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Resolvents of set-valued operators play a central role in various branches of 
mathematics and in particular in the design and the analysis of splitting algorithms 
for solving monotone inclusions. We propose a generalization of this notion, called 
warped resolvent, which is constructed with the help of an auxiliary operator. 
The properties of warped resolvents are investigated and connections are made 
with existing notions. Abstract weak and strong convergence principles based on 
warped resolvents are proposed and shown to not only provide a synthetic view 
of splitting algorithms but to also constitute an effective device to produce new 
solution methods for challenging inclusion problems.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

A generic problem in nonlinear analysis and optimization is to find a zero of a maximally monotone 

operator M : X → 2X , where X is a real Hilbert space. The most elementary method designed for this task 

is the proximal point algorithm [34]

(∀n ∈ N) xn+1 = JγnM xn, where γn ∈ ]0, +∞[ and JγnM = (Id +γnM)−1. (1.1)

In practice, the execution of (1.1) may be hindered by the difficulty of evaluating the resolvents (JγnM )n∈N . 

Thus, even in the simple case when M is the sum of two monotone operators A and B, there is no mechanism 

to express conveniently the resolvent of M in terms of operators involving A and B separately. To address 

this issue, various splitting strategies have been proposed to handle increasingly complex formulations in 

which M is a composite operator assembled from several elementary blocks that can be linear operators 

and monotone operators [5,7,9–12,17,18,21,22,30,37]. In the present paper, we explore a different path by 

placing at the core of our analysis the following extension of the classical notion of a resolvent.
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Definition 1.1 (Warped resolvent). Let X be a reflexive real Banach space with topological dual X ∗, let D

be a nonempty subset of X , let K : D → X ∗, and let M : X → 2X
∗

be such that ran K ⊂ ran(K + M) and 

K + M is injective (see Definition 2.1). The warped resolvent of M with kernel K is JK
M = (K + M)−1 ◦ K.

A main motivation for introducing warped resolvents is that, through judicious choices of a kernel K

tailored to the structure of an inclusion problem, one can create simple patterns to design and analyze 

new, flexible, and modular splitting algorithms. At the same time, the theory required to analyze the static 

properties of warped resolvents as nonlinear operators, as well as the dynamics of algorithms using them, 

needs to be developed as it cannot be extrapolated from the classical case, where K is simply the identity 

operator. In the present paper, this task is undertaken and we illustrate the pertinence of warped iteration 

methods through applications to challenging monotone inclusion problems.

The paper is organized as follows. Section 2 is dedicated to notation and background. In Section 3, 

we provide important illustrations of Definition 1.1 and make connections with constructions found in the 

literature. The properties of warped resolvents are also discussed in that section. Weakly and strongly 

convergent warped proximal iteration methods are introduced and analyzed in Section 4. Besides the use 

of kernels varying at each iteration, our framework also features evaluations of warped resolvents at points 

that may not be the current iterate, which adds considerable flexibility and models in particular inertial 

phenomena and other perturbations. New splitting algorithms resulting from the proposed warped iteration 

constructs are devised in Section 5 to solve monotone inclusions.

2. Notation and background

Throughout the paper, X , Y, and Z are reflexive real Banach spaces. We denote the canonical pairing 

between X and its topological dual X ∗ by 〈·, ·〉, and by Id the identity operator. The weak convergence of 

a sequence (xn)n∈N to x is denoted by xn ⇀ x, while xn → x denotes its strong convergence. The space 

of bounded linear operators from X to Y is denoted by B(X , Y), and we set B(X ) = B(X , X ).

