890 18-19,22 1,2 5e2,e5 , O(0,−2,−2, 1, 1) O(0, 0, 1, 1,−1)

6890 20,21 1,2 5e4,e5 , O(−2, 1, 1,−3, 1) O(1, 0, 0, 1,−1)

6890 24-27 1,2 5e3,e4 , O(0,−2,−2, 2, 1) O(0, 1, 1, 0,−1)

Table 3. Heterotic line bundle standard models whose spectrum can be forced to jump by a

hidden sector bundle of the form (4.3). The first column specifies the CICY number of the manifold

involved (according to the standard list [75, 104]). The second and third columns specify the

standard model numbers involved and the symmetries that are used in their construction according

to the data sets provided in [19, 20, 105] and [88, 104] respectively. The fourth column gives an

example of the component of the spectrum which can be forced to jump and the line bundle to

which it is associated. Finally, the fifth column gives an example of an L which, when utilized

in (4.3) would result in the change of spectrum being discussed.
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give us some information about the physical Yukawas, particularly concerning vanishings

of such couplings.

There are several methods for computing quantities such as (5.1) in the literature.

These fall into two main approaches, using algebraic geometry [3, 4, 9, 13, 44–53] and

differential geometry [54, 55] respectively. Here we will focus exclusively on the latter

approach, which seems to be more powerful in the case of Line Bundle Standard Models.

In particular, the approach of [54, 55] makes it computationally easier to obtain moduli

dependence of such couplings and leads to a powerful vanishing theorem. It is this latter

result that we will make use of in what follows. We now discuss the statement of this

theorem, leaving the details of its proof to the associated literature [54, 55].

Each cohomology group of which the ωI are elements can be spanned by a basis,

each element of which has a well defined “type”. Fortunately, in the Line Bundle Standard

Model cases we will be interested in, this basis is compatible with the basis corresponding to

standard model degrees of freedom. The type of a one form corresponding to a matter field

is determined by how it descends from ambient space cohomologies in the Koszul sequence.

In particular, if the form descends from a cohomology of the form Hτ (A,∧τ−1N∨ ⊗ L),

then it is said to be of type τ .

The vanishing theorem proven in [54, 55] then simply states that if the following

condition is satisfied,

τI + τJ + τK < dim(A) , (5.2)

where τI is the type of differential form and dim(A) is the dimension of the ambient space,

then the Yukawa coupling will vanish.

Using this result, it is possible to detect vanishings of Yukawa couplings in Heterotic

Line Bundle Standard Models without heavy calculations. Such vanishings are, naively,

topological in nature and need not be tied to any obvious symmetry property of the low

energy effective theory (we will return to this issue at the end of this section). This is clearly

of potential phenomenological interest as a mechanism of generating Yukawa textures of

various types in such models. Much like the ‘forced jumping’ phenomena discussed in the

previous section, such textures could be good or bad for the phenomenological viability of

a given string theory standard model, depending upon their structure. For example, if all

Yukawa couplings were found to vanish it might be difficult to achieve a sufficiently massive

top quark in such a model. However, if the Yukawa matrix were forced to be rank one then

this mechanism might provide a nice explanation as to why we observe one very heavy

family in Nature. An example of another effect constraining couplings in such models are

discussed in [106].

In what follows we will investigate how common the vanishings of couplings we have

discussed here are in the data set of Line Bundle Standard Models provided in [19, 20, 105].

Specifically we will examine those couplings which are consistent with all obvious symme-

tries of the models and compute which vanish due to (5.2). We will begin with an example

in the next sub-section and proceed to a general analysis in the following one.
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5.1 An example of topologically vanishing Yukawa couplings

Let us illustrate the simple process of applying the vanishing theorem described above in an

example. We will work on the manifold with CICY number 5256 according to the standard

list [75, 104], which is defined by the following configuration matrix.

X =


P1 1 1 0 0

P1 2 0 0 0

P1 0 0 1 1

P1 0 0 1 1

P3 1 1 1 1

 , (5.3)

We will quotient X by the fourth discrete symmetry in the canonical list [88, 104], which

acts on the homogeneous coordinates in the following manner:

Z(1)
2 :

{
xr,a → (−1)axr,a
x5,α → (−1)αx5,α

(5.4)

Z(2)
2 :

{
xr,a → xr,a+1

x5,α → x5,α+(−1)α
.

Here we make the identifications xr,2 = xr,0 , ∀i. In addition to this coordinate action there

is a normal bundle action which descends to the following transformations on the defining

polynomials.

Z(1)
2 : (p1, p2, p3, p4)→ (p1,−p2, p3,−p4) (5.5)

Z(2)
2 : (p1, p2, p3, p4)→ (p1,−p2, p4, p3)

On X/Z2×Z2 a Line Bundle Standard Model can be built of the form VSM =
⊕5

i=1 Li
with the following line bundle content [19, 20].

L1 = OX(1, 0,−2, 1, 0) , L2 = OX(1,−2, 1, 0, 0) , L3 = OX(0, 1, 1,−2, 0) , (5.6)

L4 = OX(−1, 1, 0, 0, 0) , L5 = OX(−1, 0, 0, 1, 0)

The non-trivial cohomology content of combinations of the line bundles Li which are rele-

vant for the standard model spectrum of this Line Bundle Standard Model are as follows.

h∗(X,L1) = (0, 4, 0, 0); h∗(X,L2) = (0, 4, 0, 0); h∗(X,L3) = (0, 4, 0, 0);

h∗(X,L1⊗L4) = (0, 4, 0, 0); h∗(X,L1⊗L5) = (0, 3, 3, 0); h∗(X,L2⊗L5) = (0, 4, 0, 0);

h∗(X,L4⊗L5) = (0, 4, 0, 0); h∗(X,L∨1⊗L∨5 ) = (0, 3, 3, 0); h∗(X,L1⊗L∨2 ) = (0, 12, 0, 0);

h∗(X,L1⊗L∨5 ) = (0, 3, 3, 0); h∗(X,L2⊗L∨3 ) = (0, 12, 0, 0); h∗(X,L2⊗L∨4 ) = (0, 12, 0, 0);

h∗(X,L3⊗L∨4 ) = (0, 4, 0, 0); h∗(X,L3⊗L∨5 ) = (0, 16, 0, 0); (5.7)

These cohomologies correspond respectively to the following multiplets on X (before the

quotient):

4 10e1 ; 4 10e2 ; 4 10e3 ; 4 5̄e1,e4 ; 3 5̄e1,e5 ; 4 5̄e2,e5 ; 4 5̄e4,e5 ; 3 5−e1,−e5 ; (5.8)

12 1e1,−e2 ; 3 1e1,−e5 ; 3 1e5,−e1 ; 12 1e2,−e3 ; 12 1e2,−e4 ; 4 1e3,−e4 ; 16 1e3,−e5 ;
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As in earlier sections, we give spectra in this section in terms of GUT multiplets for

conciseness, despite the fact that we use a Wilson line (whose exact form will not be

needed here) to break the gauge group to that of the standard model.

Given the spectrum of standard model representations and U(1) charges given in (5.8),

one would naively expect the following Yukawa couplings to be present.

5̄e2,e55−e1,−e51e1,−e2 , 10e3 5̄e1,e4 5̄e2,e5 (5.9)

Let us look at these two Yukawa couplings in more detail in the context of the vanishing

theorem (5.2). In order to use the theorem, we must first work out which ambient space co-

homologies the relevant matter fields descend from in the Koszul sequence. Beginning with

the Yukawa coupling 5̄e2,e55−e1,−e51e1,−e2 , the line bundles associated to the multiplets

which appear are as follows.

5̄e2,e5 : OX(0,−2, 1, 1, 0) , 5−e1,−e5 : OX(0, 0, 2,−2, 0) , 1e1,−e2 : OX(0, 2,−3, 1, 0) (5.10)

A short computation shows that H1(X,L) for all of these line bundles descends from

the associated first cohomology on A, that is H1(A,L2 ⊗ L5), which is four dimensional,

H1(A,L∨1⊗L∨5 ) which is three dimensional and H1(A,L1⊗L∨2 ), which is twelve dimensional,

respectively.

From this analysis we can see that all three of the involved matter fields are of type

one, and thus we have,

τ5̄e2,e5
+ τ5−e1,−e5

+ τ1e1,−e2
= 3 < dim(A) = 7 . (5.11)

Given this, the vanishing theorem tells us that this Yukawa coupling (or more precisely this

set of 144 couplings) vanishes, despite the fact there is no obvious gauge theoretic restriction

that would cause it to do so. Given that these upstairs couplings vanish, so do all of the

associated downstairs couplings associated to the Line Bundle Standard Model itself.

For the second Yukawa coupling, 10e3 5̄e1,e4 5̄e2,e5 a similar procedure can be followed.

We find that once again all three matter fields are of type 1, and thus the Yukawa coupling

vanishes, naively due to topological restrictions with, once again, no obvious gauge theoretic

restriction presenting itself.

5.2 Scanning over the Line Bundle Standard Models

We now proceed to apply an analysis of the form presented in the previous subsection to

every Line Bundle Standard Model in the data set of [19, 20]. The procedure we apply is

as follows. For each model, we first look at the multiplets which arise. That is, we examine

the cohomology groups,

H1(X,Li) , H1(X,Li ⊗ Lj) , H1(X,L∨i ⊗ L∨j ) , H1(X,Li ⊗ L∨j ) , (5.12)

which, as was detailed in table 1, are the upstairs cohomologies that correspond to the

following matter representations.

