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the theory, actually vanish due to certain topological constraints associated to their higher
dimensional origins. We find that both effects are prevalent within the data set of heterotic
Line Bundle Standard Models studied.
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1 Introduction

In the last ten to fifteen years a lot of progress has been made in understanding supersym-
metric four dimensional effective theories, descending from smooth Calabi-Yau compacti-
fications of heterotic M-theory. In terms of model building, solutions to the theory which
give rise to a charged matter spectrum identical to that of the Minimal Supersymmet-
ric Standard Model (MSSM) have been obtained [1-25]. These were first constructed in
small numbers in the context of irreducible higher rank bundles with non-abelian structure
groups [5, 6, 8, 11, 18]. Later, the concept of Line Bundle Standard Models was introduced:
it was realized that simple sums of line bundles could be phenomenological viable in this
context [19, 20]. This work is of course complemented by extensive model building efforts
in other heterotic constructions, see for example [26-43]. This lead to very large numbers of
heterotic models being produced with exactly the standard models charged matter content.
In another advance, that will be directly relevant to this paper, good progress has been
made in understanding Yukawa couplings in this context [3, 4, 9, 13, 44-55]. Algebraic



methods for computing tree-level superpotential trilinear couplings have long been under-
stood [3, 4, 9, 13, 44-53]. Recently, however, techniques based upon differential geometry
have been developed [54, 55] which, perhaps surprisingly, can be more powerful in many
situations. In particular, this work provides a very strong vanishing theorem on these tree-
level Yukawa couplings and also makes the computation of the moduli dependence of these
quantities more tractable in many contexts.

Although heterotic compactifications have traditionally proven to be extremely promis-
ing from the point of view of particle physics model building, they have struggled more in
the context of moduli stabilization. Nevertheless there have been a number of recent ad-
vances in understanding the A/ = 1 effective theories associated to these compactifications
which have lead to new moduli stabilization mechanisms in this context. Of particular
note for the current paper, it has been realized that the holomorphic poly-stable slope zero
vector bundles that appear in this context can stabilize the complex structure moduli of
the base Calabi-Yau manifold [56-60]. It is important to note in this context that concrete
examples of this effect have been provided. While it is still difficult to fix one final over-all
modulus in a controlled manner in heterotic compactifications (see [59] for example), it
is clear that progress is being made. In addition, there is much that is still not under-
stood about the effective theories’ potential — particularly at higher order in curvature
expansions.

Given this progress in model building and moduli stabilization it is natural to take
the analysis of these models to a finer level of detail. In this paper we wish to achieve
this in two particular regards. First, we wish to begin a study of how modern moduli-
stabilization mechanisms in Calabi-Yau compactifications of heterotic M-theory interact
with model building concerns. More specifically, we will examine the interplay of the moduli
stabilization of [57, 58] with Line Bundle Standard Model building [19, 20]. Using hidden
sector vector bundles to stabilize complex structure moduli, as was proposed in [57, 58],
forces the base Calabi-Yau threefold to a computable sub-locus of its moduli space. Given
this concrete knowledge as to where in complex structure moduli space the system is forced,
one can investigate how this stabilization mechanism affects model building considerations.
In particular, the bundle valued cohomologies that determine particle spectra in heterotic
theories are only quasi-topological in nature. They can jump in dimension at higher co-
dimensional loci in complex structure moduli space causing the matter spectrum of the
associated four dimensional effective theory to jump in an index preserving manner [61-65].
If the moduli stabilization mechanism of [57, 58] happens to force the system to a locus
where the bundle cohomologies associated to standard model degrees of freedom jump,
then that mechanism and model building considerations can not be divorced.

This effect can be either good or bad. If the jump causes the addition of an extra
standard model family degree of freedom and its partner from a mirror family, then the
moduli stabilization mechanism will have forced the addition of standard model exotics —
a phenomenologically undesirable result. In contrast to this, one could envisage a situation
where a model which had no Higgs, Higgs conjugate pair, was forced to a locus where
the cohomologies of such degrees of freedom where forced to jump. This would render
previously unviable models phenomenologically interesting.



One might think that such effects would be extremely rare in heterotic models, given
the relatively uncoupled nature of the visible and hidden sector vector bundles. Never-
theless, we will show that, in the class of models we study, this interaction of moduli
stabilization and model building considerations occurs rather frequently. More precisely,
we find that, in cases where the particle spectrum of the standard model bundle is capable
of jumping, such phenomena are common in the known examples of Line Bundle Standard
Models. This indicates that one should be aware, in pursuing studies that divorce model
building from moduli stabilization, that including the latter concern may be relevant to
many of the models obtained.

It should be noted that this effect, where the system is driven to a locus in moduli
space where extra degrees of freedom occur, might be naively thought to be rather similar
in nature to the work presented in [66-72]. In fact the phenomena being considered here
are completely distinct to that work, being rather different in nature and not as ubiquitous
in effect.

The second issue we will consider in this paper concerns vanishing of Yukawa couplings.
As was mentioned above, in [54, 55] a vanishing theorem was presented wherein tree-
level trilinear couplings that are consistent with all of the obvious gauge symmetries of
the four dimensional effective theory are nevertheless zero due to seemingly topological
restrictions. We will investigate to what degree this vanishing theorem comes in to effect
in the known set of Line Bundle Standard Models [19, 20]. By the simple method of
direct computation in every model in this data set, we discern how many of the couplings
that are consistent with the symmetries of these theories, as presented in [19, 20], are
actually vanishing due to this theorem. In total 17.9% of the potentially allowed couplings
are actually zero, with some forms of interaction vanishing at the 35.4% level. This is
therefore, once again, a significant effect which should be borne in mind when constructing
heterotic standard models with an eye toward phenomenological viability. That this effect
is common was anticipated in [54, 55] — here we compute exact numbers in a standard
model building context. In addition to this straight forward computation we briefly suggest,
based on the work of [52, 53], a gauge-theoretic mechanism which may underly these
severe restrictions on the Yukawa-Couplings of these heterotic effective theories. It will
be important to understand whether this conjecture is correct going forwards as, if it is
indeed responsible for these vanishings, then one could expect many higher order couplings
to suffer a similar fate.

The structure of the rest of this paper is as follows. In section 2 we briefly review Line
Bundle Standard Models in Calabi-Yau threefold compactifications of heterotic theories.
We then review, in section 3, the mechanism by which hidden sector bundles can stabilize
complex structure moduli in this context. In section 4 we present our work combining
moduli stabilization and model building considerations in heterotic Line Bundle Standard
Models. Section 5 of the paper contains our analysis of topological vanishing of Yukawa
couplings in Line Bundle Standard Models. Finally, in section 6 we present our conclusions.
Two appendices contain details of the results from our two lines of investigation which
complement the summary data given in the main text.



2 Heterotic Line Bundle Standard Models

Traditionally, in constructing a heterotic Calabi-Yau compactifications designed to give
rise to physics close to the MSSM, one chooses a gauge bundle Vgy with a non-abelian
structure group, for example SU(3), SU(4) or SU(5). The low energy gauge group in the
visible sector is then simply the commutant of this structure group inside Fg, that is Fjg,
SO(10) or SU(5) respectively for the examples mentioned in the previous sentence. These
precursor ‘GUT’ groups are then broken down to the standard model gauge group by
Wilson lines associated with the fundamental group of the Calabi-Yau threefold.

Line Bundle Standard Models are constructed somewhat differently. Instead of fo-
cussing on a non-abelian structure group, the gauge bundle Vgys is chosen to be a simple
sum of line bundles. Taking a sum of five such objects as an example, we have the following.

5
Vom = P Li (2.1)

The structure group of such a bundle is S(U(1)%) = U(1)*. The commutant of this group
inside Eg is SU(5) x U(1)* which is therefore, naively, the low energy gauge group. However,
the four U(1) factors are all typically Green-Schwarz massive, at least in examples with a
Kahler moduli space of high enough dimension, and thus at low energies this approach can
also give us viable GUT groups that can then be broken to SU(3) x SU(2) x U(1) by an
appropriate Wilson line.

The advantage of working with Line Bundle Standard Models over more conventional
approaches to heterotic model building largely center around proving that the gauge fields
in the compactification preserve supersymmetry. Showing that an irreducible, higher rank
bundle is slope-stable can be a time consuming and complicated affair, involving the con-
sideration of an infinite number of possible sub-sheafs of Vgyr. In the case of a simple sum
of line bundles such as (2.1) proving that supersymmetry is preserved is much simpler.
The equivalent condition in this case is slope poly-stability and for such a sum we need
only check that the slope of each line bundle is the same (and in fact vanishes in physical
examples). This simplification leads to a huge increase in the number of models that can
be constructed with thousands of Line Bundle Standard Models being known [19, 20] while
only a few irreducible higher rank gauge bundles have ever been constructed which give
rise to the exact charged spectrum of the MSSM [5, 11, 12, 18].

The spectrum of a Line Bundle Standard Model is determined in a two step process.
Firstly, an exercise in group theory tells us what matter can possibly appear in the four
dimensional effective theory. Secondly, what matter actually does appear is computed in
terms of bundle valued cohomology groups.

In terms of group theory, the representations of the four dimensional gauge group that
can appear are simply determined by branching rules and the fact that all of the charged
matter in ten dimensions is valued in the adjoint representation. Thus, in the SU(5) case for
example we find the following decomposition of representations under a maximal subgroup.

Eg = SU(5) x SU(5) (2.2)

248 = (24,1) ® (1,24) ® (5,10) @ (5,10) @ (10,5) & (10, 5)



If we take the first SU(5) factor to be the low energy GUT group and the second SU(5)
factor to be that in which the structure group of the bundle resides we can then read
off what representations we can possibly obtain in four dimensions. Here, for example,
we could potentially obtain the 24,1,5,5,10 and 10 representations of SU(5). In the
case of Line Bundle Standard Models, we can also, of course associate a series of U(1)
charges to the matter multiplets which we have omitted in (2.2) in the interests of keeping
the expressions uncluttered. We follow the convention of including all five U(1) charges
associated to S(U(1)®) despite the fact that only four of these gauge factors are independent
as this simplifies many of the resulting equations.

In order to see how many copies of each representation we obtain in the low energy
spectrum (if any) we must compute the appropriate bundle cohomology groups. In fact,
we wish to incorporate a Wilson line and work out the spectrum at the level of the four
dimensional theory with standard model gauge group. Since most Calabi-Yau that we
know how to construct are simply connected, this we typically obtain a compactification
manifold with non-trivial fundamental group that can support a Wilson line by quotienting
some ‘upstairs’ space X by an appropriate freely acting discrete symmetry I'. The bundle
must be chosen to be equivariant with respect to this symmetry in order that it too is
compatible with the quotient. Indeed, following [19, 20] we will consider the case where
each line bundle £; in Vg is equivariant individually. The spectrum on the ‘downstairs’
quotient manifold X = X /I can then be given in terms of just a few pieces of data.

As described in [19, 20], if the discrete group I' is a product of abelian factors of
the form I' = @), Zy,, (as will be considered here), then the definition of the Wilson line
proceeds via the choice of two sets of integers p, and p,.. These integers must satisfy the
conditions

3pr + 2p, = 0 mod m,. Vr such that p, # p, for at least one r (2.3)

We can then define some representations W (g) = &, ePr927/™ and W (g) = ), ePro?mi/ms.
These representations encode all of the information we require about the Wilson line in
order to complete a spectrum computation. Indeed, if we combine this information with
the characters of I', x, which define the equivariant structure associated to the line bundle
L;, we can write down the spectrum of the Line Bundle Standard Model associated to
these choices, as given in table 1. Note that in this table we use the same notation for the
(potentially anomalous) U(1) charges as given in [19, 20]. That is, the €; are unit vectors
such that, for example 10e, has a single unit of positive charge under the first abelian factor.
Note that, because these five U(1) factors are related in S(U(1)°), a combination of fields
that has a single unit of charge under each factor is a gauge invariant. We will frequently
specify the spectrum of a Line Bundle Standard Model by giving a set of GUT multiplets
with U(1) charges. Such a notation is consistent because, despite the fact that the different
standard model degrees of freedom that would form a single irreducible SU(5) multiplet all
descend from different ten-dimensional antecedents and thus no such symmetry is present
in the four-dimensional theory, the standard model multiplets do arise in complete GUT
multiplets.



SU(5) repr. | Gsm repr. | name cohomology

10,, (3,2); Qi h(X, Ly xi @ W@ W)
(3,1)_4 U; RN X, Lo, xi @ WH @ WH)
(1,1) ei WYX, Li, xi @ W* @ W)

5e,+e; (3,1)2 dij, Trj | PHLi @ Lijyxi @ x; @ W)
(1,2)_3 | Lij, Hij | BN (Li® L, xi @ xj @ W)

5 ci—e, (3,1)—2 | Tij R (L @ L, xi @ xj @ W)
(1,2)3 H; h2(L; @ Ly, xi @ x; @ W)

Le,—c, (1,1)0 Sij WL ® LY, xi © X])

Table 1. Cohomologies which determine the downstairs spectrum of Line Bundle Standard Models.
The cohomological notation including a representation after a comma simply denotes that only
the piece of the cohomology forming that representation under the discrete group I' should be
considered. The representations W, W and x; are described in the text. The number of mirror
particles is determined by the second cohomology valued in the same bundles and representations.

A key point for the latter sections of the current paper is that the cohomologies ap-
pearing in table 1 are complex structure dependent. At higher codimension loci in complex
structure moduli space, the dimensions of these cohomology groups, and thus the matter
spectrum of the resulting four dimensional theory can jump in an index preserving manner.

We will consider a particular existent Line Bundle Standard Model data set [19, 20]
built over Calabi-Yau manifolds which can be described as quotients of complete intersec-
tions in products of projective spaces (CICYs) [73-79]. Note that analogous constructions
could be pursued over different base spaces, such as quotients of gCICYs [80, 81] (for re-
lated work see [82]) or toric hypersurfaces [83-87]. It would be interesting to see if such
constructions mirror the structure that we will describe in this paper.

A family of CICYs can be represented by a configuration matrix of the following form.

P™ | ql ¢
P2 | ¢ 43

... g

@

X = , (2.4)

e L A

Here, the first column specifies the ambient space A in which the Calabi-Yau manifold
X will be defined, A = P™ x ... x P". The manifold X is defined within this ambient
space as the common zero locus of a set of k£ defining polynomials. The remaining columns
each determine the multi-degree of one of these defining polynomials. In a given column
each row specifies the degree of that defining relation with respect to the homogeneous
coordinates of the corresponding ambient space factor. Throughout this paper we will
denote by x,, the a*™ homogeneous coordinate on the " ambient space projective factor.

The dimension of a complete intersection described by a configuration matrix of the
form (2.4) is simply ) n, — k. That is, the dimension is simply given as the dimension



of the ambient space minus the number of constraints being imposed. The condition for a
vanishing first Chern class for X, meaning that the manifold is indeed Calabi-Yau, can be
achieved if the following condition is met.

n,+1=%F ¢ Vr (2.5)

The CICYs are all simply connected and therefore, in order to accommodate Wilson
line breaking, quotients of these manifolds by appropriate freely acting discrete symmetries
are considered. Braun has classified all such actions, allowing for a set of defining relations
which respect the symmetry while remaining transverse, that descend from a linear action
on the ambient spaces A that appear in the original classifying list of such constructions [88].

Having specified the Calabi-Yau manifolds to be utilized X in the above way, in [19, 20]
the authors then produce Heterotic Line Bundle Standard Models by specifying appropriate
sums of line bundles on X. These are chosen to be equivariant under the symmetries by
which the manifolds are quotiented and to give rise to spectra on X which precisely match
that of the standard model in the sector charged under SU(3) x SU(2) x U(1). If one works
with favorable CICYs, where all of H%!(X) descends from forms dual to divisors on the
ambient space, general line bundles on X can be specified by the following notation.

L=0x(p1,p2, - pk) & (L) =Y pry (2.6)

Here J, is the Kihler forms of the " ambient space factor, restricted to the Calabi-Yau
threefold. These are the restriction of the analogous line bundles on the ambient space
Oa(p1,p2,---,pr)) to X. The bundle Vg is then taken to be an equivariant sum of five such
objects. In fact, in the data set of [19, 20], each line bundle in Vg is taken to be equivariant
individually. As we will see in concrete examples in later sections, the cohomology of various
products of these line bundles can be computed using a combination of a theorem due to
Bott, Borel and Weil and the Koszul sequence [89, 90]. For a discussion of equivariance in
this setting, and induced symmetry actions on cohomology see for example the appendices
of [20]. Once the cohomology, and its representation content, of the line bundles is known,
the spectrum of the associated heterotic theory can be read off from table 1.

Using such a construction, in [19, 20], a data set of 2012 Line Bundle Standard Models
was produced. It is properties of this data set that will be examined in the rest of this
paper. It would certainly be interesting to apply a similar analysis to larger data sets of
this type which could be obtained by extending the work of [21], for example.

