
Knowledge-Based Systems 180 (2019) 75–90

Contents lists available at ScienceDirect

Knowledge-Based Systems

journal homepage: www.elsevier.com/locate/knosys

Adaptive and large-scale service composition based on deep
reinforcement learning✩

Hongbing Wang a,∗, Mingzhu Gu a, Qi Yu b, Yong Tao a, Jiajie Li a, Huanhuan Fei a, Jia Yan a,
Wei Zhao a, Tianjing Hong a

a School of Computer Science and Engineering and Key Laboratory of Computer Network and Information Integration, Southeast
University, Nanjing, 211189, China
b College of Computing and Information Sciences, Rochester Institute of Tech, USA

a r t i c l e i n f o

Article history:
Received 4 August 2018
Received in revised form 1 April 2019
Accepted 11 May 2019
Available online 21 May 2019

Keywords:
Service composition
QoS
Deep reinforcement learning
Adaptability

a b s t r a c t

In a service-oriented system, simple services are combined to form value-added services to meet users’
complex requirements. As a result, service composition has become a common practice in service com-
puting. With the rapid development of web service technology, a massive number of web services with
the same functionality but different non-functional attributes (e.g., QoS) are emerging. The increasingly
complex user requirements and the large number of services lead to a significant challenge to select
the optimal services from numerous candidates to achieve an optimal composition. Meanwhile, web
services accessible via computer networks are inherently dynamic and the environment of service
composition is also complex and unstable. Thus, service composition solutions need to be adaptable
to the dynamic environment. To address these key challenges, we propose a new service composition
scheme based on Deep Reinforcement Learning (DRL) for adaptive and large-scale service composition.
The proposed approach is more suitable for the partially observable service environment, making it
work better for real-world settings. A recurrent neural network is adopted to improve reinforcement
learning, which can predict the objective function and enhance the ability to express and generalize.
In addition, we employ the heuristic behavior selection strategy, in which the state set is divided into
the hidden and fully observable state sets, to perform the targeted behavior selection strategy when
facing with different types of states. The experimental results justify the effectiveness and efficiency,
scalability, and adaptability of our methods by showing obvious advantages in composition results and
efficiency for service composition.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

In the field of service computing, web service is the most
promising technology to implement the Service-Oriented Archi-
tecture (SOA), which is independent, modular and interopera-
ble [1]. In recent years, along with the development of computer
networks especially in the era of cloud computing, quite a few
of enterprises publish their products in the form of services for
people to use on the Internet, resulting in a dramatic growth in
the number of web services. Web service composition, as a way to
provide value-added functionalities, does not need to completely
recreate a new service. It also provides attractive properties,
such as encapsulation, reusability/interoperability, autonomy and
loose coupling that effectively improve the efficiency of software
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development. Given the massive number of services with similar
functionalities, Quality of Service (QoS) has become the most
important factor to distinguish different services. QoS is an indi-
cator to evaluate the non-functional attributes and the ability of
a service to meet the users’ requirements. Thus, performing QoS-
aware service selection has emerged as a key step in the service
composition optimization [2,3].

In practical applications, on the basis of meeting the users’
requirements, the quality, adaptability and efficiency are im-
portant criteria to evaluate a service composition solution [4].
However, services usually operate in a network environment that
is inherently dynamic, which makes these criteria unpredictable.
For example, when the transmission time of the network is long
and sometimes the network cannot be connected, the response
time of the service may be long, even the service is unavail-
able. Meanwhile, the changes of web services also increase the
variability of the composition process [5,6]. Therefore, a good
web service composition solution needs to be able to cope with
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these dynamics. In addition, the composition functional work-
flow becomes more complex along with the complicated users’
requirements, leading to the increase of abstract service nodes in
the workflow. Moreover, the growth of the homogeneous services
(with the same functionality but different QoS) also expands the
candidate service space. More specifically, if m is the number of
abstract services in a composition workflow and n is the number
of candidate services of each abstract service, the number of
candidate composition solutions will be nm. In such a large-scale
service composition scenario [7,8], the ‘‘curse of dimensionality’’
issue may arise, creating another significant challenge to service
composition.

Facing with the challenge of adaptability in service composi-
tion, some existing researches focus on using the reinforcement
learning (RL) technology to accommodate the dynamic environ-
ment. RL discovers what to do by maximizing the accumulative
reward. However, the existing RL methods are falling short for
the large-scale scenarios [4]. Some further improvements [9–11],
such as multi-agent, hierarchical RL, and Semi Markov Decision
Process (SMDP), are insufficient to address the inherent issues of
RL. More specifically, the table-based RL algorithms only perform
well in small-scale problems because of lack for generalization
ability.

Another key limitation of existing solutions is that all states
are required to be fully observable conforming to the Markov
Decision Process (MDP). This may be opposite to the real-world,
which is typically partially observable. Therefore, finding an opti-
mal strategy for a non-Markovian environment is still an opening
issue.

In order to address the above challenges, we first propose a
deep reinforcement learning model, referred to as Adaptive Deep
Q-learning and RNN Composition Network (ADQRCN), for large-
scale dynamic service composition. Through deep learning (DL), a
function approximation method is used to simulate the Q-value
table to address the scalability issue. In addition, the change of
QoS of Web services exhibits some temporal regularities, which
will be captured by a Long Short Term Memory (LSTM) network,
a variant of a Recurrent Neural Network (RNN). We further em-
ploy Partially Observable Markov Decision Process (POMDP) to
accommodate a partially observable environment, leading to a
POMDP based Web Service Composition model (POMDP-WSC).
A One State One Network for Web Service Composition (OSON-
WSC) framework is developed based on ADQRCN, where OSON is
a heuristic strategy to select different behaviors according to the
observability of abstract service states. We summarize our major
contributions below:

• We introduce a POMDP-WSC model, by considering the
partially observable environment in real-world settings. The
model depicts the workflow of a composition and takes
into account QoS attributes, which allows it to evaluate a
composition solution in terms of quality, adaptability, and
effectiveness.
• Based on whether the state node is fully observable, we

develop the OSON strategy, which consists of two different
heuristics, to select actions, aiming to choose the behavior
strategy, and effectively improve the accuracy and efficiency
of service composition. An OSON-WSC framework integrat-
ing ADQRCN with OSON is proposed to achieve large-scale
and adaptive service composition in a partially observable
environment.
• We conduct a series of experiments to verify the validity of

our solutions from the following aspects: effectiveness and
efficiency, adaptability, and scalability.

Table 1
Notations.
Notation Description

QoS Quality of Service
RL Reinforcement Learning
MLP Multi-Layer Perceptron
DL Deep Learning
DRL Deep Reinforcement Learning
MDP Markov Decision Process
POMDP Partially Observable Markov Decision Process
WSC Web Services Composition
ANN Artificial Neural Network
RNN Recurrent Neural Network
CNN Convolutional Neural Network
LSTM Long Short Term Memory
ADQRCN Adaptive Deep Q-learning and RNN Composition Network
OSON-WSC One State One Network for Web Service Composition Model

The ADQRCN model was first proposed in a shorten form as a
conference paper [12], which is for service composition in a fully
observable environment. In this extended paper, the ADQRCN
is integrated with the OSON to address the large-scale dynamic
service composition problem in a partially observable environ-
ment, which is suitable for real-world settings. The remainder of
the paper is organized as follows. Section 2 gives an overview
of some related works. Section 3 covers the preliminary knowl-
edge, including reinforcement learning, deep learning, and deep
reinforcement learning, which forms the important theoretical
foundation. Section 4 presents a scenario of service composition,
which helps identify the main challenges in real-world service
composition. Section 5 details the proposed service composition
method using deep reinforcement learning. It also describes a
heuristic strategy to further improve the efficiency and adapt-
ability. Section 6 shows the experimental results along with a
detailed analysis to verify the validity of the proposed approach.
Section 7 presents the concluding remarks and lays out some
future directions. Table 1 summarizes the main notations used
in the paper.

2. Related work

In this section, some related works will be discussed to review
the existing solutions regarding large-scale and adaptive service
composition. We focus our discussion on planing solutions, evolu-
tionary algorithms, reinforcement learning (RL) for service com-
position, the application of deep reinforcement learning (DRL)
in artificial intelligence and service composition, and Partially
Observable Markov Decision Process (POMDP) in related fields.