10ei , 5̄ei,ej , 5−ei,−ej , 1ei,−ej (5.13)
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CICY No. No. Sym. No. Models 5−ei,−ej
10ei

10ej
5̄ei,ej

5̄ek,el
10em 1ei,−ej

5−ei,−ek
5̄ej,ek

6784 4 188 0 120 144

6828 1 2 0 5 0

7862 1 14 18 53 19

5256 6 84 0 126 32

5452 20 800 0 1376 208

6947 1 24 0 24 12

6732 2 28 24 68 12

6770 2 16 16 32 0

6777 4 24 48 64 80

6890 2 22 24 50 12

7447 1 3 0 5 4

7487 4 276 164 580 444

Table 4. The number of Yukawa couplings of various types that are permitted by the gauge

symmetries of the set of Line Bundle Standard Models being considered [19, 20, 105]. The first

column gives the CICY identification number of the manifold on which the models are based,

according to the standard list [75, 104]. The second column details how many symmetries are

being considered, and thus the number of downstairs manifolds that each row corresponds to. ‘No.

Models’ gives the number of models with at least one Yukawa coupling that would be consistent

with gauge invariance in the data set. The remaining three columns give the number of each type

of such couplings that appear in this set of models.

Once we have extracted this list of multiplets from the Line Bundle Standard Model data

set, we then extract all of the Yukawa couplings that are consistent with the constraints

imposed by gauge symmetry. These are all of one of the following three forms.

5−ei,−ej10ei10ej , 5̄ei,ej 5̄ek,el10em , 1ei,−ej5−ei,−ek 5̄ej,ek . (5.14)

Finally, for each Yukawa coupling that does not vanish due to gauge theoretic considera-

tions, we examine the Koszul sequence associated to each of the line bundles giving rise

to the matter multiplets involved and determine the types of the associated forms. We

can then use the vanishing theorem (5.2) to determine whether or not these couplings are

actually present. We present the full results of this analysis in appendix B and will content

ourselves here with some brief statistics on the results.

The number of Yukawa couplings which are non-zero after gauge theoretic considera-

tions are taken into account is given in table 4. Models are only listed in this table if they

have at least one non-vanishing coupling at this level.

Given the data in table 4, the question is now how many of these Yukawa couplings

vanish due to the topological vanishing theorem (5.2). The answer to this question is

given in table 5. Compiling this data into even more coarse overall figures, we obtain the

percentage of the different types of coupling given in (5.13) which would be allowed by

gauge invariance but which vanish due to these topological considerations. These figures

are presented in table 6.
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CICY No. No. Sym. No. Models 5−ei,−ej
10ei

10ej
5̄ei,ej

5̄ek,el
10em 1ei,−ej

5−ei,−ek
5̄ej,ek

6784 4 0 0 0 0

6828 1 0 0 0 0

7862 1 9 8 5 3

5256 6 32 0 32 24

5452 20 256 0 240 192

6947 1 24 0 24 12

6732 2 0 0 0 0

6770 2 8 16 0 0

6777 4 0 0 0 0

6890 2 0 0 0 0

7447 1 1 0 1 3

7487 4 112 80 32 0

Table 5. The number of Yukawa couplings of various types that are permitted by the gauge

symmetries but vanish due to the topological restriction (5.2) for the set of Line Bundle Standard

Models being considered [19, 20, 105]. The first column gives the CICY identification number of

the manifold on which the models are based, according to the standard list [75, 104]. The second

column details how many symmetries are being considered, and thus the number of downstairs

manifolds that each row corresponds to. ‘No. Models’ gives the number of models with at least one

Yukawa coupling that vanishes due to this topological consideration. The remaining three columns

give the number of each type of such couplings that vanish due to (5.2) in this set of models.

Yukawa Type Total Num. Top. Van. Num. Percentage

5−ei,−ej10ei10ej 294 104 35.4%

5̄ei,ej 5̄ek,el10em 2503 334 13.3%

1ei,−ej5−ei,−ek 5̄ej,ek 967 234 24.2%

In total 3764 672 17.9%

Table 6. The total number of Yukawa couplings of each type in the Line Bundle Standard Model

data set studied [19, 20, 105]. The column ‘Total Number’ details the number of each type of

coupling which are consistent with gauge invariance. The column ‘Top. Van. Num.’ details the

number of these couplings that are actually zero due to the vanishing theorem (5.2).

In the final analysis there is a total of 1481 Standard Models in the data set which

have at least one Yukawa coupling that would be expected to be non-zero based upon

consideration of the obvious symmetries in the construction. Of these, 442 have have at

least one such coupling which turns out to be zero due to the vanishing theorem (5.2). This

means that topological vanishing of Yukawa couplings plays a role in 29.8% of these models.

A few comments are order about these results. Firstly, it is clear that this is not a rare

phenomenon. A lot of couplings that would naively be allowed by gauge invariance in the

theory actually vanish due to topological considerations. That this effect would be common

was anticipated in [54, 55]. It should also be mentioned that these results are reminiscent,

for example, of long understood selection rules in orbifold compactifications [107–111].
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Obvious questions include whether or not such vanishings are also so ubiquitous in

higher order couplings and whether there is some hidden reason, beyond quasi-topological

restrictions, for the phenomenon. For the latter question, a potential hint is given by the

results of [52, 53]. There it was shown that stability walls elsewhere in extended bundle

and Kähler moduli space could have U(1) symmetries that, while broken for the split

bundle being studied, still restrict its couplings hugely. This effect can be very strong,

essentially due to the holomorphic nature of the superpotential of the four dimensional

theory. The bundles being studied in the Line Bundle Standard Model data set considered

here are in larger Kähler cones than the simple examples considered in [52]. In such cases,

it is expected that the constraints on couplings will be even more restrictive (due to a

larger number of stability walls being present). This could potentially explain the high

percentages of topological vanishings found in table 6.

6 Conclusions

In this paper we have studied two effects which can arise in Line Bundle Standard Mod-

els [19, 20]. The first of these concerns the interaction of line bundle model building and

the moduli stabilization mechanism of [57, 58]. In that work, the hidden sector gauge bun-

dle is used to stabilize the complex structure to some higher co-dimensional sub-locus of

moduli space. Here, we have investigated how often the system being forced to this special

locus in complex structure moduli space causes the massless charged spectrum of the stan-

dard model to jump. The second effect we considered was concerned with the structure of

Yukawa couplings. Couplings which are consistent with all obvious symmetries of the four

dimensional effective theory can be zero due to seemingly topological restrictions. We have

considered the form of topological vanishing presented in [54, 55] and have determined how

common such effects are in the known data set of Line Bundle Standard Models.

In our work on the first of these directions we have seen that, in the data set studied,

if the standard model field content is capable of jumping, the hidden sector stabilization

mechanism has a good chance of forcing it to do so. In particular, there is at least a 55%

chance that one (of the usually small number) of SU(2) structure extension hidden sector

bundles that can be consistently included in such a compactification will force the standard

model bundle to a jumping locus. Such a strong interaction between the visible sector and

hidden sector bundles may seem surprising at first. However, for the threefolds that are

considered with non-vanishing first fundamental group, the second Chern characters are

not that large. Given this, there are then not many choices of equivariant line bundles

that can be used in the construction of a hidden sector bundle given any particular Line

Bundle Standard Model. The restricted nature of the choices seems to lead to a relatively

ubiquitous correlation between jumping loci of the cohomologies governing the hidden

sector extension and the standard model spectrum. The basic message of section 4 of the

paper is thus that such effects are something that should be considered in model building

work, if the standard model bundles being considered have cohomologies which are capable

of jumping. As we have emphasized in the main text, this effect could be either good or

bad. It could force unwanted family/anti-family pairs to appear in the spectrum, but it
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could equally well force the generation of a Higgs-Higgs bar pair in a model that previously

lacked such degrees of freedom.

In our investigation of topological vanishings of Yukawa couplings we have seen a

similarly strong effect. We have seen that the vanishing theorem presented in [54, 55] leads

to an otherwise permitted Yukawa coupling being zero in 30% of the models presented

in [19, 20]. Indeed, almost 18% of the couplings that are allowed by all of the obvious

symmetries in these models actually vanish. As with the previous result, this effect can be

either good or bad for the phenomenological viability of a model depending on the particular

case at hand. It is clear, however, given the ubiquity of the effect, that such vanishings

should be taken into account in phenomenological explorations of these constructions.

Several natural questions follow from these results. For example, do similar, seemingly

topological, vanishings of couplings happen for higher order interactions? We conjecture

one possible explanation for the large number of vanishings that would answer this question

in the affirmative. As was discussed in [52], stability walls elsewhere in combined bundle and

Kähler moduli space, can have strong effects on superpotential couplings in backgrounds

where those splittings are not manifest. In particular they can force such vanishings of

couplings. Whether this really is the effect that is behind many of the vanishings that we

have seen is a study that we leave for future work.
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A Jumping spectrum results

In this appendix we present data on the interplay between ΣSM and ΣH, as defined in

section 4, for all of the Line Bundle Standard Models of [19, 20, 105] whose spectra are

determined by cohomologies that could potentially jump in dimension. In particular, all

cases where a non-trivial map is involved in the sequence chasing used to determine the

spectrum are considered. In the tables below, ‘CICY No.’, ‘Symmetry No.’ and ‘Model

No.’ refer to the labels for the upstairs manifolds, symmetries and Line Bundle Standard

Models that are being considered, relative to the relevant standard lists, [75, 88, 104, 104]

and [19, 20, 105] respectively. The entries in the column entitled ‘Jump Line’ specify the

multiplet being considered in that row and the line bundle whose cohomology it is associated

to. Finally, the columns ‘Jump Standard’ and ‘Jump Extension’ contain information about

ΣSM and ΣH respectively.

For cases where no possible extension bundle of the form (4.3) exists, we place a

‘no extension’ in the final column and perform no further computations. If the jumping

locus for the standard model bundle only jumps on loci in complex structure moduli space
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where the associated Calabi-Yau manifold becomes singular we place a ‘singular’ in the

penultimate column (or singular∗ if only a portion of this locus could be determined and

that portion exhibited this property). In such cases, there is no need to perform any

computations involving the hidden sector bundles and, as such, a ‘null’ is placed in the

final column. If, for a standard model which can indeed jump (indicated by a ‘y’ in the

‘Jump Standard’ column) there exists a hidden sector bundle for which we have been able

to find an irreducible component to its jumping locus that lies entirely within ΣSM then we

put a ‘y’ in the final column. If all such loci we have been able to find merely intersect the

standard model bundle jumping locus we place a ‘g’ in the final column. A ‘singular’ in

the last column indicates that all of the components of ΣH that exist force the Calabi-Yau

manifold to a singular locus in its moduli space. A singular∗ in the final column means that

all of the components of ΣH that we were able to find have this property, but other loci

may exist. An ‘unknown’ in any column simply means that the system was so complicated

that we were unable to extract any meaningful data in a reasonable amount of time.

