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Using web services as building blocks to develop software applications, i.e., service mashups, not only
reuses software development efforts to minimize development cost, but also leverages user groups and
marketing efforts of those services to attract users and improve profits. This has significantly encour-
aged the development of a large number of service mashups in various domains. However, using existing
services, even popular ones, does not guarantee the success of a mashup. In fact, a large portion of ex-
isting mashups fail to attract a good number of users, making the mashup development effort less effec-
tive. Design-phase popularity prediction can help avoid unpromising mashup developments by providing
early-on insight into the potential popularity of a mashup. In this paper, we investigate the factors that
can affect the popularity of a mashup through a comprehensive analysis on one of the largest mashup
repository (i.e., ProgrammableWeb). We further propose a novel Bayesian approach that offers early-on
insight to developers into the potential popularity of a mashup using design-phase features only. Besides
identifying those relevant features, the Bayesian learning model can provide a confidence level for each
prediction. This provides useful guidance to developers for successful mashup development. Experimen-
tal results demonstrate that the proposed approach achieves high prediction accuracy and outperforms
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competitive models.
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1. Introduction

Web service technologies have been widely acknowledged as
the key enabler for boosting software reuse and loosely-coupled
distributed application development (Yu, Liu, Bouguettaya, &
Medjahed, 2008). Driven by their benefits, the number and variety
of web services have continuously increased and in a rapid pace.
Meanwhile, web services make significant contributions to mobile
app development. Through the invocation of web services, the
functionality of mobile apps can be outsourced to relevant web
services hosted on remote servers. This can effectively address the
hardware and software restrictions of mobile devices. Therefore,
the recent enormous success of mobile apps has further fueled the
development of web services. A recent study shows that there are
more than 17,000 web services in hundreds of domains registered
in ProgrammableWeb !, one of the biggest public web service
repository.
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The significant number and variety of web services have greatly
encouraged the usage of web services as the building blocks to
develop software applications, especially web and mobile appli-
cations, i.e., generating service mashups (Benslimane, Dustdar, &
Sheth, 2008). A service mashup can benefit from the services it is
built upon in many aspects. First, reusing the development efforts
of those web services can minimize the cost of developing the
mashup. Second, a mashup can deliver its functionality by lever-
aging the service providers’ resources including information (e.g.,
traffic data from a mapping service), CPU cycles for computation
or data processing, and data storage.

Unfortunately, the success of a service, in terms of attracting
users, cannot be directly translated to the success of the mashups
that it participates in. Through a comprehensive analysis on the
service mashup data collected from ProgrammableWeb, we found
that around 75% of service mashups fail to attract a good number
of users. One key motivation behind our work is to help avoid
unpromising service mashup developments by providing early-on
insight into the potential popularity of a mashup. To do so, it is
important to predict the popularity of a service mashup before it’s
developed.

Current research efforts on web service popularity can be
classified into two categories: leveraging popularity for service
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selection or recommendation (Hora & Valente, 2015; Hou &
Pletcher, 2010; Jain, Liu, & Yu, 2015; Mileva, Dallmeier, & Zeller,
2010) and web service popularity prediction (Wan, Chen, Wu, &
Yu, 2015). In (Wan et al., 2015), service popularity is measured as
the number of mashups using the service. It is predicted based on
the historical usage of the service, i.e., using the past popularity to
predict the future one. Thus, it requires that a service is developed
and released to the public for a given time before a prediction can
be made. To our best knowledge, there is no systematic approach
that can be used to predict the popularity of a mashup during the
design time, i.e., even before it has been developed and used.

In this paper, we propose a novel approach that provides
early-on insight into the potential popularity of a mashup before
it is developed. We identify a set of features that play a major role
in determining the popularity of a mashup, which are described as
follows. (1) Functionality: We consider it as the most significant
factor since it is the primary search criterion for a user to select a
mashup. (2) Novelty: Regardless of the functionality and quality of
services, a mashup may fail to attract its users if similar mashups
are already available and have taken up the market. In another
words, the timing of the release decides if a mashup’s idea is
novel or not. (3) Use of tags: As tags play an important role in
mashup queries, using appropriate tags can improve the visibility
of a mashup, which in turn help attract users. (4) Selection of
services: A mashup can borrow the user groups and marketing
effort of the services it uses. Therefore, the selection of services
can make a positive impact, if popular services are selected, or
a negative one, if less reputable services are selected, on the
popularity of mashups. (5) Combination of selected services/tags:
We take a further step when checking the services and tags a
mashup selects by checking how their combination can affect the
popularity of a mashup.

Our approach models and integrates the features related to the
above factors and learn how much each factor affects the popular-
ity of a mashup. We then propose a Bayesian learning model that
can identify the important features and offer a confidence level
for each prediction. Thus, when the model has a high confidence,
it will provide a trustworthy insight into the potential popularity.
In contrast, when the model has a low confidence, the developer’s
domain knowledge can be further leveraged as the model does
not have enough data to make an accurate prediction.

We summarize our major contributions as follows:

We present an in-depth investigation on the popularity
of mashups using a ProgrammableWeb dataset with 7392
mashups covering a period of five years.

We are the first to discuss the lack of novelty observation and
to exploit the use of tag/API compositions for popularity pre-
diction.

We suggest a unique approach to build an optimized and self-
explanatory feature space that can overcome the sparse nature
of the data and quantify the popularity contribution of each
feature.

We propose a Bayesian learning model that can utilize our sug-
gested feature space to make accurate predictions, identify im-
portant features, and offer confidence level with each predic-
tion which can provide guidance to developers for successful
mashup development.

We conduct extensive experiments over real-world mashup
data to demonstrate the effectiveness of the proposed approach.