The challenge of adaptability has attracted widespread atten-
tion nowadays and many solutions have been developed, includ-
ing integer programming, graph planning, artificial intelligence,
and so on. In [13], a service composition model based on AI
planning was developed. A preparing approach was used to tackle
the changes in process of service composition. The solution effec-
tively avoids restructuring services, resulting in the improvement
of efficiency. However, the replacement of individual services
lacks an overall consideration of the entire composition result.
Ardagna et al. [14] proposed to build a multi-channel adaptive in-
formation model to implement service selection and composition,
which can flexibly map the abstract services to concrete services.
It realizes redundancy mechanisms through multi-channel inte-
grated with integer programming, achieving the optimal com-
position result. In some other works, the problem of service
composition is transformed to a graph planning problem [15]. In
order to better reflect the relationship between services, greedy
search is applied to repair the internal parts, which targets to
replace the failure services. Beauche et al. [16] adopted hierarchi-
cal planning to establish an adaptive service composition model.
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However, the change of services and the environment should
respond to the update of the model, which is not suitable for a
large-scale scenario.

Some other existing works use evolutionary algorithms for
service composition. Silva et al. used genetic programming (GP)
for web service selection and composition [17]. Three different
GP methods were proposed to generate the correct solutions, but
these methods are not effective in a large-scale environment.
An ant colony optimization algorithm was developed for QoS-
aware service selection in [18]. This method supported global QoS
optimization and dynamic composition. In [19], a Discrete Gbest-
guided Artificial Bee Colony (DGABC) algorithm was proposed to
simulate the search for the optimal service composition solution
through the exploration of bees for food. However, these methods
tend to fall into local optimum and suffer from slow convergence.

Besides the above technologies, some efforts have been de-
voted to incorporate reinforcement learning into service compo-
sition. Reinforcement learning (RL) employs the trial and error
exploration to discover the optimal strategy [20]. Wang et al. [21]
exploited Markov Decision Process (MDP) integrated with rein-
forcement learning to find the optimal composition result. The
MDP model achieved multiple workflows without preliminary
knowledge of service quality and environment. When facing
with the changeable environment, the learning process can per-
ceive and respond to the changes. Some modifications have
been applied to RL to address the efficiency issue. In [22], a
multi-objective reinforcement learning method was proposed
to achieve the optimal service composition with multiple QoS
objectives. The method can address the service composition in the
absence of prior knowledge of QoS data and the undefined user
preferences. However, this method is not suitable for a large-scale
environment. In [9], an adaptive service composition method was
developed based on hierarchical reinforcement learning. Another
adaptive service composition approach employed a Multi-agent
SARSA method that integrates on-policy reinforcement learning
and game theory [4]. Multi-agent reinforcement learning has also
been used for service composition, which leverages distributed
Q-learning and experience sharing to improve the learning effi-
ciency [23,24]. These methods adopted the MDP model, and the
Nash equilibrium between the agents was not considered, which
makes them easily trap into the local optimum. In [25], a new
model was built based on Team Markov Games. In order to solve
the problems of agent coordination and equilibrium selection, the
coordination equilibrium and fictitious play process was intro-
duced to ensure agents’ convergence with a unique equilibrium.
However, the communication and coordination between agents
still consume significant computation resources. It is also easily
trapped into the local optimum.

In order to address the high-dimensional feature space which
triggers the low performance of reinforcement learning, deep
learning can be used to extract the important characteristics
from raw data. Riedmiller et al. [26] employed a multi-layer
perceptron to approximate the Q-value to achieve the Neural
Fitted Q Iteration (NFQ) algorithm. The work in [27] presented
a Deep Auto-Encoder (DAE) model by integrating deep learn-
ing with reinforcement learning to solve the problem of visual
perception. However, it is limited to a small dimensional space.
In recent years, Google’s artificial intelligence team, DeepMind,
employed Deep Reinforcement Learning (DRL), to achieve sub-
stantive breakthrough in large dimensions of raw input data
and decision-making tasks. Mnih et al. [27] applied DRL to the
Atari 2600 game. It successfully learnt control strategy from the
high dimension sensation input and achieved expert level per-
formance. In the work [28], a method was developed to address
difficulties of a high dimensional search space, position localiza-
tion, and action selection. Besides, DRL is also used for service

Fig. 1. The framework of reinforcement learning.

composition. In [29], a Convolutional Neural Network (CNN) was
combined with RL to build a deep Q network for large-scale
service composition. A double Q-learning with prioritized replay
scheme was adopted to improve efficiency. While the experi-
ments demonstrated the effectiveness of this method, it is only
suitable for the fully observable MDP environment. In contrast,
our method considers the time correlation of QoS value and inte-
grates RNN with RL for large-scale dynamic service composition.
In addition, we propose to use the Partially Observable Markov
Decision Process to simulate a partially observable environment,
which is typical for many real-world applications.

Partially Observable Markov Decision Process (POMDP) has
been developed as an extension of MDP to solve partially ob-
servable problems. In [30], a POMDP framework was introduced
where the state of road segment was divided into two types of
states: non-collision and collision to formalize the active colli-
sion detection problem. Wray et al. [31] proposed to map the
PAL problem to a POMDP, which took the observed history in-
formation into account. This method considered all aspects of
PAL within a unified mathematical framework. Thus, in order to
better simulate the process of service composition, some works
also adopted POMDP to solve service composition problems. Yu
et al. [32] modeled the uncertainty and instability of web ser-
vice behavior into partially observable variables through POMDP.
In [33], a self-maintenance method of service system based on
POMDP model was introduced to solve the problem of changes
in the network environment and incomplete information of third
party services. It can be seen that the POMDP has led to some
promising results in modeling service compositions in real-world
settings. Therefore, this paper adopts a POMDP in combination
with reinforcement learning and deep learning and develops
novel strategies to obtain optimal service composition results that
are suitable for the large-scale and dynamic service composition
scenarios.

3. Preliminaries

Before presenting the proposed approach, we first introduce
some preliminaries that lay the foundation for our later discus-
sions. These include Reinforcement Learning, Deep Learning, and
Deep Reinforcement Learning.

3.1. Reinforcement learning

As one of the most important branches in machine learn-
ing, Reinforcement Learning (RL) maps environmental states to
actions and aims to achieve the most cumulative reward value
of actions from the environment. RL leverages environmental
signals to evaluate actions, rather than through test cases to train
an agent to take the correct action. This is different from both
supervised and unsupervised learning. In the process of RL, an
agent knows little about the external environment. So the main
task is to collect significant information to improve the learning.
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A standard RL framework is shown in Fig. 1. The agent in-
teracts with the external environment through actions, and the
external environment offers the feedback information to inform
the agent whether it should continue to perform this action on
the current state in the future. In fact, the agent has a state
sensor, which can map an environmental state s to its internal
perception. The agent will take action at according to the cur-
rent strategy of action selection, and get reward rt . Then, it will
update the strategy according to the feedback information from
the environment. Finally, the environment will transit to the next
state st+1 under the action at . In general, the basic principle of RL
is to obtain different signals from the environment. If an agent
obtains the reward signal, the tendency of this action will be
strengthened and weakened otherwise. Furthermore, the agent
should not only consider the short-term reward value, but also
take the long-term impact of the agent’s behavior into account.
Thus, the infinite discount model is adopted in RL, given by:

Vπ (st ) =
∞∑
i=0

γ irt+i (1)

where γ is the discount factor, 0 < γ ≤ 1, and rt is the reward
from state st to the next state st+1. Obviously, if the objective
function has been determined, the optimal behavior strategy can
be presented as:

π∗ = argmax
π

Vπ (s), ∀s ∈ S (2)

The basic theory of RL is the Markov Decision Process (MDP),
which assumes that the environment conforms to the MDP. In
an MDP, the current state and the choice of action will lead to
different transition probabilities and rewards. If the state tran-
sition probability function P and reward function R are given,
the problem can be solved by dynamic programming. However,
in a normal situation, P-function and R-function are unknown
to an agent, so a common solution is to dynamically adjust the
strategy and estimate value of the next state according to the
actual situation. The value function can be defined as Eq. (3),
which adopts the Bellman iterative strategy:

V (s)← (1− α)V (s)+ α(r(s, a, s′)+ γV (s′)) (3)

Q-learning [34] is a widely used method of RL. By approxi-
mating the value function of a state–action pair, Q-learning can
reduce the difference between neighboring condition estimated
Q-value in each step of learning. The iteration of Q-function is
defined as

Q (s, a)← (1− α)Q (s, a)+ α

[
r + γmax

a′
Q

(
s′, a′

)]
(4)

where α is the learning rate, γ is the discount factor, and Q (s, a) is
the state–action value under state s executing action a, maxa′Q (s′,
a′) presents the optimal reward of state–action value in state s′.