CICY No. Symmetry No. Model No. Jump Line Jump Standard Jump Extension

6784 3-6

1-5

10e1 , O(3, 2,−2,−1) singular null

5e1,e3 , O(2, 2,−1,−1) singular null

5e1,e4 , O(2, 2,−1,−1) singular null

6 5e1,e5 , O(−1, 2, 2,−1) y y

7-10 5e1,e2 , O(2, 2,−3,−1) singular null

11-50 5e1,e2 , O(2, 2,−1,−1) singular null

51 5e4,e5 , O(−3, 2, 2,−1) y y

52 5e1,e2 , O(2, 2,−1,−1) singular null

54 5e1,e5 , 5e2,e5 , O(−1, 2, 2,−1) y y

CICY No. Symmetry No. Model No. Jump Line Jump Standard Jump Extension

6828 2

1 5e1,e2 , O(2,−3, 2,−1) y y

2-5 5e1,e2 , O(2,−1, 2,−1) y y

6 10e1 , O(2,−2, 3,−1) singular null

7 5e1,e2 , O(2, 2,−1,−1) y y
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CICY No. Symmetry No. Model No. Jump Line Jump Standard Jump Extension

7435 2

1

10e5 , O(−2,−2, 0, 1) y y

5e1,e2 , O(4, 2,−2,−1) y y

5e3,e5 , O(−3,−2, 1, 1) y y

5e4,e5 , O(−3,−2, 1, 1) y y

2

10e5 , O(−2, 0,−2, 1) y y

5e1,e2 , O(4,−2, 2,−1) y y

5e3,e5 , O(−3, 1,−2, 1) y y

5e4,e5 , O(−3, 1,−2, 1) y y

3

5e1,e5 , O(−2, 4, 2,−1) y y

5e2,e4 , O(1,−3,−2, 1) y y

5e3,e4 , O(1,−3,−2, 1) y y

4

5e1,e5 , O(−2, 2, 4,−1) y y

5e2,e4 , O(1,−2,−3, 1) y y

5e3,e4 , O(1,−2,−3, 1) y y

5

10e5 , O(−2,−2, 0, 1) y y

5e1,e2 , O(2, 4,−2,−1) y y

5e3,e5 , O(−2,−3, 1, 1) y y

5e4,e5 , O(−2,−3, 1, 1) y y

6

10e5 , O(−2, 0,−2, 1) y y

5e1,e2 , O(2,−2, 4,−1) y y

5e3,e5 , O(−2, 1,−3, 1) y y

5e4,e5 , O(−2, 1,−3, 1) y y

CICY No. Symmetry No. Model No. Jump Line Jump Standard Jump Extension

7862 3

2 5e4,e5 , O(−2, 3, 2,−3) y g

3-6 5e1,e2 , O(2,−2,−2, 2) y g

9-12 5e1,e2 , O(2,−2,−2, 2) y g

15-18 10e5 , O(−2, 2,−2, 2) y g

CICY No. Symmetry No. Model No. Jump Line Jump Standard Jump Extension

5256 3-6

1-4 10e2 , O(0, 1,−2,−2, 1) singular null

7-10
10e3 , O(0, 1,−2,−2, 1) singular null

5e1,e2 , O(2,−1, 0, 2,−1) singular null

20
10e5 , O(−2,−2, 0, 1, 1) singular null

5e3,e4 , O(0, 2, 2,−1,−1) y singular

21 10e5 , O(−2,−2, 1, 0, 1) singular null

22
10e5 , O(−2,−2, 1, 0, 1) singular null

5e1,e2 , O(2, 0,−1, 2,−1) y g

23 10e5 , O(−2,−2, 0, 1, 1) singular null

24 10e5 , O(−2,−2, 1, 0, 1) singular null

26 10e5 , O(−2,−2, 1, 0, 1) singular null
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CICY No. Symmetry No. Model No. Jump Line Jump Standard Jump Extension

5452 7-22

1

5e1,e2 , O(2, 2, 0, 0,−2) singular null

5e4,e5 , O(−3, 0, 0, 0, 1) singular null

10e3 , O(1,−2, 0, 0, 1) singular null

2

5e1,e2 , O(2, 2, 0, 0,−2) singular null

5e3,e5 , O(−1,−2,−1, 2, 2) singular null

10e5 , O(−2, 0, 0, 1, 1) singular null

3-6 10e5 , O(−2, 0,−2, 1, 1) singular null

7

5e1,e2 , O(2, 2, 0, 0,−2) singular null

5e4,e5 , O(−2,−2, 1, 2, 1) singular null

10e5 , O(−2, 0, 0, 1, 1) singular null

8

5e1,e2 , O(2, 2, 0, 0,−2) singular null

5e4,e5 , O(−2,−2, 2, 1, 1) singular null

10e4 , O(0,−2, 1, 0, 1) singular null

9-12
5e1,e2 , O(2, 2, 0,−1,−1) singular null

10e5 , O(−2, 0,−2, 1, 1) singular null

13

5e1,e2 , O(2, 2, 0, 0,−2) singular null

5e3,e4 , O(0,−3, 0, 0, 1) singular null

10e5 , O(−2, 1, 0, 0, 1) singular null

14
5e1,e2 , O(2, 2, 0, 0,−2) singular null

10e4 , O(0,−2, 1, 0, 1) singular null

18-25 10e5 , O(−2, 0,−2, 1, 1) singular null

30-33 10e5 , O(−2, 0,−2, 1, 1) singular null

39-42
5e3,e4 , O(0, 2, 2,−1,−1) singular null

10e5 , O(−2, 0,−2, 1, 1) singular null

43-46
5e1,e2 , O(2, 2,−1, 0,−1) singular null

10e3 , O(0,−2, 1,−2, 1) singular null

47-50 10e3 , O(0,−2, 1,−2, 1) singular null

52-55 10e3 , O(0,−2, 1,−2, 1) singular null

58-61
10e3 , O(0,−2, 1,−2, 1) singular null

5e1,e2 , O(2, 0,−1, 2,−1) singular null

63-66 10e4 , O(0,−2, 1,−2, 1) singular null

67-70 10e4 , O(0,−2, 1,−2, 1) singular null
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CICY No. Symmetry No. Model No. Jump Line Jump Standard Jump Extension

6732 1-2

1 5e1,e4 , O(0, 2, 2,−1,−1) y y

2 5e1,e4 , O(0, 2, 2,−1,−1) y y

3-4
5e1,e2 , O(2, 0, 2,−1,−1) y y

5e4,e5 , O(−3, 1,−2, 1, 1) singular∗ null

5-8 5e4,e5 , O(−2,−2, 2,−2, 2) unknown unknown

9 5e4,e5 , O(−2,−2, 0, 1, 1) singular null

10-13 5e4,e5 , O(−2,−2, 1, 0, 1) singular null

15-17 5e3,e5 , O(−2, 0,−2, 1, 1) y y

19
5e1,e5 , O(−1, 2, 0, 2,−1) y y

5e2,e4 , O(1,−2, 1,−3, 1) y y

20 5e4,e5 , O(−2,−2, 0, 1, 1) singular null

21-24 5e4,e5 , O(−2,−2, 1, 0, 1) singular null

26-28 5e2,e5 , O(0,−2,−2, 1, 1) y y

30-31 5e1,e2 , O(2, 0, 2,−1,−1) y y

32 5e4,e5 , O(−2, 0,−2, 2, 1) y y

33
5e4,e5 , O(−2, 1, 1,−3, 1) y y

5e1,e2 , O(2,−1, 0, 2,−1) y y

34
5e1,e4 , O(0, 2, 2,−1,−1) y y

5e2,e3 , O(1,−3,−2, 1, 1) singular∗ null

35
5e1,e4 , O(0, 2, 2,−1,−1) y y

5e2,e3 , O(1,−3,−2, 1, 1) singular∗ null

36 5e3,e4 , O(0,−2,−2, 2, 1) y y

CICY No. Symmetry No. Model No. Jump Line Jump Standard Jump Extension

6770 1-2
13 5e1,e2 , O(1, 1,−2,−2, 0) y y

14 5e1,e2 , O(1, 1,−2, 1,−2) y y

CICY No. Symmetry No. Model No. Jump Line Jump Standard Jump Extension

6890 1-2

1-2 5e1,e4 , O(0, 2, 2,−1,−1) y y

4 5e3,e5 , O(−2, 0,−2, 1, 1) singular null

5
5e1,e3 , O(1, 1,−2,−3, 1) y y

5e2,e5 , O(−1, 0, 2, 2,−1) singular null

6-9 5e3,e5 , O(−2, 2,−2,−2, 2) unknown unknown

10-13 5e3,e5 , O(−2, 1,−2, 0, 1) singular null

16-17
5e1,e4 , O(0, 2, 2,−1,−1) y y

5e2,e3 , O(1,−2,−3, 1, 1) singular∗ null

18-19 5e2,e5 , O(0,−2,−2, 1, 1) y y

20-21 5e4,e5 , O(−2, 1, 1,−3, 1) y y

22 5e2,e5 , O(0,−2,−2, 1, 1) y y

24-27
5e4,e5 , O(−2, 1,−2, 0, 1) singular null

5e3,e4 , O(0,−2,−2, 2, 1) y y
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CICY No. Symmetry No. Model No. Jump Line Jump Standard Jump Extension