The remainder of this paper is organized as follows: In
Section 2, we give an overview of the related work. In Section 3,
we present our in-depth mashup popularity investigation on the
dataset from ProgrammableWeb. In Section 4, we discuss our
suggested novel Bayesian approach for design-phase popularity
prediction. In Section 5, we present a set of comprehensive ex-

periments to demonstrate the effectiveness of our approach. In
Section 6, we conclude and discuss the future work.

2. Related work

In this section, we describe several related work and differen-
tiate them from ours. In general, current research efforts aim to
predict the popularity of a web item (Bandari, Asur, & Huberman,
2012; Figueiredo, 2013; He, Gao, Kan, Liu, & Sugiyama, 2014;
Keneshloo, Wang, Han, & Ramakrishnan, 2016; Kim, Kim, & Cho,
2012; Lee, Moon, & Salamatian, 2010; Szabé & Huberman, 2010;
Tatar, Antoniadis, de Amorim, & Fdida, 2012; Yao, Fu, Liu, Liu,
& Xiong, 2016; Yin, Luo, Wang, & Lee, 2012), or leverage the
popularity for item filtering or recommendation (Hora & Valente,
2015; Hou & Pletcher, 2010; Jain et al., 2015; Mileva et al., 2010;
Wan et al., 2015). In this work, we focus on the earlier, specifically
popularity prediction in the service computing domain.

2.1. Popularity prediction in service computing

In (Hora & Valente, 2015; Hou & Pletcher, 2010; Jain et al,,
2015; Mileva et al., 2010; Wan et al, 2015), the authors use
popularity prediction as part of their model to recommend APIs
for mashup developers. In (Hora & Valente, 2015; Mileva et al.,
2010), they aim to help developers decide between multiple APIs
that offer the same functionality. They both developed a tool that
analyzes the usage information of APIs as a metric for popularity,
and use such information to make recommendations. In (Jain
et al., 2015), the authors suggested a recommender system that
can discover and recommend relevant web APIs to developers
based on their functionality, usage, and popularity. They used the
number of times an API has been used in existing APIs as a way to
rank their final list of recommendation. In (Hou & Pletcher, 2010),
the authors developed a tool that utilizes the popularity of APIs
and their elements to rank suggestions given by code completion
systems, and they show that ranking suggestions based on their
usage frequency (i.e. popularity) can result in better filtering than
other approaches such as alphabetical ranking or relevance rank-
ing. Thus, (Hora & Valente, 2015; Hou & Pletcher, 2010; Jain et al.,
2015; Mileva et al., 2010) have used the popularity as a feature in
their model/tool to filter/rank existing APIs which is different from
our work where we aim to predict the popularity itself. The only
exception is (Wan et al., 2015) which we have already addressed
in the introduction of this paper. We differ in that we aim to
predict the popularity before the service is released to the public.

2.2. Popularity prediction in other domains

Current work follows one of two directions (Tatar, de Amorim,
Fdida, & Antoniadis, 2014). The first is predicting the popularity
prior to the release of the web item (Bandari et al., 2012; Tsagkias,
Weerkamp, & de Rijke, 2009), and the second is predicting the
popularity after the release of the web item (Figueiredo, 2013; He
et al., 2014; Hong, Dan, & Davison, 2011; Keneshloo et al., 2016;
Kim et al., 2012; Lee et al., 2010; Lerman & Hogg, 2010; Pinto,
Almeida, & Gongalves, 2013; Rizos, Papadopoulos, & Kompatsiaris,
2016; Szabé & Huberman, 2010; Tatar et al., 2012; Wu, Mei,
Cheng, & Zhang, 2016; Yin et al., 2012). The two directions are not
competing with each other, but rather, they have a complimentary
relationship as the pre-release prediction can address some of
the post-release prediction’s limitations. They key difference is
that a post-release prediction exploits the time-series information
for how the popularity changes over time to make a prediction.
Such information is not available when the item has not been
released yet, or is in its early stages. Furthermore, a pre-release
prediction can have a significant value when the goal is to have



M. Alshangiti, W. Shi and X. Liu et al./Expert Systems With Applications 149 (2020) 113231 3

25000 25000 250001 -
20000 20000 I 200007
3 15000 3 15000 t i H 3 15000
o 3] 1 . H o
¢ 10000 210000 ¢ 10000
> = S
5000 5000 5000
]
0 : 0 0
0 25 50 75 0 2 4 6 0 10 20 30
Total word count (title and description Tags count APIs count

(a) #Words vs. use count

(b) #Tags vs. use count

(c) #APIs vs. use count

Fig. 1. Is there a strong correlation between the word count, tag count, API count, and the popularity? We compare the popularity of a mashup against the three potential
factors (a) textual length (word count), (b) search exposure (tag count), and (c) integrated functionality (API count)

an early-on insight into the potential popularity of a web item to
make critical budgeting or marketing decisions, which is what our
work aims to provide. The literature on post-release popularity
prediction suffers from the same limitation as (Wan et al., 2015)
where we explained that an item has to be released to the public
and used for a given period of time before a prediction can be
made. This kind of setting does not apply to our problem as a pre-
development prediction is required. As for the work on pre-release
popularity prediction (Bandari et al., 2012; Tsagkias et al., 2009).
The authors attempt to predict the popularity of news stories
using its content. However, they were not successful as they did
not have access to the full body of the news story, which limited
their ability to utilize the content thoroughly. Moreover, they
ignored other factors that may play a major role in the popularity
of news stories such as the geographical factor where the topic
might be a popularity magnet, but it is too local, i.e., popular in
one source, but not the others. We align ourselves with this kind
of work. However, we plan to have a more thorough analysis of
the content, and to investigate other factors that may contribute
to the popularity. Moreover, our proposed approach is not simply
about an accurate point prediction, but rather about providing a
complete prediction framework that can offer an early-on insight into
the estimated popularity of a web item, the prediction’s confidence
level, and the reasoning behind it.