According to the above concept of Q-function, we can achieve
Q-learning using table checking to update the value. The be-
havior strategy depends on whether the Q-value table becomes
sophisticated. It also introduces two issues. The first is the ‘‘curse
of dimensionality’’, which will happen with the increase of the
size of the state space. The second problem is that in a partially
observable environment, the position of searching will be more
arbitrary. In order to improve the efficiency of Q-learning and
accurate prediction of an agent in case of incomplete prior knowl-
edge, this paper proposes to exploit Deep Learning-Recurrent
Neural Network (RNN), which will be introduced below.

Fig. 2. The principle of RNN.

3.2. Deep learning-RNN

Deep Learning (DL) originates from Artificial Neural Networks
(ANN). DL model usually consists of multiple nonlinear prediction
units. The output of lower layers serves as the input to the next
higher layer. The basic model of deep learning is categorized
into Multi-Layer Perceptron (MLP), Convolutional Neural Network
(CNN), and Recurrent Neural Network (RNN) [35]. We adopt RNN
due to its capability to handle temporal dynamics to address the
problem of service composition.

RNN is one type of deep learning network, which consists of
one or more feedback loops to strengthen the ability of neural
network for time modeling. RNN is suitable for the serialized data
and can simulate these data more accurately. The structure of
RNN records the activation value of each time, which enhances
the time correlation of network through adding the hidden layers.
RNN has successfully been applied to a wide range of domains,
including linguistic modeling [36], machine translation [37], and
pattern recognition [38].

In service composition, each service may change with time.
But the changed service may still be related with the original
one given a period of time instead of being completely irrelevant.
For example, if the accessibility and success ratio of a service
are quite high in previous performance, and the response time
is also fast, though network condition may cause the fluctuation
of service QoS attributes, the trend should still be quite regular
and various attributes are following a similar trend. Thus, the
former information should be effectively leveraged instead of
being completely discarded. We propose to employ RNN to solve
the time correlation issue. An RNN contains a circulatory network,
allowing information persistence. The Fig. 2 depicts the principle
of RNN. By two time-step expansion over the entire network
structure, the network can be presented with a loop-free form.
From the figure, we can conclude that the depth of the network
is reflected not only by the input/output, but also by cross-time
steps, each of which can also be considered as a layer.

While being developed in 1996 [39], the wide usage of RNN
has been hindered by the difficulty of training serialized param-
eters because of massive parameters and ‘‘vanishing gradien’’.
Hochreiter et al. [40] improved the RNN and proposed the Long
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Fig. 3. A simple LSTM block.

Short Term Memory (LSTM) network, using the gate and the
cell unit to store the dependency information of a longer time.
Recently, under the improvement and promotion of Alex Graves,
the LSTM network has achieved a huge success and been widely
used [41]. Therefore, we incorporate the LSTM network to store
historical information and composition results with the relevance
in time, in order to solve the large-scale service composition
problem.

The core improvement of LSTM is the extension of neural
network with memory. Three other layers are added as hidden
memory units compared with the original RNN, including the
input gate, output gate, and forget gate, respectively. These three
gates apply the ‘‘inertia’’ mechanism of information gate, which
controls exactly how much original information is preserved and
how much new information is added. The following introduction
of the LSTM structure forms the core of its information gate,
shown in Fig. 3.

The LSTM can be divided into three parts. The forget gate de-
cides what information is discarded from the cell, and the output
value (between 0 and 1) delivers to cell state Ct−1, where 1 rep-
resents full reservation and 0 indicates complete abandonment.
The calculation is given by

ft = σ (Whf · ht−1 +Wxf · xt + bf ) (5)

where W represents the weights, especially Whf represents the
weights between the hidden layer h and the forget gate f , Wxf
represents the weights between the input x and the forget gate
f , b represents the bias, bf represents the bias of the forget gate
f , and σ is the sigmoid function.

To determine what kind of information can be put into the cell
consists of two parts: one part from the input gate that decides
to update which parts and another part is the tanh layer to create
a new candidate vector, given by

it = σ (Whi · ht−1 +Wxi · xt + bi) (6)

gt = tanh(Whg · ht−1 +Wxg · xt + bg ) (7)

Then, it needs to update the old information in the output of
the cell. The output gate discards the information and mixes the
new information in the former step, given by

Ct = ft ∗ Ct−1 + it ∗ gt (8)

Finally, we need to determine the output calculated by

ot = σ (Who · ht−1 +Wxo · xt + bo) (9)

ht = ot ∗ tanh(Ct ) (10)

3.3. Deep reinforcement learning

Deep learning (DL) and the reinforcement learning (RL) are
hot research topics in the field of machine learning [42]. The

Fig. 4. The principle of deep reinforcement learning.

fundamental rationale of DL is to form high-level expression to
discover the distributional characteristic expression [43] through
the multi-layered network architecture and the nonlinear trans-
formation. The purpose of RL is to maximize the accumulative
reward value, which is gained from the environment by an agent,
and finally achieve an optimal strategy [44]. Google DeepMind
Team combined the perception of Deep Learning and decision-
making ability of Reinforcement Learning to form the Deep Rein-
forcement Learning (DRL). The concept of DRL becomes the new
research hot spot of artificial intelligence and is widely applied
to diverse domains, including game [27,45], robot control [46,47],
vision research [48,49], and beyond. The learning process of DRL
is shown in Fig. 4, which is divided into three steps.

1. An agent obtains observation through interacting with the
environment (via RL) and delivers the high dimension re-
sults to a neural network, in order to learn the abstract
representations;

2. The agent evaluates the action based on the reward value,
and maps the current state to a corresponding action by the
behavior strategy;

3. The environment responds to the action and gets the next
observation.

Finally, with the learning of above processes, the optimal strategy
can be achieved.

For RL to achieve the optimal result and convergence, it re-
quires two important premises: (1) A lookup table is available
to store Q values; (2) The environment should conform to the
Markov property. The first premise limits RL to be only suitable
for small-scale problems, because of the insufficient expression
and generalization ability. In addition, the latter premise implies
that the agent clearly knows all of environmental information
and the next state can only be decided by the current state
and the action. However, the real settings are more compli-
cated and the environment is usually partially observable. Thus,
to address these disadvantages, we firstly propose to adopt an
RNN to remember the continuous state information in histori-
cal timeline, which leads to an Adaptive Deep Q-learning and
RNN Composition Network (ADQRCN), and then a One State One
Network for Web Service Composition (OSON-WSC) framework,
which integrates ADQRCN with One State One Network (OSON),
is constructed for large-scale and dynamic service composition in
partially observable environment.

4. Problem formulation

We provide the formal problem definition in this section. Be-
fore that, we describe a scenario to illustrate some key challenges
in service composition.
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Table 2
The weather forecast services API.
Service provider Service invoker

China weather http://m.weather.com.cn/mweather/101190101.shtml
Google http://www.google.com/ig/api?weather=Nanjing
YAHOO http://weather.yahooapis.com/forecastress
Tecent http://weather.news.qq.com/qresult.html
Sogou http://123.sogou.com/get123.php?block=wt?ver=v32&city=

CN110100
360 http://cdn.weather.hao.360.cn/api_weather_info.php?app=

hao360&jsonp=smartloaddata101190101&code=101190101
MSN http://weather.msn.com/data.aspx?wealocations=wc
Sina http://weather.news.sina.com.cn/
... ...

4.1. The vacation planning scenario

Consider a planner who wants to arrange his trip schedule
after departure and return date/time has been determined. The
complete flow chart is shown in Fig. 5, in which we can conclude
the difference of user preference from the choice of hotel and
transportation. For example, some travelers prefer the comfort
of traveling while others may have more strict requirements for
travel expenses. Each abstract service may correspond to a large
number of candidate services and Table 2 presents some web
services for inquiring the weather forecast, which are only a
small portion in hundreds of the Internet services. The vacation
planning scenario is not particularly complex. However, if we
assume that each abstract service corresponds to 300 candidate
services, the five abstract services will form 3005 different service
composition solutions, which already forms a huge search space.