6777 1-4

1-4 5e2,e3 , O(2,−2,−2,−2, 2) unknown unknown

5-12 5e2,e4 , O(1,−2,−2, 0, 1) singular null

16 5e3,e4 , O(0,−2,−2, 1, 1) singular null

17 5e1,e3 , O(1, 1,−2,−3, 1) y y

19 5e3,e4 , O(0,−2,−2, 1, 1) singular null

20 5e2,e3 , O(0, 2,−1, 2,−1) y y

CICY No. Symmetry No. Model No. Jump Line Jump Standard Jump Extension

7447 2 3 5e1,e3 , O(1,−2, 1,−2, 2) y singular∗

CICY No. Symmetry No. Model No. Jump Line Jump Standard Jump Extension

7487 3-6

11-20 5e1,e3 , O(1,−2, 1,−2, 2) singular null

22 5e3,e5 , O(−2, 2, 1, 1,−2) y singular∗

23

5e1,e2 , O(2,−2,−2, 1, 1) no extension

5e3,e5 , O(−2, 2, 1,−2, 1) no extension

5e4,e5 , O(−2, 1, 2, 1,−2) no extension

24 5e4,e5 , O(−2, 1, 1, 2,−2) y singular∗

26 5e3,e5 , O(−2, 2, 1, 1,−2) no extension

27 5e1,e2 , O(2,−2,−2, 1, 1) y singular∗

28 5e1,e2 , O(2,−2,−2, 1, 1) y singular∗

36-39 5e2,e4 , O(1,−2, 2, 1,−2) singular null

61 5e3,e5 , O(−2, 2, 1, 1,−2) y singular∗

72-81 5e2,e3 , O(2,−2,−2, 1, 1) y singular∗
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B Vanishing coupling results

In this appendix we give in detail, for every heterotic Line Bundle Standard Model in

the data set of [19, 20, 105], which couplings vanish due to the topological considerations

discussed in section 5. In these tables, ‘CICY No.’, ‘Sym. No.’ and ‘Model No.’ refer to

the labels for the upstairs manifolds, symmetries and Line Bundle Standard Models that

are being considered, relative to the relevant standard lists, [75, 88, 104] and [19, 20, 105]

respectively. The column ‘Yukawa Pattern’ lists the couplings that are consistent with the

obvious symmetries of these models in each case. Finally the column ‘Top. Van.’ details

whether these couplings are affected by the topological vanishing condition (5.2) of [54, 55].

CICY No. Model No. Yukawa Pattern Top. Van. Sym. No.

6784

1 10e1 5̄e2,e5 5̄e3,e4 n 1,3

2 10e1 5̄e2,e5 5̄e3,e4 n 1-4

3 10e1 5̄e2,e5 5̄e3,e4 n 1-4

4 10e1 5̄e2,e5 5̄e3,e4 n 1-4

5 10e1 5̄e2,e5 5̄e3,e4 n 2,4

6
10e1 5̄e2,e3 5̄e4,e5 n 1-4

10e4 5̄e1,e5 5̄e2,e3 n 1-4

7 10e3 5̄e1,e2 5̄e4,e5 n 1-4

8 10e3 5̄e1,e2 5̄e4,e5 n 1-4

9 10e3 5̄e1,e2 5̄e4,e5 n 1-4

10 10e3 5̄e1,e2 5̄e4,e5 n 1-4

11 1e4,−e35−e4,−e5 5̄e3,e5 n 1-4

12 1e4,−e35−e4,−e5 5̄e3,e5 n 1-4

13 1e4,−e35−e4,−e5 5̄e3,e5 n 1-4

14 1e4,−e35−e4,−e5 5̄e3,e5 n 1-4

15 1e4,−e35−e4,−e5 5̄e3,e5 n 1-4

16 1e4,−e35−e4,−e5 5̄e3,e5 n 1-4

17 1e4,−e35−e4,−e5 5̄e3,e5 n 1-4

18 1e4,−e35−e4,−e5 5̄e3,e5 n 1-4

19 1e4,−e35−e4,−e5 5̄e3,e5 n 1-4

20 1e4,−e35−e4,−e5 5̄e3,e5 n 2, 4

21 1e4,−e35−e4,−e5 5̄e3,e5 n 1, 3

22 1e4,−e35−e4,−e5 5̄e3,e5 n 1-4

23 1e4,−e35−e4,−e5 5̄e3,e5 n 1-4

24 1e4,−e35−e4,−e5 5̄e3,e5 n 1-4

25 1e4,−e35−e4,−e5 5̄e3,e5 n 1-4

26 1e4,−e35−e4,−e5 5̄e3,e5 n 1-4
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CICY No. Model No. Yukawa Pattern Top. Van. Sym. No.

6784

27 1e4,−e35−e4,−e5 5̄e3,e5 n 1-4

28 1e4,−e35−e4,−e5 5̄e3,e5 n 1-4

29 1e4,−e35−e4,−e5 5̄e3,e5 n 1-4

30 1e4,−e35−e4,−e5 5̄e3,e5 n 2, 4

31 1e4,−e35−e4,−e5 5̄e3,e5 n 2, 4

32 1e4,−e35−e4,−e5 5̄e3,e5 n 1-4

33 1e4,−e35−e4,−e5 5̄e3,e5 n 1-4

34 1e4,−e35−e4,−e5 5̄e3,e5 n 1-4

35 1e4,−e35−e4,−e5 5̄e3,e5 n 1-4

36 1e4,−e35−e4,−e5 5̄e3,e5 n 1-4

37 1e4,−e35−e4,−e5 5̄e3,e5 n 1-4

38 1e4,−e35−e4,−e5 5̄e3,e5 n 1-4

39 1e4,−e35−e4,−e5 5̄e3,e5 n 1-4

40 1e4,−e35−e4,−e5 5̄e3,e5 n 1,3

41 1e4,−e35−e4,−e5 5̄e3,e5 n 2,4

42 1e4,−e35−e4,−e5 5̄e3,e5 n 1-4

43 1e4,−e35−e4,−e5 5̄e3,e5 n 1-4

44 1e4,−e35−e4,−e5 5̄e3,e5 n 1-4

45 1e4,−e35−e4,−e5 5̄e3,e5 n 1-4

46 1e4,−e35−e4,−e5 5̄e3,e5 n 1-4

47 1e4,−e35−e4,−e5 5̄e3,e5 n 1-4

48 1e4,−e35−e4,−e5 5̄e3,e5 n 1-4

49 1e4,−e35−e4,−e5 5̄e3,e5 n 1-4

50 1e4,−e35−e4,−e5 5̄e3,e5 n 1,3

51 10e3 5̄e1,e2 5̄e4,e5 n 1-4

52
10e1 5̄e2,e5 5̄e3,e4 n 1-4

10e5 5̄e1,e2 5̄e3,e4 n 1-4

On CICY 6784, a total of 188 models have Yukawa couplings consistent with the gauge

symmetries of the models, with 264 Yukawa couplings being permitted in total. There

are no allowed couplings of the form 5−ei,−ej10ei10ej , 120 of the form 10ei 5̄ej,ek 5̄el,em ,

and 144 of the form 1ei,−ej5−ei,−ek 5̄ej,ek . None of these couplings exhibit the topological

vanishings we have studied here.

CICY No. Model No. Yukawa Pattern Top. Van. Sym. No.

6828

1 10e5 5̄e1,e2 5̄e3,e4 n 2

7
10e1 5̄e2,e3 5̄e4,e5 n 2

10e3 5̄e1,e2 5̄e4,e5 n 2

On CICY 6828, a total of 2 models have Yukawa couplings consistent with the gauge

symmetries of the models, with 5 Yukawa couplings being permitted in total. All of these

couplings are of the form 10ei 5̄ej,ek 5̄el,em . None of these couplings exhibit the topological

vanishings we have studied here.
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CICY No. Model No. Yukawa Pattern Top. Van. Sym. No.

7862

2 5−e2,−e410e210e4 n 3

9

1e1,−e45−e1,−e5 5̄e4,e5 n 3

1e2,−e45−e2,−e5 5̄e4,e5 n 3

10e1 5̄e2,e5 5̄e3,e4 n 3

10e2 5̄e1,e5 5̄e3,e4 n 3

10

1e1,−e45−e1,−e5 5̄e4,e5 n 3

1e2,−e45−e2,−e5 5̄e4,e5 n 3

10e1 5̄e2,e5 5̄e3,e4 n 3

10e2 5̄e1,e5 5̄e3,e4 n 3

11

1e1,−e45−e1,−e5 5̄e4,e5 n 3

1e2,−e45−e2,−e5 5̄e4,e5 n 3

10e1 5̄e2,e5 5̄e3,e4 n 3

10e2 5̄e1,e5 5̄e3,e4 n 3

12

1e1,−e45−e1,−e5 5̄e4,e5 n 3

1e2,−e45−e2,−e5 5̄e4,e5 n 3

10e1 5̄e2,e5 5̄e3,e4 n 3

10e2 5̄e1,e5 5̄e3,e4 n 3

13
1e1,−e25−e1,−e5 5̄e2,e5 y 3

10e3 5̄e1,e4 5̄e2,e5 y 3

15
10e2 5̄e1,e5 5̄e3,e4 n 3

5−e1,−e210e110e2 y 3

16
10e2 5̄e1,e5 5̄e3,e4 n 3

5−e1,−e210e110e2 y 3

17
10e2 5̄e1,e5 5̄e3,e4 n 3

5−e1,−e210e110e2 y 3

18
10e2 5̄e1,e5 5̄e3,e4 n 3

5−e1,−e210e110e2 y 3

19

10e3 5̄e1,e4 5̄e2,e5 y 3

10e5 5̄e1,e3 5̄e2,e4 n 3

5−e3,−e510e310e5 n 3

20

10e3 5̄e1,e4 5̄e2,e5 y 3

10e5 5̄e1,e3 5̄e2,e4 n 3

5−e3,−e510e310e5 n 3

21

10e3 5̄e1,e4 5̄e2,e5 y 3

10e5 5̄e1,e3 5̄e2,e4 n 3

5−e3,−e510e310e5 n 3

22

10e3 5̄e1,e4 5̄e2,e5 y 3

10e5 5̄e1,e3 5̄e2,e4 n 3

5−e3,−e510e310e5 n 3
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On CICY 7862, a total of 14 models have Yukawa couplings consistent with the gauge

symmetries of the models, with 90 Yukawa couplings being permitted in total. Of these,

53 are of the form 10ei 5̄ej,ek 5̄el,em , 19 are of the form 1ei,−ej5−ei,−ek 5̄ej,ek and 18 are

of the form 5−ei,−ej10ei10ej . A total of 16 couplings exhibit the topological vanishing

we have been studying in this paper, 3 of the form 1ei,−ej5−ei,−ek 5̄ej,ek , 5 of the form

10ei 5̄ej,ek 5̄el,em , and 8 of the form 5−ei,−ej10ei10ej . A total of 9 out of the 14 models have

at least one topologically vanishing coupling.

