
Expert Systems With Applications 149 (2020) 113231 

Contents lists available at ScienceDirect 

Expert Systems With Applications 

journal homepage: www.elsevier.com/locate/eswa 

A Bayesian learning model for design-phase service mashup 

popularity prediction 

Moayad Alshangiti ∗, Weishi Shi , Xumin Liu , Qi Yu 

Golisano College of Computing and Information Science, Rochester Institute of Technology, Rochester, NY 14623, USA 

a r t i c l e i n f o 

Article history: 

Received 12 September 2018 

Revised 6 January 2020 

Accepted 21 January 2020 

Available online 21 January 2020 

Keywords: 

Popularity prediction 

Bayesian learning 

Service mashup 

a b s t r a c t 

Using web services as building blocks to develop software applications, i.e., service mashups, not only 

reuses software development efforts to minimize development cost, but also leverages user groups and 

marketing efforts of those services to attract users and improve profits. This has significantly encour- 

aged the development of a large number of service mashups in various domains. However, using existing 

services, even popular ones, does not guarantee the success of a mashup. In fact, a large portion of ex- 

isting mashups fail to attract a good number of users, making the mashup development effort less effec- 

tive. Design-phase popularity prediction can help avoid unpromising mashup developments by providing 

early-on insight into the potential popularity of a mashup. In this paper, we investigate the factors that 

can affect the popularity of a mashup through a comprehensive analysis on one of the largest mashup 

repository (i.e., ProgrammableWeb). We further propose a novel Bayesian approach that offers early-on 

insight to developers into the potential popularity of a mashup using design-phase features only. Besides 

identifying those relevant features, the Bayesian learning model can provide a confidence level for each 

prediction. This provides useful guidance to developers for successful mashup development. Experimen- 

tal results demonstrate that the proposed approach achieves high prediction accuracy and outperforms 

competitive models. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

Web service technologies have been widely acknowledged as

he key enabler for boosting software reuse and loosely-coupled

istributed application development ( Yu, Liu, Bouguettaya, &

edjahed, 2008 ). Driven by their benefits, the number and variety

f web services have continuously increased and in a rapid pace.

eanwhile, web services make significant contributions to mobile

pp development. Through the invocation of web services, the

unctionality of mobile apps can be outsourced to relevant web

ervices hosted on remote servers. This can effectively address the

ardware and software restrictions of mobile devices. Therefore,

he recent enormous success of mobile apps has further fueled the

evelopment of web services. A recent study shows that there are

ore than 17,0 0 0 web services in hundreds of domains registered

n ProgrammableWeb 1 , one of the biggest public web service

epository. 
∗ Corresponding author. 
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The significant number and variety of web services have greatly

ncouraged the usage of web services as the building blocks to

evelop software applications, especially web and mobile appli-

ations, i.e., generating service mashups ( Benslimane, Dustdar, &

heth, 2008 ). A service mashup can benefit from the services it is

uilt upon in many aspects. First, reusing the development effort s

f those web services can minimize the cost of developing the

ashup. Second, a mashup can deliver its functionality by lever-

ging the service providers’ resources including information (e.g.,

raffic data from a mapping service), CPU cycles for computation

r data processing, and data storage. 

Unfortunately, the success of a service, in terms of attracting

sers, cannot be directly translated to the success of the mashups

hat it participates in. Through a comprehensive analysis on the

ervice mashup data collected from ProgrammableWeb, we found

hat around 75% of service mashups fail to attract a good number

f users. One key motivation behind our work is to help avoid

npromising service mashup developments by providing early-on

nsight into the potential popularity of a mashup . To do so, it is

mportant to predict the popularity of a service mashup before it’s

eveloped. 

Current research efforts on web service popularity can be

lassified into two categories: leveraging popularity for service

https://doi.org/10.1016/j.eswa.2020.113231
http://www.ScienceDirect.com
http://www.elsevier.com/locate/eswa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2020.113231&domain=pdf
mailto:mma4247@rit.edu
mailto:mshangiti@uj.edu.sa
mailto:ws7586@rit.edu
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selection or recommendation ( Hora & Valente, 2015; Hou &

Pletcher, 2010; Jain, Liu, & Yu, 2015; Mileva, Dallmeier, & Zeller,

2010 ) and web service popularity prediction ( Wan, Chen, Wu, &

Yu, 2015 ). In ( Wan et al., 2015 ), service popularity is measured as

the number of mashups using the service. It is predicted based on

the historical usage of the service, i.e., using the past popularity to

predict the future one. Thus, it requires that a service is developed

and released to the public for a given time before a prediction can

be made. To our best knowledge, there is no systematic approach

that can be used to predict the popularity of a mashup during the

design time, i.e., even before it has been developed and used. 

In this paper, we propose a novel approach that provides

early-on insight into the potential popularity of a mashup before

it is developed. We identify a set of features that play a major role

in determining the popularity of a mashup, which are described as

follows. (1) Functionality: We consider it as the most significant

factor since it is the primary search criterion for a user to select a

mashup. (2) Novelty: Regardless of the functionality and quality of

services, a mashup may fail to attract its users if similar mashups

are already available and have taken up the market. In another

words, the timing of the release decides if a mashup’s idea is

novel or not. (3) Use of tags: As tags play an important role in

mashup queries, using appropriate tags can improve the visibility

of a mashup, which in turn help attract users. (4) Selection of

services: A mashup can borrow the user groups and marketing

effort of the services it uses. Therefore, the selection of services

can make a positive impact, if popular services are selected, or

a negative one, if less reputable services are selected, on the

popularity of mashups. (5) Combination of selected services/tags:

We take a further step when checking the services and tags a

mashup selects by checking how their combination can affect the

popularity of a mashup. 

Our approach models and integrates the features related to the

above factors and learn how much each factor affects the popular-

ity of a mashup. We then propose a Bayesian learning model that

can identify the important features and offer a confidence level

for each prediction. Thus, when the model has a high confidence,

it will provide a trustworthy insight into the potential popularity.