From the dynamic perspective of the environment, the net-
work situation has a close relationship with web services, which
also determines user’s satisfaction to services invoked. For exam-
ple, if the network condition is poor, the service response time
will be lengthened, and will inevitably increase the user waiting
time. In the vacation planning scenario, web services themselves
and the network environment are all changeable, so the whole
scenario is dynamic. In addition to the large scale and dynamics,
the environment is also only partially observable. From Fig. 5,
the type of transportations to tourist attractions after choosing
the hotel is the same as that when the trip is started. The agent
facing with the same choices is not able to distinguish different
states and make the correct decision. This scenario is typical
for the partially observable issue, in which an agent gets the
same observation under different environment conditions, but
may require different actions.

4.2. Web service composition model

The vacation planning scenario is represented using a flow
chart for illustration purpose. In order to solve the problem using
a computing system, the flow chart needs to be transformed into
a functional model that can be understood by a machine. For this
purpose, we develop an abstract model of Web service.

Definition 1 (Web Service). A Web Service is a 6-tuple WS =
⟨ID, In,Out, Pr, E,QoS⟩, where

• ID presents the unique identifier of a WS.
• In is the input of a WS.
• Out is the output of a WS.
• Pr presents the preconditions for the normal operation of a

WS.
• E is the environmental impact of WS execution.
• QoS is the set of attributes of a WS. QoS is an n-tuple
⟨attr1, attr2, . . . , attrn⟩, where attri presents an attribute of
WS (such as throughput, reliability, availability, and re-
sponse time).

Fig. 5. The flow chart of vacation planning.

For example, a WS of hotel reservation is described as follows.

• ID: the hotel reservation service id.
• In: location, budget, environment.
• Out: the customer order.
• Pr: sufficient network resources.
• E: the generation of a reservation order.
• QoS: service charge: $1, response time: 200 ms, availability:

99%, and price: $120.

Web service composition is a process that integrates several ser-
vices to a value-added composite service. Based on the descrip-
tion of web services and the uncertainties of the environment, the
POMDP is used to describe the WS composition process. POMDP
is an extension of MDP, where the agent uses an effective strategy
to determine the action sequence when the current environment
state is partially observable. For example, the packaging process
consists of four steps: open the box, put the gift inside, close the
box, and seal the box. Assuming the current box is in the closed
state, the agent does not know whether the gift is in the box or
not. As a result, it is impossible to decide whether to seal or open
the box. Such a problem (referred to as a hidden state problem)
can be solved by historical experience, such as whether the gift

http://m.weather.com.cn/mweather/101190101.shtml
http://www.google.com/ig/api?weather=Nanjing
http://weather.yahooapis.com/forecastress
http://weather.news.qq.com/qresult.html
http://123.sogou.com/get123.php?block=wt?ver=v32&city=CN110100
http://123.sogou.com/get123.php?block=wt?ver=v32&city=CN110100
http://cdn.weather.hao.360.cn/api_weather_info.php?app=hao360&jsonp=smartloaddata101190101&code=101190101
http://cdn.weather.hao.360.cn/api_weather_info.php?app=hao360&jsonp=smartloaddata101190101&code=101190101
http://weather.msn.com/data.aspx?wealocations=wc
http://weather.news.sina.com.cn/
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Fig. 6. The POMDP-WSC model for vacation planning.

has been placed in the box to determine the current state. We
adopt POMDP to model the service composition problem in the
partially observable environment. The service composition model
based on the POMDP model is defined as follows.

Definition 2 (POMDP-based Web Service Composition (POMDP-
WSC)). A POMDP-WSC is an 8-tuple POMDP - WSC = ⟨S, A(s),O,

P, R, Ω, T , B⟩, where

• S is a finite set of world states including the initial state and
final state.
• A(s) is a set of actions under the state s ∈ S, which also stand

for a set of web services under state s.
• O is a set which can be observed.
• P is the function of state transition. P(s′ | s, a) represents the

probability from state s transferring to next state s′ through
invoking service a ∈ A(s).
• R is the reward function. When a service a ∈ A(s) is invoked

along with the current state s transferring to the next state
s′, the environment will feed back immediate reward r =
R(s′ | s, a) simultaneously.
• Ω is the observable information set of agent .
• T is the observation function of agent. It can be used to

calculate the possible observation value on the next state s′
after taking action a, which can be expressed by Pr(o | s′, a).
• B is the state space of agent. b(s) can be used to describe the

probability in state s.

According to POMDP-WSC, we model vacation planning using
a state transition graph as shown in Fig. 6. It consists of two kinds
of nodes. The hollow node represents a state node, such as s0,
which indicates the start of the traveling schedule. A node with
double circles is terminal state, such as s5. Another type which is
the solid node is an action node, which represents the concrete
service node. In each state, numerous services can be invoked, but
the figure only depicts one node. The immediate reward r from
the environment can be calculated by the services’ aggregated
QoS values [21].

5. Service composition based on deep reinforcement learning

This section focuses on the optimization method for adaptive
service composition based on DRL.

5.1. Deep reinforcement learning based on RNN

Because RL relies on a Q-value table, each execution will
update the corresponding table, which inevitably influences the
efficiency in large-scale compositions. Thus, we adopt a neural
network to estimate the Q-value, which serves as an online in-
spiration function to promote the learning of RL. To capture the
temporal correlation of QoS attributes, an RNN is adopted. We
further propose an Adaptive Deep Q-learning and RNN Compo-
sition Network (ADQRCN). Fig. 7 shows the basic structure, in
which the input layer consists of state and action information,

Fig. 7. The structure of ADQRCN.

which is then passed through a hidden layer composed of 30 Long
Short-Term Memory (LSTM) units and a full connection layer.
Finally, the Q-value is generated from the output layer.

We adopt existing methods [27,45] for the training of
ADQRCN. Compared with traditional Q-learning algorithm, we
take advantage of the target network to relieve unstable phe-
nomenon of a linear network and replay memory units to store
samples. Moreover, some other techniques also involved, such
as random sampling and dropout approaches, to train the neural
network parameters from preventing over-fitting and high com-
putational cost. ADQRCN simulates the Q function given by (11),
where a mapping from a state–action pair to the value function
is built by a function approximator f .

f (s, a; θ ) ≈ Q ∗(s, a) (11)

It uses the Bellman Equation (12) to get the optimal action–value
function, which is consistent that if the Q (s′, a′) in the state s′
was known for all the possible actions a′, the optimal strategy is
to select the action a′ to maximize the r + γmaxa′Q (s′, a′).

Q (s, a) = r + γmax
a′

Q (s′, a′) (12)

Then, the loss function can be calculated by Eq. (13) and then
updates the network parameters by gradient descent by following
Eq. (14).

L = E[(r + γmax
a′

Q (s′, a′)− Q (s, a))2] (13)

∂L(θ )
∂θ
= E[(r + γmax

a′
Q (s′, a′)− Q (s, a))

∂Q (s, a; θ )
∂θ

] (14)

Algorithm 1 describes the detailed process of training ADQRCN. In
particular, the agent selects actions following an ε−greedy policy,
and the length of stored histories is fixed as N . In experience
replay, the agent’s experiences are stored and used at each time-
step: gt = (st , at , rt , st+1) and then D = {g1, g2, . . . , gt}. In the
inner loop, the random samples of experiences are applied to
update the Q-learning value from D. For improving the stability
of the algorithm further, a separate network Q̂ is used for getting
the objective yj in the Q-learning value update by cloning the Q
in every C steps.

To analyze the complexity of the algorithm, assume that the
number of weights in the LSTM is W , the size of minibatch is
m. Hence, the time complexity of one time step is O(W · m).
By further assuming that the number of states is S, the number
of the episodes is K , the overall complexity of the algorithm is
O(K · S ·W ·m). By using the function approximation to simulate
the Q-value, the DRL method can reduce the time cost to a certain
extent, thus improve the efficiency.