CICY No. Model No. Yukawa Pattern Top. Van. Sym. No.

2
1e3,−e45−e3,−e5 5̄e4,e5 n 1-2

10e2 5̄e1,e4 5̄e3,e5 n 1-2

3 10e5 5̄e1,e3 5̄e2,e4 n 1-2

5256

5
1e1,−e25−e1,−e5 5̄e2,e5 y 3-6

10e3 5̄e1,e4 5̄e2,e5 y 3-6

6
1e1,−e25−e1,−e5 5̄e2,e5 y 3-6

10e3 5̄e1,e4 5̄e2,e5 y 3-6

7 10e3 5̄e1,e2 5̄e4,e5 n 3-6

8 10e3 5̄e1,e2 5̄e4,e5 n 3-6

9 10e3 5̄e1,e2 5̄e4,e5 n 3-6

10 10e3 5̄e1,e2 5̄e4,e5 n 3-6

11 10e3 5̄e1,e2 5̄e4,e5 n 3-6

12 10e3 5̄e1,e2 5̄e4,e5 n 3-6

13 10e3 5̄e1,e2 5̄e4,e5 n 3-6

14 10e3 5̄e1,e2 5̄e4,e5 n 3-6

15 10e2 5̄e1,e3 5̄e4,e5 y 3-6

16 10e5 5̄e1,e3 5̄e2,e4 y 3-6

17 10e2 5̄e1,e3 5̄e4,e5 y 3-6

18 10e1 5̄e2,e3 5̄e4,e5 y 3-6

19 10e5 5̄e1,e4 5̄e2,e3 y 3-6

20 10e5 5̄e1,e2 5̄e3,e4 n 3-6

21 10e5 5̄e1,e4 5̄e2,e3 n 3-6

22 10e5 5̄e1,e2 5̄e3,e4 n 3-6

23 10e5 5̄e1,e3 5̄e2,e4 n 3-6

25 10e2 5̄e1,e4 5̄e3,e5 y 3-6

On CICY 5256, a total of 84 models have Yukawa couplings consistent with the gauge

symmetries of the models, with 158 Yukawa couplings being permitted in total. Of these,

126 are of the form 10ei 5̄ej,ek 5̄el,em , 32 are of the form 1ei,−ej5−ei,−ek 5̄ej,ek . A total of

56 couplings exhibit the topological vanishing we have been studying in this paper, 24 of

the form 1ei,−ej5−ei,−ek 5̄ej,ek , 32 of the form 10ei 5̄ej,ek 5̄el,em . A total of 32 out of the 84

models have at least one topologically vanishing coupling.
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CICY No. Model No. Yukawa Pattern Top. Van. Sym. No.

5452

1 10e3 5̄e1,e2 5̄e4,e5 n 7-22

2 10e5 5̄e1,e2 5̄e3,e4 n 7-22

7 10e5 5̄e1,e2 5̄e3,e4 n 7-22

8 10e4 5̄e1,e2 5̄e3,e5 n 7-22

9 10e5 5̄e1,e2 5̄e3,e4 n 7-22

10 10e5 5̄e1,e2 5̄e3,e4 n 7-22

11 10e5 5̄e1,e2 5̄e3,e4 n 7-22

12 10e5 5̄e1,e2 5̄e3,e4 n 7-22

13 10e5 5̄e1,e2 5̄e3,e4 n 7-22

14 10e4 5̄e1,e2 5̄e3,e5 n 7-22

15 10e1 5̄e2,e4 5̄e3,e5 y 7-22

16 10e1 5̄e2,e4 5̄e3,e5 y 7-22

17 10e2 5̄e1,e3 5̄e4,e5 y 7-22

18 10e5 5̄e1,e3 5̄e2,e4 n 7-22

19 10e5 5̄e1,e3 5̄e2,e4 n 7-22

20 10e5 5̄e1,e3 5̄e2,e4 n 7-22

21 10e5 5̄e1,e3 5̄e2,e4 n 7-22

22 10e5 5̄e1,e3 5̄e2,e4 n 7-22

23 10e5 5̄e1,e3 5̄e2,e4 n 7-22

24 10e5 5̄e1,e3 5̄e2,e4 n 7-22

25 10e5 5̄e1,e3 5̄e2,e4 n 7-22

26 10e5 5̄e1,e4 5̄e2,e3 y 7-22

27 10e5 5̄e1,e4 5̄e2,e3 y 7-22

28 10e1 5̄e2,e4 5̄e3,e5 y 7-22

29 10e1 5̄e2,e4 5̄e3,e5 y 7-22

34 10e5 5̄e1,e4 5̄e2,e3 y 7-22

35 10e1 5̄e2,e3 5̄e4,e5 y 7-22

36 10e2 5̄e1,e3 5̄e4,e5 y 7-22

37 10e2 5̄e1,e3 5̄e4,e5 y 7-22

38 10e5 5̄e1,e3 5̄e2,e4 y 7-22

39 10e5 5̄e1,e2 5̄e3,e4 n 7-22

40 10e5 5̄e1,e2 5̄e3,e4 n 7-22

41 10e5 5̄e1,e2 5̄e3,e4 n 7-22

42 10e5 5̄e1,e2 5̄e3,e4 n 7-22

43 10e3 5̄e1,e2 5̄e4,e5 n 7-22

44 10e3 5̄e1,e2 5̄e4,e5 n 7-22
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CICY No. Model No. Yukawa Pattern Top. Van. Sym. No.

5452

45 10e3 5̄e1,e2 5̄e4,e5 n 7-22

46 10e3 5̄e1,e2 5̄e4,e5 n 7-22

47 10e3 5̄e1,e2 5̄e4,e5 n 7-22

48 10e3 5̄e1,e2 5̄e4,e5 n 7-22

49 10e3 5̄e1,e2 5̄e4,e5 n 7-22

50 10e3 5̄e1,e2 5̄e4,e5 n 7-22

51
1e1,−e25−e1,−e4 5̄e2,e4 y 7-22

10e3 5̄e1,e5 5̄e2,e4 y 7-22

52 10e3 5̄e1,e2 5̄e4,e5 n 7-22

53 10e3 5̄e1,e2 5̄e4,e5 n 7-22

54 10e3 5̄e1,e2 5̄e4,e5 n 7-22

55 10e3 5̄e1,e2 5̄e4,e5 n 7-22

56
1e1,−e25−e1,−e4 5̄e2,e4 y 7-22

10e3 5̄e1,e5 5̄e2,e4 y 7-22

57
10e3 5̄e1,e5 5̄e2,e4 n 7-22

1e2,−e15−e2,−e5 5̄e1,e5 y 7-22

58 10e3 5̄e1,e2 5̄e4,e5 n 7-22

59 10e3 5̄e1,e2 5̄e4,e5 n 7-22

60 10e3 5̄e1,e2 5̄e4,e5 n 7-22

61 10e3 5̄e1,e2 5̄e4,e5 n 7-22

62
1e1,−e25−e1,−e5 5̄e2,e5 y 7-22

10e3 5̄e1,e4 5̄e2,e5 y 7-22
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CICY No. Model No. Yukawa Pattern Top. Van. Sym. No.

5452

50 10e3 5̄e1,e2 5̄e4,e5 n 7-22

51
1e1,−e25−e1,−e4 5̄e2,e4 y 7-22

10e3 5̄e1,e5 5̄e2,e4 y 7-22

52 10e3 5̄e1,e2 5̄e4,e5 n 7-22

53 10e3 5̄e1,e2 5̄e4,e5 n 7-22

54 10e3 5̄e1,e2 5̄e4,e5 n 7-22

55 10e3 5̄e1,e2 5̄e4,e5 n 7-22

56
1e1,−e25−e1,−e4 5̄e2,e4 y 7-22

10e3 5̄e1,e5 5̄e2,e4 y 7-22

57
10e3 5̄e1,e5 5̄e2,e4 n 7-22

1e2,−e15−e2,−e5 5̄e1,e5 y 7-22

58 10e3 5̄e1,e2 5̄e4,e5 n 7-22

59 10e3 5̄e1,e2 5̄e4,e5 n 7-22

60 10e3 5̄e1,e2 5̄e4,e5 n 7-22

61 10e3 5̄e1,e2 5̄e4,e5 n 7-22

62
1e1,−e25−e1,−e5 5̄e2,e5 y 7-22

10e3 5̄e1,e4 5̄e2,e5 y 7-22

1

10e1 5̄e2,e3 5̄e4,e5 n 1-4

10e5 5̄e1,e4 5̄e2,e3 n 1-4

1e4,−e35−e4,−e5 5̄e3,e5 n 1-4

2

10e1 5̄e2,e3 5̄e4,e5 n 1-4

10e5 5̄e1,e4 5̄e2,e3 n 1-4

1e4,−e35−e4,−e5 5̄e3,e5 n 1-4

3

10e1 5̄e2,e3 5̄e4,e5 n 1-4

10e5 5̄e1,e4 5̄e2,e3 n 1-4

1e4,−e35−e4,−e5 5̄e3,e5 n 1-4

4

10e1 5̄e2,e3 5̄e4,e5 n 1-4

10e5 5̄e1,e4 5̄e2,e3 n 1-4

1e4,−e35−e4,−e5 5̄e3,e5 n 1-4

6
10e1 5̄e2,e3 5̄e4,e5 n 1-4

10e4 5̄e1,e5 5̄e2,e3 n 1-4

7
10e1 5̄e2,e3 5̄e4,e5 n 1-4

10e4 5̄e1,e5 5̄e2,e3 n 1-4

8
10e1 5̄e2,e3 5̄e4,e5 n 1-4

10e4 5̄e1,e5 5̄e2,e3 n 1-4

9
10e1 5̄e2,e3 5̄e4,e5 n 1-4

10e4 5̄e1,e5 5̄e2,e3 n 1-4
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On CICY 5452, a total of 800 models have Yukawa couplings consistent with the gauge

symmetries of the models, with 1584 Yukawa couplings being permitted in total. Of these,

1376 are of the form 10ei 5̄ej,ek 5̄el,em and 208 are of the form 1ei,−ej5−ei,−ek 5̄ej,ek . A total

of 432 couplings exhibit the topological vanishing we have been studying in this paper, 192

of the form 1ei,−ej5−ei,−ek 5̄ej,ek and 240 of the form 10ei 5̄ej,ek 5̄el,em . A total of 256 out

of the 800 models have at least one topologically vanishing coupling.