Let M : X → 2X
∗

. We denote by gra M =
{

(x, x∗) ∈ X × X ∗ | x∗ ∈ Mx
}

the graph of M , by 

dom M =
{

x ∈ X | Mx 
= ∅

}
the domain of M , by ran M =

{
x∗ ∈ X ∗ | (∃ x ∈ X ) x∗ ∈ Mx

}
the 

range of M , by zer M =
{

x ∈ X | 0 ∈ Mx
}

the set of zeros of M , and by M−1 the inverse of M , i.e., 

gra M−1 =
{

(x∗, x) ∈ X ∗ × X | x∗ ∈ Mx
}

. Further, M is monotone if

(
∀(x, x∗) ∈ gra M

)(
∀(y, y∗) ∈ gra M

)
〈x − y, x∗ − y∗〉 � 0, (2.1)

and maximally monotone if, in addition, there exists no monotone operator A : X → 2X
∗

such that gra M ⊂

gra A 
= gra M . We say that M is uniformly monotone with modulus φ : [0, +∞[ → [0, +∞] if φ is increasing, 

vanishes only at 0, and

(
∀(x, x∗) ∈ gra M

)(
∀(y, y∗) ∈ gra M

)
〈x − y, x∗ − y∗〉 � φ

(
‖x − y‖

)
. (2.2)

In particular, M is strongly monotone with constant α ∈ ]0, +∞[ if it is uniformly monotone with modulus 

φ = α| · |2.

Definition 2.1. An operator M : X → 2X
∗

is injective if (∀x ∈ X )(∀y ∈ X ) Mx ∩ My 
= ∅ ⇒ x = y.

The following lemma, which concerns a type of duality for monotone inclusions studied in [20,29,32], will 

be instrumental.

Lemma 2.2. Let A : Y → 2Y
∗

and B : Z → 2Z
∗

be maximally monotone, let L ∈ B(Y, Z), let s∗ ∈ Y∗, and 

let r ∈ Z. Suppose that X = Y × Z × Z∗ (hence X ∗ = Y∗ × Z∗ × Z), define
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M : X → 2X
∗

: (x, y, v∗) �→ (−s∗ + Ax + L∗v∗) × (By − v∗) × {r − Lx + y}, (2.3)

and set Z =
{

(x, v∗) ∈ Y × Z∗ | s∗ − L∗v∗ ∈ Ax and Lx − r ∈ B−1v∗
}

. In addition, denote by P the set 

of solutions to the primal problem

find x ∈ Y such that s∗ ∈ Ax + L∗
(
B(Lx − r)

)
, (2.4)

and by D the set of solutions to the dual problem

find v∗ ∈ Z∗ such that − r ∈ −L
(
A−1(s∗ − L∗v∗)

)
+ B−1v∗. (2.5)

Then the following hold:

(i) Z is a closed convex subset of P × D .

(ii) M is maximally monotone.

(iii) Suppose that (x, y, v∗) ∈ zer M . Then (x, v∗) ∈ Z, x ∈ P, and v∗ ∈ D .

(iv) P 
= ∅ ⇔ D 
= ∅ ⇔ Z 
= ∅ ⇔ zer M 
= ∅.

Proof. (i): [20, Proposition 2.1(i)(a)].

(ii): Define

{
C : X → 2X

∗

: (x, y, v∗) �→ (−s∗ + Ax) × By × {r}

S : X → X ∗ : (x, y, v∗) �→ (L∗v∗, −v∗, −Lx + y).
(2.6)

It follows from the maximal monotonicity of A and B that C is maximally monotone. On the other hand, 

S is linear and bounded, and

(
∀(x, y, v∗) ∈ X

) 〈
(x, y, v∗), S(x, y, v∗)

〉
= 〈x, L∗v∗〉 − 〈y, v∗〉 + 〈y − Lx, v∗〉 = 0. (2.7)

Thus, we derive from [35, Section 17] that S is maximally monotone with dom S = X . In turn, [35, 

Theorem 24.1(a)] asserts that M = C + S is maximally monotone.

(iii): We deduce from (2.3) that s∗ ∈ Ax + L∗v∗, v∗ ∈ By, and y = Lx − r; hence v∗ ∈ B(Lx − r). 

Consequently, s∗ − L∗v∗ ∈ Ax and Lx − r ∈ B−1v∗, which yields (x, v∗) ∈ Z. Finally, (i) entails that x ∈ P

and v∗ ∈ D .