3. Dataset analysis

We used a dataset from ProgrammableWeb.com, one of the
most comprehensive online directories for APIs and mashups (Jain
et al., 2015). The website is considered a free and convenient way
for developers to market their APIs and mashups. They first started
in 2005, and their directory quickly grew to over 10,000 API by
20132 The dataset we used was provided by (Jain et al., 2015), and
it consists of 4543 mashups. Moreover, we removed eight outlier
mashups using the Extreme Studentized Deviate test which is a
standard technique to identify outliers. The final mashup count
after outliers removal became 4535 mashups. Table 1 shows the
available information for each mashup in this dataset.

3.1. Exploring the candidate popularity factors

A summary statistics can been seen in Table 2 where we have
found that 1) seventy-five percent of mashups use thirty-three
words or less to describe their mashup, which means we have
short textual information, 2) seventy percent of mashups are

2 https://www.programmableweb.com/api-research.

Table 1

Summary of the available information for each mashup.
Column Example
Title Haiku
Date 2009-07-02T21:35:07Z
Description Parses #haiku on Twitter and matches . . .
Tags art, haiku, microblogging, . . .
APIs Flickr, Twitter
Use count 7097

Table 2

Summary statistics of the service mashups in the ProgrammableWeb dataset.
Column Min Mean 3rd Quartile Max
Use Count 3 3474 4086 24780
log(Use Count) 1.099 8.004 8.315 10.120
Word count 1 25 33 76
Tag count 0 3 4 6
API count 0 1 2 38

tagged with two to four keywords (i.e. tags count), 3) eighty per-
cent of mashups use one or two APIs at most with their mashup
(i.e., API count).

Based on Fig. 1, we observed that there’s no correlation be-
tween the number of words, the number of tags, and the mashup
popularity (i.e., use count). This means that having a long descrip-
tion or a large number of tags will have very little effect on the
popularity of a mashup. However, it is also observed that having
no tags will affect the popularity, as all mashups with zero tags
ended up being in the low popular range as seen in Fig. 1. We
believe that not properly tagging a service mashup when listing it
in online markets can limit the users ability to find it, which may
explain this observation.

On the other hand, we can see a much stronger correlation, in
Fig. 1, between the API count and the popularity. We observed that
mashups in the high popular range mostly use one to three APIs;
whereas, mashups that use more than three APIs immediately
lower their chances of being in the high popular range. When
taking a closer look, we found that mashups with a high number
of APIs are mostly not targeting the general public, but a more
specific audience. For example, USPS Tracking is a mashup in the
upper half of high popularity range (e.g., 20,699 use count) which
uses only two APIs (Google Maps and USPS Track & Confirm),
and offers a service to track USPS shipments with Google Maps,
and is considered relevant to a wide range of audience which
explains its very high popularity. Whereas, Congress SpaceBook
is @ mashup in the lower half of medium popularity range (i.e.,
4737 use count) which uses eleven APIs (e.g., Flickr, YouTube,
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Table 3
Demonstrating the effect of the lack of novelty with an example of a cluster
with a dominating mashup, and another with no dominating mashup.

Cluster (8) with a dominating mashup

Title Pub. Date Use count
1001 Secret Fishing Holes Nov. 2005 23,567
Fishingnotes.com Mar. 2003 3125

Fish Mapper Apr. 2006 3011
Fishing Stories Oct. 2006 2842
Flyfishmap Jun. 2009 1673
Cluster (658) with NO dominating mashup

Title Pub. Date Use count
Earthquake Vulnerable Cities Aug. 2008 2785
Earthquakes in Last 7 Days Nov. 2005 3146
Earthquakes this Week Nov. 2005 4082
World and Regional Nov. 2006 2322

Earthquakes

Google Social Graph,..etc), and basically offers a social networking
platform for congress, is considered relevant to a significantly
smaller audience which explains its low popularity. Thus, the
general observation is that the more APIs consumed by a mashup,
the higher the chances of it being in the medium popular range
(i.e., 2000-7000 use count) as it will most likely be targeting a
much smaller audience, so even if it was successful in reaching
it'’s targeted audience, it will still overall be considered within the
medium-low popular range (i.e., below 3rd quantile).

When taking a closer look into the functionality the mashups
offer, we found that similar mashups have an interesting relation-
ship between them. If we consider a group of similar mashups
to be forming a cluster for a specific functionality (e.g., they all
offer a hotel finding service), then we can observe that they fall
under one of two states: They either have a dominant mashup
(i.e., a mashup that has captured most of the attention for that
functionality), in which case that dominating mashup would have
a significantly higher popularity than its neighbors within the
cluster, or they would all be closely related in popularity with
no dominant mashup. Table 3 shows an example of a cluster
with a dominating mashup, and an example of a cluster with no
dominating mashup. We can see that mashups within the same
cluster offer similar functionality. For the first case, we observe

B [*2]
o o
o o

N
o
o

Number of mashups with use count

0 5000 10000 15000

useCount

(a) Y distribution
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that once a dominating mashup appears, all the later mashups
are likely to be in the low-range popularity of that cluster. As for
the second case where we do not have a dominating mashup, we
believe that if a cluster has an overall mid-range popularity, then
the cluster’s functionality can be considered a promising open
area for developers to try and build the next mashup that will
dominate it. However, in case the cluster had an overall low-range
popularity average, then this may indicate that this cluster offers a
useless or uninteresting functionality that developers should avoid
in the future. In rare cases, a cluster of similar mashups can be
dominated by more than a single mashup, however, we have found
that in most cases, we only have a single dominating mashup.