In contrast, when the model has a low confidence, the developer’s

domain knowledge can be further leveraged as the model does

not have enough data to make an accurate prediction. 

We summarize our major contributions as follows: 

• We present an in-depth investigation on the popularity

of mashups using a ProgrammableWeb dataset with 7392

mashups covering a period of five years. 
• We are the first to discuss the lack of novelty observation and

to exploit the use of tag/API compositions for popularity pre-

diction. 
• We suggest a unique approach to build an optimized and self-

explanatory feature space that can overcome the sparse nature

of the data and quantify the popularity contribution of each

feature. 
• We propose a Bayesian learning model that can utilize our sug-

gested feature space to make accurate predictions, identify im-

portant features, and offer confidence level with each predic-

tion which can provide guidance to developers for successful

mashup development. 
• We conduct extensive experiments over real-world mashup

data to demonstrate the effectiveness of the proposed approach.

The remainder of this paper is organized as follows: In

Section 2 , we give an overview of the related work. In Section 3 ,

we present our in-depth mashup popularity investigation on the

dataset from ProgrammableWeb. In Section 4 , we discuss our

suggested novel Bayesian approach for design-phase popularity

prediction. In Section 5 , we present a set of comprehensive ex-
eriments to demonstrate the effectiveness of our approach. In

ection 6 , we conclude and discuss the future work. 

. Related work 

In this section, we describe several related work and differen-

iate them from ours. In general, current research efforts aim to

redict the popularity of a web item ( Bandari, Asur, & Huberman,

012; Figueiredo, 2013; He, Gao, Kan, Liu, & Sugiyama, 2014;

eneshloo, Wang, Han, & Ramakrishnan, 2016; Kim, Kim, & Cho,

012; Lee, Moon, & Salamatian, 2010; Szabó & Huberman, 2010;

atar, Antoniadis, de Amorim, & Fdida, 2012; Yao, Fu, Liu, Liu,

 Xiong, 2016; Yin, Luo, Wang, & Lee, 2012 ), or leverage the

opularity for item filtering or recommendation ( Hora & Valente,

015; Hou & Pletcher, 2010; Jain et al., 2015; Mileva et al., 2010;

an et al., 2015 ). In this work, we focus on the earlier, specifically

opularity prediction in the service computing domain. 

.1. Popularity prediction in service computing 

In ( Hora & Valente, 2015; Hou & Pletcher, 2010; Jain et al.,

015; Mileva et al., 2010; Wan et al., 2015 ), the authors use

opularity prediction as part of their model to recommend APIs

or mashup developers. In ( Hora & Valente, 2015; Mileva et al.,

010 ), they aim to help developers decide between multiple APIs

hat offer the same functionality. They both developed a tool that

nalyzes the usage information of APIs as a metric for popularity,

nd use such information to make recommendations. In ( Jain

t al., 2015 ), the authors suggested a recommender system that

an discover and recommend relevant web APIs to developers

ased on their functionality, usage, and popularity. They used the

umber of times an API has been used in existing APIs as a way to

ank their final list of recommendation. In ( Hou & Pletcher, 2010 ),

he authors developed a tool that utilizes the popularity of APIs

nd their elements to rank suggestions given by code completion

ystems, and they show that ranking suggestions based on their

sage frequency (i.e. popularity) can result in better filtering than

ther approaches such as alphabetical ranking or relevance rank-

ng. Thus, ( Hora & Valente, 2015; Hou & Pletcher, 2010; Jain et al.,

015; Mileva et al., 2010 ) have used the popularity as a feature in

heir model/tool to filter/rank existing APIs which is different from

ur work where we aim to predict the popularity itself. The only

xception is ( Wan et al., 2015 ) which we have already addressed

n the introduction of this paper. We differ in that we aim to

redict the popularity before the service is released to the public. 

.2. Popularity prediction in other domains 

Current work follows one of two directions ( Tatar, de Amorim,

dida, & Antoniadis, 2014 ). The first is predicting the popularity

rior to the release of the web item ( Bandari et al., 2012; Tsagkias,

eerkamp, & de Rijke, 2009 ), and the second is predicting the

opularity after the release of the web item ( Figueiredo, 2013; He

t al., 2014; Hong, Dan, & Davison, 2011; Keneshloo et al., 2016;

im et al., 2012; Lee et al., 2010; Lerman & Hogg, 2010; Pinto,

lmeida, & Gonçalves, 2013; Rizos, Papadopoulos, & Kompatsiaris,

016; Szabó & Huberman, 2010; Tatar et al., 2012; Wu, Mei,

heng, & Zhang, 2016; Yin et al., 2012 ). The two directions are not

ompeting with each other, but rather, they have a complimentary

elationship as the pre-release prediction can address some of

he post-release prediction’s limitations. They key difference is

hat a post-release prediction exploits the time-series information

or how the popularity changes over time to make a prediction.

uch information is not available when the item has not been

eleased yet, or is in its early stages. Furthermore, a pre-release

rediction can have a significant value when the goal is to have
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Fig. 1. Is there a strong correlation between the word count, tag count, API count, and the popularity? We compare the popularity of a mashup against the three potential 

factors (a) textual length (word count), (b) search exposure (tag count), and (c) integrated functionality (API count) 
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Table 1 

Summary of the available information for each mashup. 

Column Example 

Title Haiku 

Date 2009-07-02T21:35:07Z 

Description Parses #haiku on Twitter and matches . . . 

Tags art, haiku, microblogging, . . . 

APIs Flickr, Twitter 

Use count 7097 

Table 2 

Summary statistics of the service mashups in the ProgrammableWeb dataset. 