(iv): By [20, Proposition 2.1(i)(c)], P 
= ∅ ⇔ D 
= ∅ ⇔ Z 
= ∅. In addition, in view of (iii), zer M 
= ∅

⇒ Z 
= ∅. Suppose that (x, v∗) ∈ Z and set y = Lx − r. Then y = Lx − r ∈ B−1v∗ and s∗ ∈ Ax + L∗v∗. 

Hence 0 ∈ By−v∗ and 0 ∈ −s∗ +Ax +L∗v∗. Altogether, 0 ∈ (−s∗ +Ax +L∗v∗) ×(By−v∗) ×{r−Lx +y} =

M(x, y, v∗), i.e., (x, y, v∗) ∈ zer M . �

Now suppose that X is a real Hilbert space with scalar product 〈· | ·〉. An operator T : X → X is 

nonexpansive if it is 1-Lipschitzian, α-averaged with α ∈ ]0, 1[ if Id +(1/α)(T − Id) is nonexpansive, firmly 

nonexpansive if it is 1/2-averaged, and β-cocoercive with β ∈ ]0, +∞[ if βT is firmly nonexpansive. Averaged 

operators were introduced in [4]. The projection operator onto a nonempty closed convex subset C of X is 

denoted by projC . The resolvent of M : X → 2X is JM = (Id +M)−1.

3. Warped resolvents

We provide illustrations of Definition 1.1 and then study the properties of warped resolvents.

Our first example is the warped resolvent of a subdifferential. This leads to the following notion, which 

extends Moreau’s classical proximity operator in Hilbert spaces [28].
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Fig. 1. Warped projections onto the closed unit ball C centered at the origin in the Euclidean plane. Sets of points projecting onto 
p1, p2, and p3 for the kernels K1 = Id (in green) and K2 : (ξ1, ξ2) �→ (ξ3

1
/2 + ξ1/5 − ξ2, ξ1 + ξ2) (in red). Note that K2 is not a 

gradient. (For interpretation of the colors in the figure, the reader is referred to the web version of this article.)

Example 3.1 (Warped proximity operator). Let D be a nonempty subset of X , let K : D → X ∗, and let 

ϕ : X → ]−∞, +∞] be a proper lower semicontinuous convex function such that ran K ⊂ ran(K + ∂ϕ) and 

K + ∂ϕ is injective. The warped proximity operator of ϕ with kernel K is proxK
ϕ = (K + ∂ϕ)−1 ◦ K. It is 

characterized by the variational inequality

(
∀(x, p) ∈ X × X

)
p = proxK

ϕ x ⇔ (∀y ∈ X ) 〈y − p, Kx − Kp〉 + ϕ(p) � ϕ(y). (3.1)

In particular, in the case of normal cones, we arrive at the following definition (see Fig. 1).

Example 3.2 (Warped projection operator). Let D be a nonempty subset of X , let K : D → X ∗, and let C

be a nonempty closed convex subset of X with normal cone operator NC such that ran K ⊂ ran(K + NC)

and K +NC is injective. The warped projection operator onto C with kernel K is projKC = (K +NC)−1 ◦K. 

It is characterized by

(
∀(x, p) ∈ X × X

)
p = projKC x ⇔

[
p ∈ C and (∀y ∈ C) 〈y − p, Kx − Kp〉 � 0

]
. (3.2)

Example 3.3. Suppose that X is strictly convex, let M : X → 2X
∗

be maximally monotone, and let K be 

the normalized duality mapping of X . Then JK
M is a well-defined warped resolvent which was introduced in 

[26].

Example 3.4. Let M : X → 2X
∗

be maximally monotone such that zer M 
= ∅, let f : X → ]−∞, +∞]

be a Legendre function [6] such that dom M ⊂ int dom f , and set K = ∇f . Then it follows from [6, 

Corollary 3.14(ii)] that JK
M is a well-defined warped resolvent, called the D-resolvent of M in [6].