3.2. Measuring the popularity

We measure the popularity of a mashup using the use count
metric provided by ProgrammableWeb, which is the only provided
popularity metric. Table 2 shows a summary statistics of the use
count. The use count metric measures only the raw popularity,
i.e.,, the level of public exposure. It does not capture other aspects
of the popularity, e.g., user satisfaction, in which another metric
such as the ratio of thumbs up/down would be more appropriate.
Nonetheless, it was shown in multiple studies that there’s a
strong correlation between all popularity metrics. For example, He
et al. (2014) showed a strong correlation between the number of
views (captures user exposure) and the number of votes up/down
(captures user satisfaction) for news stories on the news website
Digg. Moreover, Borges, Hora, and Valente (2016) found that
there’s a strong correlation between the two popularity metrics
used in GitHub, the number of forks (captures user exposure) and
the number of stars (captures user satisfaction). This means that,
in most cases, the higher the public spread/exposure, the higher
the user satisfaction. Thus, even though the use count metric does
not capture user satisfaction, it should be highly correlated with it.

It was reported previously (Szab6 & Huberman, 2010; Yu &
Woodard, 2008) that a power-law distribution is expected for
this kind of problem. We can observe in Fig. 2 a right skewed
distribution of the use count, but without a clear shape of a power
law distribution. We believe that because we suffer from not
having any zero count mashups, the long-tail distribution is not
as clear as we want it to be. Nonetheless, having a dataset with
more recent data, we believe a clearer long-tail distribution will
be observed. Also, in Fig. 2, we see the logarithmic transformation
of the use count which gives us a condensed normal distribution
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Fig. 2. The use count (Y) distribution in the ProgrammableWeb dataset. We show the distribution of the popularity in (a) and the log popularity distribution in (b).
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shape with a mean of roughly eight. It's worth mentioning that
it's a common statistical practice to log transform the response
when we have such a distribution as it makes it less sensitive to
outliers and easier to model.

4. Design-phase popularity prediction

In this section, we discuss our suggested approach which con-
sists of our method to construct an optimized and self-explanatory
feature space from raw sparse data, and our Bayesian learning
model that can predict, select features, and offer confidence level
with each prediction.

4.1. Constructing the feature space

The functionality: To derive the functionality of a mashup, we
suggest leveraging its title and description as follows. First, we
apply a standard natural language processing methods, such as
stop-word removal and word stemming, on the textual content of
the title and the description to generate a term frequency-inverse
document frequency matrix or TF-IDF matrix (Manning, Raghavan,
& Schiitze, 2008). The TF-IDF matrix is a representation of the
content where each row is a mashup, and each column is a term.
The elements in this matrix represent how relevant a given term
is to a specific mashup. This representation allows us to capture
the most important terms that describe the content of a mashup.
However, TF-IDF usually produces a large matrix that is highly
sparse, i.e., a given mashup’s vector would have many zero entries
as it uses only a few terms out of the available dictionary.

To address this issue, we utilize the probabilistic topic model-
ing technique Latent Dirichlet Allocation (LDA) (Blei, Ng, & Jordan,
2003). The intuition behind using LDA is that given the TF-IDF
matrix, LDA can leverage such representation by grouping together
the frequently co-occurring terms into an approximation of a real-
world concept, i.e., a topic. The set of topics discovered by LDA
would represent a higher level summary of the terms discovered
by the TF-IDF approach. As such, LDA is expected to provide a good
and compact approximation of the TF-IDF matrix as the number of
topics in the LDA matrix is significantly smaller than the number
of terms in the TF-IDF matrix. LDA produces a topic proportion
matrix D where each row in the matrix represents a mashup, and
each column represents a discovered topic. The entries D;; in the
LDA matrix essentially denote the probability that topic k describes
mashup i. As part of using LDA, we need to specify the number
of topics k, and through cross-validation, as seen in Table 4, we
found one-hundred to be a good candidate as it offers a balance
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wifi girport-
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between model's complexity and model’s accuracy. We believe
those topics represent the mashups functionalities that we aim
to derive. To give a better insight into those discovered topics,
Fig. 3 shows the content of two topics, the first (left side) is about
traveling, while the second (right side) is about real-estate. We
learn the contribution of each discovered topic as follows:

m
dy = 21DV g (1)
>ic1 Dik
where m is the total number of mashups, K is the total number of
topics, and y; is the corresponding popularity (i.e., use count) for
mashup i. Thus, each entry in the vector d, is a score that indicates
the topic’s contribution towards the popularity. When splitting the
dataset into training and testing, we learn the contribution of a
new testing mashup with vector ; € R" as follows:

0[=0t0d (2)

simply, we do an element-wise multiplication between the new
mashup’s probability vector and the topic-contribution vector that
represents the contribution of each discovered topic towards the
popularity. We use the generated LDA matrix with the new topics
score directly in our model as features.

The selection of tags and services: The standard way to cap-
ture the use of tags and the selection of services (i.e., APIs) is to
create two binary frequency matrices. The rows in those matrices
represent our mashups and the columns represent the used tags in
the first matrix, and the selected services (i.e., APIs) in the second
matrix, where each entry denotes if a given tag/API was used in
a given mashup or not (i.e., binary score). However, since we have
1409 unique tag, and 788 distinct service (i.e., API), and that de-
velopers use on average 2-3 tags and 1-2 APIs per servie mashup,
we have an extremely sparse matrix. Thus, we suggest a better
two-step approach to replace those two sparse and large matrices
with only two features: the tag score feature and the API score
feature. These score features will denote the contribution of the
used tags, for the tag score, and contribution of selected services
(i.e., APIs) for a given mashup. We constructed those two features
as follows: In step one, we learn the averaged contribution of each
tag/API towards popularity. To learn the contribution of each tag,
we divide the use count (i.e., popularity) of each mashup in the
tag matrix by the number of tags it uses, and assign that as a new
score for the used tags. At this point, for each column in both the
tags matrix, we have a score that represents the contribution of
that tag/API towards the popularity of the mashups. We take the
average of each column which represents the averaged contribu-
tion towards popularity for a given tag, and assign it as a score for
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Fig. 3. An example of two discovered LDA topics, a travel related topic on the left, and a real state related topic on the right. The two example topics highlight LDA’s ability

to summarize the textual content into a set of real-world concepts.
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Table 4

Finding the optimal number of topics (K) for LDA. The lowest RMSE can be observed

when the number of topics is 100.