5.2. Heuristic strategies

For the POMDP-WSC model, there may exist uncertainties in
the environment, where the agent cannot directly distinguish the
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Algorithm 1: ADQRCN Algorithm
Initialize replay memory D and its capacity N
Initialize action–value function Q with weights θ

Initialize target action–value function Q̂ with random weights
θ− = θ

for each episode do
for each t do

With probability ε select a random action at
Otherwise select at = argmaxaQ (st , a; θ )
Execute action at , observe reward rt and next state st+1
st = st+1
Store transition (st , at , rt , st+1) in D
Sample random minibatch of transitions

(
sj, aj, rj, sj+1

)
from D

if episode terminates at step j+ 1 then
set yj = rj

else
yj = rj + γmaxa′ Q̂ (sj+1, a′; θ−)

end if
Perform a gradient descent step on (yj − Q (st , at ; θ ))2 with
respect to network parameters θ according the equation (14)
Every C steps reset Q̂ = Q

end for
end for

current state. Therefore, the belief state space plays a key role.
However, using belief states to generate the accurate solution
suffers from the scalability issue, making it not suitable for large-
scale service composition. The main difficulty lies in updating
all belief states. Furthermore, due to the continuity of the state
space, it is difficult to compute the value function accurately.
In fact, it may not be necessary to solve the problem based on
the overall belief state space in the actual POMDP problem. We
classify the states into two types according to the observability to
take different behavior strategies.

5.2.1. State space classification
The states can be categorized into hidden and fully observable

states. For example, consider three states and two actions. The
value function of state–action pairs is given as

V (s0, a0) = 5, V (s0, a1) = 4
V (s1, a0) = 5, V (s1, a1) = 4
V (s2, a0) = 0, V (s2, a1) = 10

(15)

According to the value function, we choose the strategy respec-
tively:

π∗(s0) = a0
π∗(s1) = a0
π∗(s2) = a1

Assume that the belief values of three states are b = [0.3, 0.3,
0.4], then action a0 will be selected because of the majority
probability of 60%. The evaluation demonstrates that the choice
of action a0 is superior to action a1 in states of s0 and s1, but
with little gap. However, taking action a0 may suffer from great
loss. So taking into account the partially observable environment,
we calculate the expectation of strategy with the belief state. The
expectation of action a0 is 0.3∗5+0.3∗5+0.4∗0 = 3, and action
a1 is 0.3∗4+0.3∗4+0.4∗10 = 6.4, from which we can conclude
the expectation of action a1 is obviously higher than action a0.
The example illustrates that the two type of states should adopt
different strategies.

In a partially observable environment, such a situation may
occur. Even though one action belongs to the optimal strategy,
the agent may obtain the negative feedback information, which
may cause the reduction of the action execution. This situation
contradict our expectation. We give the definition of hidden and
fully observable state as follows:

Definition 3 (Hidden State). There are at least two optimal ac-
tions in one state, but the execution of these actions cannot
obtain the stable feedback value. Such state is called hidden state,
represented by H(s).

Definition 4 (Fully Observable State). If the execution of an action
in one state has a stable feedback value, the state is fully observ-
able, which is represented by O(s). If one state exists two optimal
actions, and the feedback value is always stable and positive, such
a state is also a fully observable state.

In view of state classification, Ohta et al. proposed an entropy
solution [50]. The method classified the state through calculating
the entropy of each state. But the initial threshold of a state is
difficult to be set reasonably. Therefore, the paper presents a clas-
sification solution based on the critical stable value of feedback to
address how to distinguish hidden states from fully observable
states.

First, when the action a is executed on state s, the imme-
diate reward r will be returned as feedback and state will be
transferred to next state s′. The feedback deviation is given by

δ(s, a) = r + γmax
a′

Q (s′, a′)− Q (s, a) (16)

If the feedback is positive, the action should be strengthened
corresponding to update δ+. Conversely, if the δ is negative, the
value of δ− will be updated.⎧⎨⎩ δ+(s, a) = δ+(s, a)+ δ(s, a) if δ(s, a) ≥ 0

δ−(s, a) = δ−(s, a)+ |δ(s, a)| if δ(s, a) < 0
(17)

According to the above feedback deviation, we can calculate the
stability of feedback by Eq. (18).

d(s, a) =

⎧⎪⎨⎪⎩
|δ+(s, a)− δ−(s, a)|
δ+(s, a)+ δ−(s, a)

if n(s, a) > N

1 otherwise
(18)

where n(s, a) is the times that action a has been executed on state
s. The stability of state is updated when the execution time is
greater than N . It is necessary to experience sufficient exploration
before the strategy of agent tends to be stable. Then, we calculate
the observable degree D(s) to differentiate the states according to
Eq. (19).

D(s) = min
a

(d(s, a)) (19)

If the state is a hidden state, at least one action feedback will
fluctuate significantly and the observable degree will be low. In
contrast, the observable degree of fully observable state should
be high. So we define a simple filter to distinguish the two types
of states as:

b(s) =
{
1 if D(s) > ξ

0 otherwise (20)

where ξ is a constant threshold ranged in (0,1), which represents
the observable degree’s threshold of a state. If a state is a hidden
state, b(s) is set to zero, and for a fully observable state, b(s)
is 1. A low observable degree threshold value may increase the
classification error rate of hidden states. If some important hidden
states cannot be detected, the learning task will consume more
time. But if the ξ is set to 1, all states will be regarded as hidden
states, which does not satisfy the real environment setting, which
may affect the accuracy of the algorithm. If the number of hidden
states is large, a higher ξ is needed to find as many hidden
states as possible. Otherwise, a relatively small threshold may
be required to reduce the error caused by noise data. Due to
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the diversity of the real applications, ξ should be set according
to the composition scenario and its environment. In the current
paper, we set the value of ξ as 0.6 according to our experiment
environment and service data.

5.2.2. The strategy for hidden states
The standard Q-learning algorithm follows the Markov Deci-

sion Process (MDP). Given a partially observable environment,
an agent possibly gets the same observation under different en-
vironments. However, these states may need to execute differ-
ent actions. Thus, choosing the appropriate strategy poses a key
challenge in the partially observable environment.

It is conventional to solve the POMDP problem by using his-
torical actions to decide the current action. The introduction of
belief states converts the problem to an MDP problem based
on the belief state space [51,52]. Belief state is an indication to
express probability distribution of a state by making statistics
about the historical complete information. However, the belief
state method only applies to small-scale problems. When facing
with a large-scale scenario, the main difficulty lies in the update
of whole belief states with exponential complexity (|A|O||). In
addition, the belief state space is continuous, leading to the diffi-
culty of accurately computing the value function. To address these
issues, we propose to use an RNN to simulate the value function.
The solution attempts to establish the model by simulating the
strategy space from historical experience.

The Dk
t indicates the former k steps of observable information

until time t , namely the pairs of observable states and actions in
POMDP, which can be represented as

Dk
t = (ot , (ot−1, at−1), (ot−2, at−2), . . . , (ot−k, at−k)) (21)

Then, the strategy to hidden states is given by

π : B× Dk
↦→ Pr(A) (22)

where B is set of belief states and Pr(A) is the probability distri-
bution of actions.

In real-wold POMDP problems, agents lack experience to make
decisions at the former k steps. The classic QMDP algorithm, shown
as Eq. (23), is adopted to determine the strategy.

π∗ = (b, dk) =

⎧⎨⎩arg
a′

max
∑

b(s)Q (s, a) t ≤ k

maxPr(A)
a′

t > k
(23)

Along with the exploration of an agent and the accumula-
tion of historical data, it can be realized to map belief states
and history information at former k steps to one action. We
integrate the LSTM network, where the input layer is the in-
formation of the belief states and history data (information of
state–action pairs), indicated as a vector of N dimension and
xt
|N| = (b(s1), b(s2)...b(s|S|), dkt ). The probability distribution of an
action is taken as the output layer y = (pr(a1), pr(a2)...pr(a|A|)),
in which the largest probability action is executed.

5.2.3. The strategy for fully observable states
Different from hidden states, the feedback of executing actions

is relatively stable for fully observable states, so that actions
with positive feedback are strengthened. Hence, we can choose
an optimal action through searching the value space directly.
Undoubtedly, the table of Q-value stores the most important
information, which may also suffer from the problem ‘‘curse of
dimensionality’’. For example, there are 1000 fully observable
states, each state corresponding to 100 candidate services. Then
1001000 pairs of state–action values need to be stored in the
table. The scalability issue requires an approximation method to
simulate the Q-values.

Fig. 8. The strategy model of OSON.

Fig. 9. The framework of OSON-WSC.