3 Moduli stabilization, potentials and couplings

The moduli stabilization mechanism we will consider in this paper concerns the complex
structure degrees of freedom and was presented in [57, 58] (a similar description of moduli
stabilization in Type II was considered in [91]). We will be particularly interested in the
mechanism for fixing these particular moduli in the current work as the cohomology groups
determining the spectrum of a model, as presented in the previous section, depend upon
these degrees of freedom. The basic mechanism is as follows.



An N = 1 compactification of heterotic string theory on a Calabi-Yau threefold X
includes a gauge connection on a gauge bundle V' which satisfies the Hermitian Yang-Mills

equations.
g"F3=0, Fpy=F;=0 (3.1)

Starting with a good solution to these equations, one can consider a perturbation of
all of the degrees of freedom of the problem about that vacuum. In particular, focusing
on the holomorphy condition F_; = 0, we can perturb the complex structure and gauge
connection and ask what constraints maintaining supersymmetry places on those variations.
The following condition is obtained [57, 58].

ST + 2D 5 Ay = (3.2)

Here 67 € HY(TX) is a variation of the complex structure tensor, §A is the pertur-
bation in the gauge connection and objects with a superscript (0) are constructed from
unperturbed quantities. What (3.2) states is that a complex structure fluctuation is a true
low energy degree of freedom only if there exists a gauge field fluctuation which solves
this constraint. Otherwise, such a variation of complex structure will necessarily cause the
bundle to become non-holomorphic, breaking supersymmetry.

Equation (3.2) can be interpreted cohomologically as saying that the complex structure
moduli of the base Calabi-Yau threefold that are true massless degrees of freedom of the
four dimensional effective theory are given as the following kernel.

ker (Hl(TX) i H2(End0(V))> (3.3)

The allowed deformations of the connection are much easier to understand. A gauge field
fluctuation living in the usual cohomology describing the bundle moduli, 4 € H!(Endy(V)),
satisfies (3.2) for a vanishing 0.7 and is therefore always consistent with holomorphy as one
would expect.

The permitted combined deformations of the base complex structure and bundle mod-
uli of holomorphic vector bundles is in fact very well studied in the mathematics literature.
Indeed, the above discussion is simply a field theory manifestation of Atiyah’s discussion
of the tangent to the moduli space of holomorphic bundles [92]. Atiyah states that the
allowed deformations are given by H'(Q) where the bundle Q is defined by the following
short exact extension sequence.

0—=Endp(V) - Q—=TX =0 (3.4)

Analyzing the long exact sequence in cohomology associated to (3.4) one then finds the

following,
HY(Q) = H'(Endo(V)) @ ker (HY(TX) — H?*(Endy(V))) , (3.5)

which agrees with the field theoretic analysis given above.



The above discussion shows in general terms a choice of bundle can restrict complex
structure moduli via the requirement of holomorphy of that object. However, it will be
crucial for the purposes of this paper to construct explicit examples of such bundles and
compute to exactly which locus in complex structure moduli space the system is con-
strained.

Fortunately such examples have indeed been provided in the literature [57, 58, 60].
Perhaps the simplest such examples take the form of bundles of SU(2) structure group
which are constructed as extensions of a line bundle and its dual. To see how this works it
is simplest to look at an explicit case. The example that follows was first presented in [60].

As a base manifold, let us consider a freely acting quotient X of the the following
CICY,

P2
P2
X = ) 3.6
]P)l 2 ( )
P2
by the following Zo X Z, symmetry action.
Nt g = (1), (3.7)

Y2t Tra — To(r)atri1 Where o = (12)(34)

It will useful going forward to know the most general form of the polynomial defining
relation for X that is consistent with the symmetry (3.7). This is explicitly given by the
following expression.

D = C1%1,071,172,072,173,073,174,074,1 + C9 (96%70353,0373,1364,0%4,1x%yo + w%,1$3,0x3,19€4,0964,1$%,g
+~’U%,0$%,1933:09”37135470534,1 + 96%193%1933,0163,1%,0%,1) +c3 ($%,1$2,01‘2,1904,0334,193%0
+36170961,196371963,13?42170563,0 + 961,03?1,156%,03?3,136421,1&33,0 + 3?%,0362,0962,1$§,1964,09€4,1) +
Cq (1131,0561,1$%709€4,0334,1$§,0 + $%,1932,0$2,1$3,1$i70$3,0 + 165,0172,0!32,1903,11‘42;,1963,0
+331,0561,1$§71$§71$4,01’4,1) + ¢5 (1'1,0371,133%,133470334,196370 + w%,oxz,om,l%&lxiom,o
+$%,1£U2,0962,1333,19642171963,0 + 331,0561,19037036%,1364,()&54,1) + Ce (36%7o$2,09€2,1334,0334,11‘570
+331,0561,196%70963,1%21,0%,0 + $1,0$1,1$§,1$3,1332,1563,0 + w%,1$2,0$2,1$§,1$4,0964,1) +
c7 (93%,195%,1953,09@21,0 + x%,ox%,lﬂﬂg,ﬁio + x%,1$%,090:23,0%21,1 + 95%,0955,053125,13@21,1) +
Cs (55%,0553,193%,095421,0 + 55%,0953,09531953,0 + 95%195%,1903,093421,1 + f%ﬂ%,oﬂfg,lxi,l) +
C2 (361,0331,1$2,0962,196;%,70$421,0 + 301,0961,1362,0172,136%,1%2;,0 + 171,0361,1332,0962,130%,09042171
+~’Ul,0$1,1332,0952,193:25,155'421,1) + C1o (ﬁ,ﬂg,oﬂ?g,oxio + 95%,195%,193%,153:21,0 + xioxiox%’oxil
‘*‘95%,033%,195%,19@21,1) +c11 (w%,ox%,oxioxio + 33%,1953,095%,195421,0 + 5'3%,0953,195%,037421,1

+$%71x%71$§71$i1) (3.8)

Here the coefficients ¢ are general constants which form a redundant description of the
complex structure moduli of the manifold.



Over this base we construct the extension,
0LV =LY =0, (3.9)

where £ is the line bundle that descends from the object Ox(—2,—2,1,1) on the covering
space in the language outlined in the previous subsection. This line bundle is equivariant
with respect to the Zy x Z4 symmetry and thus the construction does indeed respect the
symmetry being quotiented by. The non-trivial nature of the bundle (3.9) is controlled
by extension group Ext!(LY, £) = H'(X, £?), or rather by the appropriately transforming
piece of this that survives in the downstairs theory. For the line bundle specified here,
this cohomology vanishes for a generic enough choice of complex structure of X. As such,
generically, the only extension of the form (3.9) is the split bundle which has structure
group S(U(1) x U(1)). However, at higher codimension loci in complex structure moduli
space the cohomology H'(X, £?) jumps in dimension to non-zero values. At such loci, one
can define a non-split SU(2) bundle of the form (3.9). Different types of jumping, not in
dimension but rather in chiral ring structure, can also occur [81, 89, 93].

The essential idea, then is to start with a background wherein the complex structure is
fixed to a jumping locus of H!(X, £?) and the vector bundle V is taken to be an irreducible
rank 2 object of the form (3.9). One would expect that complex structure fluctuations that
took the system off of this loci would not lie in the kernel (3.3) as there would then be
no appropriate SU(2) bundle to perturb to and going to the split bundle would be more
than an infinitesimal perturbation of the gauge connection. It was shown in [58] that this
is indeed the case. In such a situation, the requirement of bundle holomorphy stabilizes
the system to the jumping locus of the extension group.

In fact, the computations that one performs to explicitly find the stabilization locus
associated to such a bundle reveal an extremely rich structure. To perform such calculations
one examines the Koszul sequence which, in the current example, takes the following form.

0 NYRLY =LY = L% =0 (3.10)

Performing sequence chasing on the long exact sequence in cohomology associated to (3.10)
and using some facts associated to the specific example we have described above one can
find that the cohomology group describing the extension classes of (3.9) is given by the
following expression.

HY (X, L£%) =ker (H*(A,NY ® L%) — H*(A, L%)) (3.11)

In the case at hand, we can denote a general element of the cohomology H?(A, NV ®£?4) =
H?(A,0(—6,—-6,0,0)), in polynomial language via the Bott-Borel-Weil theorem, as follows.

1 n 1 n 1 n 1 n 1
S1| 55— 83
2 .2 .2 .2 1 .2 .2 1 .2 2 2 .2 4 2 .2 4
T10T1,1%2,0%2,1 T1o0T20%21  T11%20%21  T10Tr11%T20  T1,07T1,17T21

1 1 1 1
ts2| — 3 3 3 3 3 3 3 (3.12)
T10T1,1L20L2,1  L1,007 173 0%2,1 L7 0L1,1L2,0T91  L1,0T7 172,002

+ ! + ! + ! + !
S4 .
1 4 1 .4 1 .4 4 .4
0Ty T11Ty0  TioTyy  T1qTog

~10 -



Here the s; are arbitrary coefficients. Given this, via (3.11) any potential extension class
can be represented by an object of the form (3.12).

By performing an explicit computation, examples of which can be found in [57, 58, 60]
or later sections of this paper, one can obtain a set of loci, that is a reducible algebraic
variety, in a combined space of complex structure moduli and potential extension classes
of (3.9). In the case at hand, the generators of this reducible variety are as follows.

c781 + €282 + cgS3 + €10S83 + 1154, €851 + C2S2 + €783 + €11S3 + €1054, CoS1 + €152 + 2¢9S3
+ €954, C1051+ €252+ €783+ C1153+ €854, C1151+ C252+C853 41053 +C754, €351+ C452+C552
+ cgS3,C481 + €352 + cgS2 + 583, €581 + €352 + CgS2 + €483, CgS1 + €489 + c5S2 + €353,
€1051 + 252 + c753 + 1153 + €854, C7S1 + C2S2 + €853 + €10S3 + €1154, C9S1 + €152 + 2¢9S3
+ C9S4,C1181 +C282+C8S3+C1083+C7S4, C8S1+C282+C783+C1183+C1054, C551 +C3S52+C6S2

+ €453,C3581 + €482 + €589 + €683, C6S1 + €4S2 + €582 + €383, €451 + €352 + CgS2 + €553, C251
+ 789 + €8S9 + C19S2 + C1152, C2S1 + €759 + €gSo + c10S2 + 1159, €181 + 4CgSa, CaS1 + €759
—+ €882 + C1082 + 1182, C251 + €782 + €882 + C1082 + C1152, C451 + €352 + C6S2 + €553, C651
+ €452+ €582+ €353, €351+ €452 + C552+ €653, C551 + €352 + €S2 + €453, €851 + €252 + €753
+ c1183 + €1084, C11S1 + €282 + €883 + c10S3 + €754, C9S1 + €182 + 2¢9S3 + 9S4, €751

+ ca82 + €853 + €1083 + 1154, C1051 + €252 + €753 + 1153 + €854, C651 + €452 + C552 + €353,
€581 + €382 + CeS2 + €483, €481 + €359 + CeS2 + €583, C3581 + €482 + €582 + €683, C1151 + €252
+ cgs3 + c1083 + €754, C1051 + €252 + €783 + 1153 + €854, C9S1 + €152 + 2¢983 + €954,

881 + €982 + 783 + 1183 + €1084, C7S1 + 282 + €853 + €10S83 + C1154

Essentially, if one substitutes in a specific complex structure into these equations then the
possible solutions for the s specify all of the possible extensions classes at that point in
moduli space in terms of the description given in (3.12).

Next, this reducible algebraic variety can be primary decomposed to find its irreducible
pieces. A discussion of the methods that we use for computations such as this can be
found in, for example, [94, 95]. We utilized the specific implementations found in [96-102]
in this work. Each of these pieces can then be processed further by an elimination of the
variables s; describing the possible extension classes. This provides a set of irreducible
varieties in complex structure moduli space which are the loci to which the associated
choices of extension classes stabilize the system. There can be a great many such loci. For
example, in [60], it was shown for the example described above that there are 25 such loci
in complex structure moduli space to which one could be stabilized, varying from points
to 7 dimensional surfaces. The specific loci that were found in that work are reproduced
in table 2.

Finally one should check, for each locus that the system could be stabilized to, that for
a generic enough choice of complex structure moduli in that set the Calabi-Yau manifold
is smooth. This can be quite constraining, especially for quotients of CICYs, and in fact
only one of the loci for the example being discussed here, of dimension 4, turns out to
correspond to a smooth threefold (see table 2).

- 11 -



Equations Dimension|Singular
C3—Cq4—C5+Cg=Co—cC7r—cg—C19—C11 =C1—4cg=0 7 singular
c3tcg+ces+cg=cotcr+cgtcigteii=ci+4cg=0 7 singular
cg=cCo=c1=cCr+cg+cigtcii=cat+ces=c3+cg=0 4 singular

cr—cg—cCiotci1=c4—cs=cg—cg=co=c1=0 5 singular
cr—Cg—Clo+Cc11=ce=C5=Cq4=cC3=c1c8—2Cac9+c1c10=0 4 singular
c11=cip=cg=cg=c7=0 5 singular
Cg=Cg=C5=Cq4=C3zg=Co=cC1=cCg+cig=c7+c11=0 1 singular
Cog=Co=cC1=Cg+Clg=C7+C11=C5+Cs=Cq+Cg=c3—cg=0 2 singular
Cg=Co=cC1=cg+Clg=cCc7+Cci1=c5—Ccg=cs4—Ccg=cC3—cg=0 2 singular
Cl1=Clg=Cg=Cg=Cr=Co=cC1=cC3—C4—C5+cg=0 2 singular
Cl1=Clg=C9g=cg=cCr=cCy=c1=c3+cs+c5+cg=0 2 singular
cl1=cClg=Cg=cCg=Cr=cCo=cC1=Cs+c5=c3+cg=0 1 singular
0112610209208207202201:C4—C5:C3—C6:O 1 singular
C11=C10=C9g=Cg=Cr=Co=C1=C5+Cg=Cq4+csg=c3—cg=0 0 singular
C11=Cl0=C9g=Cg=Cr=Cy=C]=C5—Cg=Cq4—Cg=cC3—Cg=0 0 singular
Clp—Cl1=Cg—Cl1=C7—C11=Cg=cC5=cq4=c3=0 3 singular
010—011:Cg—Cu=C7—C11=C6=C5:C4:C3:CQCQ—C1CH:O 2 singular
C10—C11 =C8—C11 =C7—C11 =C4+C5=c3+cg=cCacg—c1c11 =0 4 smooth
Cl0—C11=C8—C11=C7—C11=C5+Cg=Cq+Cce=cC3—Cg=Coc9g—c1¢c11=0 3 singular
Cl0—C11=C8—C11=C7—C11 =C5—Cg=Cyq—Cg=C3—Cg=CoC9g—cC1Cc11 =0 3 singular
Cg—Cl0—=C7—C11 =Cg—=C5=Cq4=C3— 8269+5061 C10 —|—5001 C11 = 0 3 singular
clotci1=cog=ce=c5=c4=c3=coy=c1=cCg+ci1=c7—c11=0 0 singular
clot+ci1=cg=co=ci=cgt+ci1=cr—ci1=c4—c5=c3—cg=0 2 singular
clotci1=cog=co=ci=cg+ci1=cr—ci1=cC5+cg=c4+ce=c3—cg=0 1 singular
Clo+C11=C9=Cg=cC1=Cg+C11=C7—C11 :C5706:C4766103766:0 1 Singular

Table 2. A table of results taken from [60] showing the loci in complex structure moduli space to
which the Calabi-Yau three-fold X /(Zq x Z4) can be stabilized by the bundle V in equation (3.9).
The column “Dimension” denotes the complex dimension of the given locus. The column “Singular”
specifies whether the Calabi-Yau three-fold associated with a generic complex structure in each locus
is singular or smooth.

4 Particle spectrum jumping due to moduli stabilization

In this section we will consider the interplay between bundles constructed in the visible
sector in order to engineer a standard model like spectrum in the low energy theory, and
bundles inserted into the hidden FEg in order to stabilize complex structure moduli. In
particular, we will be investigating to what degree hidden sector bundles can force the
complex structure of the Calabi-Yau threefold to a locus in moduli space where the visible
sector is forced to jump. Such an effect could be either beneficial (in introducing a Higgs
doublet pair into a model which previously had none for example) or undesired (for example
in causing additional generations and anti-generations to appear).

There are several possibilities for intersection of the jumping locus of the standard
model sector and hidden sector bundles in complex structure moduli space. These are
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Figure 1. Three possible situations involving intersection between the locus in moduli space X g
where the hidden sector bundle stabilizes the complex structure and the locus gy where the
spectrum of the standard model bundle jumps. The only case in which the moduli stabilization
mechanism forces the standard model spectrum to change is the last, as discussed further in the
text.

depicted in figure 1. In the first situation depicted in the figure, the locus of jumping of
the standard model bundle lies inside the locus of jumping of the hidden sector one. In the
second situation the two loci intersect at a higher codimension locus in complex structure
moduli space. In both of these cases, the moduli stabilization mechanism does not force the
standard model matter sector to change from that found at an arbitrary point in complex
structure moduli space, where most such models are analyzed during their construction.
In both situations, if the stabilization mechanism forces the complex structure to a generic
enough point in Xy, then gy will miss this point.