Example 3.5. Let M : X → 2X
∗

be maximally monotone and let K : X → X ∗ be strictly monotone, surjec-

tive, and 3∗ monotone in the sense that [39, Definition 32.40(c)]

(∀x ∈ dom M)(∀x∗ ∈ ran M) sup
(y,y∗)∈gra M

〈x − y, y∗ − x∗〉 < +∞. (3.3)

Then it follows from [8, Theorem 2.3] that JK
M is a well-defined warped resolvent, called the K-resolvent of 

M in [8].
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Example 3.6. Let A : X → 2X
∗

and B : X → 2X
∗

be maximally monotone, and let f : X → ]−∞, +∞] be a 

proper lower semicontinuous convex function which is essentially smooth [6]. Suppose that D = (int dom f) ∩

dom A is a nonempty subset of int dom B, that B is single-valued on int dom B, that ∇f is strictly monotone 

on D, and that (∇f − B)(D) ⊂ ran(∇f + A). Set M = A + B and K : D → X ∗ : x �→ ∇f(x) − Bx. 

Then the warped resolvent JK
M is well defined and coincides with the Bregman forward-backward operator 

(∇f + A)−1 ◦ (∇f − B) investigated in [13], where it is shown to capture a construction found in [31].

Example 3.7. Consider the setting of Lemma 2.2. For simplicity (more general kernels can be considered), 

take s∗ = 0, r = 0, and assume that Y and Z∗ are strictly convex, with normalized duality mapping KY and 

KZ∗ . As seen in Lemma 2.2(i), finding a zero of the Kuhn–Tucker operator U : Y × Z∗ → 2Y
∗

×Z : (x, v∗) �→

(Ax +L∗v∗) ×(B−1v∗−Lx) provides a solution to the primal-dual problem (2.4)–(2.5). Now set K : (x, v∗) �→

(KYx − L∗v∗, Lx + KZ∗v∗). Then the warped resolvent JK
U is well defined and

JK
U : (x, v∗) �→

(
(KY + A)−1(KYx − L∗v∗), (KZ∗ + B−1)−1(Lx + KZ∗v∗)

)
. (3.4)

For instance, in a Hilbertian setting, JK
U : (x, v∗) �→ (JA(x −L∗v∗), JB−1(Lx +v∗)), whereas JU is intractable; 

note also that the kernel K is a non-Hermitian bounded linear operator.

Further examples will appear in Section 5. Let us turn our attention to the properties of warped resolvents.

Proposition 3.8 (Viability). Let D be a nonempty subset of X , let K : D → X ∗, and let M : X → 2X
∗

be 

such that ran K ⊂ ran(K + M) and K + M is injective. Then JK
M : D → D.

Proof. By assumption, dom JK
M = dom((K + M)−1 ◦ K) =

{
x ∈ dom K | Kx ∈ dom(K + M)−1

}
={

x ∈ D | Kx ∈ ran(K + M)
}

= D. Next, observe that

ran JK
M = ran

(
(K + M)−1 ◦ K

)
⊂ ran(K + M)−1 = dom(K + M) ⊂ dom K = D. (3.5)

Finally, to show that (K + M)−1 is at most single-valued, suppose that (x∗, x1) ∈ gra(K + M)−1 and 

(x∗, x2) ∈ gra(K + M)−1. Then {x∗} ⊂ (K + M)x1 ∩ (K + M)x2 and, since K + M is injective, it follows 

that x1 = x2. �

Sufficient conditions that guarantee that warped resolvents are well defined are made explicit below.

Proposition 3.9. Let D be a nonempty subset of X , let K : D → X ∗, and let M : X → 2X
∗

. Then the 

following hold:

(i) Suppose that one of the following is satisfied:

[a] K + M is surjective.

[b] K + M is maximally monotone and D ∩ dom M is bounded.

[c] K + M is maximally monotone, K + M is uniformly monotone with modulus φ, and φ(t)/t → +∞

as t → +∞.

[d] K + M is maximally monotone and strongly monotone.

[e] M is maximally monotone, D = X , and K is maximally monotone, strictly monotone, 3∗ monotone, 

and surjective.

[f] K is maximally monotone and there exists a lower semicontinuous coercive convex function ϕ : X →

R such that M = ∂ϕ.

Then ran K ⊂ ran(K + M).
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(ii) Suppose that one of the following is satisfied:

[a] K + M is strictly monotone.

[b] M is monotone and K is strictly monotone on dom M .