In addition, the change trend of each service is usually regular
instead of completely stochastic. From the former performance
of a service, the accessibility and success rate are relatively high
and response time is short. The attributes of service may undergo
changes because of the network condition. But the tendency is
actually regular and corresponding attributes will follow the same
trend. Hence, the change of Q-value is time correlated. Thus, the
history information is significant, which should not be discarded.
We propose to use an RNN as an approximation function in
consideration of the temporal correlation, compensating for the
defects of RL in large-scale scenarios.

For fully observable states, the structure and purpose of the
neural network are different from hidden states. The neural net-
work is primarily to generalize state–action pairs and their corre-
sponding Q-values. For the structure of the RNN, the input layer
is the current information and the output layer is the Q-value.

5.3. The framework of OSON-WSC

The strategy guides an agent to choose one action from nu-
merous candidate services. For RL, the optimal strategy is to
execute an action in order to maximize the accumulative reward.
But the environment is partially observable in real-world, in
which the feedback of hidden states executing the same action
will be fluctuate. It is obvious that the strategy for an MDP
model is not suitable in this case. Thus, a heuristic strategy model
is developed, which corresponds to a One State One Network
(OSON).

There are two neural networks, one for each type of states.
Net1 for hidden state information storage takes advantage of the
belief state space samples and the performance of adopting the
current value function to train the neural network. Meanwhile
Net2 for fully observable state simulates the Q-value function
according to Q-values and state–action pairs. Fig. 8 describes the
principle of OSON, where an agent needs to first judge the type
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of state. If the state is a hidden one, the network consisting of
LSTM units is used to simulate the strategy space. In contrast, the
fully observable state attempts to generalize the Q-value function
by using a neural network to improve efficiency in large-scale
scenario. According to the OSON heuristic strategy model, a One
State One Network for Web Service Composition (OSON-WSC)
framework is constructed to address the large-scale and dynamic
service composition problem (see Fig. 9).

The whole OSON-WSC framework is divided into three mod-
ules: OSON strategy, RL, and environment. The modules transmit
the information mutually. First, the RL module interacts with the
environment, which is different from the traditional RL because of
adopting the OSON strategy to execute the optimal action. More-
over, the feedback from the environment will update the neural
network in the OSON strategy model in return. When training the
neural network, it not only generalizes the Q-value of the next
state, but also influences other states’ Q-values. The algorithm
is detailed in Algorithm 2. At first, the agent conducts explo-
ration learning for many times. The feedback deviation δ(s, a)
is recorded according to Eq. (16). Then observable degree can
be calculated according to Eqs. (17)–(19). Eq. (20) is used to
determine the type of the state. If the state is a hidden one,
ADQRCN is used to simulate and train the belief space, where
the input is the belief state along with the historic information
and the output is the probabilities of actions. If the state is a fully
observable one, ADQRCN is used to approximate and train the Q-
value, in which the input is the current information about the
states and actions and the output is the Q-value.

Compared with the ADQRCN algorithm, the OSON-WSC uses
the OSON strategy for optimization. In the beginning, the agent
needs to consume some time for the state classification, which
can be assumed as O(t), and inside of the loop, just needs to
execute one of the if and else. So the total time complexity can
be represented as O(t)+ O(K2 · (Wh ·m · Sh +Wf ·m · Sf )), where
the K2 is the number of episodes, Sh and Sf are the numbers of
the hidden states and fully observable states, respectively, and
Sh + Sf = S. Wh and Wf are the numbers of the weights in LSTM
networks. Though OSON-WSC increases the time consumption
of the initial explorations, the number of episodes is relatively
reduced because it uses different strategies for different states to
obtain the higher cumulative reward quickly. So the total time
consumption is less than ADQRCN.

Algorithm 2: OSON-WSC Algorithm
Initialize two neural network structures and parameters (Net1
training for the set of hidden states; Net2 training for the set of fully
observable states)
The Agent conducts the exploration learning and feedback deviation
is recorded.
Calculate the observable degree and determine the type of the state.
repeat

for Each episode do
if state b(s) = 0 then

Use the ADQRCN Algorithm to train neural network Net1,
execute a, then reach to the next state s′

else
Use the ADQRCN Algorithm to train neural network Net2,
execute a, then reach to the next state s′

end if
t = t + 1, s = s′
until state s′ is the terminal state

end for
until the convergence condition is satisfied

6. Experiments and analysis

In this section, we present results of our experiments con-
ducted with the two proposed approaches: ADQRCN, and the

optimization method combined with the OSON behavior strategy,
referred to as OSON-WSC. The purpose of the experiments is to
show the validity of our solutions, which will be demonstrated
from the following aspects: effectiveness and efficiency, adapt-
ability, and scalability. In addition, we compare them with three
competitive methods, QCN [21], the Multi-agent Q-learning (MA-
Q) [53], and the Multi-agent SARSA (MA-SARSA) [4], and analyze
the results.

It should be noted that the purpose of the methods proposed
in the paper is for QoS-aware optimization. Thus, the value of
the cumulative reward is the integrated QoS. Since a successful
service composition leads to a valid service scheme, we use
the optimal cumulative reward of an algorithm to represent the
effectiveness, and the convergence speed is used to represent the
efficiency. To demonstrate the adaptability of the algorithms, we
change the QoS value of services randomly. The verification of the
scalability is achieved by changing the number of service nodes
and the number of candidate services.

6.1. Experimental settings

The purpose of service composition is to maximize users’
satisfaction based on QoS attributes, which can be aggregated
into the immediate reward of RL. The experimental data is from
the QWS Dataset,1 in which the data were gathered from the
public sources on the Web, such as, UDDI registers and search
engines. In the experiments, we mainly consider four types of QoS
attributes, including ResponseTime, Throughput , Availability and
Reliability. We adopted the same approach as in [23] to compute
the average accumulative reward r according to the four types of
QoS attributes above. We also further expand the QWS dataset in
order to test the scalability of the proposed methods. According to
the distribution of different attributes of QWS, some services are
generated randomly. To be specific, the first step is to calculate
the average of a set of candidate services attributes corresponding
to each abstract service. Each attribute of services is set between
0.7 and 1. Then we randomly generate POMDP transition graph,
where the number of candidate services of each abstract service is
set according to different experimental requirements. Candidate
services with same functional attributes and different QoS values
are taken from the extended dataset. In the experiment results,
unless specifically stated, the observable degree threshold value
ξ is set to 0.6, the discount factor γ , the learning rate α, and the
exploration factor ε of the reinforcement learning are set to 0.9,
0.6, and 0.6, respectively. The N in Eq. (18) is set to 50. Besides,
the learning rate of the LSTM is set to 0.01, the number of the
memory units is 30, the input layer and the output layer are set
based on the actual service composition size, and the number of
agents in Multi-agent algorithms is set to 4.

The experiments are conducted on the platform of Windows
7 (64bit), Intel i7-6700K 4.00 GHz CPU and 16 GB RAM, without
adopting hardware acceleration means (such as GPU).

6.2. Result analysis

6.2.1. Influence of learning rate
In order to find the impact of the learning rate α on our

approaches, we tested different α values, including 0.2, 0.5, and
0.8. We use 100 state nodes (abstract services) and each state
node corresponds to 500 candidate services. The results of ex-
periments are shown in Fig. 10. As can be seen, both ADQRCN
and OSON-WSC are affected by the learning rate. When α is set
to 0.2, 0.5, and 0.8 respectively, the convergence of the ADQRCN
is at the 5000th, 4500th, and 3500th episode, respectively. The

1 http://www.uoguelph.ca/~qmahmoud/qws/.

http://www.uoguelph.ca/~qmahmoud/qws/
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Fig. 10. The influence of different learning rates.

Fig. 11. The validation of effectiveness.

Fig. 12. Statistics Of the 100 group experiments.

optimal discounted cumulative reward values are 50.6, 47.1, and
43.6, respectively. As shown in Fig. 10(b), the convergence of the
OSON-WSC is at the 4500th, 4000th, and 3000th episode respec-
tively, and the optimal discounted cumulative reward values are
52.8, 48.9, and 45.7, respectively. These mean that the efficiency
and the quality of the service composition are affected by the
learning rate α. With the increase of α, the efficiency is improved
while the composition quality is degraded. The reason is that if
the learning rate is low, the algorithm will spend much time in
searching the optimal solution. If the learning rate is high, it will
reduce the search time and improve the search efficiency, but will
fall into local optimum. Therefore, the tradeoff between efficiency
and composition quality should be considered according to the
scenario in practical applications. In our experiments below, α is
fixed to 0.6, unless otherwise indicated.