K 5 30 50

100 250 500 1000

RMSE 0.6302 0.6292  0.6242

0.6181

0.6270  0.6290  0.6355

Table 5

Examples of frequent tag/API compositions. The combination of such
compositions lead to unique functionalities. For example, merging
Flickr’s capability with Google-maps allowed users to search for their
images based on where the images were taken, i.e., location. This
unique functionality, captured by the composition, can be a leading fac-
tor behind the popularity of the service mashup.

Tags APIs

Photo, Map Flickr, Google-maps
Video, Music YouTube

Social, Microblog Twitter

Video, Photo Flickr, YouTube

the whole column. We do the same for the API matrix to learn the
averaged contriubution of each API towards the popularity. In step
two, given a service mashup, we add up the individual averaged
contributions of the tags that it uses to create the tag score fea-
ture, and add up the individual contribuitons of APIs that it uses to
create the API score feature. When splitting the data into training
and testing, we use the average contribution for each tag/API that
we learned from training as a score for the testing as well. We
then add up the individual contributions in the same manner.

The combination of selected tags/services: To capture the role
such compositions play in the popularity of a mashup, we suggest
finding those compositions and building a binary frequency matrix
that allows us to use them as features. To find those compositions,
we suggest the use of Apriori algorithm (Tan, Steinbach, & Kumar,
2005) which is a standard technique to find frequently used
compositions. The selected support level for Apriori should offer a
balance between finding all possible compositions and maintaining
a statistical meaning for the compositions. It is expected to have a
large number of compositions, and that should not be a problem
as our suggested Bayesian learning model can select the most rele-
vant ones. In our dataset, we were able to find 178 frequently used
compositions. Table 5 shows a few of the discovered compositions.
For example, the first composition represents the use of (Photo
and Map) as tags and (Flickr and Google-maps) as APIs. This com-
bination created a mashup with an interesting functionality that
allowed users to know the location of where their Flickr images
were taken. We believe this interesting functionality, captured by
the composition, is behind the popularity of the mashup. We used
those frequent compositions to create the binary frequency matrix
which we used directly as features in our model.

Novelty: As we have explained earlier, a mashup may fail to
attract its users if similar mashups are already available and have
taken up the market. We observed this through our analysis in
which we found that when we cluster similar mashups together,
it's common to see one of two states: A cluster with a dominant
mashup, or a cluster with no dominant mashup. In the first case,
we observed that once a dominant mashup appears, it would cap-
ture most of the attention for that cluster’s functionality forcing
all the other mashups, especially the later ones, in that cluster to
settle-in for a lower popularity. In other words, we can say that the
other dominated mashups within the cluster lack the novelty as the
dominant mashup is presumed to be the first in the cluster to suc-
cessfully capture all the user’s needs for that functionality. Thus,
we suggest to create a new feature vector called the lack of novelty
where we penalize all the dominated mashups with a score of

one, as we expect them to have a low/medium popularity (i.e., use
count below 3rd quantile), and assign a score of zero to all other
mashups including dominating mashups and mashups in clusters
with no dominating mashup as we have no evidence that they lack
the novelty. We then use that vector as a feature in our model.
However, to achieve the suggestion mentioned above, we need
to determine the best approach to measure the similarity between
the functionality of two mashups. We suggest combining the
knowledge from both the content found in the title/description of
the mashup, and from the list of used tags and APIs as follows:

Sl'miijOIXC,'yj-i-(l—Ot)XJi‘j (3)

where « is a learned probability weight between zero and one.
C; ; is a cosine similarity matrix (Tan et al., 2005) that measures
the similarity between the title and the description of two given
mashups. J; ; is a jaccard similarity matrix (Tan et al., 2005) that
measures the similarity between the list of tags and APIs of two
given mashups. The o weight measures how much trust you place
on your content from the title/description. If the dataset lacks
proper description, but is tagged properly, then less weight can
be placed on the content from the title/description so that more
weight is placed on the list of used tags and APIs, and vice versa.
If there is no clear pattern in the dataset, then the recommended
approach in such case would be to provide equal weights to both
aspects. However, if there’s a clear preference in the dataset (i.e.,
community), the proposed approach can provide better predictions
if the preference is reflected in the provided weights. In the rare
case where mashups are posted without any meta information
(i.e., both the description and tags are empty), the model would
not have enough data to make a confident predication. Nonethe-
less, it is expected that such an extreme case (i.e, no meta
information) would be difficult even for human experts as they
would find it impossible to make a judgement with no available
information on the mashup. It is important to clarify that in this
approach we assume that professional developers will put a great
deal of effort in preparing the meta information (i.e., description
and/or tags) of their mashup to ensure proper exposure of their
work. This assumption is needed for the model to provide accurate
and confident predictions. For our dataset, with cross-validation,
we have found that an « value of 0.9 produced clusters that met
our requirement in that mashups were clustered together based
on functionality.

Next, we suggest using hierarchical clustering (Tan et al., 2005)
to create the clusters using the averaged similarity matrix Sim;;
that we already constructed. As it’s the case with most clustering
algorithms, in hierarchical clustering, we need to specify the
number of clusters as a parameter to the algorithm. we found
2197 to be a good number of clusters for our dataset. The number
of clusters we chose is the total number of unique tags (1409) and
APIs (788). Since each cluster should represent a unique possible
functionality, the choice of the number of cluster should represent
the number of unique possible functionality we assume to exist
in the dataset. Thus, we are making the assumption that for each
unique available tag and API, at least a single possible unique
functionality exists.