Column Min Mean 3rd Quartile Max 

Use Count 3 3474 4086 24780 

log(Use Count) 1.099 8.004 8.315 10.120 

Word count 1 25 33 76 

Tag count 0 3 4 6 

API count 0 1 2 38 
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n early-on insight into the potential popularity of a web item to

ake critical budgeting or marketing decisions, which is what our

ork aims to provide. The literature on post-release popularity

rediction suffers from the same limitation as ( Wan et al., 2015 )

here we explained that an item has to be released to the public

nd used for a given period of time before a prediction can be

ade. This kind of setting does not apply to our problem as a pre-

evelopment prediction is required. As for the work on pre-release

opularity prediction ( Bandari et al., 2012; Tsagkias et al., 2009 ).

he authors attempt to predict the popularity of news stories

sing its content. However, they were not successful as they did

ot have access to the full body of the news story, which limited

heir ability to utilize the content thoroughly. Moreover, they

gnored other factors that may play a major role in the popularity

f news stories such as the geographical factor where the topic

ight be a popularity magnet, but it is too local, i.e., popular in

ne source, but not the others. We align ourselves with this kind

f work. However, we plan to have a more thorough analysis of

he content, and to investigate other factors that may contribute

o the popularity. Moreover, our proposed approach is not simply

bout an accurate point prediction, but rather about providing a

omplete prediction framework that can offer an early-on insight into

he estimated popularity of a web item, the prediction’s confidence

evel, and the reasoning behind it . 

. Dataset analysis 

We used a dataset from ProgrammableWeb.com, one of the

ost comprehensive online directories for APIs and mashups ( Jain

t al., 2015 ). The website is considered a free and convenient way

or developers to market their APIs and mashups. They first started

n 2005, and their directory quickly grew to over 10,0 0 0 API by

013 2 The dataset we used was provided by ( Jain et al., 2015 ), and

t consists of 4543 mashups. Moreover, we removed eight outlier

ashups using the Extreme Studentized Deviate test which is a

tandard technique to identify outliers. The final mashup count

fter outliers removal became 4535 mashups. Table 1 shows the

vailable information for each mashup in this dataset. 

.1. Exploring the candidate popularity factors 

A summary statistics can been seen in Table 2 where we have

ound that 1) seventy-five percent of mashups use thirty-three

ords or less to describe their mashup, which means we have

hort textual information, 2) seventy percent of mashups are
2 https://www.programmableweb.com/api-research . 

e  

i  

4  
agged with two to four keywords (i.e. tags count), 3) eighty per-

ent of mashups use one or two APIs at most with their mashup

i.e., API count). 

Based on Fig. 1 , we observed that there’s no correlation be-

ween the number of words, the number of tags, and the mashup

opularity (i.e., use count). This means that having a long descrip-

ion or a large number of tags will have very little effect on the

opularity of a mashup. However, it is also observed that having

o tags will affect the popularity, as all mashups with zero tags

nded up being in the low popular range as seen in Fig. 1 . We

elieve that not properly tagging a service mashup when listing it

n online markets can limit the users ability to find it, which may

xplain this observation. 

On the other hand, we can see a much stronger correlation, in

ig. 1 , between the API count and the popularity. We observed that

ashups in the high popular range mostly use one to three APIs;

hereas, mashups that use more than three APIs immediately

ower their chances of being in the high popular range. When

aking a closer look, we found that mashups with a high number

f APIs are mostly not targeting the general public, but a more

pecific audience. For example, USPS Tracking is a mashup in the

pper half of high popularity range (e.g., 20,699 use count) which

ses only two APIs (Google Maps and USPS Track & Confirm),

nd offers a service to track USPS shipments with Google Maps,

nd is considered relevant to a wide range of audience which

xplains its very high popularity. Whereas, Congress SpaceBook

s a mashup in the lower half of medium popularity range (i.e.,

737 use count) which uses eleven APIs (e.g., Flickr, YouTube,

https://www.programmableweb.com/api-research
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Table 3 

Demonstrating the effect of the lack of novelty with an example of a cluster 

with a dominating mashup, and another with no dominating mashup. 

Cluster (8) with a dominating mashup 

Title Pub. Date Use count 

1001 Secret Fishing Holes Nov. 2005 23,567 

Fishingnotes.com Mar. 2003 3125 

Fish Mapper Apr. 2006 3011 

Fishing Stories Oct. 2006 2842 

Flyfishmap Jun. 2009 1673 

. . . . . . . . . 

Cluster (658) with NO dominating mashup 

Title Pub. Date Use count 

Earthquake Vulnerable Cities Aug. 2008 2785 

Earthquakes in Last 7 Days Nov. 2005 3146 

Earthquakes this Week Nov. 2005 4082 

World and Regional 

Earthquakes 

Nov. 2006 2322 

. . . . . . . . . 
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Google Social Graph,..etc), and basically offers a social networking

platform for congress, is considered relevant to a significantly

smaller audience which explains its low popularity. Thus, the

general observation is that the more APIs consumed by a mashup,

the higher the chances of it being in the medium popular range

(i.e., 20 0 0-70 0 0 use count) as it will most likely be targeting a

much smaller audience, so even if it was successful in reaching

it’s targeted audience, it will still overall be considered within the

medium-low popular range (i.e., below 3rd quantile). 

When taking a closer look into the functionality the mashups

offer, we found that similar mashups have an interesting relation-

ship between them. If we consider a group of similar mashups

to be forming a cluster for a specific functionality (e.g., they all

offer a hotel finding service), then we can observe that they fall

under one of two states: They either have a dominant mashup

(i.e., a mashup that has captured most of the attention for that

functionality), in which case that dominating mashup would have

a significantly higher popularity than its neighbors within the

cluster, or they would all be closely related in popularity with

no dominant mashup. Table 3 shows an example of a cluster

with a dominating mashup, and an example of a cluster with no

dominating mashup. We can see that mashups within the same

cluster offer similar functionality. For the first case, we observe
Fig. 2. The use count (Y) distribution in the ProgrammableWeb dataset. We show the
hat once a dominating mashup appears, all the later mashups

re likely to be in the low-range popularity of that cluster. As for

he second case where we do not have a dominating mashup, we

elieve that if a cluster has an overall mid-range popularity, then

he cluster’s functionality can be considered a promising open

rea for developers to try and build the next mashup that will

ominate it. However, in case the cluster had an overall low-range

opularity average, then this may indicate that this cluster offers a

seless or uninteresting functionality that developers should avoid

n the future. In rare cases, a cluster of similar mashups can be

ominated by more than a single mashup, however, we have found

hat in most cases, we only have a single dominating mashup. 