6.2.2. Effectiveness and efficiency
In order to show the effectiveness of the proposed approaches,

we test with 100 state nodes (abstract services) and each state
node corresponding to 500 candidate services. This will result
in 500100 possible compositions, corresponding to a quite large
search space. As shown in Fig. 11, both ADQRCN and OSON-
WSC are superior to other methods. They achieve the cumulative
reward value 47.1 and 48.9 respectively, which are higher than

those from QCN, MA-Q, and MA-SARSA. However, our meth-
ods do not perform well in the initial stage. With the accu-
mulation of training samples, the learning efficiency is signif-
icantly improved. For the convergence of the algorithms, QCN
converges at the 4800th episode, MA-Q, and MA-SARSA converge
at around the 4500th and 4000th episode, respectively. ADQRCN
and OSON-WSC converge at around the 4500th and 4000th
episode, respectively, which demonstrate that the efficiency of
the proposed methods are comparable to MA-Q and MA-SARSA.
Since QCN, MA-Q, and MA-SARSA are based on the table storage
with random exploration, they are outperformed by ADQRCN due
to the generalization expression, which makes the latter more
suitable for large-scale service composition. Moreover, OSON-
WSC adopts a heuristic strategy and achieves a better perfor-
mance in terms of effectiveness and efficiency than ADQRCN.

To further prove the validity of the proposed approaches,
we evaluate the deviation of the cumulative reward from the
most optimized composition schema, which is presented as D
given by Eq. (24), where the OPR represents optimal conver-
gence value, and the CRR represents the convergence value of
the algorithm. The scenario is stochastically generated as 100
groups of service compositions, where the number of abstract
services is set to 100 and each abstract service corresponds to
500 candidate services. After calculating the deviation value D
of 100 groups of experiments, the average is computed. From
Fig. 12, all methods ultimately achieve convergence, obtaining
the nearly optimal composition schema. The deviations of QCN,
MA-Q, and MA-SARSA after 100 groups of experiments are 16.9%,
14.5%, and 15.2%, respectively, while ADQRCN and OSON-WSC
are about 13.1% and 11.3%, respectively. ADQRCN and OSON-WSC
outperform other methods in terms of the deviation from the
optimal composition schema. Moreover, between ADQRCN and
OSON-WSC, the latter achieves better results than the former.

D =
OPR− CRR

OPR
(24)

In sum, this experiment verifies the effectiveness and efficiency
of ADQRCN and OSON-WSC. It also validates that the heuristic
behavior strategy improves the efficiency and effectiveness of
service composition.

6.2.3. Adaptability
In a software system, adaptability is defined as the behavior

to adjust according to the changes of the operating environ-
ment [54]. In order to verify the inherent adaptability of our
algorithms, we simulate a dynamic environment by randomly
changing the QoS values.

We still set 100 state nodes and 500 candidate services cor-
responding to each state node. To simulate the dynamic envi-
ronment, we change 1%, 5% and 10% QoS values of services in a
fixed period of time (between the 2000th episode to the 2500th
episode). The condition of network, the evolution of services
themselves and other factors may all change in a real service
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Fig. 13. The validation of adaptability.

Fig. 14. The influence of different numbers of state nodes.

composition scenario. We assume no prior knowledge of the envi-
ronment so the service information can only be obtained from the
exploration of the agent. Because of the environmental change,
it undoubtedly impacts the result of learning and the original
optimal strategy. The agent needs to learn part of environment
and explores a new solution of service composition.

The three groups of experiments are shown in Fig. 13. The
fluctuation of services has certain influence on the learning per-
formance, but these effects are temporary. When changing 1%
QoS attributes, we find that it does not bring too much influence
to the Q-value. Among these methods to be compared, QCN
suffers a lot because services in the most optimal solution change
during the fluctuation, while the others have stronger adaptabil-
ity. With the increasing proportion of changing services (5% to
10% services), the change of environment has gradually affected
the performance of the algorithms. From the figure, there is a
great fluctuation in the cumulative reward. OSON-WSC achieves
slightly better result than ADQRCN by using a shorter time to
adjust the behavior strategy. Other methods also show the ability
to adjust, but the performances are worse than OSON-WSC. It
may be due to the heuristic strategy and prediction characteristic
of the neural network.

In sum, the experiments simulate a dynamic scenario, which
verifies the adaptability of ADQRCN and OSON-WSC and proves
that they provide more reliable service composition schema.

6.2.4. Scalability
To validate the scalability of the proposed algorithms, we

extend the scale of service compositions, from two aspects to

simulate large-scale scenarios: increasing the number of state
nodes and candidate services.

First, the total number of candidate services is fixed at 50000
and the state node number is set to 100, 200, 300 and 400. In
addition, candidate services are randomly assigned to each state
node. Fig. 14 shows the experimental result. More state nodes
will lead to a longer convergence time. This is because with the
increase of state node number, the functional structure of the
composition becomes more complicated. As shown in Fig. 14, the
computation time of QCN dramatically increases from 12.9 min
corresponding to 100 state nodes to 28.1 min with 400 state
nodes. The other algorithms also exhibit a growing trend. With
the increase of the state nodes, ADQRCN and OSON-WSC perform
better gradually, and OSON-WSC achieves a faster convergence
than ADQRCN.

Next, the number of state node varies from 100 to 400 and
candidate services corresponding to each state node is fixed at
500. The deviation degree is also adopted to evaluate the service
composition schema obtained from the learning. Fig. 15 clearly
shows the good scalability of OSON-WSC faced with the increas-
ing state nodes. The deviation of ADQRCN is 7.8% when the state
number is 200, more than OSON-WSC’s 6.3%. For the convergence
time, OSON-WSC converges at about the 3300th, 3600th and
3800th episode, compared with ADQRCN at about the 3500th,
3900th and 4500th episode.

Finally, the number of state nodes is fixed at 100, and can-
didate services vary from 500 to 800. The number of total can-
didate services is up to 80000 and the number of composition
schemata grows from 500100 to 800100, which can be considered
to be a fairly large scenario. As shown in Fig. 16, the expan-
sion of candidate services influences the convergence time and
discount cumulative reward. From the figure, all the methods
use longer time to achieve convergence. QCN uses approximately
4800th, 5000th and 5500th episodes to converge. It exceeds the
6000th episode when the candidate services are up to 800. The
convergence time of the other algorithms is better than QCN.
Moreover, with the increase of candidate services, the perfor-
mance of ADQRCN and OSON-WSC are better than that of MA-Q
and MA-SARSA. This is mainly because ADQRCN and OSON-WSC
adopt the neural network as the generalization value function,
which helps them maintain strong ability of generalization and
quickly achieve convergence. However, the increase of candidate
services does not necessarily improve the optimal composition
result. After all, the solution depends on the QoS and the new
services are not necessarily superior to the original services.
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Fig. 15. The validation of adaptability.

Fig. 16. Influence of different numbers of candidate services.

To sum up, the experiments validate the scalability of the
proposed methods, when facing with increasing services and
more complicate service composition structures. The proposed
methods are able to eventually converge to the optimal (or near-
optimal) result and show better performance.