CICY No. Model No. Yukawa Pattern Top. Van. Sym. No.

6947

1 10e1 5̄e2,e4 5̄e3,e5 y 3

2 10e1 5̄e2,e4 5̄e3,e5 y 3

3 10e2 5̄e1,e3 5̄e4,e5 y 3

4 10e2 5̄e1,e4 5̄e3,e5 y 3

5 10e5 5̄e1,e4 5̄e2,e3 y 3

6 10e5 5̄e1,e4 5̄e2,e3 y 3

7 10e1 5̄e2,e4 5̄e3,e5 y 3

8 10e1 5̄e2,e4 5̄e3,e5 y 3

9 10e5 5̄e1,e3 5̄e2,e4 y 3

10 10e5 5̄e1,e3 5̄e2,e4 y 3

11 10e1 5̄e2,e3 5̄e4,e5 y 3

12 10e1 5̄e2,e3 5̄e4,e5 y 3

13 10e2 5̄e1,e4 5̄e3,e5 y 3

14 10e2 5̄e1,e3 5̄e4,e5 y 3

15 10e2 5̄e1,e3 5̄e4,e5 y 3

16 10e5 5̄e1,e3 5̄e2,e4 y 3

17 10e5 5̄e1,e3 5̄e2,e4 y 3

18 10e2 5̄e1,e3 5̄e4,e5 y 3

19
1e1,−e25−e1,−e4 5̄e2,e4 y 3

10e3 5̄e1,e5 5̄e2,e4 y 3

20
1e1,−e25−e1,−e4 5̄e2,e4 y 3

10e3 5̄e1,e5 5̄e2,e4 y 3

21 10e3 5̄e1,e4 5̄e2,e5 y 3

22 10e3 5̄e1,e5 5̄e2,e4 y 3

23
1e1,−e25−e1,−e5 5̄e2,e5 y 3

10e3 5̄e1,e4 5̄e2,e5 y 3

24
1e1,−e25−e1,−e5 5̄e2,e5 y 3

10e3 5̄e1,e4 5̄e2,e5 y 3

On CICY 6947, a total of 24 models have Yukawa couplings consistent with the gauge

symmetries of the models, with 36 couplings being permitted in total. Of these, 24 are of

the form 10ei 5̄ej,ek 5̄el,em and 12 are of the form 1ei,−ej5−ei,−ek 5̄ej,ek . All of these couplings

exhibit topological vanishing.
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CICY No. Model No. Yukawa Pattern Top. Van. Sym. No.

6732

1 10e2 5̄e1,e3 5̄e4,e5 n 1-2

2 10e2 5̄e1,e3 5̄e4,e5 n 1-2

5

10e3 5̄e1,e2 5̄e4,e5 n 1-2

10e4 5̄e1,e2 5̄e3,e5 n 1-2

10e5 5̄e1,e2 5̄e3,e4 n 1-2

5−e3,−e410e310e4 n 1-2

5−e3,−e510e310e5 n 1-2

6

10e3 5̄e1,e2 5̄e4,e5 n 1-2

10e4 5̄e1,e2 5̄e3,e5 n 1-2

10e5 5̄e1,e2 5̄e3,e4 n 1-2

5−e3,−e410e310e4 n 1-2

5−e3,−e510e310e5 n 1-2

CICY No. Model No. Yukawa Pattern Top. Van. Sym. No.

6732

7

10e3 5̄e1,e2 5̄e4,e5 n 1-2

10e4 5̄e1,e2 5̄e3,e5 n 1-2

10e5 5̄e1,e2 5̄e3,e4 n 1-2

5−e3,−e410e310e4 n 1-2

5−e3,−e510e310e5 n 1-2

8

10e3 5̄e1,e2 5̄e4,e5 n 1-2

10e4 5̄e1,e2 5̄e3,e5 n 1-2

10e5 5̄e1,e2 5̄e3,e4 n 1-2

5−e3,−e410e310e4 n 1-2

5−e3,−e510e310e5 n 1-2

18 5−e3,−e510e310e5 n 1-2

29 5−e2,−e510e210e5 n 1-2

30 10e3 5̄e1,e4 5̄e2,e5 n 1-2

31 10e3 5̄e1,e4 5̄e2,e5 n 1-2

32 10e3 5̄e1,e2 5̄e4,e5 n 1-2

34 1e1,−e35−e1,−e5 5̄e3,e5 n 1-2

35 1e1,−e35−e1,−e5 5̄e3,e5 n 1-2

36 10e2 5̄e1,e5 5̄e3,e4 n 1-2

On CICY 6732, a total of 28 models have Yukawa couplings consistent with the gauge

symmetries of the models, with 104 couplings being permitted in total. Of these, 68 are

of the form 10ei 5̄ej,ek 5̄el,em , 12 are of the form 1ei,−ej5−ei,−ek 5̄ej,ek and 24 are of the

form 5−ei,−ej10ei10ej . None of these couplings exhibit the topological vanishings we have

studied here.
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CICY No. Model No. Yukawa Pattern Top. Van. Sym. No.

6770

1 5−e1,−e210e110e2 y 1-2

2 5−e1,−e210e110e2 y 1-2

5 5−e1,−e210e110e2 y 1-2

6 5−e1,−e210e110e2 y 1-2

7 10e2 5̄e1,e4 5̄e3,e5 n 1-2

8 10e2 5̄e1,e4 5̄e3,e5 n 1-2

11 10e1 5̄e2,e5 5̄e3,e4 n 1-2

12 10e1 5̄e2,e5 5̄e3,e4 n 1-2

On CICY 6770, a total of 16 models have Yukawa couplings consistent with the gauge

symmetries of the models, with 48 couplings being permitted in total. Of these, 32 are of

the form 10ei 5̄ej,ek 5̄el,em and 16 are of the form 5−ei,−ej10ei10ej . There are a total of 16

couplings that exhibit the topological vanishing we have been studying here. All of these

are of the form 5−ei,−ej10ei10ej . A total of 8 models have at least one coupling which

exhibits this topological vanishing.

CICY No. Model No. Yukawa Pattern Top. Van. Sym. No.

6777

1

1e2,−e35−e2,−e5 5̄e3,e5 n 1-4

1e3,−e25−e3,−e5 5̄e2,e5 n 1-4

10e2 5̄e1,e4 5̄e3,e5 n 1-4

10e3 5̄e1,e4 5̄e2,e5 n 1-4

10e5 5̄e1,e4 5̄e2,e3 n 1-4

5−e2,−e510e210e5 n 1-4

5−e3,−e510e310e5 n 1-4

2

1e2,−e35−e2,−e5 5̄e3,e5 n 1-4

1e3,−e25−e3,−e5 5̄e2,e5 n 1-4

10e2 5̄e1,e4 5̄e3,e5 n 1-4

10e3 5̄e1,e4 5̄e2,e5 n 1-4

10e5 5̄e1,e4 5̄e2,e3 n 1-4

5−e2,−e510e210e5 n 1-4

5−e3,−e510e310e5 n 1-4
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CICY No. Model No. Yukawa Pattern Top. Van. Sym. No.

6777

3

1e2,−e35−e2,−e5 5̄e3,e5 n 1-4

1e3,−e25−e3,−e5 5̄e2,e5 n 1-4

10e2 5̄e1,e4 5̄e3,e5 n 1-4

10e3 5̄e1,e4 5̄e2,e5 n 1-4

10e5 5̄e1,e4 5̄e2,e3 n 1-4

5−e2,−e510e210e5 n 1-4

5−e3,−e510e310e5 n 1-4

4

1e2,−e35−e2,−e5 5̄e3,e5 n 1-4

1e3,−e25−e3,−e5 5̄e2,e5 n 1-4

10e2 5̄e1,e4 5̄e3,e5 n 1-4

10e3 5̄e1,e4 5̄e2,e5 n 1-4

10e5 5̄e1,e4 5̄e2,e3 n 1-4

5−e2,−e510e210e5 n 1-4

5−e3,−e510e310e5 n 1-4

13
1e2,−e45−e2,−e5 5̄e4,e5 n 1-4

5−e2,−e510e210e5 n 1-4

14
1e2,−e45−e2,−e5 5̄e4,e5 n 1-4

5−e2,−e510e210e5 n 1-4

On CICY 6777, a total of 24 models have Yukawa couplings consistent with the gauge

symmetries of the models, with 192 Yukawa couplings being permitted in total. Of these,

64 are of the form 10ei 5̄ej,ek 5̄el,em , 80 are of the form 1ei,−ej5−ei,−ek 5̄ej,ek and 48 are of

the form 5−ei,−ej10ei10ej . None of these couplings exhibit the topological vanishings we

have studied here.