.2. Measuring the popularity 

We measure the popularity of a mashup using the use count

etric provided by ProgrammableWeb, which is the only provided

opularity metric. Table 2 shows a summary statistics of the use

ount. The use count metric measures only the raw popularity,

.e., the level of public exposure. It does not capture other aspects

f the popularity, e.g., user satisfaction, in which another metric

uch as the ratio of thumbs up/down would be more appropriate.

onetheless, it was shown in multiple studies that there’s a

trong correlation between all popularity metrics. For example, He

t al. (2014) showed a strong correlation between the number of

iews (captures user exposure) and the number of votes up/down

captures user satisfaction) for news stories on the news website

igg. Moreover, Borges, Hora, and Valente (2016) found that

here’s a strong correlation between the two popularity metrics

sed in GitHub, the number of forks (captures user exposure) and

he number of stars (captures user satisfaction). This means that,

n most cases, the higher the public spread/exposure, the higher

he user satisfaction. Thus, even though the use count metric does

ot capture user satisfaction, it should be highly correlated with it.

It was reported previously ( Szabó & Huberman, 2010; Yu &

oodard, 2008 ) that a power-law distribution is expected for

his kind of problem. We can observe in Fig. 2 a right skewed

istribution of the use count, but without a clear shape of a power

aw distribution. We believe that because we suffer from not

aving any zero count mashups, the long-tail distribution is not

s clear as we want it to be. Nonetheless, having a dataset with

ore recent data, we believe a clearer long-tail distribution will

e observed. Also, in Fig. 2 , we see the logarithmic transformation

f the use count which gives us a condensed normal distribution
 distribution of the popularity in (a) and the log popularity distribution in (b). 
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hape with a mean of roughly eight. It’s worth mentioning that

t’s a common statistical practice to log transform the response

hen we have such a distribution as it makes it less sensitive to

utliers and easier to model. 

. Design-phase popularity prediction 

In this section, we discuss our suggested approach which con-

ists of our method to construct an optimized and self-explanatory

eature space from raw sparse data, and our Bayesian learning

odel that can predict, select features, and offer confidence level

ith each prediction. 

.1. Constructing the feature space 

The functionality : To derive the functionality of a mashup, we

uggest leveraging its title and description as follows. First, we

pply a standard natural language processing methods, such as

top-word removal and word stemming, on the textual content of

he title and the description to generate a term frequency-inverse

ocument frequency matrix or TF-IDF matrix ( Manning, Raghavan,

 Schütze, 2008 ). The TF-IDF matrix is a representation of the

ontent where each row is a mashup, and each column is a term.

he elements in this matrix represent how relevant a given term

s to a specific mashup. This representation allows us to capture

he most important terms that describe the content of a mashup.

owever, TF-IDF usually produces a large matrix that is highly

parse, i.e., a given mashup’s vector would have many zero entries

s it uses only a few terms out of the available dictionary. 

To address this issue, we utilize the probabilistic topic model-

ng technique Latent Dirichlet Allocation (LDA) ( Blei, Ng, & Jordan,

003 ). The intuition behind using LDA is that given the TF-IDF

atrix, LDA can leverage such representation by grouping together

he frequently co-occurring terms into an approximation of a real-

orld concept, i.e., a topic. The set of topics discovered by LDA

ould represent a higher level summary of the terms discovered

y the TF-IDF approach. As such, LDA is expected to provide a good

nd compact approximation of the TF-IDF matrix as the number of

opics in the LDA matrix is significantly smaller than the number

f terms in the TF-IDF matrix. LDA produces a topic proportion

atrix D where each row in the matrix represents a mashup, and

ach column represents a discovered topic. The entries D i,k in the

DA matrix essentially denote the probability that topic k describes

ashup i . As part of using LDA, we need to specify the number

f topics k , and through cross-validation, as seen in Table 4 , we

ound one-hundred to be a good candidate as it offers a balance
ig. 3. An example of two discovered LDA topics, a travel related topic on the left, and a 

o summarize the textual content into a set of real-world concepts. 
etween model’s complexity and model’s accuracy. We believe

hose topics represent the mashups functionalities that we aim

o derive. To give a better insight into those discovered topics,

ig. 3 shows the content of two topics, the first (left side) is about

raveling, while the second (right side) is about real-estate. We

earn the contribution of each discovered topic as follows: 

 k = 

∑ m 

i =1 D i,k × y i ∑ m 

i =1 D i,k 

, ∀ k ∈ { 1 , .., K} (1)

here m is the total number of mashups, K is the total number of

opics, and y i is the corresponding popularity (i.e., use count) for

ashup i . Thus, each entry in the vector d k is a score that indicates

he topic’s contribution towards the popularity. When splitting the

ataset into training and testing, we learn the contribution of a

ew testing mashup with vector θt ∈ R 
n as follows: 

t = θt ◦ d (2) 

imply, we do an element-wise multiplication between the new

ashup’s probability vector and the topic-contribution vector that

epresents the contribution of each discovered topic towards the

opularity. We use the generated LDA matrix with the new topics

core directly in our model as features. 

The selection of tags and services : The standard way to cap-

ure the use of tags and the selection of services (i.e., APIs) is to

reate two binary frequency matrices. The rows in those matrices

epresent our mashups and the columns represent the used tags in

he first matrix, and the selected services (i.e., APIs) in the second

atrix, where each entry denotes if a given tag/API was used in

 given mashup or not (i.e., binary score). However, since we have

409 unique tag, and 788 distinct service (i.e., API), and that de-

elopers use on average 2-3 tags and 1-2 APIs per servie mashup,

e have an extremely sparse matrix. Thus, we suggest a better

wo-step approach to replace those two sparse and large matrices

ith only two features: the tag score feature and the API score

eature. These score features will denote the contribution of the

sed tags, for the tag score, and contribution of selected services

i.e., APIs) for a given mashup. We constructed those two features

s follows: In step one, we learn the averaged contribution of each

ag/API towards popularity. To learn the contribution of each tag,

e divide the use count (i.e., popularity) of each mashup in the

ag matrix by the number of tags it uses, and assign that as a new

core for the used tags. At this point, for each column in both the

ags matrix, we have a score that represents the contribution of

hat tag/API towards the popularity of the mashups. We take the

verage of each column which represents the averaged contribu-

ion towards popularity for a given tag, and assign it as a score for
real state related topic on the right. The two example topics highlight LDA’s ability 
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Table 4 

Finding the optimal number of topics (K) for LDA. The lowest RMSE can be observed 

when the number of topics is 100. 