On the other hand, the third situation in figure 1, or its extreme limit where X = Ygm
is of interest to us here. In this case, wherever we are on the hidden sector locus the
standard model spectrum jumps from that which is observed at a generic point in complex
structure moduli space. As such, if model building was carried out without thinking about
the moduli stabilization mechanism, then incorrect conclusions would be reached about
the particle content of the four dimensional effective theory.

Naively, one might think that such a phenomenon would be extremely rare. After all,
the visible and hidden FEjg’s of heterotic string or M-theory are rather separate in nature
and are only coupled to each other gravitationally. Given this, why should the locus of
jumping of a bundle in one sector lie exactly inside that of another (X C Xgn)? There are
some conditions linking the two bundles, however, and we will find that these are strong
enough to make the phenomenon we are talking about surprisingly common.

The first condition we will consider is the standard one following from requiring inte-
grability of the Bianchi Identity.

cha(Vig)a + cha(Vam)a — cha(TX)q + [W]e = 0 Va (4.1)

Here the indices a = 1,...,h(bD(X) label the harmonic (2,2) forms on the Calabi-Yau
threefold, Vay and Vip are the visible and hidden sector bundles respectively, X is the
Calabi-Yau manifold and [W] is a form proportional to the dual of the class of the (in
general reducible) curve wrapped by NS five-branes/MS5 branes in the vacuum configuration

~13 -



being considered (in the heterotic string/heterotic M-theory respectively). Allowing for M5
branes that preserve supersymmetry, and thus lead to a class [W] that is effective, (4.1)
leads us to the following inequality.

cha(Vi)a + ch2(Vem)a < cho(TX)a V @ (4.2)

In addition to the second Chern character constraint (4.2), there is the constraint that
both the visible and hidden sector bundles must be slope poly-stable and slope zero for the
same choice of four dimensional Kéhler moduli. Due to the warping of heterotic M-theory,
there is a slight difference between the polarizations experienced between the two bundles,
but nevertheless this is easy to account for. As with (4.2), providing that both bundles
are indeed stable in reasonably large chambers of the Kéhler cone, this constraint is not
seemingly too difficult to satisfy.

Although the inequality (4.2) and the requirement for simultaneous stability of the
hidden and visible sector gauge bundles may not seem like a very strong set of constraints,
in some cases it can become so once one considers quotienting the Calabi-Yau manifold in
order to introduce Wilson lines.! The issue is that equivariance constraints, ensuring that
the gauge bundles are consistent with the symmetry by which the Calabi-Yau threefold is
being quotiented, can mean that quite a few bundles are not available in building models
and hidden sectors. The resulting combination of equivariance, stability and second Chern
class constraints can be quite restrictive.

4.1 A systematic investigation of a class of bundle constructions

To illustrate the issues discussed above, and to obtain an idea of how commonly moduli
stabilization affects the visible sector spectrum, at least in a class of examples, we will
look at specific types of construction of visible and hidden sector bundles. The visible
sector will be taken to be a sum of line bundles (more specifically a line bundle standard
model). The hidden sector will be taken to be a simple extension of two line bundles of
the following form.

0—-L—=Vg—L =0 (4.3)

Constructions of the type (4.3) are perhaps the simplest types of bundles that can lead
to complex structure stabilization of the type described in section 3. They have structure
group SU(2) and the only simpler possibility, that of an abelian structure group, is ruled
out by the fact that sums of line bundles do not exhibit this phenomenon.

In considering examples of such hidden and visible sector bundles, one immediately
sees one compatibility constraint that arises. Consider a line bundle sum Vg in the visible
sector containing a line bundle £;. That same line bundle can not be used in creating an
extension of the form (4.3) for the hidden sector bundle V§. The issue is simply one of
stability. As can be seen from the defining sequence (4.3), if £ = £; then that line bundle
injects into V4. It must therefore be of negative slope if Vi1 is to be stable. However, on the

"Which has been shown to be essentially the only way to break the GUT group in such compactifica-
tions [103]
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locus in Kéhler moduli space where Vg is poly-stable p(£1) = 0 and thus the visible and
hidden sectors can’t simultaneously preserve supersymmetry in such a situation. Similarly
one can not set £ = £Y. In such a situation we find an exactly analogous situation when
we consider the stability of Vij. Since Vi is stable iff Viy is, this leads us to the same
conclusion.

Overall, the observation of the previous paragraph can be quite a big constraint on
the possible hidden sectors that can be included to complete a line bundle standard model
and stabilize complex structure moduli. As stated earlier, there are frequently not many
choices of equivariant line bundles that can be included in an extension such as (4.3) in
the hidden sector without violating the bound on cha(V41) imposed by integrability of the
Bianchi Identity and supersymmetry. Given that all of the line bundles that appear in the
line bundle standard model (and their duals) are ruled out on grounds of stability, in some
cases one can be left with very few, or even no, possibilities.

Assuming simultaneously stable hidden and visible sector bundles can be found we
must then study the relevant jumping loci in complex structure moduli space and compare

them. Ideally the procedure would be as follows, using the discussion of section 3.

1. Find the locus in complex structure/potential extension space to which the hidden
sector bundle forces the system.

2. Primary decompose that locus to find its irreducible components. For each individ-
ual locus, eliminate the degrees of freedom corresponding to potential extensions to
obtain a variety living purely in complex structure moduli space Elfq . We will denote
the reducible variety composed of all of these irreducible components ¥y = (J; Z? .

3. In a similar manner, find the locus in complex structure moduli space, gy on which
the visible sector matter spectrum jumps.

4. For each irreducible piece of Yy ask if that locus is contained in Xgy. l.e. check
whether there exists an Efl such that Z}q C XagMm.

Unfortunately, in practice the above procedure is often prohibitively computationally
intensive. The problem is that the jumping cohomology of relevance for Xy is H'(L£?)
where L is an equivariant line bundle. This cohomology very often involves large numbers
in the first Chern class of £2 and this leads to a primary decomposition which is extremely
costly in the second step in the list just given.

If at all computationally feasible, we use the above procedure when analyzing examples.
However, if this computation can not be completed in practice, then we carry out the
following analysis instead.

1. Find a set of example points in complex structure moduli space lying on Xgy.
2. Determine if these points also lie on Y.

3. For those that do, if any, perform a linear perturbation analysis around that point in
complex structure moduli space to determine if the hidden sector locus E? on which
it lies is localized within Yqy.
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We will give more details as to how this is achieved in the examples we will present
going forward. In this manner, we can check whether any of the random points in gy that
were picked lie on a component of the hidden sector locus such that Ef[ C YXgm. When we
do find such points it is most likely that we have found a case where the equidimensional
hulls of the two reducible varieties in complex structure moduli space coincide. We should
mention in addition that, throughout the work presented in this section, we check the
smoothness of the Calabi-Yau threefolds involved at both the specific points we chose and
the loci we consider in complex structure moduli space.

Applying the procedure described above provides us with a, presumably rather weak,
lower bound on the frequency with which the hidden sector bundle can cause the standard
model matter content to jump. We will see later that this is already good enough to
illustrate one must be cautious in combining moduli stabilization and model building. We
note that we start by finding points on Xgy rather than g here because the line bundles
involved then tend to have smaller entries in their first Chern class. This leads to a more
tractable computation.

4.2 An example

Let us illustrate the above general discussion with a concrete example. We will work on
a freely acting Zy quotient of CICY number 6777 which is described by the following
configuration matrix.

Pl{1100]
P00O02
X=|Ploo20]. (4.4)
P12 000
P31111)

We label the homogeneous coordinates of the four ambient space P! factors as Tra
where r = 1,...,4 runs over the projective spaces and a = 0,1 labels the homogeneous
coordinates on each factor. The homogeneous coordinates of the P? factor are labeled as
x5, where a = 0,...,3. Given this notation, we can write the ambient space coordinate
action of the Zo symmetry by which we will quotient as follows.

2 (@ra@50) = (1) ey, o (—1)mexC@ead)g, ) (4.5)
In addition, the symmetry has a non-trivial normal bundle action, or equivalently action

on the defining polynomials. Labeling the four defining relations corresponding to the
columns of (4.4) as p4 where A =1,...,4, we have the following,.

FZéQ : (p17p2)p37p4) — (_plap23p37 _p4) (46)

Given the action (4.5) and (4.6), the most general defining relations for the configura-
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tion matrix (4.4) that are compatible with the symmetry are as follows.

p1= 01,7961,1905,096421,0 + 01,8$1,1$5,190421,o + 01,1$1,0$5,2!L‘io + 01,2$1,0$5,3I121,0 (4.7)
+C1,3%1,024,175,0%4,0 T C1,471,024,1%5,1T4,0 + C1,921,174,1T5,2%4,0 + C1,1021,124,1L5,374,0
+C1,11$1,1$Z,1$5,0 + C1,12£E1,13342171$5,1 + 61,5331,016421,15%,2 + 01,61‘1,033111'5,3

D2 = €2,121,025,0 + €2,221,025,1 1 €2321,1%5,2 + €2471,1%5,3

p3= 03,1355,233:2’,70+C3,2$5,3~T§,0+03,3x3,1335,01'3,0 + 03,4963,1965,1333,0+C3,5$§,13«"5,2 + 03,633:23711’5,3

P4 = 04,1905,01‘370+C4,2335,190§,0+C4,3$2,1$5,2952,0+C4,4902,1585,3$270 + 64,51‘%,1335,0 + 04761’%71355,1

In these expressions, the ¢’s are arbitrary coefficients associated to the complex structure
moduli space. We call the manifold obtained by quotienting X by the symmetry action (4.5)
and (4.6) X.

On the quotient manifold described above we now define the visible sector bundle (first
constructed in [19, 20]). On X we define,

5
Vom = @ﬁi , (4.8)
i=1
where
£1=0(1,-1,1,-1,0), Lo =0(0,1,1,1,-1), £L3=0(0,1,-2,1,0) , (4.9)

Li=0(0,-1,0,-2,1), L5 = 0O(-1,0,0,1,0) .

Each line bundle in Vgy is individually equivariant, and thus this does indeed define a line
bundle standard model, with bundle Vam, on the quotient X. We take the parameters
defining the Wilson line and equivariant structure on the sum of line bundles, as described
in section 2tobe W =1, W = -1, y; = 1 for i = 1,3...,5 and y2 = —1. With these
choices, the downstairs standard model charged matter spectrum, expressed concisely in
terms of GUT multiplets as described earlier, is as follows at a general point in complex
structure moduli space.

oy

{2 ]-Oega 10947 2 gel,e47 €e2,e3» 5—61,—62 ) g61762 } (410)

The multiplicity of 5e, e, representations in this example has the potential to jump
(along with the multiplicity of 5_e, —e, multiplets in an index preserving manner) at higher
dimensional loci in complex structure moduli space. To see this, we must consider the
cohomology Hl(X, Lo ® ﬁg) = HI(X, @(0, 2,—1,2,—1)), the dimension of which counts
the multiplicity of these degrees of freedom (here hatted bundles correspond to projections
of the associated upstairs objects). To compute this jumping, we work on the covering
space X with the cohomology of the associated equivariant bundles and then pick out the
relevant subspace (which descends to the cohomology on X ) by comparing representation
content of that space with the Wilson line and equivariant structure.

To calculate the cohomology H' (X, L2 ® £3) = HY(X, (0,2, —1,2,—1)) we make use
of the Koszul sequence

0—>A4Nv®£2®£3—>/\3Nv®£2®ﬁg—>--~—>£2®,c3|,4—>,CQ®[,3|X—>0 (4.11)
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This long exact sequence can be broken into several short exact sequences as follows.

0= ANV QL@ L3 = NNV QL@ Ly =Ky — 0 (4.12)
0*)/C1*>/\2./\/'V®EQ®,C3*>’C2 — 0

0Kz —Ly®L3— Lo®RLs3|x — 0

Here the KC; where i = 1,...3 are kernels and cokernels of the relevant maps. The ambient
space cohomologies of all of the line bundles appearing in the sequences (4.12) (excluding
those of the K’s) are vanishing with two exceptions: h3(A, A*NY ® Lo ® L3) = 8 and
R (A, N3NV ® Lo ® L3) = 6. Chasing the associated long exact sequences in cohomology
we find the following.

HY(X, Ly ® L3) 2 ker (H (A, AN'NY ® Lo ® L3) = H> (A, NNV @ L2 ® L3)) (4.13)

Thus, at a generic enough point in complex structure moduli space, we find that h'(X, Lo®
L3) = 2, leading to the single 5e, e, representation in (4.10), after quotienting by the Zg
symmetry, by applying the correspondence of table 1.

In order to present concrete formula which are concise, we will focus on calculating the
locus in complex structure moduli space where the subspace H' (X, Lo® L3, X2 @ X3 ®W) €
H(X, Lo ®ﬁ3) jumps in dimension (corresponding to a jump in the number of left handed
SU(2) doublets in the four dimensional effective theory). To do this, we need to study the
map in (4.13) in more detail. We now form an explicit description of the cohomologies
in (4.13) as polynomials in ambient space coordinates, take the relevant subset of such
objects that are picked out in the downstairs cohomology of interest by the choice of
equivariant structure and Wilson line, and study the map in more detail.

A general element of the relevant subspace of the source cohomology group in (4.13)
can be written as follows.

S1 S92 S3 S4
S = + + + :
Z3,075,0 Z3,075,1 Z3,1%5,2 T3,1%5,3

(4.14)

Here the sj, are arbitrary coefficients. Note that h%(A, A*NVY ® Lo ® £3) = 8 and we are
dividing by a Zg symmetry, so the four dimensional space obtained in (4.14) is as expected.
Next we consider the target space in (4.13). We have that

NNV @ Ly ® L3 = O(=2,0,—1,0,—4) & O(—2,2,—3,0, —4) (4.15)
® O0(-1,0,-3,2,—4) ® O(—1,0,-3,0,—4) .

Given this, the only contribution to h%(A4, ASNY ® L3 ® L3) comes from hS(A4, O(-2,2, -3,
0,—4)), with the other three cohomologies vanishing. The map from (4.14) to this co-
homology is given by multiplication by the fourth defining relation, followed by delet-
ing terms in the resulting polynomial that are not of the correct degree to appear in
hS(A,O(—2,2,—3,0,—4)). Performing this computation we obtain the following image of
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the general source element (4.14).

2 2 2 2
81C41%3 9 52C4,2%3 9  S3C43%21T20  54C44%21T20  S1C45T31  52C46L3
Im(S) — ) + ) + ) ) ) + ) ) ) + ) + )
3,0 3,0 31 3,1 3,0 3,0

(4.16)

In order to find the kernel of the map, we then simply require that the coefficients of each
of the rationomes in (4.16) vanishes. Doing so we obtain the following constraints on the
Sk, in terms of the complex structure choice c4,, in (4.7), in order for an element of the
source of the form in (4.14) to be in the kernel.

s1¢45 + 82ca6 =0, s3¢43 + 54c44 =0, s1¢41 + S2c42 =10 (4.17)

Writing these conditions in matrix form we obtain the following.

ca5 ca6 00 °1

s
0 0 C473 6474 . 82 =0 (4.18)
ca1ca2 00 ’

84

Given (4.18), it is easy to see that for a generic choice of complex structure the kernel
will be one dimensional as stated earlier. However, on the locus ,

ca2€s5 — c41046 =0, (4.19)

the rank of the matrix in (4.18) changes from 3 to 2, and thus the dimension of the kernel
will change from one to two. Therefore, on this special locus the number of SU(2) doublets
descending from the 5, o, representation increases. Naturally, in order for the index to be
preserved, there is also an increase in the number of associated anti-doublets on the same
locus in complex structure moduli space.

Next we turn our attention to the hidden sector and the bundle which is added to
constraint the complex structure of the compactification. In searching for bundles of the
form (4.3), we find that the following two possibilities

L£L=0(-2,-1,1,1,0) and £ = O(1,—1,1,-2,0). (4.20)

are equivariant and satisfy all of the constraints given earlier in this section.

To examine this in more detail we first note that the second Chern class of X can be
presented as a two index quantity, where we expand the (2,2) form in a redundant basis
given by products of (1,1) forms spanning H''(X). We can then contract this description
of the Chern class with the intersection form to get a description of ¢o(X) as a vector of
length A (X) = h?2(X). When we do this we obtain the following.