Finally, to identify the clusters with a dominant mashup from
the ones without, we looked for an outlier point in the cluster
where we measured how many standard deviations each point is
away from the mean using z-score. To determine if a point within



M. Alshangiti, W. Shi and X. Liu et al./Expert Systems With Applications 149 (2020) 113231 7

a cluster is an outlier or not, we measure how many standard
deviations it is from the mean of the cluster. If we found that it’s
t standard deviations away from the mean, then we declare it as a
dominating mashup. The value for t has to be determined through
cross validation. In our case, we have found three to be a good
value for t. We can now create our lack of novelty feature vector
as described above, and use it as a feature in our model.

4.2. The prediction model

We present a Bayesian learning model for popularity predic-
tion. The proposed model offers three major advantages over
other regression models. First, instead of just providing a point
prediction, the Bayesian model outputs a predictive distribution
for a given test mashup. The variance of the predictive distribution
can be used to quantify the confidence level of the prediction.
Second, we integrate the Bayesian learning model with the Auto
Relevance Determination (ARD) mechanism (Bishop, 2006), which
allows us to perform feature selection and identify the most im-
portant factors that affect mashup popularity. Third, by performing
type 2 maximum likelihood, we can automatically optimize the
hyperparameters of the model, which avoid the tedious process of
cross-validation required by many other models.

4.2.1. Model inference
We start by assuming the response t is a random variable
whose distribution conditioned on input x is Gaussian:

p(tlx,w, B) = N(tlw'§(x), B~) (4)

where § is the precision of the Gaussian and ¢(x) is the feature
vector of mashup x.
The likelihood of the training data X then is given as:

N
ptX.w, B) = [ ptalxs w. ) (5)

n=1

The flexibility of the Bayesian inference framework allows us to
incorporate different prior knowledge for different learning ef-
fects. Specifically in this work, we assume that not all features are
equally important to the prediction problem. As a result we choose
a conjugate Gaussian prior(A.K.A ARD prior) on the coefficient ran-
dom variable w to conduct feature selection:

p(wla) = N'(0,A™") (6)

where A is a diagonal matrix governed by hyper-parameter o
where «; denotes the i-th diagonal entry of A. Section 4.2.3 pro-
vides the detailed discussion of how feature selection can be
achieved by adopting ARD prior.

According to the Bayesian rule, the posterior distribution of w
is proportion to the product of the likelihood and prior, which is
also Gaussian due to conjugacy:

p(wlt. . f) = N(wm, X) (7)

where the posterior mean and the covariance are given as
follows:

m=pY®dT, T=A+pPP7)! (8)

® is the design matrix. The i-th row of ® is ¢(x;). Assume that
the optimal values of the hyper-parameters, * and S* can be
learned (see the next section for details). We can derive the
predictive distribution over a test mashup x; by integrating out w,
which is also a Gaussian:

p(tIX. X, o, B*) = /p(t|xt,w,ﬁ*)p(wla*,X,ﬁ*)dW
= Nm'p(x), 0% (x;)) (9)

where the predictive mean and the covariance are given as follows.

o (x) = (B + p(x) (%) (10)

Besides using the mean of the predictive distribution (i.e.,
m’@(x;)) to predict the future use count of X, the variance
o02(x;) provides important information to quantify the confidence
level of the prediction.

4.2.2. Learning process

Estimating hyper-parameters «, S yields a type-2 maximum
likelihood problem. Specifically, we maximize the log of the model
evidence given by:

X o, B) = ln/P(t
InA(0, C)
_ —%(Nln(Zn) +1n(C) +t7C't) (11)

Inp(t X, w, B)p(w|a)dw

where C is given by
C=B"1U+ DA DT (12)

By setting the partial derivative of (11) with respect to & and § to
zero, we derive the solutions for both hyper-parameters

* Yi
1
_ ||t — dm]|?
B = (13)
P N-=>.v
where y; is defined by
Yi=1- 0% (14)

The learning proceeds by using (8) and (13) alternatively with
randomly initialized e and S until convergence.

4.2.3. Feature selection

The first updating rule from (13) implies an implicit solution
as the right hand side is also a function of «;. To determine the
stationary point of the log likelihood function (11) explicitly, we
can extract the contribution from «; out of the covariance matrix
Cin (11):
C=p"1+) a;'00] +o 0]

J#i

=Ci+a; ' g0 (15)

where ¢; denotes the i-th column of & and C_; represents ma-

trix C with the removal of ¢;. Substituting (15) in (11), the log
likelihood can be written as:

InN(0,C) = L(ee_;) + Ar;) (16)

where L(a_;) denotes the log likelihood function with ¢; omitted
and function A(«;) is defined as:

Aoy) = ;[lnai —In(o; +57) + Oliq‘;z‘sii| (17)
where g; and s; are defined as:

si=9iClo;

g = @[Ct (18)

The partial derivative of (17) with respect to «; is

o152 — (¢ —5)

19
2(o; +5¢)? (19)
Setting (19) to zero gives two possible solutions for o;:
o — 00, q? < s
e P (20)
o= 7 otherwise
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In the first case, as «; (i.e., precision of coefficient w;) approaches
to infinity, w; will be driven to its mean (i.e., 0). This will result in
the removal of the corresponding feature from the model, which
achieves feature selection.

5. Experiment

We first describe the experimental setup. We then compare
the prediction accuracy of our proposed Bayesian learning model
with other competitive models, and show how our learning model
is overall superior. Moreover, we show examples of our model’s
ability to offer confidence level with each prediction. Finally, we
evaluate our approach in building the feature space and ability to
identify the important features.