K 5 30 50 100 250 500 10 0 0 

RMSE 0.6302 0.6292 0.6242 0.6181 0.6270 0.6290 0.6355 

Table 5 

Examples of frequent tag/API compositions. The combination of such 

compositions lead to unique functionalities. For example, merging 

Flickr’s capability with Google-maps allowed users to search for their 

images based on where the images were taken, i.e., location. This 

unique functionality, captured by the composition, can be a leading fac- 

tor behind the popularity of the service mashup. 

Tags APIs 

Photo, Map Flickr, Google-maps 

Video, Music YouTube 

Social, Microblog Twitter 

Video, Photo Flickr, YouTube 
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the whole column. We do the same for the API matrix to learn the

averaged contriubution of each API towards the popularity. In step

two, given a service mashup, we add up the individual averaged

contributions of the tags that it uses to create the tag score fea-

ture, and add up the individual contribuitons of APIs that it uses to

create the API score feature. When splitting the data into training

and testing, we use the average contribution for each tag/API that

we learned from training as a score for the testing as well. We

then add up the individual contributions in the same manner. 

The combination of selected tags/services : To capture the role

such compositions play in the popularity of a mashup, we suggest

finding those compositions and building a binary frequency matrix

that allows us to use them as features. To find those compositions,

we suggest the use of Apriori algorithm ( Tan, Steinbach, & Kumar,

2005 ) which is a standard technique to find frequently used

compositions. The selected support level for Apriori should offer a

balance between finding all possible compositions and maintaining

a statistical meaning for the compositions. It is expected to have a

large number of compositions, and that should not be a problem

as our suggested Bayesian learning model can select the most rele-

vant ones. In our dataset, we were able to find 178 frequently used

compositions. Table 5 shows a few of the discovered compositions.

For example, the first composition represents the use of (Photo

and Map) as tags and (Flickr and Google-maps) as APIs. This com-

bination created a mashup with an interesting functionality that

allowed users to know the location of where their Flickr images

were taken. We believe this interesting functionality, captured by

the composition, is behind the popularity of the mashup. We used

those frequent compositions to create the binary frequency matrix

which we used directly as features in our model. 

Novelty : As we have explained earlier, a mashup may fail to

attract its users if similar mashups are already available and have

taken up the market. We observed this through our analysis in

which we found that when we cluster similar mashups together,

it’s common to see one of two states: A cluster with a dominant

mashup, or a cluster with no dominant mashup. In the first case,

we observed that once a dominant mashup appears, it would cap-

ture most of the attention for that cluster’s functionality forcing

all the other mashups, especially the later ones, in that cluster to

settle-in for a lower popularity. In other words, we can say that the

other dominated mashups within the cluster lack the novelty as the

dominant mashup is presumed to be the first in the cluster to suc-

cessfully capture all the user’s needs for that functionality. Thus,

we suggest to create a new feature vector called the lack of novelty

where we penalize all the dominated mashups with a score of
ne, as we expect them to have a low/medium popularity (i.e., use

ount below 3rd quantile), and assign a score of zero to all other

ashups including dominating mashups and mashups in clusters

ith no dominating mashup as we have no evidence that they lack

he novelty. We then use that vector as a feature in our model. 

However, to achieve the suggestion mentioned above, we need

o determine the best approach to measure the similarity between

he functionality of two mashups. We suggest combining the

nowledge from both the content found in the title/description of

he mashup, and from the list of used tags and APIs as follows: 

im i, j = α × C i, j + (1 − α) × J i, j (3)

here α is a learned probability weight between zero and one.

 i, j is a cosine similarity matrix ( Tan et al., 2005 ) that measures

he similarity between the title and the description of two given

ashups. J i, j is a jaccard similarity matrix ( Tan et al., 2005 ) that

easures the similarity between the list of tags and APIs of two

iven mashups. The α weight measures how much trust you place

n your content from the title/description. If the dataset lacks

roper description, but is tagged properly, then less weight can

e placed on the content from the title/description so that more

eight is placed on the list of used tags and APIs, and vice versa.

f there is no clear pattern in the dataset, then the recommended

pproach in such case would be to provide equal weights to both

spects. However, if there’s a clear preference in the dataset (i.e.,

ommunity), the proposed approach can provide better predictions

f the preference is reflected in the provided weights. In the rare

ase where mashups are posted without any meta information

i.e., both the description and tags are empty), the model would

ot have enough data to make a confident predication. Nonethe-

ess, it is expected that such an extreme case (i.e., no meta

nformation) would be difficult even for human experts as they

ould find it impossible to make a judgement with no available

nformation on the mashup. It is important to clarify that in this

pproach we assume that professional developers will put a great

eal of effort in preparing the meta information (i.e., description

nd/or tags) of their mashup to ensure proper exposure of their

ork. This assumption is needed for the model to provide accurate

nd confident predictions. For our dataset, with cross-validation,

e have found that an α value of 0.9 produced clusters that met

ur requirement in that mashups were clustered together based

n functionality. 

Next, we suggest using hierarchical clustering ( Tan et al., 2005 )

o create the clusters using the averaged similarity matrix Sim i,j 

hat we already constructed. As it’s the case with most clustering

lgorithms, in hierarchical clustering, we need to specify the

umber of clusters as a parameter to the algorithm. we found

197 to be a good number of clusters for our dataset. The number

f clusters we chose is the total number of unique tags (1409) and

PIs (788). Since each cluster should represent a unique possible

unctionality, the choice of the number of cluster should represent

he number of unique possible functionality we assume to exist

n the dataset. Thus, we are making the assumption that for each

nique available tag and API, at least a single possible unique

unctionality exists. 