(X)) = (24,24, 24,24, 56) (4.21)

The second Chern class of the standard model we are examining here, expressed in the
same manner is:

co(Van) = (12,12,12,12,32) . (4.22)
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Finally, the second Chern classes of the extensions (4.3) of the £’s given in (4.20) are
respectively the following.

ca(Vig) = (4,12,4,4,20) or co(Vi) = (4,12,4,4,20). (4.23)

It is easy to see that the SU(2) bundles we are choosing satisfy the second Chern character
condition (4.2).

Since all line bundles are equivariant with respect to the Zo symmetry we are consid-
ering, the only constraint that we have left to consider is that of stability. It is straight
forward to show [60] that an extension of the form (4.3) is stable iff (L) < 0, that is if the
slope of L is strictly negative.

We recall the expression for the slope of a line bundle,

RL1(X)
L) = Y draci (L)t =0, (4.24)
r,s,t=1

and give a definition of a set of variables o,

hl’l(X)
or =Y dpat’t’. (4.25)
s,t=1
Then, examining the standard model bundle given in (4.8) and (4.9), we obtain the fol-
lowing conditions for the slopes of the line bundles involved to vanish (a necessary and
sufficient condition for its poly-stability).

01 —0g+03—04=0, oo+o3+o4—05=0, o09—203+04=0, (4.26)

—09 — 204+ 05 =0, —01+04=0
The general solution to these equations is given by the following.
01 =09 =03 =04, 05 =301 (4.27)

We can now ask about the slope of the possible £’s given in (4.20) on this locus, and
thus about the stability of the hidden sector bundles. We find that,

w(O(=2,-1,1,1,0)) = -1 <0, p(O(1,-1,1,-2,0)) = —01 < 0. (4.28)

Thus, the proposed hidden sector extensions are indeed stable on the same locus in Kahler
moduli space as the Vgy and our last constraint is satisfied.

To proceed further we will focus on £ = O(1, —1,1,—2,0), although a similar analysis
can be followed for the other possibility in (4.20). The next step is to study the jumping
locus of the extension group defining (4.3) and compare this jumping locus to that of Vgy;.
The extension class of (4.3) lies in H*(X, £?). Performing an analogous chasing of Koszul
sequence to the one we performed for the visible sector bundle, we arrive at the following
description of this cohomology.

HY(X, £?) = ker(H? (A, N*NY @ £2) — H?(A, £?)) (4.29)
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In fact, we will be interested in the associated cohomology on the quotiented manifold
X. For simplicity in this example we choose the trivial equivariant structure on £2, and
thus this will correspond to simply considering the invariant elements in the cohomology
groups concerned under the naive transformation induced from the coordinate action of the
symmetry. This choice is consistent with non-trivial equivariant structures on the normal
bundle such as (4.6) in this example. More generally in this work we consider all possible
choices of equivariant structure.

A general element of the down-stairs cohomology describing the source space of the
map corresponding to (4.29) is found to be the following.

S1 S4 52 S7 S5

S= 55—+ 3 t s st 3 T 3(4'30)
Ty0Ti0  L2,0021%40l4,1 XLy 0ly1 L2104 0T11  L2,002,104,074 1

S6 83 S8
+x2 x4 x2 i +x2 x4
2,1%4,0 2,0%4,1 21041

Where, as in previous examples, the s, are a set of arbitrary constants. The map itself, from
an examination of (4.29), should be built out of a combination of four defining relations.
This map is in fact constructed in a somewhat non-trivial fashion as follows:

f = e p10paspaypas, (4.31)

Here €79 is the totally antisymmetric tensor and p4, denotes the partial differentiation
of p4 with respect to the variable x5, where a runs from 0 to 3. It is easy to see that f
then has multi-degree (2,2,2,2,0) which is precisely what is needed to match the source
and target degrees in (4.29).

As in the computation of the kernel in (4.13), we can now multiply the general source
polynomial (4.30) by the map polynomial (4.29) and demand that all of the coefficients
of terms appearing in the target space vanish. When we do so we obtain a very long
expression depending upon the si in (4.30) and the coefficients in the defining relations
cA- While there are only 14 constraints obtained in this manner, which we will denote
by Z, where a = 1,...14, they are over two pages in length and so we do not reproduce
them here.

For general defining relations, the kernel of this map is found to be trivial. For special
loci in complex structure moduli space, however, a non-trivial kernel is obtained, and thus
the question arises how best to find this locus. As discussed earlier in this subsection,
ideally we would like to primary decompose the ideal associated to these constraints and
analyze each irreducible component of the associated variety separately. However, in the
case at hand, this method is too computationally intensive, especially as part of a large
scan over cases.

Given this situation, this is an example where we follow the methodology outlined ear-
lier for cases where primary decomposition is too slow. We begin by finding a set of points
in complex structure moduli space lying on the jumping locus X g5s of the Standard Model
sector bundle Vgy. In other words, denoting the generators of the ideal that define the
locus in complex structure moduli space where the cohomology of Van jumps as Sk(cay),
we find sets of c4, = c?éw such that S,.@(c%ﬁ) = 0 V k. This is achievable in almost all
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cases we encounter, as the standard model bundle ideal is somewhat less complicated than
its hidden sector cousin. This is simply due to the fact that the extension classes of (4.3)
is the first cohomology of £2, and the square that appears tends to make the associated
ideals larger.

Next we ask whether any of the solutions c?ém also lie on the variety describing the
kernel of the map (4.29) for some non-vanishing value of the s;. That is we plug each
solution ca , = 0?4’7 into Z(ca,y, si) and get a new ideal Z'(sy):

—-0
I(caqy, k) —— I(h . s6) = T'(sk) - (4.32)

We then find sets of points s = 52 which lie on the locus described by Z'(sg), that is,
we find a series of associated possible kernel elements of (4.29), if any non-trivial solutions
exist. Assuming all of this can be achieved, which it can in the example at hand, we end
up with a set of solutions, each comprised of a set of values cs .~ = 0?4,7’ which lie on the
jumping locus of both Vgy and Vi, along with some associated non-trivial examples of
kernel elements for (4.29) given by the sj, = s{.

Given these sets of points common to Y g); and X g, we must now decide which of the
cases given in figure 1 these points lie on. We are most interested in the third possibility
depicted in that figure where the component of the hidden sector jumping locus that the
starting point we have isolated lies on is a subset of the standard model jumping locus:
Z? C Ygm-. It is in this case that the moduli stabilization mechanism will cause the
standard model spectrum to jump.

To ascertain if the situation described in the last paragraph is indeed the one we
have, we perform a linearized perturbation analysis of the equations given by setting the
generators of the relevant ideal to zero. To do this, we substitute c4, = 6104,7 +dca and
S = 52 + 05y into Z(ca 4, Si) and keep only the linear terms in dcq, and dsj to obtain a
new set of generators for an ideal Z”(dca -, dsy). For this ideal, the generators are nothing
but a set of linears in the variables dca ~ and dsj, and thus it is very easy to perform an
elimination on the variables ds; and obtain a set of constraints, S’(dca ), purely in terms
of the dca. Now our task is to compare the two ideals S(ca) and S'(dcay), If all the
solutions of S’'(dca,,) = 0 solve S(C?Lm +dcay) = 0 up to linear terms in dca -, then we
can conclude that, at least under infinitesimal perturbation, some irreducible component
E? of Xy lies on Xgqn\p.

In the case at hand, the locus on the standard model side is as follows.

S =capca5 —carca6 =0 (4.33)

Assuming that 0271 = 0 we can then use the following solution for S:

bc
0 0 0 0
64’1 = a, C4’2 - b, 64’5 =C, C4,6 - E (434)

The other complex structure coefficients c4 , in the problem can be taken to be any number
since no constraint arises on them.
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Substituting these solutions into the equations Z on the extension side, we obtain an
7' which can easily be seen to have the following solutions for 32:

a a a
$9=0,52 = 0,50 = ——51,59 = ——59,59 = ——s3. (4.35)
c c c
Here we can take s1,s9 and s3 to be any value.

Now that we have some points in moduli space common to both jumping loci, the next
step is the linear perturbation analysis. Substituting c4 .~ — 0?4,7 +dca and sy — 52 + sy,
into Z, keeping up to linear terms in the perturbations and eliminating the ds; we arrive
at the following single constraint on the dcy .

—a2éc4,6 + abdcy s + acdcy o — bedey =0 (4.36)

In principle we now should solve this constraint for, for example dcy and substitute
the result into S to see if that set of equations is also solved by these fluctuations to linear
order. In fact this is not necessary in this case, as it can easily be observed that (4.36) is
precisely the linearization of (4.33) around the starting points we have chosen. In this case
this hidden sector locus does not merely lie inside Xgyg, it is identical to it.

Thus, even though we don’t know the full information about the primary decomposition
and elimination of Z, it is still possible to show that some of its components lie on the
standard model jump locus. In fact, in this example, we find a locus on the extension side
which is precisely YXgnm. As a final check, one can verify that for a generic enough choice of
complex structure of the form given in (4.34) the cohomology on the extension side does
indeed jump, from A*(X,0(2,-2,2,—4,0)) = (0,0,12,0) to h*(X,0(2,-2,2,-4,0)) =
(0,5,17,0). An examination of the representation content of the larger first cohomology
group which is obtained shows that three of these five elements survive to the quotient.
This is in agreement with the freedom found in (4.35) above.

4.3 Results of a systematic scan over a class of heterotic Line Bundle Standard
Models

As we have seen in the last subsection, moduli stabilization can indeed influence the stan-
dard model physics we observe in heterotic compactifications. The question we wish to
answer is how common are such phenomena in known examples of heterotic standard
model compactifications. That is, how often is it the case that the hidden sector bundle
can effect the visible sector spectrum in this manner. To investigate this we have run a scan
over the known data set of Heterotic Line Bundle Standard Models [19, 20]. To summarize,
for each Line Bundle Standard Model in the data set, we do the following.

e First, we scan over all of the standard model multiplets to find those which have the
potential to jump by using an analagous calculation to that found in section 4.2.

e Second, for all the standard models which are found in the first step to have spectra
which can jump, we find all the extension bundles of the form (4.3) which satisfy
the relevant consistency conditions, such as equivariance under the symmetry being
considered and (4.2).
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e Third, we calculate the jumping locus for the cohomology on the standard model side,
and if it is possible, find the jumping locus on the extension side by using primary
decomposition and elimination. If this is not practical in a given case, then we employ
the linear perturbation analysis described in section 4.2.

By using this process, we scanned over all of the 2012 cases in the data set of [19, 20].
The resulting data detailing which standard model constructions have spectra which can
be influenced by moduli stabilization are given in table 3.

Of the 2012 models in the data set, only 100 of them, approximately 5%, can be
influenced by the moduli stabilization mechanism. This percentage is not very high but
this figure is somewhat misleading. The issue is that in most cases in this list the standard
model spectra is based upon line bundle cohomologies that do not jump on any locus in
complex structure moduli space. If we focus on the 182 standard models which do have a
spectrum that can jump at sub-loci of moduli space (which are listed in appendix A), 100
is suddenly a large fraction. Perhaps a more useful figure then is that, within this data
set, if the standard model spectrum can jump, then there is a 55% chance that it will be
forced to by the moduli stabilization mechanism. Clearly, in such a situation one should
not consider moduli stabilization and model building separately. One should check if the
cohomologies involved in model building can jump, and if they can it is important to check
the effect of the hidden sector bundle on the spectrum.

We would like to emphasize that the above figure of 55% can in some respects be
regarded as a lower bound on the frequency at which this effect occurs in the line bundle
standard model data set. As detailed above, we have not been able to perform a complete
primary decomposition analysis of the jumping loci in all examples, and have had to restrict
our attention to more crude analyses in many cases. These computations can easily miss loci
associated with the hidden sector bundle that force the standard model spectrum jump.
As such, interplay between moduli stabilization and model building structures could be
even more pronounced than indicated here.

5 Topological vanishing of Yukawa coupling in heterotic Line Bundle
Standard Models

The tree level superpotential Yukawa couplings of Heterotic compactifications on Calabi-
Yau threefolds are given by the following formula.

)\[JKO(/(,U[/\MJ/\WK/\Q. (51)
X

Here I, J, K label the matter fields whose coupling is being computed and the w’s are the
bundle valued one forms to which those matter fields are associated. The gauge structure
of (5.1) has been suppressed here: it is a gauge invariant combination of the three w’s
that appears in the expression. We have left a ‘proportional to’ sign explicitly in (5.1)
to emphasize that the absolute value of such a superpotential coupling is not physically
meaningful in absence of knowledge of the Kéhler potential. However, this formula can
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CICY. Num. | Mod. Num | Sym. Num. Multiplet Extension Line
6784 6 3,4,5,6 Beyes, O(—1,2,2,—1) O(-1,1,1,-1)
6784 51 3,4,5,6 Beyes, O(—3,2,2,—1) O(-1,1,1,-1)
6784 54 3,4,5,6 Bey 5 Pegjes, O(—1,2,2,—1) | O(-1,1,1,-1)
6828 1 2 Beres, O(2,-3,2,—1) o(1,-1,1,-1)
6828 2-5 2 Beyess O(2,-1,2,—1) 0@1,-1,1,-1)
6828 7 2 Bey,e0 O(2,2,-1,—1) 0(1,1,-1,-1)

106, O(—2,-2,0,1) 0(0,1,1,—-1)

. Boy,e0, O(4,2,-2,—1) 0(0,1,1,—-1)
7435 ! 2 Begeq, O(—3,—2,1,1) O(1,1,0,-1)
Beses, O(—3,-2,1,1) 0(1,1,0,-1)

106, O(—2,0,—2,1) 0(0,1,1,—-1)

Bey,e0, O(4, 2 2, —1) 0(0,1,1,-1)

7435 2 2 B O3 5 1) O 010

Beyes, O(—3 —2,1) O(1,0,1,—-1)

Beyes, O(—2,4,2,—1) 0(1,0,1,—-1)

7435 3 2 Bes,eq, O(1,-3,-2,1) 0(0,1,1,-1)

Beg,e0r (, —3,-2,1) 0(0,1,1,-1)

Beyes, O(—2,2,4,—1) 0(1,1,0,—-1)

7435 4 2 Bes,es, O(1,-2,-3,1) 0(0,1,1,—-1)

Bes,eq, O(1,—2,-3,1) 0(0,1,1,-1)

10, O(—2,-2,0,1) 0(0,1,1,—-1)

Be,e0s 0(2,4,—2,—1) 0(1,0,1,—-1)

7435 g 2 Beg,es, O(—2,-3,1,1) 0(1,1,0,-1)

Beses, O(—2,-3,1,1) 0(1,1,0,—-1)

106, O(—2,0,-2,1) 0(0,1,1,—-1)

Bo1,e0, 0(2,-2,4,—1) 0(1,1,0,-1)

7435 6 2 Beg.es, O(—2,1,-3,1) 0(1,0,1,—-1)

Beges, O(—2,1,-3,1) 0(1,0,1,—-1)

6732 1-2,34-35 1,2 Beyer, 0(0,2,2,—1,—1) 0(0,1,1,0,—1)
6732 3-4 1,2 Beyenr O(2,0,2,—1,—1) 0(1,0,1,0,—1)
6732 15-17 1,2 Bes,e5, 0(2,0,2,—1,—1) 0(1,0,1,0,—1)
Be, es, O(—1,2,0,2,—1) 0(0,1,0,1,—1)

6732 19 12 Beyeqs O(1,—2,1,-3,1) 0(0,1,0,1,-1)
6732 26-28 1,2 Bes,es, O(0,-2,-2,1,1) 0(0,1,1,0,—1)
6732 30-31 1,2 Beyes, 0(2,0,2,—1,—1) 0(1,0,1,0,—1)
6732 32 1,2 Beyesr O(—2,0,-2,2,1) 0(1,0,1,0,—1)
Bey.e0s O(2,—1,0,2,—1) 0(1,0,0,1,—1)

6732 33 12 Beyes, O(=2,1,1,-3,1) 0O(1,0,0, 1 —1)
6732 36 1,2 Bes,er, O(0,-2,-2,2,1) 0(0,1,1,0,—1)
6770 13 1,2 Bey,es, O(1,1,-2,-2,0) 0(-1,-1,0,1,1)
6770 14 1,2 Beyen, O(1,1,-2,1,-2) O(-1,-1,0,1,1)
6777 17 1,2,3,4 Beyes, O(1,1,-2,-3,1) 0(0,0,1,1,—1)
6777 20 1,2,3,4 Bey,es, O0(0,2,—1,2,—1) 0(1,-1,1,-2,0)
6890 1-2 16-17 1,2 Bepeqs 0(0,2,2,—1,-1) 0(0,0,1,1,—1)
6890 5 1,2 Bepes> O(1,1,-2,-3,1) 0(0,0,1,1,—1)
6890 18-19,22 1,2 Bes,es, O(0,—2,-2,1,1) 0(0,0,1,1,—1)
6890 20,21 1,2 Besesr O(=2,1,1,-3,1) 0(1,0,0,1,—1)
6890 24-27 1,2 Bes,er, O(0,—2,-2,2,1) 0(0,1,1, 0 —1)

Table 3. Heterotic line bundle standard models whose spectrum can

be forced to jump by a

hidden sector bundle of the form (4.3). The first column specifies the CICY number of the manifold
involved (according to the standard list [75, 104]).
standard model numbers involved and the symmetries that are used in their construction according
to the data sets provided in [19, 20, 105] and [88, 104] respectively. The fourth column gives an
example of the component of the spectrum which can be forced to jump and the line bundle to
which it is associated. Finally, the fifth column gives an example of an £ which, when utilized
in (4.3) would result in the change of spectrum being discussed.
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give us some information about the physical Yukawas, particularly concerning vanishings
of such couplings.