CICY No. Model No. Yukawa Pattern Top. Van. Sym. No.

6890

1 10e3 5̄e1,e2 5̄e4,e5 n 1-2

2 10e3 5̄e1,e2 5̄e4,e5 n 1-2

6

10e3 5̄e1,e2 5̄e4,e5 n 1-2

10e4 5̄e1,e2 5̄e3,e5 n 1-2

10e5 5̄e1,e2 5̄e3,e4 n 1-2

5−e3,−e410e310e4 n 1-2

5−e4,−e510e410e5 n 1-2

7

10e3 5̄e1,e2 5̄e4,e5 n 1-2

10e4 5̄e1,e2 5̄e3,e5 n 1-2

10e5 5̄e1,e2 5̄e3,e4 n 1-2

5−e3,−e410e310e4 n 1-2

5−e4,−e510e410e5 n 1-2
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CICY No. Model No. Yukawa Pattern Top. Van. Sym. No.

6890

8

10e3 5̄e1,e2 5̄e4,e5 n 1-2

10e4 5̄e1,e2 5̄e3,e5 n 1-2

10e5 5̄e1,e2 5̄e3,e4 n 1-2

5−e3,−e410e310e4 n 1-2

5−e4,−e510e410e5 n 1-2

9

10e3 5̄e1,e2 5̄e4,e5 n 1-2

10e4 5̄e1,e2 5̄e3,e5 n 1-2

10e5 5̄e1,e2 5̄e3,e4 n 1-2

5−e3,−e410e310e4 n 1-2

5−e4,−e510e410e5 n 1-2

14 5−e4,−e510e410e5 n 1-2

16 1e1,−e35−e1,−e5 5̄e3,e5 n 1-2

17 1e1,−e35−e1,−e5 5̄e3,e5 n 1-2

23 5−e2,−e410e210e4 n 1-2

28 10e2 5̄e1,e5 5̄e3,e4 n 1-2

On CICY 6777, a total of 22 models have Yukawa couplings consistent with the gauge

symmetries of the models, with 86 Yukawa couplings being permitted in total. Of these,

50 are of the form 10ei 5̄ej,ek 5̄el,em , 12 are of the form 1ei,−ej5−ei,−ek 5̄ej,ek and 24 are of

the form 5−ei,−ej10ei10ej . None of these couplings exhibit the topological vanishings we

have studied here.

CICY No. Model No. Yukawa Pattern Top. Van. Sym. No.

7447

1
1e1,−e25−e1,−e5 5̄e2,e5 y 2

10e3 5̄e1,e4 5̄e2,e5 y 2

2
10e2 5̄e1,e4 5̄e3,e5 n 2

1e3,−e15−e3,−e4 5̄e1,e4 n 2

3 10e1 5̄e2,e5 5̄e3,e4 n 2

4
10e1 5̄e2,e5 5̄e3,e4 n 2

10e4 5̄e1,e3 5̄e2,e5 n 2

On CICY 7447, a total of 4 models have Yukawa couplings consistent with the gauge

symmetries of the models, with 9 couplings being permitted in total. Of these, 5 are of

the form 10ei 5̄ej,ek 5̄el,em and 4 are of the form 1ei,−ej5−ei,−ek 5̄ej,ek . There are a total of 4

couplings that exhibit the topological vanishing we have been studying here, 3 of the form

1ei,−ej5−ei,−ek 5̄ej,ek and 1 of the form 10ei 5̄ej,ek 5̄el,em . All of the topologically vanishing

couplings occur in 1 model.
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CICY No. Model No. Yukawa Pattern Top. Van. Sym. No.