Finally, to identify the clusters with a dominant mashup from

he ones without, we looked for an outlier point in the cluster

here we measured how many standard deviations each point is

way from the mean using z-score . To determine if a point within
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 cluster is an outlier or not, we measure how many standard

eviations it is from the mean of the cluster. If we found that it’s

 standard deviations away from the mean, then we declare it as a

ominating mashup. The value for t has to be determined through

ross validation. In our case, we have found three to be a good

alue for t . We can now create our lack of novelty feature vector

s described above, and use it as a feature in our model. 

.2. The prediction model 

We present a Bayesian learning model for popularity predic-

ion. The proposed model offers three major advantages over

ther regression models. First, instead of just providing a point

rediction, the Bayesian model outputs a predictive distribution

or a given test mashup. The variance of the predictive distribution

an be used to quantify the confidence level of the prediction.

econd, we integrate the Bayesian learning model with the Auto

elevance Determination (ARD) mechanism ( Bishop, 2006 ), which

llows us to perform feature selection and identify the most im-

ortant factors that affect mashup popularity. Third, by performing

ype 2 maximum likelihood, we can automatically optimize the

yperparameters of the model, which avoid the tedious process of

ross-validation required by many other models. 

.2.1. Model inference 

We start by assuming the response t is a random variable

hose distribution conditioned on input x is Gaussian: 

p(t| x , w , β) = N (t| w 
T φ( x ) , β−1 ) (4)

here β is the precision of the Gaussian and φ( x ) is the feature

ector of mashup x . 

The likelihood of the training data X then is given as: 

p( t | X , w , β) = 

N ∏ 

n =1 

p( t n | x n , w , β−1 ) (5)

he flexibility of the Bayesian inference framework allows us to

ncorporate different prior knowledge for different learning ef-

ects. Specifically in this work, we assume that not all features are

qually important to the prediction problem. As a result we choose

 conjugate Gaussian prior(A.K.A ARD prior) on the coefficient ran-

om variable w to conduct feature selection: 

p( w | α) = N ( 0 , A −1 ) (6)

here A is a diagonal matrix governed by hyper-parameter α
here αi denotes the i-th diagonal entry of A. Section 4.2.3 pro-

ides the detailed discussion of how feature selection can be

chieved by adopting ARD prior. 

According to the Bayesian rule, the posterior distribution of w

s proportion to the product of the likelihood and prior, which is

lso Gaussian due to conjugacy: 

p( w | t , α, β) = N ( w | m , �) (7)

here the posterior mean and the covariance are given as

ollows: 

 = β��T , � = (A + β��T ) −1 (8) 

is the design matrix. The i-th row of � is φ( x i ) . Assume that

he optimal values of the hyper-parameters, α∗ and β∗ can be

earned (see the next section for details). We can derive the

redictive distribution over a test mashup x t by integrating out w ,

hich is also a Gaussian: 

p(t| X , x t , α
∗, β∗) = 

∫ 
p(t| x t , w , β∗) p( w | α∗, X , β∗) d w 

= N ( m 
T φ( x t ) , σ

2 ( x t )) (9) 
here the predictive mean and the covariance are given as follows.

2 ( x t ) = ( β∗) −1 + φ( x t ) 
T �φ( x t ) (10)

esides using the mean of the predictive distribution (i.e.,

 
T φ( x t ) ) to predict the future use count of x t , the variance
2 ( x t ) provides important information to quantify the confidence

evel of the prediction. 

.2.2. Learning process 

Estimating hyper-parameters α, β yields a type-2 maximum

ikelihood problem. Specifically, we maximize the log of the model

vidence given by: 

n p( t | X, α, β) = ln 

∫ 
p( t | X, w , β) p( w | α) d w 

= ln N (0 , C) 

= −1 

2 
(N ln (2 π) + ln (C) + t T C −1 t ) (11) 

here C is given by 

 = β−1 I + �A −1 �T (12)

y setting the partial derivative of (11) with respect to α and β to

ero, we derive the solutions for both hyper-parameters 

α∗
i = 

γi 

m 
2 
i 

(β∗) −1 = 

|| t − �m || 2 
N − ∑ 

i γi 

(13) 

here γ i is defined by 

i = 1 − αi �ii (14) 

he learning proceeds by using (8) and (13) alternatively with

andomly initialized α and β until convergence. 

.2.3. Feature selection 

The first updating rule from (13) implies an implicit solution

s the right hand side is also a function of αi . To determine the

tationary point of the log likelihood function (11) explicitly, we

an extract the contribution from αi out of the covariance matrix

 in (11) : 

 = β−1 I + 

∑ 

j � = i 
α−1 

j 
ϕ j ϕ 

T 
j + α−1 

i 
ϕ i ϕ 

T 
i 

= C −i + α−1 
i 

ϕ i ϕ 
T 
i (15) 

here ϕi denotes the i -th column of � and C −i represents ma-

rix C with the removal of ϕi . Substituting (15) in (11) , the log

ikelihood can be written as: 

n N (0 , C) = L ( α−i ) + λ(αi ) (16)

here L ( α−i ) denotes the log likelihood function with ϕi omitted

nd function λ( αi ) is defined as: 

(αi ) = 

1 

2 

[
ln αi − ln (αi + s i ) + 

q 2 
i 

αi + s i 

]
(17) 

here q i and s i are defined as: 

s i = ϕ 
T 
i C 

−1 
−i 

ϕ i 

 i = ϕ 
T 
i C 

−1 
−i 

t (18) 

he partial derivative of (17) with respect to αi is 

α−1 
i 

s 2 
i 

− (q 2 
i 

− s i ) 

2(αi + s i ) 2 
(19) 

etting (19) to zero gives two possible solutions for αi : 

αi → ∞ , q 2 
i 

< s i 

αi = 

s 2 
i 

q 2 −s i 
, otherwise 

(20) 
i 
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Fig. 4. Proposed model’s performance vs. other regression models. We can observe 

that the performance of other regression models can vary greatly depending on the 

selected parameter value; whereas, the proposed approach provides a consistent 

performance as it requires no parameter tuning. 
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Table 6 

Examples of the model’s estimated popularity (on a logarithmic scale) and con- 

fidence level compared to the true mashup’s popularity. We can observe that 

the predicted values are close to the true values, and that the behaviour of the 

model matches the intuition in that the lower variance (i.e., higher confidence) 

maps to a more accurate model. 