There are several methods for computing quantities such as (5.1) in the literature.
These fall into two main approaches, using algebraic geometry [3, 4, 9, 13, 44-53] and
differential geometry [54, 55] respectively. Here we will focus exclusively on the latter
approach, which seems to be more powerful in the case of Line Bundle Standard Models.
In particular, the approach of [54, 55| makes it computationally easier to obtain moduli
dependence of such couplings and leads to a powerful vanishing theorem. It is this latter
result that we will make use of in what follows. We now discuss the statement of this
theorem, leaving the details of its proof to the associated literature [54, 55].

Each cohomology group of which the w; are elements can be spanned by a basis,
each element of which has a well defined “type”. Fortunately, in the Line Bundle Standard
Model cases we will be interested in, this basis is compatible with the basis corresponding to
standard model degrees of freedom. The type of a one form corresponding to a matter field
is determined by how it descends from ambient space cohomologies in the Koszul sequence.
In particular, if the form descends from a cohomology of the form H7(A,AT7'NV ® L),
then it is said to be of type 7.

The vanishing theorem proven in [54, 55| then simply states that if the following
condition is satisfied,

1+ 75+ T < dim(A) (5.2)

where 77 is the type of differential form and dim(A) is the dimension of the ambient space,
then the Yukawa coupling will vanish.

Using this result, it is possible to detect vanishings of Yukawa couplings in Heterotic
Line Bundle Standard Models without heavy calculations. Such vanishings are, naively,
topological in nature and need not be tied to any obvious symmetry property of the low
energy effective theory (we will return to this issue at the end of this section). This is clearly
of potential phenomenological interest as a mechanism of generating Yukawa textures of
various types in such models. Much like the ‘forced jumping’ phenomena discussed in the
previous section, such textures could be good or bad for the phenomenological viability of
a given string theory standard model, depending upon their structure. For example, if all
Yukawa couplings were found to vanish it might be difficult to achieve a sufficiently massive
top quark in such a model. However, if the Yukawa matrix were forced to be rank one then
this mechanism might provide a nice explanation as to why we observe one very heavy
family in Nature. An example of another effect constraining couplings in such models are
discussed in [106].

In what follows we will investigate how common the vanishings of couplings we have
discussed here are in the data set of Line Bundle Standard Models provided in [19, 20, 105].
Specifically we will examine those couplings which are consistent with all obvious symme-
tries of the models and compute which vanish due to (5.2). We will begin with an example
in the next sub-section and proceed to a general analysis in the following one.
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5.1 An example of topologically vanishing Yukawa couplings

Let us illustrate the simple process of applying the vanishing theorem described above in an
example. We will work on the manifold with CICY number 5256 according to the standard
list [75, 104], which is defined by the following configuration matrix.

PY1100]
PL2000
X=|Ploo11], (5.3)
PLHOO11
P31111)

We will quotient X by the fourth discrete symmetry in the canonical list [88, 104], which
acts on the homogeneous coordinates in the following manner:

r,a -1 “ r,a
Zgl) . Tra = ( ) Lr, (5'4)
T5,a — (—1)011'57&

ZgQ) . Tra = Tra+l
T5,a =7 T5 a4 (—1)

Here we make the identifications z,2 = 2,0 , Vi. In addition to this coordinate action there
is a normal bundle action which descends to the following transformations on the defining
polynomials.

1

7Y < (p1, pa, ps, pa) = (p1, —pa, P3, —pa) (5.5)
2

Zg ) : (p17p2)p37p4) — (p17 _p27p47p3)

On X/Zy x Zy a Line Bundle Standard Model can be built of the form Vg = @?:1 L;
with the following line bundle content [19, 20].

El = OX(1707 _27 170) ) EQ = OX(L _2a 17070) s £3 = OX(Oa 17 17 _27()) 5 (56)
Ly =0x(-1,1,0,0,0), L5 = Ox(-1,0,0,1,0)

The non-trivial cohomology content of combinations of the line bundles £; which are rele-
vant for the standard model spectrum of this Line Bundle Standard Model are as follows.

h*(X, £1) = (0,4,0,0); h*(X, L2) = (0,4,0,0); h*(X, £3) = (0,4,0,0);
R*(X, L1®Ly) = (0,4,0,0); h*(X, £1®£5) (0,3,3,0); h*(X,L2®L5) = (0,4,0,0);
R (X, L4®L5) = (0,4,0,0); h*(X,L{®L))=(0,3,3,0); h*(X,L1®L))=(0,12,0,0);
(X, L1®LY) = (0,3,3,0); h*(X,L2®Ly) = (0,12,0,0); h*(X,L2®L)) = (0,12,0,0);
(X, L3RLY) = (0,4,0,0); h*(X,L3xLY) = (0,16,0,0); (5.7)

These cohomologies correspond respectively to the following multiplets on X (before the
quotient):

410¢,; 410¢y; 410¢g; 4591784? 3591785; 4562,955 4594,955 35_¢;,—esi (5'8)
]-2 161,—62; 3161,—95; 3165,—61; 12 162,—93; 12 192,—64; 4163,—64; 16 163,—95;
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As in earlier sections, we give spectra in this section in terms of GUT multiplets for
conciseness, despite the fact that we use a Wilson line (whose exact form will not be
needed here) to break the gauge group to that of the standard model.

Given the spectrum of standard model representations and U(1) charges given in (5.8),
one would naively expect the following Yukawa couplings to be present.

5827655*91,*95191,*927 1093561794562765 (5'9)

Let us look at these two Yukawa couplings in more detail in the context of the vanishing
theorem (5.2). In order to use the theorem, we must first work out which ambient space co-
homologies the relevant matter fields descend from in the Koszul sequence. Beginning with
the Yukawa coupling 5e, e55—e;,—es les,—eq, the line bundles associated to the multiplets
which appear are as follows.

Beses 1 Ox(0,—2,1,1,0), 5_e; —e5 : Ox(0,0,2,-2,0), 1oy —e, : Ox(0,2,-3,1,0) (5.10)

A short computation shows that H'(X, L) for all of these line bundles descends from
the associated first cohomology on A, that is H'(A, Lo ® L5), which is four dimensional,
HY(A, £Y®LY) which is three dimensional and H'(A, £1®Ly ), which is twelve dimensional,
respectively.

From this analysis we can see that all three of the involved matter fields are of type
one, and thus we have,

TSy 05 + T oy ,—es + Tley,—ey = 3 < dim(A) =7. (5.11)

Given this, the vanishing theorem tells us that this Yukawa coupling (or more precisely this
set of 144 couplings) vanishes, despite the fact there is no obvious gauge theoretic restriction
that would cause it to do so. Given that these upstairs couplings vanish, so do all of the
associated downstairs couplings associated to the Line Bundle Standard Model itself.

For the second Yukawa coupling, 10e;5e; e,5ey.e5 & similar procedure can be followed.
We find that once again all three matter fields are of type 1, and thus the Yukawa coupling
vanishes, naively due to topological restrictions with, once again, no obvious gauge theoretic
restriction presenting itself.

5.2 Scanning over the Line Bundle Standard Models

We now proceed to apply an analysis of the form presented in the previous subsection to
every Line Bundle Standard Model in the data set of [19, 20]. The procedure we apply is
as follows. For each model, we first look at the multiplets which arise. That is, we examine
the cohomology groups,

HYX,L;), HY(X,L; ® L;) , H'(X, L ® L)) , H(X, Li®L)), (5.12)

which, as was detailed in table 1, are the upstairs cohomologies that correspond to the
following matter representations.

106, , Beye; » Boei—e; » Lej—e (5.13)
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CICY No. | No. Sym. | No. Models | 5_¢, ;106,104 | 5, c;Bey.e1 106, | Lo, —c;B—cr,—ox Doy ox
6784 4 188 0 120 144
6328 1 2 0 5 0
7862 1 14 18 53 19
5256 6 84 0 126 32
5452 20 800 0 1376 208
6947 1 24 0 24 12
6732 2 28 24 68 12
6770 2 16 16 32 0
6777 4 24 48 64 80
6890 2 22 24 50 12
7447 1 3 0 5 4
7487 4 276 164 580 444

Table 4. The number of Yukawa couplings of various types that are permitted by the gauge
symmetries of the set of Line Bundle Standard Models being considered [19, 20, 105]. The first
column gives the CICY identification number of the manifold on which the models are based,
according to the standard list [75, 104]. The second column details how many symmetries are
being considered, and thus the number of downstairs manifolds that each row corresponds to. ‘No.
Models’ gives the number of models with at least one Yukawa coupling that would be consistent
with gauge invariance in the data set. The remaining three columns give the number of each type
of such couplings that appear in this set of models.

Once we have extracted this list of multiplets from the Line Bundle Standard Model data
set, we then extract all of the Yukawa couplings that are consistent with the constraints
imposed by gauge symmetry. These are all of one of the following three forms.

5*eiﬁej ]‘Oei ]‘Oej ) 562‘781 5elmel 10e,,,; leiﬁej 5*eiﬁek 5ej:ek‘ (5-14)

Finally, for each Yukawa coupling that does not vanish due to gauge theoretic considera-
tions, we examine the Koszul sequence associated to each of the line bundles giving rise
to the matter multiplets involved and determine the types of the associated forms. We
can then use the vanishing theorem (5.2) to determine whether or not these couplings are
actually present. We present the full results of this analysis in appendix B and will content
ourselves here with some brief statistics on the results.

The number of Yukawa couplings which are non-zero after gauge theoretic considera-
tions are taken into account is given in table 4. Models are only listed in this table if they
have at least one non-vanishing coupling at this level.

Given the data in table 4, the question is now how many of these Yukawa couplings
vanish due to the topological vanishing theorem (5.2). The answer to this question is
given in table 5. Compiling this data into even more coarse overall figures, we obtain the
percentage of the different types of coupling given in (5.13) which would be allowed by
gauge invariance but which vanish due to these topological considerations. These figures
are presented in table 6.
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CICY No. | No. Sym. | No. Models | 5_¢, ;106,104 | 5, c;Bey.e1 106, | Lo, —c;B—cr,—ox Doy ox
6784 4 0 0 0 0
6828 1 0 0 0 0
7862 1 9 8 5 3
5256 6 32 0 32 24
5452 20 256 0 240 192
6947 1 24 0 24 12
6732 2 0 0 0 0
6770 2 8 16 0 0
6777 4 0 0 0 0
6890 2 0 0 0 0
7447 1 1 0 1 3
7487 4 112 80 32 0

Table 5. The number of Yukawa couplings of various types that are permitted by the gauge
symmetries but vanish due to the topological restriction (5.2) for the set of Line Bundle Standard
Models being considered [19, 20, 105]. The first column gives the CICY identification number of
the manifold on which the models are based, according to the standard list [75, 104]. The second
column details how many symmetries are being considered, and thus the number of downstairs
manifolds that each row corresponds to. ‘No. Models’ gives the number of models with at least one
Yukawa coupling that vanishes due to this topological consideration. The remaining three columns
give the number of each type of such couplings that vanish due to (5.2) in this set of models.

Yukawa Type Total Num. | Top. Van. Num. | Percentage
5_c;,—e;10¢; 10, 294 104 35.4%
Sehejgek’elloem 2503 334 13.3%

1ei,—ej5—ei,—ek5ej,ek 967 234 24.2%
In total 3764 672 17.9%

Table 6. The total number of Yukawa couplings of each type in the Line Bundle Standard Model
data set studied [19, 20, 105]. The column ‘Total Number’ details the number of each type of
coupling which are consistent with gauge invariance. The column ‘Top. Van. Num.’ details the
number of these couplings that are actually zero due to the vanishing theorem (5.2).

In the final analysis there is a total of 1481 Standard Models in the data set which
have at least one Yukawa coupling that would be expected to be non-zero based upon
consideration of the obvious symmetries in the construction. Of these, 442 have have at
least one such coupling which turns out to be zero due to the vanishing theorem (5.2). This
means that topological vanishing of Yukawa couplings plays a role in 29.8% of these models.

A few comments are order about these results. Firstly, it is clear that this is not a rare
phenomenon. A lot of couplings that would naively be allowed by gauge invariance in the
theory actually vanish due to topological considerations. That this effect would be common
was anticipated in [54, 55]. It should also be mentioned that these results are reminiscent,
for example, of long understood selection rules in orbifold compactifications [107-111].
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Obvious questions include whether or not such vanishings are also so ubiquitous in
higher order couplings and whether there is some hidden reason, beyond quasi-topological
restrictions, for the phenomenon. For the latter question, a potential hint is given by the
results of [52, 53]. There it was shown that stability walls elsewhere in extended bundle
and Kéhler moduli space could have U(1) symmetries that, while broken for the split
bundle being studied, still restrict its couplings hugely. This effect can be very strong,
essentially due to the holomorphic nature of the superpotential of the four dimensional
theory. The bundles being studied in the Line Bundle Standard Model data set considered
here are in larger Kéhler cones than the simple examples considered in [52]. In such cases,
it is expected that the constraints on couplings will be even more restrictive (due to a
larger number of stability walls being present). This could potentially explain the high
percentages of topological vanishings found in table 6.

6 Conclusions

In this paper we have studied two effects which can arise in Line Bundle Standard Mod-
els [19, 20]. The first of these concerns the interaction of line bundle model building and
the moduli stabilization mechanism of [57, 58]. In that work, the hidden sector gauge bun-
dle is used to stabilize the complex structure to some higher co-dimensional sub-locus of
moduli space. Here, we have investigated how often the system being forced to this special
locus in complex structure moduli space causes the massless charged spectrum of the stan-
dard model to jump. The second effect we considered was concerned with the structure of
Yukawa couplings. Couplings which are consistent with all obvious symmetries of the four
dimensional effective theory can be zero due to seemingly topological restrictions. We have
considered the form of topological vanishing presented in [54, 55] and have determined how
common such effects are in the known data set of Line Bundle Standard Models.

In our work on the first of these directions we have seen that, in the data set studied,
if the standard model field content is capable of jumping, the hidden sector stabilization
mechanism has a good chance of forcing it to do so. In particular, there is at least a 55%
chance that one (of the usually small number) of SU(2) structure extension hidden sector
bundles that can be consistently included in such a compactification will force the standard
model bundle to a jumping locus. Such a strong interaction between the visible sector and
hidden sector bundles may seem surprising at first. However, for the threefolds that are
considered with non-vanishing first fundamental group, the second Chern characters are
not that large. Given this, there are then not many choices of equivariant line bundles
that can be used in the construction of a hidden sector bundle given any particular Line
Bundle Standard Model. The restricted nature of the choices seems to lead to a relatively
ubiquitous correlation between jumping loci of the cohomologies governing the hidden
sector extension and the standard model spectrum. The basic message of section 4 of the
paper is thus that such effects are something that should be considered in model building
work, if the standard model bundles being considered have cohomologies which are capable
of jumping. As we have emphasized in the main text, this effect could be either good or
bad. It could force unwanted family/anti-family pairs to appear in the spectrum, but it
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could equally well force the generation of a Higgs-Higgs bar pair in a model that previously
lacked such degrees of freedom.

In our investigation of topological vanishings of Yukawa couplings we have seen a
similarly strong effect. We have seen that the vanishing theorem presented in [54, 55] leads
to an otherwise permitted Yukawa coupling being zero in 30% of the models presented
in [19, 20]. Indeed, almost 18% of the couplings that are allowed by all of the obvious
symmetries in these models actually vanish. As with the previous result, this effect can be
either good or bad for the phenomenological viability of a model depending on the particular
case at hand. It is clear, however, given the ubiquity of the effect, that such vanishings
should be taken into account in phenomenological explorations of these constructions.
Several natural questions follow from these results. For example, do similar, seemingly
topological, vanishings of couplings happen for higher order interactions? We conjecture
one possible explanation for the large number of vanishings that would answer this question
in the affirmative. As was discussed in [52], stability walls elsewhere in combined bundle and
Kahler moduli space, can have strong effects on superpotential couplings in backgrounds
where those splittings are not manifest. In particular they can force such vanishings of
couplings. Whether this really is the effect that is behind many of the vanishings that we
have seen is a study that we leave for future work.
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A  Jumping spectrum results

In this appendix we present data on the interplay between Xgn and Yy, as defined in
section 4, for all of the Line Bundle Standard Models of [19, 20, 105] whose spectra are
determined by cohomologies that could potentially jump in dimension. In particular, all
cases where a non-trivial map is involved in the sequence chasing used to determine the
spectrum are considered. In the tables below, ‘CICY No.’, ‘Symmetry No.” and ‘Model
No.” refer to the labels for the upstairs manifolds, symmetries and Line Bundle Standard
Models that are being considered, relative to the relevant standard lists, [75, 88, 104, 104]
and [19, 20, 105] respectively. The entries in the column entitled ‘Jump Line’ specify the
multiplet being considered in that row and the line bundle whose cohomology it is associated
to. Finally, the columns ‘Jump Standard’ and ‘Jump Extension’ contain information about
Ygm and Yy respectively.