5.1. Experimental Setup

The current use count (i.e., popularity) of a mashup is the
total number of use count accumulated over the years since its
publication date. Thus, it favors older mashups over newer ones
as the newer mashups had less time to accumulate their use
count. To have a more balanced and fair scale, we instead used
the average yearly use count as our response in which we divided
the original use count by the mashup’s lifetime (i.e., number of
years it's been available in the market).

To simulate a real world scenario, we used the information
from the mashups listed in the first four years as the training
data, to predict the popularity of the fifth’s year mashups. In
other words, we are training the model on service mashups that
were created in the first four years, and testing the model on
service mashups that were created on the fifth year. To measure
the prediction accuracy, we used Root Mean Square Error (RMSE)
which is a standard way to measure the difference between the
true and predicted values. In general, the lower the RMSE, the
more accurate the model.

5.2. Model performance

To evaluate the prediction performance of our proposed
Bayesian learning model versus other models, we used a feature
space of 287 features where for each mashup we have a tag score
feature, an API score feature, a Lack of Novelty score feature, 100
LDA features (one feature per topic), and a 174 binary API/tag
composition features.

Fig. 4 shows the prediction result of our proposed model versus
Linear Regression with L1 norm regularization (i.e., Lasso) and Lin-
ear Regression with L2 norm regularization (i.e., Ridge Regression).
Both ridge regression and lasso require parameter tuning (i.e.,
lambda) and their performance significantly rely on the selected
parameter value. For ridge regression, we can see that a low or
a high lambda value can drastically decrease the performance;
whereas, with lasso regression, the higher the lambda value, the
lower the performance as the model becomes more selective of
what features to use. On the other hand, our proposed bayesian
learning model does not require any parameter tuning as it can
directly give the optimal or near-optimal solution. Moreover, it
can identify the important features which ridge regression does
not offer, and it provides a confidence level with each prediction
which both ridge and lasso regression cannot do. Thus, overall, it
offers the best prediction framework.

To show how our suggested learning model can offer confi-
dence level with each prediction, we present a few examples in
Table 6. The first one is a mashup we predicted with a relatively
large error, and the second one is a mashup we predicted with a
smaller error. The general observation is that if we have a small
variance, then we are more confident about the prediction, and
vice versa. For example, we predicted more accurately the second

0.68[7 :
| —E1 Ridge Regression
\ —O- Lasso Regression
0.66 —>¢- Proposed Approach | |
\
064 - .
\ )
w062
(2]
=
T 06 -
0.58 1
0.561,
EJ B ’*El-—‘-a'
0.54 \ \ \ \ \
1e-15 1e-12 1e-09 1e-06 0.001 1 1000

Lambda Parameter (Regression & Lasso)

Fig. 4. Proposed model’s performance vs. other regression models. We can observe
that the performance of other regression models can vary greatly depending on the
selected parameter value; whereas, the proposed approach provides a consistent
performance as it requires no parameter tuning.

mashup, and the model confirms that fact by showing a small
variance for the prediction (i.e., a high confidence). On the other
hand, our prediction of the first mashup is more off as the model
does not have enough historical data to make a more accurate
prediction, so the model presents a much higher variance which
means it has a low confidence in this prediction.

5.3. Feature analysis

To show the performance boost when using our unique
approach to construct feature space versus simpler standard
methods, we created an alternative feature space that uses word
frequency matrix to capture the role of the title and the descrip-
tion of the mashup, and a binary frequency matrix to capture the
role of the tags and APIs. The result can be seen on Table 7 where
our approach in constructing the feature space is not only offering
a significantly smaller feature space, but also a drastically better
prediction accuracy compared to the frequency approach.

Furthermore, we show in Table 8 the added value of each
suggested feature using different models as follows:

Table 6

Examples of the model’s estimated popularity (on a logarithmic scale) and con-
fidence level compared to the true mashup’s popularity. We can observe that
the predicted values are close to the true values, and that the behaviour of the
model matches the intuition in that the lower variance (i.e., higher confidence)
maps to a more accurate model.

Mashup True Pop. Predicted Pop. Variance SD
Adult Or Not 8.4740 7.4677 0.3763 0.6134
QuoteRelish 6.9697 7.1060 0.2655 0.5152

Table 7

Comparing our unique approach to construct the feature space versus other
standard methods in terms of complexity and accuracy. We can observe that
the proposed approach provides a superior accuracy while using a significantly
less number of features.

Approach #Features RMSE
Standard methods 10455 1.1046
Suggested approach 277 0.5545
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Table 8

Measuring the incremental performance boost with each added set of features
starting with the LDA topics as a base, and then adding our features incremen-
tally.

Model #Features RMSE

Base 100 0.6287
+ Compositions 274 0.5897
+ API Score 275 0.5742
+ Lack of Nov. 276 0.5688
+ Tag Score 277 0.5545

» Base: Using the 100 topics generated from LDA, where each
topic’s probability is replaced with the calculated score (100
features).

» + Compositions: Using the previous model features and the bi-
nary matrix of compositions generated from the Apriori algo-
rithm as features (274 features).

e + API Score: Using the previous model features and the API

score feature (275 features).

+ Lack of Nov.: Using the previous model features and the lack

of novelty feature (276 features).

e + Tag Score: Using the previous model features and the tag
score feature (277 features).

As we can see, the baseline is performing quite well as ex-
pected since the discovered LDA topics are able to capture the
offered functionality of the mashup, and their current score
represent their contribution towards the popularity. Nonetheless,
each of our added features was still able to improve the model,
and collectively they improved the baseline model’s accuracy by
roughly 12%. The compositions offered the biggest improvement,
but it added a high complexity (174 new features). Whereas, the
other three features were able to collectively add the same level
of improvement to the model but with drastically less added
complexity which shows their significance. Furthermore, we used
random forest regression and lasso regression as well as our
proposed bayesian model to evaluate their importance to the
model as features. We found that all three models picked the
tag score feature and the API score feature as the top two most
important features which confirms that they play a major role in
the accuracy of the model. The models did not all agree on the
rank of the lack of novelty feature as our bayesian learning model
suggested it was the 7th most important feature, random forest as
the 16th, and lasso as the 25th. We believe this is the case because
the lack of novelty feature is targeting a specific observation, and
thus is used for only a small subset of the mashups (roughly 16%

world
mashupweb
L= ~twifter
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Table 9

Demonstrating a test mashup as an example of the information a software de-
veloper would provide to the proposed model (input), and the design-phase
insight he/she would recieve (output).