Mashup True Pop. Predicted Pop. Variance SD 

Adult Or Not 8.4740 7.4677 0.3763 0.6134 

QuoteRelish 6.9697 7.1060 0.2655 0.5152 

Table 7 

Comparing our unique approach to construct the feature space versus other 

standard methods in terms of complexity and accuracy. We can observe that 

the proposed approach provides a superior accuracy while using a significantly 

less number of features. 

Approach #Features RMSE 

Standard methods 10455 1.1046 

Suggested approach 277 0.5545 
In the first case, as αi (i.e., precision of coefficient w i ) approaches

to infinity, w i will be driven to its mean (i.e., 0). This will result in

the removal of the corresponding feature from the model, which

achieves feature selection. 

5. Experiment 

We first describe the experimental setup. We then compare

the prediction accuracy of our proposed Bayesian learning model

with other competitive models, and show how our learning model

is overall superior. Moreover, we show examples of our model’s

ability to offer confidence level with each prediction. Finally, we

evaluate our approach in building the feature space and ability to

identify the important features. 

5.1. Experimental Setup 

The current use count (i.e., popularity) of a mashup is the

total number of use count accumulated over the years since its

publication date. Thus, it favors older mashups over newer ones

as the newer mashups had less time to accumulate their use

count. To have a more balanced and fair scale, we instead used

the average yearly use count as our response in which we divided

the original use count by the mashup’s lifetime (i.e., number of

years it’s been available in the market). 

To simulate a real world scenario, we used the information

from the mashups listed in the first four years as the training

data, to predict the popularity of the fifth’s year mashups. In

other words, we are training the model on service mashups that

were created in the first four years, and testing the model on

service mashups that were created on the fifth year. To measure

the prediction accuracy, we used Root Mean Square Error (RMSE)

which is a standard way to measure the difference between the

true and predicted values. In general, the lower the RMSE, the

more accurate the model. 

5.2. Model performance 

To evaluate the prediction performance of our proposed

Bayesian learning model versus other models, we used a feature

space of 287 features where for each mashup we have a tag score

feature, an API score feature, a Lack of Novelty score feature, 100

LDA features (one feature per topic), and a 174 binary API/tag

composition features. 

Fig. 4 shows the prediction result of our proposed model versus

Linear Regression with L1 norm regularization (i.e., Lasso) and Lin-

ear Regression with L2 norm regularization (i.e., Ridge Regression).

Both ridge regression and lasso require parameter tuning (i.e.,

lambda) and their performance significantly rely on the selected

parameter value. For ridge regression, we can see that a low or

a high lambda value can drastically decrease the performance;

whereas, with lasso regression, the higher the lambda value, the

lower the performance as the model becomes more selective of

what features to use. On the other hand, our proposed bayesian

learning model does not require any parameter tuning as it can

directly give the optimal or near-optimal solution. Moreover, it

can identify the important features which ridge regression does

not offer, and it provides a confidence level with each prediction

which both ridge and lasso regression cannot do. Thus, overall, it

offers the best prediction framework. 

To show how our suggested learning model can offer confi-

dence level with each prediction, we present a few examples in

Table 6 . The first one is a mashup we predicted with a relatively

large error, and the second one is a mashup we predicted with a

smaller error. The general observation is that if we have a small

variance, then we are more confident about the prediction, and

vice versa. For example, we predicted more accurately the second
ashup, and the model confirms that fact by showing a small

ariance for the prediction (i.e., a high confidence). On the other

and, our prediction of the first mashup is more off as the model

oes not have enough historical data to make a more accurate

rediction, so the model presents a much higher variance which

eans it has a low confidence in this prediction. 

.3. Feature analysis 

To show the performance boost when using our unique

pproach to construct feature space versus simpler standard

ethods, we created an alternative feature space that uses word

requency matrix to capture the role of the title and the descrip-

ion of the mashup, and a binary frequency matrix to capture the

ole of the tags and APIs. The result can be seen on Table 7 where

ur approach in constructing the feature space is not only offering

 significantly smaller feature space, but also a drastically better

rediction accuracy compared to the frequency approach. 

Furthermore, we show in Table 8 the added value of each

uggested feature using different models as follows: 
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Table 8 

Measuring the incremental performance boost with each added set of features 

starting with the LDA topics as a base, and then adding our features incremen- 

tally. 

Model #Features RMSE 

Base 100 0.6287 

+ Compositions 274 0.5897 

+ API Score 275 0.5742 

+ Lack of Nov. 276 0.5688 

+ Tag Score 277 0.5545 
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Table 9 

Demonstrating a test mashup as an example of the information a software de- 

veloper would provide to the proposed model (input), and the design-phase 

insight he/she would recieve (output). 

Mashup’s information 

Title Flyfishmap 

Description User generated fly fishing 

information using Google . . . 

Tags Used #fishing #flyfishing . . . 

APIs used Google-maps, YouTube . . . 