For cases where no possible extension bundle of the form (4.3) exists, we place a
‘no extension’ in the final column and perform no further computations. If the jumping
locus for the standard model bundle only jumps on loci in complex structure moduli space
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where the associated Calabi-Yau manifold becomes singular we place a ‘singular’ in the
penultimate column (or singular® if only a portion of this locus could be determined and
that portion exhibited this property). In such cases, there is no need to perform any
computations involving the hidden sector bundles and, as such, a ‘null’ is placed in the
final column. If, for a standard model which can indeed jump (indicated by a ‘y’ in the
‘Jump Standard’ column) there exists a hidden sector bundle for which we have been able
to find an irreducible component to its jumping locus that lies entirely within gy then we
put a ‘y’ in the final column. If all such loci we have been able to find merely intersect the
standard model bundle jumping locus we place a ‘g’ in the final column. A ‘singular’ in
the last column indicates that all of the components of Xy that exist force the Calabi-Yau
manifold to a singular locus in its moduli space. A singular® in the final column means that
all of the components of Y that we were able to find have this property, but other loci
may exist. An ‘unknown’ in any column simply means that the system was so complicated
that we were unable to extract any meaningful data in a reasonable amount of time.

CICY No. | Symmetry No. | Model No. Jump Line Jump Standard | Jump Extension
10e,, O(3,2,-2,-1) singular null
1-5 Beres, 0(2,2,—1,-1) singular null
Beress 0(2,2,-1,-1) singular null
6784 3-6 0 Sever, O(-1,2,2, 1) Y Y
7-10 5e1.e0, 0(2,2,-3,-1) singular null
11-50 Bejens 0(2,2,-1,-1) singular null
51 Bejess O(—3,2,2,—1) y y
52 Bej ey 0(2,2,-1,-1) singular null
54 Be,ess Desess O(—1,2,2,-1) y y
CICY No. | Symmetry No. | Model No. Jump Line Jump Standard | Jump Extension
1 Seiers O(2,-3,2,-1) y y
6325 9 2-5 gel,eza (9(2,71,2,71) y y
6 10e,, O(2,-2,3,-1) singular null
7 Bey s 0(2,2,-1,-1) y y
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CICY No. | Symmetry No. | Model No. Jump Line Jump Standard | Jump Extension
10e,, O(—2,-2,0,1) vy v
1 gel,ez, 04,2,-2,-1) vy
5ese50 O(=3,-2,1,1) y y
3e47e5, O(-3,-2, 1, 1) y y
10e,, O(—2,0,-2,1) y y
5 Seiess O(4, -2, 27 1) y y
5e3e570(317>) Yy y
Sesesr O(=3,1,-2,1) y y
Seyesr O(=2 47 2,-1) y y
3 Sesers O(1,—3,-2,1) y y
7435 2 ?e"e‘“ od, 3’ 1) Y Y
5ee5, O(— 2,274,—1) y y
4 5e2,e4a O(la —2,-3, ) y y
Begers O(1,—2,-3,1) y y
10e,, O(—2,-2,0,1) vy y
5 Beyers O(2,4,-2,-1) y y
Besess O(—2,-3,1,1) y y
Seses: O(=2,-3,1,1) y y
10, O(—2,0,—2,1) y y
6 Beress O(2,—2,4,-1) y y
Beses: O(—2,1,-3,1) y y
ge4,e57 O(_Qa 1,-3, 1) y y
CICY No. | Symmetry No. | Model No. Jump Line Jump Standard | Jump Extension
2 Seses: O(=2,3,2,-3) y g
7362 3 3-6 §e1,e27 0(2,-2,-2,2) vy g
9-12 Be; e O(2,-2,-2,2) vy g
15-18 10e,, O(—2,2,-2,2) vy g
CICY No. | Symmetry No. | Model No. Jump Line Jump Standard | Jump Extension
1-4 10e,, O0(0,1,-2,-2,1) singular null
7.10 }093, 0(0,1,-2,-2,1) singular null
5e,.e0, O(2,—-1,0,2,—1) singular null
90 }095, 0(-2,-2,0,1,1) singular null
5256 3-6 Seses, 0(0,2,2,—1,—1) y singular
21 10e,, O(—2,-2,1,0,1) singular null
99 }Oes, 0(-2,-2,1,0,1) singular null
5el 0, 0(2,0,-1,2,-1) y ¢
23 Oc;, O(—2,-2,0,1,1) singular null
24 106357 0(-2,-2,1,0,1) singular null
26 5, 0(-2,-2,1,0,1) singular null
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CICY No. | Symmetry No. | Model No. Jump Line Jump Standard | Jump Extension
Beyes 0(2,2,0,0,—2) singular null
1 Beses, O(—3,0,0,0,1) singular null
10e,, O(1,-2,0,0,1) singular null
Beyerr 0(2,2,0,0,—2) singular null
2 Begess O(—1,-2,-1,2,2) singular null
10, O(—2,0,0,1,1) singular null
3-6 10e,, O(—2,0,-2,1,1) singular null
Beyens 0(2,2,0,0,—2) singular null
5452 7-22 7 Beses, O(—2,-2,1,2,1) singular null
10, O(—2,0,0,1,1) singular null
Bepen 0(2,2,0,0,—2) singular null
8 Seies, O(—2,-2,2,1,1) singular null
10,, 0(0,-2,1,0,1) singular null
9.12 5ere0 0(2,2,0,-1,-1) singular null
10e,, O(—2,0,-2,1,1) singular null
Beperr 0(2,2,0,0,—2) singular null
13 Beg.eqs 0(0,-3,0,0,1) singular null
10, O(—2,1,0,0,1) singular null
u Beyes 0(2,2,0,0,—2) singular null
10e,, O(0,-2,1,0,1) singular null
18-25 10e,, O(—2,0,-2,1,1) singular null
30-33 10e,, O(—2,0,-2,1,1) singular null
2949 5ese0, 0(0,2,2,-1,-1) singular null
10e,, O(—2,0,-2,1,1) singular null
. 5ere0 0(2,2,-1,0,-1) singular null
10e,, O(0,-2,1,-2,1) singular null
47-50 10e,, O(0,-2,1,—-2,1) singular null
52-55 10e,, O(0,-2,1,-2,1) singular null
5361 }Oe37 0(0,-2,1,-2,1) singular null
5e; 600 0(2,0,—-1,2,-1) singular null
63-66 10e,, O(0,-2,1,-2,1) singular null
67-70 10e,, O(0,-2,1,—-2,1) singular null
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CICY No. | Symmetry No. | Model No. Jump Line Jump Standard | Jump Extension
1 Berer, 0(0,2,2,—1,-1) y y
2 Beyesr 00,2,2,-1,-1) y y
a4 Seyer, 0(2,0,2, 1, 1) y y
Beses, O(—3,1,-2,1,1) singular™ null
5-8 Beses O(—2,-2, 2 ,2) unknown unknown
9 Beses; O(—2,-2,0,1,1) singular null
10-13 594 ess O(—2,-2,1,0,1) singular null
15-17 | Beyes, O(=2,0,-2,1,1) y y
19 %1,85 0(-1,2,0,2 _1) M Yy
sez €4 0(17_2 1,- ) y Yy
6732 1-2 20 Beqes, O(—2,-2,0,1,1) singular null
21-24 Beses, O(—2, 2,1,0 1) singular null
26-28 | Beyes, 0(0,—2,-2,1,1) y
30-31 50, 02,0 -1) y y
32 Boses O(—2, 0 ) 2, 1) y y
23 §e4,es 0(-2,1,1,-3,1) y y
5e,e0s O(2,-1,0,2,-1) y y
34 %1,84 0(0,2,2,-1,-1) y y
5ese5, O(1,—3, -2, 1,1) singular® null
35 § e1,e4) 0(0,2,2,-1,-1) y y
5es.e5: O(1,—3, -2, 1 ,1) singular® null
36 Eew 0(0,-2,-2,2,1) y v
CICY No. | Symmetry No. | Model No. Jump Line Jump Standard | Jump Extension
6770 s 13 Beyes O(L1,—2,-2.0) y v
14 Be; e O(1,1,-2,1,-2) y y
CICY No. | Symmetry No. | Model No. Jump Line Jump Standard | Jump Extension
1-2 Berer, 0(0,2,2,—1,—1) y y
4 Beges; O(—2,0,-2,1,1) singular null
5 Sejesr O(1,1,-2,-3,1) y y
Bese5: O(—1,0,2,2,-1) singular null
6890 1.9 6-9 533_’95, 0(-2,2,-2,-2,2) unknown unknown
10-13 eses, O(—2,1,-2,0,1) singular null
16.17 §e1,e47 0(0,2,2,-1,-1) y y
5ese5, O(1, -2, -3, 1,1) singular® null
18-19 | Beyes, O(0,—2,-2,1,1) y y
20-21 Berer, O(—2,1,1,-3,1) ¥ y
22 Beyes, O(0,—2,-2,1,1) y y
9497 §e4,e5~, 0(-2,1,-2,0,1) singular null
Beyer, O(0,—2,-2,2,1) y y
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CICY No. | Symmetry No. | Model No. Jump Line Jump Standard | Jump Extension
1-4 Beyess O(2,—2,-2,-2,2) unknown unknown
5-12 Besesr O(1,—2,-2,0,1) singular null
16 5ese0, O(0,—2,-2,1,1) singular null
6777 1-4 17 Beron, O(1,1,-2,-3,1) v v
19 5ese0r O(0,—2,-2,1,1) singular null
20 Beyons 0(0,2,-1,2,—1) v v
CICY No. | Symmetry No. | Model No. Jump Line Jump Standard | Jump Extension
7447 2 3 Bejesy O(1,-2,1,-2,2) y singular®
CICY No. | Symmetry No. | Model No. Jump Line Jump Standard | Jump Extension
11-20 Bejes, O(1,-2,1,-2,2) singular null
22 Beges, O(—2,2,1,1,-2) y singular®
Bejes O(2,-2,-2,1,1) no extension
23 Beges, O(—2,2,1,-2,1) no extension
487 26 §e47957 0(-2,1,2,1,-2) no extension
24 Sese5: O(—2,1,1,2,-2) y singular®
26 Beges, O(—2,2,1,1,-2) no extension
27 Belers O(2,—-2,-2,1,1) y singular®
28 Bejes, O(2,—-2,-2,1,1) y singular®
36-39 Bepess O(1,-2,2,1,-2) singular null
61 Beges, O(—2,2,1,1,-2) y singular®
72-81 Beyess O(2,-2,-2,1,1) y singular®
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B Vanishing coupling results

In this appendix we give in detail, for every heterotic Line Bundle Standard Model in
the data set of [19, 20, 105], which couplings vanish due to the topological considerations
discussed in section 5. In these tables, ‘CICY No.’, ‘Sym. No.” and ‘Model No.” refer to
the labels for the upstairs manifolds, symmetries and Line Bundle Standard Models that
are being considered, relative to the relevant standard lists, [75, 88, 104] and [19, 20, 105]
respectively. The column ‘Yukawa Pattern’ lists the couplings that are consistent with the
obvious symmetries of these models in each case. Finally the column ‘Top. Van.’ details
whether these couplings are affected by the topological vanishing condition (5.2) of [54, 55].

CICY No. | Model No. Yukawa Pattern Top. Van. | Sym. No.
1 100, 5e, .05 Bes.c0 n 1,3
2 106, 5, 05 Bes cq n 1-4
3 100, 5oy 05 Des .00 n 1-4
4 10e1 5ez,es 563,64 n 1-4
5 106, 5e, 05 Bes ca n 2,4
6 10, ?emea §e4,e5 n 1-4

10c,5¢, 05 Bes.co n 1-4

7 ]—Oea 5el,ez 5e4,e5 n 1-4
8 TN n 1-4
9 106556, 0556405 n 1-4
10 10c,5¢, 03Be4.05 n 14
11 1e4,7e357e4,7e5 593795 n 1-4
6784 12 Loy —e5D—eq,—e5Deg s n 1-4
13 Lo, 03B ca.—csBes.cn n 14
14 1e4,—e35—e4,—e55e3,e5 n 1-4
15 Lo, —esB—cs—esBes.es n 1-4
16 Loy —e3B—cs,—e5Deg o5 n 1-4
17 1e4,—e35—e4,—e55e3,e5 n 1-4
18 1e477e357e477e5 5e37e5 n 1-4
19 Ley—csB—cs.—esBearcs n 1-4
20 Lo, —e5D—cs,—e5Deges n 2,4
21 1e4,—e35—e47—e55e3,e5 n 1,3
22 1e4,7e357e4,fe5 593795 n 1-4
23 Ly, —caB—cs.—esBeascs n 1-4
24 Lo, 03B ca.—cgBes.cn n 14
25 1e4,—e35—e4,—e5 5es,es n 1-4
26 Lo, —csB—cs.—csBes.cs n 1-4
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CICY No. | Model No. Yukawa Pattern Top. Van. | Sym. No.
27 1947—635—e4,—e5 563,95 n 1-4
28 1‘347—935—64,—65 Seg,e5 n 1-4
29 Loy —0uB o4 —osBos.cn o i
30 19477935*947*95593195 n 2,4
31 194776357e4,7e5593}e5 n 2,4
32 1947_635—647—95 593,95 n 1-4
33 1947—935—64,—65 583,95 n 1-4
34 ley, 39 c4—es 593,95 n 1-4
35 1947*635794,795 Seg,es n 1-4
36 1e4ﬁfes5fe4,7e5 593,95 n 1-4
37 1947—635—e4,—e5 5e3,e5 n 1-4

6784 38 Loy, —esB—ea,—es Beg.es n 14
39 1e4,—e35—e4,—es5e3,e5 n 1-4
40 le,, 039 es—es 593,85 n 1,3
41 194,*es5fe4,7e5593}e5 n 274
42 1647—635—e4,—e5 5e3,e5 n 1-4
43 1947—935—e4,—e55e37e5 n 1-4
44 194,—635—e4,—95 593_95 n 1-4
45 1947*6357e4,7e5 5(—337e5 n 1-4
46 1e4ﬁe357e4,7e5 593795 n 1-4
47 1947—635—e4,—e5 563,e5 n 1-4
48 Loy —oaB—cs.—osDes.cn . i
49 184,76357(34,795 593,95 n 1-4
50 1947*6357e4,7e5 5e3795 n 1,3
51 10c,5¢, .05 5eq e5 n 14
52 1081 ?ez,es §e3,e4 n 1-4

1095 5e1792 593794 n 1-4

On CICY 6784, a total of 188 models have Yukawa couplings consistent with the gauge
symmetries of the models, with 264 Yukawa couplings being permitted in total. There
are no allowed couplings of the form 5_¢, —;10¢;10e;, 120 of the form 10ei5ej,ek5e1,em,

and 144 of the form 1ei,—ej5—ei,—ek 5ej .- None of these couplings exhibit the topological
vanishings we have studied here.

CICY No. | Model No. | Yukawa Pattern | Top. Van. | Sym. No.
1 10c;5¢, 02 5e,c4 n 2
6828 . 10¢, 5y 05D, c5 n 2
093 591 ,e2 594,95 n 2

On CICY 6828, a total of 2 models have Yukawa couplings consistent with the gauge
symmetries of the models, with 5 Yukawa couplings being permitted in total. All of these
couplings are of the form 1Oei5ej7ek Sel,em. None of these couplings exhibit the topological
vanishings we have studied here.
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CICY No.

Model No.

Yukawa Pattern

Top. Van.

Sym. No.