6.2.5. Significance test
In statistics, significance test is one of the statistical hypoth-

esis testing methods used to test whether there are differences
between the experimental and control groups in the scientific
experiments and whether the differences are significant. There-
fore, we use this method to evaluate the difference between
the proposed methods and the other compared reinforcement
learning methods for service composition. Significance test can be
divided into two types: parameter test and nonparametric test.
Parameter test requires the samples to obey the normal distri-
bution, and the nonparametric test is used when the data does
not satisfy the normality and variance assumptions. According to
the characteristics of the parameters, we adopt a nonparametric
test method, Wilcoxon signedrank test.2 We have conducted a
significance test on ADQRCN and OSON-WSC, respectively, by
comparing with the QCN, MA-Q, and MA-SARSA. We first propose
the hypotheses, where H0 is that ‘‘the two methods have signifi-
cant differences in performance (quality of composition results)’’,
and H1 is that ‘‘the two methods have no obvious difference in

2 https://en.wikipedia.org/wiki/Wilcoxon_signedrank_test/.

performance’’. We conduct 15 experiments based on the three
methods, and record the cumulative reward values. The statistics
of the cumulative reward obtained by QCN, MA-Q, MA-SARSA,
ADQRCN, and OSON-WSC are shown in Tables 3, 4, and 5.

sgn is a symbolic function, which represents the positive and
negative of the difference between the two sets of data; abs
and Rank represent the absolute value of the difference and the
sorting according to the difference respectively; sgn · Rank is a
sorting based on symbols. In Table 3, 13 groups of sgn are positive
and 2 groups are negative for QCN and ADQRCN, and the same for
QCN and OSON-WSC. In Table 4, 12 groups of sgn are positive for
MA-Q and ADQRCN, and 13 groups of sgn are positive for MA-
Q and OSON-WSC. In Table 5, 13 groups of sgn are positive for
MA-SARSA and ADQRCN, which is the same as the MA-SARSA and
OSON-WSC. These results verify that the performance of ADQRCN
and OSON-WSC are all different from the others obviously. Ac-
cording to the Wilcoxon signedrank test, we can calculate the
test statistic: W =

∑N
i=1 [sgni · Ranki], and the values are 112 and

114 in Table 3, 108 and 112 in Table 4, 104 and 112 in Table 5,
respectively. Referring to the Wilcoxon critical value table, when
the level of significance was 0.05, the critical value of the two-
sided test of the 15 groups was 25, which was obviously less
than our statistic results. So the hypothesis H0 is accepted. It
also means that there is a distinct difference between the pro-
posed methods and the other algorithms. The above significance
experiments demonstrate that the performance of ADQRCN and
OSON-WSC proposed in this paper is obviously better than the

https://en.wikipedia.org/wiki/Wilcoxon_signedrank_test/
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Table 3
Significance test of ADQRCN and OSON-WSC compared with QCN.
i QCN (x1,i) ADQRCN(x2,i) OSON −WSC(x3,i) x2,i − x1,i x3,i − x1,i

sgn abs Ri sgn · Ri sgn abs Ri sgn · Ri

1 41.9 47.1 48.9 1 5.2 10 10 1 7.0 11 11
2 43.1 45.9 49.2 1 2.8 6 6 1 6.1 7 7
3 42.5 46.9 46.9 1 4.4 7 7 1 4.2 4 4
4 44.1 44.9 43.9 1 0.8 2 2 −1 0.2 1 −1
5 45.6 44.3 47.3 −1 1.3 3 −3 1 1.7 3 3
6 43.9 46.5 49.1 1 2.6 4 4 1 5.2 5 5
7 39.9 47.2 48.2 1 7.3 15 15 1 8.3 15 15
8 42.1 46.7 49.7 1 4.6 8 8 1 7.6 12.5 12.5
9 40.5 47.3 46.3 1 6.8 14 14 1 5.8 6 6

10 45.1 44.9 44.5 −1 0.2 1 −1 −1 0.6 2 −2
11 39.7 46.2 47.3 1 6.5 12 12 1 7.6 12.5 12.5
12 40.8 47.5 48.6 1 6.7 13 13 1 7.8 14 14
13 42.6 45.3 49.3 1 2.7 5 5 1 6.7 8.5 8.5
14 43.4 48.1 50.1 1 4.7 9 9 1 6.7 8.5 8.5
15 41.6 47.5 48.5 1 5.9 11 11 1 6.9 10 10

Table 4
Significance test of ADQRCN and OSON-WSC compared with MA-Q.
i MA− Q (x1,i) ADQRCN(x2,i) OSON −WSC(x3,i) x2,i − x1,i x3,i − x1,i

sgn abs Ri sgn · Ri sgn abs Ri sgn · Ri

1 46.4 47.1 48.9 1 0.7 5 5 1 2.5 7 7
2 45.1 45.9 49.2 1 0.8 6 6 1 4.1 14 14
3 45.1 46.9 46.9 1 1.8 13 13 1 1.8 4 4
4 43.4 44.9 43.9 1 1.5 11 11 1 0.5 2 2
5 44.7 44.3 47.3 −1 0.4 3 −3 1 2.6 8 8
6 44.8 46.5 49.1 1 1.7 12 12 1 4.3 15 15
7 45.8 47.2 48.2 1 1.4 10 10 1 2.4 6 6
8 45.7 46.7 49.7 1 1 8 8 1 4 12 12
9 46.6 47.3 46.3 1 0.7 4 4 −1 0.3 1 −1

10 45.1 44.9 44.5 −1 0.2 1.5 −1.5 −1 0.6 3 −3
11 43.2 46.2 47.3 1 3 15 15 1 4.1 13 13
12 45.5 47.5 48.6 1 2 14 14 1 3.1 10 10
13 45.5 45.3 49.3 −1 0.2 1.5 −1.5 1 3.8 11 11
14 47.2 48.1 50.1 1 0.9 7 7 1 2.9 9 9
15 46.3 47.5 48.5 1 1.2 9 9 1 2.2 5 5

Table 5
Significance test of ADQRCN and OSON-WSC compared with MA-SARSA.
i MA− SARSA (x1,i) ADQRCN(x2,i) OSON −WSC(x3,i) x2,i − x1,i x3,i − x1,i

sgn abs Ri sgn · Ri sgn abs Ri sgn · Ri

1 45.8 47.1 48.9 1 1.3 6 6 1 3.1 5 5
2 45.3 45.9 49.2 1 0.6 2 2 1 3.9 9 9
3 44.4 46.9 46.9 1 2.5 9 9 1 2.5 4 4
4 46.1 44.9 43.9 −1 1.2 5 −5 −1 2.2 3 −3
5 42.8 44.3 47.3 1 1.5 8 8 1 4.5 10 10
6 43.3 46.5 49.1 1 3.2 12 12 1 5.8 13 13
7 42.3 47.2 48.2 1 4.9 15 15 1 5.9 14 14
8 43.6 46.7 49.7 1 3.1 11 11 1 6.1 15 15
9 46.1 47.3 46.3 1 1.2 4 4 1 0.2 2 2

10 44.6 44.9 44.5 1 0.3 1 1 −1 0.1 1 −1
11 42.5 46.2 47.3 1 3.7 13 13 1 4.8 11 11
12 44.7 47.5 48.6 1 2.8 10 10 1 3.9 8 8
13 46.1 45.3 49.3 −1 0.8 3 −3 1 3.2 6 6
14 46.7 48.1 50.1 1 1.4 7 7 1 3.4 7 7
15 43.5 47.5 48.5 1 4 14 14 1 5 12 12

compared algorithms, and they have a great advantage in the
service composition solutions.

7. Conclusion and future work

This paper presents an adaptive deep reinforcement learn-
ing framework for large-scale service composition problem. The
framework models the service composition problem using
POMDP-WSC and integrates the aggregated QoS into the reward
function. The proposed framework allows the integration of the
perception ability of DL with the decision making ability of

reinforcement learning. In addition, we optimize the behavior
decision to further improve the efficiency and accuracy of the
composition solution. The main contributions of the paper are
summarized as follows:

• To address the limitation of RL, we integrate the perception
ability of DL to solve large-scale service composition prob-
lems. Furthermore, the ADQRCN method adopts the recur-
rent neural network to generalize the value function, which
not only improves the efficiency of storage and computation
but also enhances the prediction accuracy.
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• We propose the POMDP-WSC model, which is closer to the
real service composition problem and suitable for the large-
scale scenario. The POMDP takes into account the behavior
strategy in the partially observable states.
• According to the POMDP-WSC model, we propose the

OSON-WSC framework based on a heuristic behavior strat-
egy. The states select different behavior strategies respec-
tively according to the type of states, resulting in the im-
provement of the whole composition performance.

We identify the following directions as our future work to
further improve the proposed approaches:

• On the reinforcement learning side, hierarchical reinforce-
ment learning technology can be used to solve the more
complex scenarios. On the deep learning side, we plan to
consider DQN based on competitive framework [55] and
Deep Double Q-network(DDQN) [56].
• The RNN that generalizes the belief state information may

still face very complex input. We will try to further optimize
the neural network by taking advantage of the Convolutional
Neural Network (CNN) to pool the samples.
• Although the application of deep reinforcement learning

is promising, the theoretical underpinning can be further
strengthened, such as the proof of convergence.
• The scale of QWS does not satisfy our requirements for

large-scale service composition. We plan to collect more
data from real services to replace the simulation experi-
ments.
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