Mashup’s design-phase popularity insight 

True Popularity (Log) 7.4223 (i.e., 1673 use count) 

Predicted Popularity (Log) 6.9475 (i.e., 1040 use count) 

Popularity Range Low 

Prediction Variance 0.27243 

Func.#1 (Maps & Social Sharing) 25.3 (above 90th Percentile) 

Func.#2 (Fishing & Wildlife) 3.26 (below 30th Percentile) 

Lack of Novelty 1 

Tags Contribution Score 4.04 (below 10th Percentile) 

APIs Contribution Score 15.41 (above 90th Percentile) 

Popular Combinations map (tag), YouTube (API), 

Google-maps (API) 
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• Base : Using the 100 topics generated from LDA, where each

topic’s probability is replaced with the calculated score (100

features). 
• + Compositions : Using the previous model features and the bi-

nary matrix of compositions generated from the Apriori algo-

rithm as features (274 features). 
• + API Score : Using the previous model features and the API

score feature (275 features). 
• + Lack of Nov. : Using the previous model features and the lack

of novelty feature (276 features). 
• + Tag Score : Using the previous model features and the tag

score feature (277 features). 

As we can see, the baseline is performing quite well as ex-

ected since the discovered LDA topics are able to capture the

ffered functionality of the mashup, and their current score

epresent their contribution towards the popularity. Nonetheless,

ach of our added features was still able to improve the model,

nd collectively they improved the baseline model’s accuracy by

oughly 12%. The compositions offered the biggest improvement,

ut it added a high complexity (174 new features). Whereas, the

ther three features were able to collectively add the same level

f improvement to the model but with drastically less added

omplexity which shows their significance. Furthermore, we used

andom forest regression and lasso regression as well as our

roposed bayesian model to evaluate their importance to the

odel as features. We found that all three models picked the

ag score feature and the API score feature as the top two most

mportant features which confirms that they play a major role in

he accuracy of the model. The models did not all agree on the

ank of the lack of novelty feature as our bayesian learning model

uggested it was the 7th most important feature, random forest as

he 16th, and lasso as the 25th. We believe this is the case because

he lack of novelty feature is targeting a specific observation, and

hus is used for only a small subset of the mashups (roughly 16%
ig. 5. The two discovered topics (i.e., functionalities). We can observe that the model w

sers share fishing information and locations. The first discovered topic shown on the le

bserved terms (e.g., map, Twitter, share , and user ). The second discovered topic can be 

ampground, park, outdoor , and fish ). 
n our dataset) which may not show an overall significance, but

hould be critical for those relevant mashups. 

.4. Illustration ofoffered insight 

One key benefit of using the design-phase popularity prediction

odel (i.e., a pre-release model) is the early-on insight it can pro-

ide into the potential popularity of a web item. Such insight plays

 major role when critical budgeting or marketing decisions need

o be made before an item is released to the public. In previous

ork, the offered insight was merely a popularity range prediction

i.e., whether the web item would recieve a low, medium, or high

opularity). In this paper, one of our contributions is that we

ake this early-on insight a step further by offering a confidence

evel with each prediction and by exploiting the self-explanatory

eature space we built to provide the reasoning behind the

opularity. 

In Table 9 , we show a test mashup from our experiment

here the developer created a web app that shows nearby fishing

ocations on Google Maps. Also, the web app allows users to post

mages and YouTube videos to share their experience. In most

ases, all the information shown in Table 9 is known early-on to

he developer, even before he/she starts to invest time and money
as able to capture the two main concepts behind the shown test mashup, in which 

ft can be mapped to the general concept of Maps and Social Sharing based on the 

mapped to the general concept Fishing and Wildlife based on observed terms (e.g., 
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on developing the mashup. Given this information, here is the

kind of insight the suggested model would offer to the developer: 

• First, we provide an estimated popularity with a low variance

of 0.27 which indicates a high confidence in the prediction. We

can see that the model is quite accurate with only a 633 use

count difference between the true and predicted popularity. 
• Second, as seen in Fig. 5 , two functionalities were discovered.

The first (i.e., maps and social sharing of images and videos)

attracts a large audience as the functionality contribution score

is above the 90th percentile of all the discovered function-

alities scores. Whereas, the second (i.e., fishing and wildlife)

attracts only a small audience as its score is below the 30th

percentile. 
• Third, the idea lacks the novelty as this functionality is already

offered by an existing mashup that has successfully captured

the market. 
• Fourth, the selected tags (all related to fishing) attract a small

audience (i.e., users searching for such functionality represent

a small club) as the tags contribution score is below the 10th

percentile. 
• Fifth, the selected APIs (i.e., Google-maps and YouTube) attract

a large audience as the APIs contribution score is above the

90th percentile of the APIs scores. 
• Finally, the used combination of tag (maps) and APIs (YouTube

and Google-maps) is a popular combination. 

Given such insight, the developer is well-informed early-on

of the estimated popularity, the estimated audience for each

component (i.e., strength/weakness), and the confidence in the

estimation. We hope such insight provides useful guidance to

developers for successful mashup development. 

6. Conclusion and future work 

In this work, we presented a comprehensive investigation on

the popularity of mashups through the analysis of a five-year

period ProgrammableWeb dataset. Based on our analysis, we iden-

tified five factors that contribute to the popularity of mashups: 1)

Functionality, 2) novelty, 3) use of tags, 4) selection of services, and

5) combination of selected services/tags. Our suggested approach

models those factors and construct the feature space in an opti-

mized and self-explanatory way that solves the sparsity issue of

real-world data and quantifies the contribution of each feature to-

wards the popularity. More importantly, we suggested a Bayesian

learning model that can estimate the popularity of a service

mashup even before it is developed using design-phase features

only. Furthermore, the model can identify the important features

and offer a confidence level with each prediction which provides

useful guidance to developers. When the model has enough data

to make an accurate prediction (i.e., has high confidence), it can

accurately estimate the popularity and offer an extended insight

into the reasoning behind the popularity. When the model does

not have enough data to make an accurate prediction, it informs

the developer that his/her domain expertise should be leveraged

more by presenting a low confidence in the prediction. 

For future work, we would like to use Hierarchical Dirichlet

Process ( Teh, Jordan, Beal, & Blei, 2004 ) to determine the optimal

number of topics for Latent Dirichlet Allocation (LDA). We also

plan to integrate real-world features with our model such as the

popularity of a specific LDA topic on social media. Moreover, we

plan to capture the temporal nature of popularity as we do not

consider the time aspect in our current work. 
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