7862

2

5—927—64 1092 1994

1617—945—61,—65 564795

162,—945—927—65 594-,95

1091 592 ;€5 593 ;€4

10

1092 591 ts) 593 ;€4

1917—645—617—95 594795

1627—945—62,—55 554795

1091 592 €5 593 ;€4

1032 591 ;€5 593 ;€4

11

191 sy —€a 5*91 »—€s5 594 ,€5

1627—645—627—65 564785

1091 592 €5 593 ;€4

slR(B|IB|R|B|IB|IB|IR|IB|IB|B

1092 591 €5 593 ;€4

(=]
=]

12

191 sy €4 5791 ;€5 594 ;€5

192,*645*92,*65 594795

1081 582 €5 563 ;€4

1092 591 €5 593 ;€4

13

191,—625—917—95 592-,95

1093 E')el ;€4 592 »€5

15

1092 591 sts) 593 ;€4

5—917—62 1061 1082

16

1092 591 €5 593 ;€4

5 e, —oy10c, 10,

<|B|<|R|<|<|B|B|B|B

17

1092 E')el €5 593 ;€4

-
]

5*617*62 10131 1082

18

1082 581 €5 593 ;€4

51,03 106, 10c,

19

1063 5€1 €4 592 ;€5

1095 E’)‘:-'1 ,€3 5e2 ;€4

5—637—65 1093 1095

20

1003 501 €4 562 ;€5
1095 591 €3 592 ;€4

5 g, o5 106, 10c

21

1093 531 ;€4 592 ,€5

1095 591 €3 562 ;€4

22

5—937—_65 10!33 1095
1093 591 ,€4 592 ;€5

1095 591 ,€3 592 ;€4

5*93’*65 1093 1095

BlR|<|B|B|<|B|IB|<|B|B|I<w|<|B|<

W W[ W W| W[ W[ W W W W[W W W W W W WWWWWwWwwwwWwwwwwwwwwwwwwww
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On CICY 7862, a total of 14 models have Yukawa couplings consistent with the gauge
symmetries of the models, with 90 Yukawa couplings being permitted in total. Of these,
53 are of the form 10¢;5¢;,e,5ep,en: 19 are of the form 1o —e;5 c; —e,Be;j e, and 18 are
of the form 5_¢; —;10¢,10¢;. A total of 16 couplings exhibit the topological vanishing
we have been studying in this paper, 3 of the form le;,—e;5—ei,—ex Dejrens O of the form
10¢;5¢; ) 5ey,em > and 8 of the form 5_e;,—e;10e;10;. A total of 9 out of the 14 models have

at least one topologically vanishing coupling.

CICY No. | Model No. Yukawa Pattern Top. Van. | Sym. No.

9 1937—e4§—63,—_65564765 n 1-2
10c,5¢; ,049¢3,¢e5 n 1-2

3 10e556, c55e3.04 n 1-2
5 161,79251*91,7_65592,65 Yy 3-6
10935e1,e45e2,e5 y 3-6

6 161,*8252*617195562765 y 3-6
10935e1,e45e2,e5 y 3-6

7 10e55¢; e2De4.e5 n 3-6
8 10e55¢; e35e4.e5 n 3-6
9 10e55¢; e35e4.e5 n 3-6
10 10e55¢; e35e4.e5 n 3-6
11 10e55¢; e35e4.e5 n 3-6
5956 12 10e3§el7e2§e47e5 n 3-6
13 106356, ,629¢4,e5 n 3-6
14 10e55¢, e35e4.e5 n 3-6
15 10¢,5¢, c55e4.e5 y 3-6
16 10e;5e; e55e3.04 y 3-6
17 10e,5¢; e35e4.e5 y 3-6
18 10e, 5ey.e55e4.e5 y 3-6
19 10e;5¢; e4Dez.e3 y 3-6
20 10e;5¢; e35e5.04 n 3-6
21 10e;5¢; e4Dez.e3 n 3-6
22 10¢556, c;5es.04 n 3-6
23 10e;56, c55ez.04 n 3-6
25 10¢,56, c45es.e5 y 3-6

On CICY 5256, a total of 84 models have Yukawa couplings consistent with the gauge
symmetries of the models, with 158 Yukawa couplings being permitted in total. Of these,
126 are of the form 10g;5¢; e, 5ey,ens 32 are of the form le; ;5 c;, ey Beje- A total of
56 couplings exhibit the topological vanishing we have been studying in this paper, 24 of
the form Lo, —e;5 e;, ey Dejex> 32 Of the form 10¢,5¢; e, 5,0 A total of 32 out of the 84
models have at least one topologically vanishing coupling.
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CICY No. | Model No. | Yukawa Pattern | Top. Van. | Sym. No.
1 106556, e35e4.e5 n 7-22
2 10¢556, c;5es.04 n 7-22
7 10¢;5¢, c;5es.04 n 7-22
8 10¢,5¢, ey 5es.05 n 7-22
9 10e;5e; 02 De5.04 n 7-22
10 10¢55¢; e59¢5,64 n 7-22
11 10e;5¢; e35e3.04 n 7-22
12 10e;5¢; e35e5.04 n 7-22
13 10e;5¢; e35es.04 n 7-22
14 10e,5¢; e35es.e5 n 7-22
15 10¢, 5e; 04 5es.e5 y 7-22
16 10¢, 5¢; 04 5e5.e5 y 7-22
17 10¢,5¢, c55e4.e5 y 7-22
18 10¢;5¢, c55ez.04 n 7-22
19 10e;5e; e55e3.04 n 7-22
20 10e;5e; e35e3.04 n 7-22

5459 21 10¢, ?el,es ?e%e‘l n 7-22
22 10¢;5¢; e59¢5 64 n 7-22
23 10,56, e3Des.04 n 7-22
24 10e;5¢; e55ez.04 n 7-22
25 10¢556, c55ez.04 n 7-22
26 10e55¢, c45ez.e5 y 7-22
27 10e;56, c45ez.05 y 7-22
28 10¢, 5, 04 5es.05 y 7-22
29 10e, Bey.e4De5.e5 y 7-22
34 10e;5e; e4Dez.5 y 7-22
35 10e, 5ey.e55e4.e5 y 7-22
36 10e,5¢; e35e4.e5 y 7-22
37 10e,5¢, e35e4.e5 y 7-22
38 10e;5¢; e55ez.04 y 7-22
39 10¢;56, 03 Des.04 n 7-22
40 10e;5¢, c;5es.04 n 7-22
41 10e;56, c35es.04 n 7-22
42 10¢;56, c35es.04 n 7-22
43 10e556; e2De4.e5 n 7-22
44 10e55¢; e3De4.e5 n 7-22
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CICY No. | Model No. Yukawa Pattern Top. Van. | Sym. No.
45 10e35917e25e4765 n 7-22
46 10635e17e25e47e5 n 7-22
47 1093591792594795 n 7-22
48 10¢55¢, c35e4.e5 n 7-22
49 10e556; e2De4.e5 n 7-22
50 10e55¢; e25e4.e5 n 7-22
51 161,—92§—91,—f4592,e4 y 7-22

10e35e1,e55e2,e4 y 7-22

52 10635e1,e25e4,e5 n 7-22
53 10635e1,e25e4,e5 n 7-22
5452 o 1064 Bey e3Bes.c0 n 7-22
99 10635e1,e25e4,e5 n 7-22
56 161,*625_)*61,*_94592794 y 7-22
10c35¢, e59¢2,e4 Yy 7-22

57 ]-Oesgel,e55ezie4 n 7-22
le,,—e19ez,—e59eq,e5 y 7-22

58 106,356, ,629¢4,e5 n 7-22
59 10e55¢; e35e4.e5 n 7-22
60 10e55¢, e35e4.e5 n 7-22
61 10e55¢, e35e4.e5 n 7-22
62 1617—6251—91,—_655e2,e5 y 7-22
10c35¢; 649¢2,e5 y 7-22
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CICY No. | Model No. Yukawa Pattern Top. Van. | Sym. No.
50 10¢, 5917e2 5e47e5 n 7-22
51 1e1,—ez§—e1,—f4 5e2,e4 y 7-22

1093 5e1,e5 5e2,e4 y 7-22

52 10¢55¢, c35e4.e5 n 7-22
93 10¢, 591792 594795 n 7-22
94 10¢, Sehez 5e47e5 n 7-22
959 10¢, Sebez 5e4,e5 n 7-22
56 lei,—en §_ely_f4 Sez,ez; y 7-22
10¢;35¢, 659¢2,e4 y 7-22

57 10¢,4 Sel,e5 Sez_,e4 n 7-22
le, —e19—ez,—e59eq e5 y 7-22

58 10¢, 5e17e2 5e4,e5 n 7-22
59 10¢, 591792 594795 n 7-22
60 10¢55¢, ey 5e4.e5 n 7-22
61 10¢, 591792 594&,5 n 7-22
62 le; ey §_el,_f5 592795 Yy 7-22
5452 1064 ‘?91784 ‘?ez,es Yy 7-22
10¢, 5¢,,639¢4.e5 n 1-4

1 10¢, Sel,e4 5e2763 n 1-4
lo, —e3D—cs,—e5Des,e5 n 1-4

10¢, 592763 594765 n 1-4

2 10¢, Sel,e4 5e27e3 n 1-4
ley —e39_e4,—es5 5e3795 n 1-4

10¢, 5e27e3 5e47e5 n 1-4

3 10¢, 591794 592&,3 n 1-4
1e4,—e3 5—e4,—e5 5e;«;,e5 n 1-4

10¢, 592783 594795 n 1-4

4 10¢, Sel,e4 5e2763 n 1-4
le,,—e39—e4,—e5 5e3,e5 n 1-4

6 10, %’ez,e;g §e4,e5 it 1-4
10c,5¢; ,059¢0,e3 n 1-4

7 10e, '-f)eg,eg, §e4,e5 n 1-4
10¢,5¢; ,e59¢0,e3 n 1-4

3 10e, ?ez,es §e4,e5 n 1-4
10¢,5¢; ,e59¢0,e3 n 1-4

9 10¢, ?ez,e:; §e4,e5 n 1-4
10¢,5¢; e59¢s.e5 n 1-4
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On CICY 5452, a total of 800 models have Yukawa couplings consistent with the gauge
symmetries of the models, with 1584 Yukawa couplings being permitted in total. Of these,
1376 are of the form 10¢;5¢; e, 5ey en, and 208 are of the form Lo, ;5 _e;, ey Dejei - A total
of 432 couplings exhibit the topological vanishing we have been studying in this paper, 192
—ewDej e and 240 of the form 10¢;5¢; e, 5eyem- A total of 256 out
of the 800 models have at least one topologically vanishing coupling.

of the form le; —e;5—e;,

CICY No. | Model No. Yukawa Pattern Top. Van. | Sym. No.
1 10c,5¢5,¢45e5.e5 y 3
2 10¢, 5ey.e4De5.e5 y 3
3 10e,5¢; e55e4.e5 y 3
4 106,56, c45es.e5 y 3
5 10e55¢, c45ez.05 y 3
6 10e;5¢, c45ez.05 y 3
7 10¢, 5¢; 04 5es.05 y 3
8 10e, 5ey.e4e3.e5 y 3
9 10e;5¢; e35e3.04 y 3
10 10e;5¢; e35e3.04 y 3
11 10¢, 5ey.e55e4.e5 y 3

6947 12 1061 §e2,e3 §e4765 y 3
13 10¢,56, 64 9¢3,e5 y 3
14 10¢,56, c55e4.e5 y 3
15 10¢,5¢, c55e4.e5 y 3
16 10e;5¢, c55ez.04 y 3
17 10¢;5¢, c55ez.04 y 3
18 10e,56; e35e4.e5 y 3
19 161,—92§—61,—f4 592764 y 3

10¢;35¢, e59¢2,e4 y 3
20 1e17—e2§—e1,—fz4 Sez,ez; y 3
1063 561765 562764 y 3
21 10e55¢; e4Dez.e5 y 3
22 106556, c55ez.04 y 3
23 161,*925_’*61,*_65 592765 y 3
1093 591794592795 y 3
o 191,*92{)*917*795 LE’ez,es) Y 3
1093 581794 582795 y 3

On CICY 6947, a total of 24 models have Yukawa couplings consistent with the gauge
symmetries of the models, with 36 couplings being permitted in total. Of these, 24 are of
the form 10¢,5¢; e, 5ey en and 12 are of the form 1o, ;5 e;,—e;Be;jer- All of these couplings
exhibit topological vanishing.
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CICY No. | Model No. | Yukawa Pattern | Top. Van. | Sym. No.
1 106,56, e55e4.e5 n 1-2
2 10¢,56, c55e4.e5 n 1-2
10¢55¢, c35e4.e5 n 1-2
10¢,5¢, c35es.e5 n 1-2
5 10e;5e; e2De3.04 n 1-2
5 _e3,—64106510¢, n 1-2
6732 5_93,_7(3510.373 10, n 1-2
10¢;5¢; e59¢4 65 n 1-2
10e,5¢;, e35e3.e5 n 1-2
6 10e;5¢; e35es.04 n 1-2
5 _c3,—e42106310¢, n 1-2
5 _c3,—e5106510¢, n 1-2

CICY No. | Model No. Yukawa Pattern Top. Van. | Sym. No.
10e, 5e1792 5e4,e5 n 1-2
1064591762 Seg,es n 1-2
7 1065 5¢, e3 505,04 n 12
5*93,764 10e3 1094 n 1-2
5*93,*65 10e3 10e5 n 1-2
1093 591762 5e4,e5 n 1-2
6732 1094 ?elyez §e3,e5 n 1-2
8 10e5 591762 5e3,e4 n 1-2
5 _e3,—e410e510¢, n 1-2
5 _e3,—e5 106510, n 1-2
18 5_e3,—e510e;10¢, n 1-2
29 5 _ey,—e510e,10¢, n 1-2
30 106,5¢, e4Dep.e5 n 1
31 10¢45¢, e4Dep.e5 n 1
32 10¢55¢, c35e4.e5 n 19
34 le;,—e39—e1,—es5 593795 n 1-2
35 191’—'33 5—e1,—e5 5e3,e5 n 1-2
36 10, 5e17e5 5e37e4 n 1-2

On CICY 6732, a total of 28 models have Yukawa couplings consistent with the gauge
symmetries of the models, with 104 couplings being permitted in total. Of these, 68 are
of the form 10¢;5¢; e, Beem, 12 are of the form Lo, ;5 c; e Beje;, and 24 are of the
form 5_g, —e; 10¢;10¢; . None of these couplings exhibit the topological vanishings we have
studied here.
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CICY No. | Model No. | Yukawa Pattern | Top. Van. | Sym. No.
1 5_c1,—e3 106, 10¢, y 1-2
2 5_c1,—e5 106, 10¢, y 1-2
5 5_c;,—e3106, 10, y 1-2
6770 6 57e1,iez 10.371 10, y 1-2
7 10¢,5¢; e49¢3,e5 n 1-2
8 10e,5¢; e4De5.e5 n 1-2
11 10¢, Bey.e5Des.04 n 1-2
12 10¢, Bey.e55es.04 n 1-2

On CICY 6770, a total of 16 models have Yukawa couplings consistent with the gauge
symmetries of the models, with 48 couplings being permitted in total. Of these, 32 are of
the form 10¢;5¢; e, ey e and 16 are of the form 5_¢; —¢;106,10;. There are a total of 16
couplings that exhibit the topological vanishing we have been studying here. All of these
are of the form 5_c;,—e;10¢;10;. A total of 8 models have at least one coupling which
exhibits this topological vanishing.

CICY No. | Model No. Yukawa Pattern Top. Van. | Sym. No.
les,—es 5—92,—85 5033,(35 n 1-4
leg,—e39—e3,—e5 5ez,es n 1-4
10e,5¢, e4Des.e5 n 1-4
1 10¢, Sel,e4 Sez,es n 1-4
10¢, 5e17e4 5e27e3 n 1-4
5 _ey,—e510e,10¢, n 1-4
6777 5_e3,—e510e510¢, n 1-4
1e2,7e3 57e2,7e5 5e3,e5 n 1-4
1e3,—e2 5—e3,—e5 5ez,e5 n 1-4
10e,5¢; e4Des.e5 n 1-4
2 10¢,4 5917&1 5,32795 n 1-4
10e;5¢; e4Dez.e3 n 1-4
5 _ey,—e510e,10¢, n 1-4
5_e3,—e510e;10¢, n 1-4
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CICY No. | Model No. Yukawa Pattern Top. Van. | Sym. No.
ley,—e3D—es,—e5Des.e5 n 14
1337_925—93,—65 592,65 n 1-4
1092 591,e4 5e3,e5 n 1-4
3 10¢55¢, c45ez.e5 n 14
1095 591794 5ez,e;.; n 1-4
5 _ey,—e510e,10¢, n 1-4
5—es,—e510e510¢; n 1-4
6777 ley—e59—ep,—es §e3,e5 n 1-4
Loy 03B —cs.—osDog.on o ™
1062 501764 5e3,e5 n 1-4
4 1063 591764 Sez,es n 1-4
1065 561,e4 562,63 n 1-4
5 _c3,—e510e,10¢; n 14
5_e3,—e510e510¢, n 1-4
13 Los,—eaB-ez,—esBeues n 1-4
5—e3,~e510e;10¢; n 1-4
14 Les,—es9—ez,—es 5e4,e5 n 1-4
5—62,—65 10e2 10e5 n 1-4

On CICY 6777, a total of 24 models have Yukawa couplings consistent with the gauge

symmetries of the models, with 192 Yukawa couplings being permitted in total. Of these,

64 are of the form 10¢;5¢; ¢ Bej,em» 80 are of the form Lo, —o;5 ;e

Se;.e, and 48 are of

the form 5,ei,,ej109i109j. None of these couplings exhibit the topological vanishings we

have studied here.