Mashup’s information

Title Flyfishmap

Description User generated fly fishing
information using Google . . .
#fishing #flyfishing . . .
Google-maps, YouTube . . .

Tags Used
APIs used

Mashup’s design-phase popularity insight

True Popularity (Log) 7.4223 (i.e., 1673 use count)

Predicted Popularity (Log) 6.9475 (i.e., 1040 use count)

Popularity Range Low

Prediction Variance 0.27243

Func.#1 (Maps & Social Sharing) 25.3 (above 90th Percentile)

Func.#2 (Fishing & Wildlife) 3.26 (below 30th Percentile)

Lack of Novelty 1

Tags Contribution Score 4.04 (below 10th Percentile)

APIs Contribution Score 15.41 (above 90th Percentile)

Popular Combinations map (tag), YouTube (API),
Google-maps (API)

in our dataset) which may not show an overall significance, but
should be critical for those relevant mashups.

5.4. Illlustration ofoffered insight

One key benefit of using the design-phase popularity prediction
model (i.e., a pre-release model) is the early-on insight it can pro-
vide into the potential popularity of a web item. Such insight plays
a major role when critical budgeting or marketing decisions need
to be made before an item is released to the public. In previous
work, the offered insight was merely a popularity range prediction
(i.e., whether the web item would recieve a low, medium, or high
popularity). In this paper, one of our contributions is that we
take this early-on insight a step further by offering a confidence
level with each prediction and by exploiting the self-explanatory
feature space we built to provide the reasoning behind the
popularity.

In Table 9, we show a test mashup from our experiment
where the developer created a web app that shows nearby fishing
locations on Google Maps. Also, the web app allows users to post
images and YouTube videos to share their experience. In most
cases, all the information shown in Table 9 is known early-on to
the developer, even before he/she starts to invest time and money

his’[ormCD park
OGJc) £© spot

03 t|n| GJadd
OU)CDfISh 2 kit
nation Swildlif
campground
shanahanbirth

(Fishing and Wildlife)

Fig. 5. The two discovered topics (i.e., functionalities). We can observe that the model was able to capture the two main concepts behind the shown test mashup, in which
users share fishing information and locations. The first discovered topic shown on the left can be mapped to the general concept of Maps and Social Sharing based on the
observed terms (e.g., map, Twitter, share, and user). The second discovered topic can be mapped to the general concept Fishing and Wildlife based on observed terms (e.g.,

campground, park, outdoor, and fish).
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on developing the mashup. Given this information, here is the
kind of insight the suggested model would offer to the developer:

 First, we provide an estimated popularity with a low variance
of 0.27 which indicates a high confidence in the prediction. We
can see that the model is quite accurate with only a 633 use
count difference between the true and predicted popularity.
e Second, as seen in Fig. 5, two functionalities were discovered.
The first (i.e., maps and social sharing of images and videos)
attracts a large audience as the functionality contribution score
is above the 90th percentile of all the discovered function-
alities scores. Whereas, the second (i.e., fishing and wildlife)
attracts only a small audience as its score is below the 30th
percentile.
Third, the idea lacks the novelty as this functionality is already
offered by an existing mashup that has successfully captured
the market.
o Fourth, the selected tags (all related to fishing) attract a small
audience (i.e., users searching for such functionality represent
a small club) as the tags contribution score is below the 10th
percentile.
Fifth, the selected APIs (i.e., Google-maps and YouTube) attract
a large audience as the APIs contribution score is above the
90th percentile of the APIs scores.
Finally, the used combination of tag (maps) and APIs (YouTube
and Google-maps) is a popular combination.

Given such insight, the developer is well-informed early-on
of the estimated popularity, the estimated audience for each
component (i.e., strength/weakness), and the confidence in the
estimation. We hope such insight provides useful guidance to
developers for successful mashup development.

6. Conclusion and future work

In this work, we presented a comprehensive investigation on
the popularity of mashups through the analysis of a five-year
period ProgrammableWeb dataset. Based on our analysis, we iden-
tified five factors that contribute to the popularity of mashups: 1)
Functionality, 2) novelty, 3) use of tags, 4) selection of services, and
5) combination of selected services/tags. Our suggested approach
models those factors and construct the feature space in an opti-
mized and self-explanatory way that solves the sparsity issue of
real-world data and quantifies the contribution of each feature to-
wards the popularity. More importantly, we suggested a Bayesian
learning model that can estimate the popularity of a service
mashup even before it is developed using design-phase features
only. Furthermore, the model can identify the important features
and offer a confidence level with each prediction which provides
useful guidance to developers. When the model has enough data
to make an accurate prediction (i.e., has high confidence), it can
accurately estimate the popularity and offer an extended insight
into the reasoning behind the popularity. When the model does
not have enough data to make an accurate prediction, it informs
the developer that his/her domain expertise should be leveraged
more by presenting a low confidence in the prediction.

For future work, we would like to use Hierarchical Dirichlet
Process (Teh, Jordan, Beal, & Blei, 2004) to determine the optimal
number of topics for Latent Dirichlet Allocation (LDA). We also
plan to integrate real-world features with our model such as the
popularity of a specific LDA topic on social media. Moreover, we
plan to capture the temporal nature of popularity as we do not
consider the time aspect in our current work.
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