7487

1

1e2,−e35−e2,−e4 5̄e3,e4 n 1,3

1e3,−e15−e3,−e4 5̄e1,e4 n 1-4

1e3,−e25−e3,−e4 5̄e2,e4 n 1,3

10e1 5̄e2,e4 5̄e3,e5 n 1,3

10e2 5̄e1,e4 5̄e3,e5 n 1-4

5−e2,−e310e210e3 y 1,3

2

1e2,−e35−e2,−e4 5̄e3,e4 n 1-4

1e3,−e15−e3,−e4 5̄e1,e4 n 1-4

1e3,−e25−e3,−e4 5̄e2,e4 n 1-4

10e1 5̄e2,e4 5̄e3,e5 n 1-4

10e2 5̄e1,e4 5̄e3,e5 n 1-4

5−e2,−e310e210e3 y 1-4

3

1e2,−e35−e2,−e4 5̄e3,e4 n 1-4

1e3,−e15−e3,−e4 5̄e1,e4 n 1-4

1e3,−e25−e3,−e4 5̄e2,e4 n 1-4

10e1 5̄e2,e4 5̄e3,e5 n 1-4

10e2 5̄e1,e4 5̄e3,e5 n 1-4

5−e2,−e310e210e3 y 1-4

4

1e2,−e35−e2,−e4 5̄e3,e4 n 1-4

1e3,−e15−e3,−e4 5̄e1,e4 n 1-4

1e3,−e25−e3,−e4 5̄e2,e4 n 1-4

10e1 5̄e2,e4 5̄e3,e5 n 1-4

10e2 5̄e1,e4 5̄e3,e5 n 1-4

5−e2,−e310e210e3 y 1-4

5

1e2,−e35−e2,−e4 5̄e3,e4 n 1-4

1e3,−e15−e3,−e4 5̄e1,e4 n 1-4

1e3,−e25−e3,−e4 5̄e2,e4 n 1-4

10e1 5̄e2,e4 5̄e3,e5 n 1-4

10e2 5̄e1,e4 5̄e3,e5 n 1-4

5−e2,−e310e210e3 y 1-4

6

1e2,−e35−e2,−e4 5̄e3,e4 n 1-4

1e3,−e15−e3,−e4 5̄e1,e4 n 1-4

1e3,−e25−e3,−e4 5̄e2,e4 n 1-4

10e1 5̄e2,e4 5̄e3,e5 n 1-4

10e2 5̄e1,e4 5̄e3,e5 n 1-4

5−e2,−e310e210e3 y 1-4
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7

1e2,−e35−e2,−e4 5̄e3,e4 n 1-4

1e3,−e15−e3,−e4 5̄e1,e4 n 1-4

1e3,−e25−e3,−e4 5̄e2,e4 n 1-4

10e1 5̄e2,e4 5̄e3,e5 n 1-4

10e2 5̄e1,e4 5̄e3,e5 n 1-4

5−e2,−e310e210e3 y 1-4

8

1e2,−e35−e2,−e4 5̄e3,e4 n 1-4

1e3,−e15−e3,−e4 5̄e1,e4 n 1-4

1e3,−e25−e3,−e4 5̄e2,e4 n 1-4

10e1 5̄e2,e4 5̄e3,e5 n 1-4

10e2 5̄e1,e4 5̄e3,e5 n 1-4

5−e2,−e310e210e3 y 1-4

9

1e2,−e35−e2,−e4 5̄e3,e4 n 1-4

1e3,−e15−e3,−e4 5̄e1,e4 n 1-4

1e3,−e25−e3,−e4 5̄e2,e4 n 1-4

10e1 5̄e2,e4 5̄e3,e5 n 1-4

10e2 5̄e1,e4 5̄e3,e5 n 1-4

5−e2,−e310e210e3 y 1-4

10

1e2,−e35−e2,−e4 5̄e3,e4 n 2,4

1e3,−e15−e3,−e4 5̄e1,e4 n 1-4

1e3,−e25−e3,−e4 5̄e2,e4 n 2,4

10e1 5̄e2,e4 5̄e3,e5 n 2,4

10e2 5̄e1,e4 5̄e3,e5 n 1-4

5−e2,−e310e210e3 y 2,4

11

1e2,−e35−e2,−e4 5̄e3,e4 n 1,3

1e3,−e25−e3,−e4 5̄e2,e4 n 1,3

10e1 5̄e2,e5 5̄e3,e4 n 1-4

5−e2,−e310e210e3 y 1,3

12

1e2,−e35−e2,−e4 5̄e3,e4 n 1-4

1e3,−e25−e3,−e4 5̄e2,e4 n 1-4

10e1 5̄e2,e5 5̄e3,e4 n 1-4

5−e2,−e310e210e3 y 1-4

13

1e2,−e35−e2,−e4 5̄e3,e4 n 1-4

1e3,−e25−e3,−e4 5̄e2,e4 n 1-4

10e1 5̄e2,e5 5̄e3,e4 n 1-4

5−e2,−e310e210e3 y 1-4

14

1e2,−e35−e2,−e4 5̄e3,e4 n 1-4

1e3,−e25−e3,−e4 5̄e2,e4 n 1-4

10e1 5̄e2,e5 5̄e3,e4 n 1-4

5−e2,−e310e210e3 y 1-4
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15

1e2,−e35−e2,−e4 5̄e3,e4 n 1-4

1e3,−e25−e3,−e4 5̄e2,e4 n 1-4

10e1 5̄e2,e5 5̄e3,e4 n 1-4

5−e2,−e310e210e3 y 1-4

16

1e2,−e35−e2,−e4 5̄e3,e4 n 1-4

1e3,−e25−e3,−e4 5̄e2,e4 n 1-4

10e1 5̄e2,e5 5̄e3,e4 n 1-4

5−e2,−e310e210e3 y 1-4

17

1e2,−e35−e2,−e4 5̄e3,e4 n 1-4

1e3,−e25−e3,−e4 5̄e2,e4 n 1-4

10e1 5̄e2,e5 5̄e3,e4 n 1-4

5−e2,−e310e210e3 y 1-4

18

1e2,−e35−e2,−e4 5̄e3,e4 n 1-4

1e3,−e25−e3,−e4 5̄e2,e4 n 1-4

10e1 5̄e2,e5 5̄e3,e4 n 1-4

5−e2,−e310e210e3 y 1-4

19

1e2,−e35−e2,−e4 5̄e3,e4 n 1-4

1e3,−e25−e3,−e4 5̄e2,e4 n 1-4

10e1 5̄e2,e5 5̄e3,e4 n 1-4

5−e2,−e310e210e3 y 1-4

20

1e2,−e35−e2,−e4 5̄e3,e4 n 2,4

1e3,−e25−e3,−e4 5̄e2,e4 n 2,4

10e1 5̄e2,e5 5̄e3,e4 n 1-4

5−e2,−e310e210e3 y 2,4

21
1e1,−e25−e1,−e5 5̄e2,e5 n 1-4

10e3 5̄e1,e4 5̄e2,e5 y 1-4

22 10e5 5̄e1,e2 5̄e3,e4 n 1-4

23

10e3 5̄e1,e2 5̄e4,e5 n 1-4

10e4 5̄e1,e2 5̄e3,e5 n 1-4

10e5 5̄e1,e2 5̄e3,e4 n 1-4

5−e3,−e410e310e4 y 1-4

24 5−e3,−e410e310e4 y 1-4

26 10e2 5̄e1,e4 5̄e3,e5 n 1-4

27
10e5 5̄e1,e2 5̄e3,e4 n 1-4

10e5 5̄e1,e3 5̄e2,e4 n 1-4

28
10e5 5̄e1,e2 5̄e3,e4 n 1-4

10e5 5̄e1,e3 5̄e2,e4 y 1-4

29
10e2 5̄e1,e3 5̄e4,e5 n 1-4

10e2 5̄e1,e5 5̄e3,e4 n 1,3
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30
10e2 5̄e1,e3 5̄e4,e5 n 1-4

10e2 5̄e1,e5 5̄e3,e4 n 1-4

31
10e2 5̄e1,e3 5̄e4,e5 n 1-4

10e2 5̄e1,e5 5̄e3,e4 n 1-4

32
10e2 5̄e1,e3 5̄e4,e5 n 1-4

10e2 5̄e1,e5 5̄e3,e4 n 1-4

33
10e2 5̄e1,e3 5̄e4,e5 n 1-4

10e2 5̄e1,e5 5̄e3,e4 n 2,4

34
10e2 5̄e1,e3 5̄e4,e5 y 1-4

10e2 5̄e1,e5 5̄e3,e4 n 1-4

35 10e2 5̄e1,e3 5̄e4,e5 y 1-4

36
10e2 5̄e1,e3 5̄e4,e5 n 1-4

10e5 5̄e1,e3 5̄e2,e4 n 1-4

37
10e2 5̄e1,e3 5̄e4,e5 n 1-4

10e5 5̄e1,e3 5̄e2,e4 n 1-4

38
10e2 5̄e1,e3 5̄e4,e5 n 1-4

10e5 5̄e1,e3 5̄e2,e4 n 1-4

39
10e2 5̄e1,e3 5̄e4,e5 n 1-4

10e5 5̄e1,e3 5̄e2,e4 n 1-4

40
10e1 5̄e2,e3 5̄e4,e5 n 1-4

10e2 5̄e1,e3 5̄e4,e5 n 1-4

41
10e1 5̄e2,e3 5̄e4,e5 n 1-4

10e2 5̄e1,e3 5̄e4,e5 n 1-4

42
10e1 5̄e2,e3 5̄e4,e5 n 1-4

10e2 5̄e1,e3 5̄e4,e5 n 1-4

43
10e1 5̄e2,e3 5̄e4,e5 n 1-4

10e2 5̄e1,e3 5̄e4,e5 n 1-4

44
10e1 5̄e2,e3 5̄e4,e5 n 1-4

10e2 5̄e1,e3 5̄e4,e5 n 1-4

45
10e1 5̄e2,e3 5̄e4,e5 n 1-4

10e2 5̄e1,e3 5̄e4,e5 n 1-4

46
10e1 5̄e2,e3 5̄e4,e5 n 1-4

10e2 5̄e1,e3 5̄e4,e5 n 1-4

47
10e1 5̄e2,e3 5̄e4,e5 n 1-4

10e2 5̄e1,e3 5̄e4,e5 n 1-4

48
10e1 5̄e2,e3 5̄e4,e5 n 1-4

10e2 5̄e1,e3 5̄e4,e5 n 1-4

– 53 –



J
H
E
P
1
1
(
2
0
1
9
)
0
7
3

CICY No. Model No. Yukawa Pattern Top. Van. Sym. No.

7487

49
10e1 5̄e2,e3 5̄e4,e5 n 1-4

10e2 5̄e1,e3 5̄e4,e5 n 1-4

50
10e1 5̄e2,e3 5̄e4,e5 n 1-4

10e2 5̄e1,e3 5̄e4,e5 n 1-4

51
10e1 5̄e2,e3 5̄e4,e5 n 1-4

10e2 5̄e1,e3 5̄e4,e5 n 1-4

52
10e1 5̄e2,e3 5̄e4,e5 n 1-4

10e2 5̄e1,e3 5̄e4,e5 n 1-4

53
10e1 5̄e2,e3 5̄e4,e5 n 1-4

10e2 5̄e1,e3 5̄e4,e5 n 1-4

54
10e1 5̄e2,e3 5̄e4,e5 n 1-4

10e2 5̄e1,e3 5̄e4,e5 n 1-4

55
10e1 5̄e2,e3 5̄e4,e5 n 1-4

10e2 5̄e1,e3 5̄e4,e5 n 1-4

56
10e1 5̄e2,e3 5̄e4,e5 n 1-4

10e2 5̄e1,e3 5̄e4,e5 n 1-4

57
10e1 5̄e2,e3 5̄e4,e5 n 1-4

10e2 5̄e1,e3 5̄e4,e5 n 1-4

58
10e1 5̄e2,e3 5̄e4,e5 n 1-4

10e2 5̄e1,e3 5̄e4,e5 n 1-4

59
10e1 5̄e2,e3 5̄e4,e5 n 1-4

10e2 5̄e1,e3 5̄e4,e5 n 1-4

60 10e5 5̄e1,e3 5̄e2,e4 y 1-4

61 10e2 5̄e1,e3 5̄e4,e5 y 1-4

62 10e5 5̄e1,e3 5̄e2,e4 n 1-4

63 10e5 5̄e1,e3 5̄e2,e4 y 1-4

64

10e2 5̄e1,e5 5̄e3,e4 n 1,3

10e3 5̄e1,e5 5̄e2,e4 n 1-4

10e5 5̄e1,e2 5̄e3,e4 n 1,3

10e5 5̄e1,e3 5̄e2,e4 n 1-4

65

10e2 5̄e1,e5 5̄e3,e4 n 1-4

10e3 5̄e1,e5 5̄e2,e4 n 1-4

10e5 5̄e1,e2 5̄e3,e4 n 1-4

10e5 5̄e1,e3 5̄e2,e4 n 1-4

66

10e2 5̄e1,e5 5̄e3,e4 n 1-4

10e3 5̄e1,e5 5̄e2,e4 n 1-4

10e5 5̄e1,e2 5̄e3,e4 n 1-4

10e5 5̄e1,e3 5̄e2,e4 n 1-4
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67

10e2 5̄e1,e5 5̄e3,e4 n 1-4

10e3 5̄e1,e5 5̄e2,e4 n 1-4

10e5 5̄e1,e2 5̄e3,e4 n 1-4

10e5 5̄e1,e3 5̄e2,e4 n 1-4

68

10e2 5̄e1,e5 5̄e3,e4 n 2,4

10e3 5̄e1,e5 5̄e2,e4 n 1-4

10e5 5̄e1,e2 5̄e3,e4 n 2,4

10e5 5̄e1,e3 5̄e2,e4 n 1-4

69 10e2 5̄e1,e3 5̄e4,e5 n 1-4

70 10e2 5̄e1,e3 5̄e4,e5 y 1-4

71
10e2 5̄e1,e3 5̄e4,e5 n 1-4

10e5 5̄e1,e3 5̄e2,e4 n 1-4

72
10e2 5̄e1,e3 5̄e4,e5 n 1-4

10e5 5̄e1,e4 5̄e2,e3 n 1,3

73
10e2 5̄e1,e3 5̄e4,e5 n 1-4

10e5 5̄e1,e4 5̄e2,e3 n 1-4

74
10e2 5̄e1,e3 5̄e4,e5 n 1-4

10e5 5̄e1,e4 5̄e2,e3 n 1-4

75
10e2 5̄e1,e3 5̄e4,e5 n 1-4

10e5 5̄e1,e4 5̄e2,e3 n 1-4

76
10e2 5̄e1,e3 5̄e4,e5 n 1-4

10e5 5̄e1,e4 5̄e2,e3 n 1-4

77
10e2 5̄e1,e3 5̄e4,e5 n 1-4

10e5 5̄e1,e4 5̄e2,e3 n 1-4

78
10e2 5̄e1,e3 5̄e4,e5 n 1-4

10e5 5̄e1,e4 5̄e2,e3 n 1-4

79
10e2 5̄e1,e3 5̄e4,e5 n 1-4

10e5 5̄e1,e4 5̄e2,e3 n 1-4

80
10e2 5̄e1,e3 5̄e4,e5 n 1-4

10e5 5̄e1,e4 5̄e2,e3 n 1-4

81
10e2 5̄e1,e3 5̄e4,e5 n 1-4

10e5 5̄e1,e4 5̄e2,e3 n 2,4

On CICY 7487, a total of 276 models have Yukawa couplings consistent with the gauge

symmetries of the models, with 1188 Yukawa couplings being permitted in total. Of these,

580 are of the form 10ei 5̄ej,ek 5̄el,em , 444 are of the form 1ei,−ej5−ei,−ek 5̄ej,ek and 164 are

of the form 5−ei,−ej10ei10ej . A total of 112 couplings exhibit the topological vanishing

we have been studying in this paper, 32 of the form 10ei 5̄ej,ek 5̄el,em and 80 of the form

5−ei,−ej10ei10ej . A total of 112 out of the 276 models have at least one topologically

vanishing coupling.
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