CICY No. | Model No. | Yukawa Pattern | Top. Van. | Sym. No.

1 10e5561 e35e4.e5 n 1-2

2 10e55¢; e35e4.e5 n 1-2

100, 5e, 0350408 n 1-2

10, 5e, 03 505,00 n 1-2

6 10e;5¢; e35es.04 n 1-2

6500 5_cs.—0s 1065 10, n 1-2
5 cs.—o5 106,10, n 1-2

10, 50, .03 D0s.08 n 1-2

100, 5¢, 03503 .05 n 12

7 10e;5¢, e35es.04 n 1-2

5_cs.—0a 100,10, n 12

5 _c4,—e5106,10¢, n 1-2
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CICY No. | Model No. Yukawa Pattern Top. Van. | Sym. No.
10645¢, 6354 05 n 12
1094561762 5e3,e5 n 1-2
8 10¢;5¢, c;5es.04 n 19
5_e5,-e4106510¢, n 12
5*94,*95 1094 1095 n 1-2
6890 1093 §e17e2 §e4,e5 n 1-2
10e,5¢; ,629¢5,¢e5 n 1-2
9 10e;5¢; e35e5.04 n 19
5—cg,—eq10e510¢, n 1-2
5_c4,—e510e,10¢, n 19
14 5 _c4,—e5106,10, n 12
16 le; —e3D—e1,—esDes,es n 1-2
17 le; —e3D—e1,—esDes,es n 1-2
23 5 _ey,—e4106,10¢, n 12
28 106,56, e5Des.04 n 19

On CICY 6777, a total of 22 models have Yukawa couplings consistent with the gauge
symmetries of the models, with 86 Yukawa couplings being permitted in total. Of these,
50 are of the form 10, E_')ej,ekgehem, 12 are of the form lei,,ejE'),ei,,ekgej,ek and 24 are of
the form 5*ei7*ej109i109j' None of these couplings exhibit the topological vanishings we
have studied here.

CICY No. | Model No. Yukawa Pattern Top. Van. | Sym. No.

1 1917—82§—61,—_65 5132&:5 y 2

1063 581,64582765 y 2

5 10, 591764563_765 n 2

7447 les,—e19—c3,—ea9er,ea n 2
3 10¢, 592795 593794 n 2

4 10, Ej’ez,es) §e37e4 n 2

10¢,56, ,659¢5 e5 n 2

On CICY 7447, a total of 4 models have Yukawa couplings consistent with the gauge
symmetries of the models, with 9 couplings being permitted in total. Of these, 5 are of
the form 10¢;5¢; e, Bey er, and 4 are of the form Le; ;5 e;, ey Dej e There are a total of 4
couplings that exhibit the topological vanishing we have been studying here, 3 of the form
Le;,—e;5—e;,—ei Dej e and 1 of the form 10g;5¢; e, 5ep,em- All of the topologically vanishing
couplings occur in 1 model.
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CICY No. | Model No. Yukawa Pattern Top. Van. | Sym. No.
1e27—e3 5—92,—e4 5e3,e4 n 1,3
1e3,—el 5—93,—e4 5el,e4 n 1-4
1 1es,fe25_’fes,f_e4 Seg.e4 n 1,3
10, 5¢,,049¢5,e5 n 1,3
10, 5917e4 593795 n 1-4
5 _ey,—e310e,10¢, vy 1,3
le,,—e39 e2,—e4 5e3,e4 n 1-4
les,—ey 5—eg,—e4 5el,e4 n 1-4
9 1e37—e2§—es,—_e4 5ez,e4 n 1-4
10¢, 5¢,,649¢3.e5 n 1-4
10, 591764 563765 n 1-4
5 _ey,—e310e,10¢,4 y 1-4
ley—e39—e2,—e4 5e3,e4 n 1-4
163,761 57e3,fe4 Sel,e4 n 1-4
3 163,792 ?*es,i&l Se2794 n 1-4
7487 ]—Oe1 ?ez,e4 §e3,e5 n 1-4
10¢,5¢; ,e49e3.e5 n 1-4
5 _ey,—e310e,10¢,4 v 1-4
le, —e39—ez,—e4 5e;3,<34 n 1-4
leg,—e19—e3,—e4 5el,e4 n 1-4
4 les,—eo Ej—eg,—_e4 562764 n 1-4
10¢,5¢,,049¢5,e5 n 1-4
10, 591794 593795 n 1-4
5 _ey,—e310e,10¢, y 1-4
1e2,7e3 57e2,7e4 5e3,e4 n 1-4
1e3,—e1 5—e3,—e4 5el,e4 n 1-4
5 163,—62 ?—93,—:34 5'32,‘34 n 1-4
10¢, 5¢,,649¢3.65 n 1-4
10e,5¢, e4Des.e5 n 1-4
5 _ey,—e310e,10¢,4 y 1-4
le, —e39—e2,—e4 5e3,e4 n 1-4
1e3,fel 5793,7e4 5el,e4 n 1-4
6 les,—en E'3763,7_94 5ez,e4 n 1-4
10, 5¢,,049¢3,e5 n 1-4
10, 5917e4 593795 n 1-4
5 _ey,—e310e,10¢, vy 1-4
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CICY No. | Model No. Yukawa Pattern Top. Van. | Sym. No.
le, —e39—e2,—e4 5e3,e4 n 1-4
1e3,—el 5—93,—e4 5el,e4 n 1-4
7 1637*62 E‘_)*63,*_94 592794 n 1-4
10, 5¢,,049¢5,e5 n 1-4
10, 59134 593795 n 1-4
5 _ey,—e310e,10¢, vy 1-4
le,,—e39 e2,—e4 5e3,e4 n 1-4
les,—ey 5—eg,—e4 5el,e4 n 1-4
) 1e37—e2§—es,—_e4 5ez,e4 n 1-4
10¢, 5¢,,649¢3.e5 n 1-4
10, 591764 563765 n 1-4
5 _ey,—e310e,10¢,4 y 1-4
ley—e39—e2,—e4 5e3,e4 n 1-4
163,761 57e3,fe4 Sel,e4 n 1-4
9 163,792 ?*es,i&l Se2794 n 1-4
10, 565,64 9¢5,e5 n 1-4
10¢, 591794 5e37e5 n 1-4
5 _ey,—e310e,10¢,4 v 1-4
1e2,—e3 5—e2,—e4 5e;3,<34 n 2,4
7487 1e3,—e1 5—93,—e4'§)e1,e4 n 1-4
10 1637—625_’—93,—_64 Seze4 n 2.4
10¢,5¢,,049¢5,e5 n 2.4
10, 591794 593795 n 1-4
5 _ey,—e310e,10¢, y 2.4
1e2,7e3 57e2,7e4 5e3,e4 n 1,3
11 les, ey ?—es,—fM 5ez,e4 n 1,3
10¢, 5e,,e59¢3,64 n 1-4
5 _ey,—e310e,10¢,4 v 1,3
le, —e39—ez,—e4 5e3,e4 n 1-4
12 leg,—es §—93,—_e4 5ez,e4 n 1-4
10, 5¢,,059¢5,e4 n 1-4
5 _ey,—e310e,10¢, y 1-4
le, —e39—e2,—e4 5e3,e4 n 1-4
13 leg,—es Ejfes,ff4 E’ez,e4 n 1-4
10¢, 5¢,,659¢5,e4 n 1-4
5 _ey,—e310e,10¢, vy 1-4
le,, €39 e2,—e4 5433,e4 n 1-4
14 1937—82§—93,—f45627e4 n 1-4
10¢, 5¢,,e59¢3.64 n 1-4
5 _ey,—e310e,10¢,4 y 1-4
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CICY No. | Model No. Yukawa Pattern Top. Van. | Sym. No.
ley —e39 cn,—e4 5e37e4 n 1-4
15 163,—9251—93,—_64562764 n 1-4
10¢, 5¢,,059¢5,e4 n 1-4
5 _ey,—e310e,10¢, y 1-4
ley —e39—e2,—e4 593794 n 1-4
16 163,—92 §—e3,—f4 592794 n 1-4
10¢, 5¢;,659¢5,e4 n 1-4
5 _ey,—e310e,10¢,4 v 1-4
le, —e39—ez,—e4 5e;3,<34 n 1-4
17 les,—es 53—937—_64 5ez,e4 n 1-4
10, 5¢,,059¢5,e4 n 1-4
5 _ey,—e310e,10¢,4 v 1-4
ley—e39—e2,—e4 5e3,e4 n 1-4
18 163,762 527637194 582,64 n 1-4
7ART 10¢, 5¢,,059¢5,e4 n 1-4
5 _ey,—e310e,10¢, v 1-4
le,,—e39 e2,—e4 5e3,e4 n 1-4
19 1937—82 ?—93,—f4 5'32764 n 1-4
10¢, 5¢,,e59¢3.64 n 1-4
5 _ey,—e310e,10¢,4 v 1-4
1e27—e3 5—92,—e4 5e3,e4 it 2,4
20 163,7925_’793,7_64 592@4 n 2,4
10¢, 5¢,,059¢5,e4 n 1-4
5 _ey,—e310e,10¢, y 2.4
21 1e1,762 ?*ehies 5'32795 n 1-4
10¢55¢, ,e49¢2,e5 Yy 1-4
22 10¢, 591782 593794 n 1-4
10¢, 5e17e2 5e4765 n 1-4
23 10e4'§e1,e2 §e3,e5 n 1-4
10c55¢; e29¢3.e4 n 1-4
5 _e3,—e410e;10¢, y 1-4
24 5 _e3,—e410e;10¢, v 1-4
26 10, -.E)ehe4 5e37e5 n 1-4
o7 10e5 ?el,ez §e3,e4 n 1-4
106556, ,039¢0,e4 n 1-4
28 ]—Oe5 ?el,ez §e3,e4 n 1-4
10c55¢, ,e39¢2,e4 Yy 1-4
29 10, '?el,e;g §e4,e5 n 1-4
10¢,5¢, e59¢3.e4 n 1,3
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30 10, Lf’ehes 5’94765 n 1-4
10e¢,5e, e59es,e4 n 1-4

31 10, '-f’el,es ‘-f’e4,e5 n 1-4
1092 591795 5e3,e4 n 1-4

39 10, ?el,es §e47e5 n 1-4
10c,5¢, e59€3,e4 n 1-4

33 10e2 ?el,e;; ‘?94785 n 1-4
1092 591795 5e3,e4 n 274

34 10, ?el,e;, §e4,e5 y 1.4
1062 591765 5e3,e4 n 1-4

35 106, 5¢, e35c4.e5 ¥ 11
36 10, '-f’el,eg, §e4,e5 n 1-4
10955 1,e3 5e2,e4 n 1-4

37 10, ?’el,es §e4,e5 n 1-4
7487 1095 §91793 ?ez,e4 n 1-4
38 10, ?el,e3 §e4,e5 n 1-4
10e¢;5e, e59e5,e4 n 1-4

39 10e2§e1,e3§e4 es n 1-4
1065 5e1763 5e2,e4 n 1-4

40 10, %’ez,eg, §e4,e5 n 1.4
10c,5¢; ,039¢4,e5 n 1-4

41 10¢, "?62763 §e4,e5 n 1-4
10c,5¢; ,039¢4,e5 n 1-4

49 10¢, ’?’ez,es ’—f’e4,e5 n 1-4
1092 5e1793 5e4,e5 n 1-4

43 10g, ?ez,e3§e4,e5 n 1.4
10¢, 56, e39¢4,e5 n 1-4

44 10¢, ?ez,e3:e47es n 1-4
1092 5e1763 5e4,e5 n 1-4

45 10¢, %’ez,e3 §e4,e5 n 1-4
10c,5¢;,039¢4,e5 n 1-4

46 10¢, "?92763 §e4,e5 n 1-4
10c,5¢; ,039¢4,e5 n 1-4

a7 10¢, ?’ez,es ’?’e4,e5 n 1-4
1092 5e1793 5e4,e5 n 1-4

48 10g, ?ez,e3§e4,e5 n 1-4
1092 5'31, 35e4,e5 n 1-4
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49 10¢, 5’92763 5’94765 n 1-4
10e, 56, e39¢4,e5 n 1-4

50 10¢, '-f’ez,es ‘-f’e4,e5 n 1-4
10c,5¢; ,039¢4,e5 n 1-4

51 10¢, ?ez,es §e47e5 n 1-4
10c,5¢, e35¢4.e5 n 1-4

59 10e1 ?ez,e;; ‘?94785 n 1-4
1092 5'31783 5e4,e5 n 1-4

53 10¢, §e2763 §e4,e5 n 1.4
1062 591763 5e4,e5 n 1-4

54 10¢, 5’92763 5)94765 n 1-4
10c,5¢; ,039¢4,e5 n 1-4

55 1091'-? 2,3 §e4,es n 1-4
10c,5¢; ,039¢4,e5 n 1-4

7487 56 10e, ?ez,es §e4,e5 n 1-4
10e,5¢, e39¢4,e5 n 1-4

57 10¢, ?ez,e;; ‘?94785 n 1-4
10¢, 56, e59¢4,e5 n 1-4

58 10, §e2763 §e4,e5 n 1-4
1062 591763 5e4,e5 n 1-4

59 10¢, 5’92763 594765 n 1-4
10c,5¢; ,039¢4,e5 n 1-4

60 10¢, ’-E’el,es 5e27e4 y 14
61 10¢,56, c55e4.e5 y 14
62 10e;5e; e35e3.04 n 14
63 10e;5e; e35e3.04 y 14
10, 5'el,es 5e3,e4 n 1,3

64 10¢, ?el,es ?ez e n 1-4
10955617625&3 ey n 173

10e; 501763 562 eq n 1-4

10e, 591765 593764 n 1-4

65 10¢, ’-f’el,eg, §e27e4 n 1-4
1095 591792 5e3,e4 n 1-4

1095 591793 LE’ez,e4 n 1-4

1092 591795 5e3,94 n 1-4

66 10¢, ?el,e5 ?ez,e4 n 1-4
10655¢, e29¢5,e4 n 1.4

10es 561763 Sez eq n 1-4
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10, 591765 563764 n 1-4

67 10¢, ?el,e5 §e27e4 n 1-4
10e55¢; 02 9¢5,e4 n 1-4

10¢, 591793 5e2,94 n 1-4

10, 591795 593794 n 2.4

68 ]—Oe3 ?el,e5 ?ez,eél n 1-4
106556, ,629¢5,e4 n 2.4

7487 10, ?el,eg §e2 e4 n 1-4
69 10¢,5¢; e39¢4.e5 n 1-4
70 10e,5¢; e55e4.e5 y 1-4
71 10, '«f’el,eg '«f’e47e5 it 1-4
10e55¢; ,039¢0,e4 n 1-4

79 10, ﬁf’el,es ‘E:ie4,e5 n 1-4
10e55¢; ,049¢0,e3 n 1,3

73 ]-Oez ?el,es §e4,e5 n 1-4
10e55¢; ,049¢0,e3 n 1-4

74 ]—Oe2 ?el,eg §e4,e5 n 1-4
10e55¢; ,649¢s.e5 n 1-4

75 10, ?el,e,g §e4 es n 1-4
10c55¢; e49es.e5 n 1-4

76 10, '«f’el,eg '«f’e47e5 it 1-4
10e55¢; ,049¢0,e3 n 1-4

77 10, ﬁf’el,es ‘E:ie4,e5 n 1-4
10e55¢; ,049¢0,e3 n 1-4

78 1092 ?el,es §e4,e5 n 1-4
10e55¢; ,049¢0,e3 n 1-4

79 10, ?el,eg §e4,e5 n 1-4
10e55¢; 049¢s.e5 n 1-4

S0 10, ?el,e,g §e4 es n 1-4
10c55¢; e49es.e5 n 1-4

31 10, '«f’ehes §e47e5 it 1-4
10e55¢; ,049¢0,e3 n 2.4

On CICY 7487, a total of 276 models have Yukawa couplings consistent with the gauge
symmetries of the models, with 1188 Yukawa couplings being permitted in total. Of these,
580 are of the form 10¢,;5e; e, ey .em, 444 are of the form le; —e;5 c; —e;Bej e, and 164 are
of the form 5_¢; —e;10¢;10¢;.
we have been studying in this paper, 32 of the form 10e,5e; e; e e and 80 of the form
5_e;,—e;10;10¢;. A total of 112 out of the 276 models have at least one topologically

vanishing coupling.
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A total of 112 couplings exhibit the topological vanishing
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