[c] K is monotone and M is strictly monotone.

[d] −(K + M) is strictly monotone.

Then K + M is injective.

Proof. Set A = K + M .

(i): Item [a] is clear. We prove the remaining ones as follows.

[b]: It follows from [39, Theorem 32.G] that ran A = X ⊃ ran K.

[c]&[d]: Since [20, Lemma 2.7(ii)] and [39, Corollary 32.35] assert that A is surjective, the claim follows 

from (i)[a].

[e]: See [8, Theorem 2.3].

[f]: Take z ∈ D and set B = A( · + z) − Kz. By coercivity of ϕ, there exists ρ ∈ ]0, +∞[ such that

(∀x ∈ X ) ‖x‖ � ρ ⇒ inf〈x, ∂ϕ(x + z)〉 � ϕ(x + z) − ϕ(z) � 0. (3.6)

Now take (x, x∗) ∈ gra B and suppose that ‖x‖ � ρ. Then x∗ + Kz − K(x + z) ∈ ∂ϕ(x + z) and it follows 

from (3.6) and the monotonicity of K that

0 � 〈x, x∗ + Kz − K(x + z)〉 = 〈x, x∗〉 − 〈(x + z) − z, K(x + z) − Kz〉 � 〈x, x∗〉. (3.7)

On the other hand, since dom ∂ϕ = X [38, Theorems 2.2.20(b) and 2.4.12], A is maximally monotone [35, 

Theorem 24.1(a)], and so is B. Altogether, [33, Proposition 2] asserts that there exists x ∈ X such that 

0 ∈ Bx. Consequently, Kz ∈ A(x + z) ⊂ ran(K + M).

(ii): We need to prove only [a] since [b] and [c] are special cases of it, and [d] is similar. To this end, let 

(x1, x2) ∈ X 2 and suppose that Ax1 ∩ Ax2 
= ∅. We must show that x1 = x2. Take x∗ ∈ Ax1 ∩ Ax2. Then 

(x1, x∗) and (x2, x∗) lie in gra A. In turn, since A is strictly monotone and 〈x1 − x2, x∗ − x∗〉 = 0, we obtain 

x1 = x2. �

Proposition 3.10. Let M : X → 2X
∗

, let γ ∈ ]0, +∞[, and let K : X → X ∗ be such that ran K ⊂ ran(K+γM)

and K + γM is injective. Then the following hold:

(i) Fix JK
γM = zer M .

(ii) Let x ∈ X and p ∈ X . Then p = JK
γM x ⇔ (p, γ−1(Kx − Kp)) ∈ gra M .

(iii) Suppose that M is monotone. Let x ∈ X and y ∈ X , and set p = JK
γM x and q = JK

γM y. Then 

〈p − q, Kx − Ky〉 � 〈p − q, Kp − Kq〉.

(iv) Suppose that M is monotone, that K is uniformly continuous and φ-uniformly monotone, and that 

ψ : t �→ φ(t)/t is real-valued on ]0, ξ[ for some ξ ∈ ]0, +∞[ and strictly increasing. Then JK
γM is 

uniformly continuous.

(v) Suppose that M is monotone and that K is β-Lipschitzian and α-strongly monotone for some α ∈

]0, +∞[ and β ∈ ]0, +∞[. Then JK
γM is (β/α)-Lipschitzian.

(vi) Suppose that M is monotone. Let x ∈ X , and set y = JK
γM x and y∗ = γ−1(Kx − Ky). Then zer M ⊂{

z ∈ X | 〈z − y, y∗〉 � 0
}

.

Proof. (i): We derive from Proposition 3.8 that (∀x ∈ X ) x ∈ zer M ⇔ Kx ∈ Kx + γMx ⇔ x = JK
γM x ⇔

x ∈ Fix JK
γM .
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(ii): We have p = JK
γM x ⇔ p = (K + γM)−1(Kx) ⇔ Kx ∈ Kp + γMp ⇔ Kx − Kp ∈ γMp ⇔

(p, γ−1(Kx − Kp)) ∈ gra M .

(iii): This follows from (ii) and the monotonicity of M .

(iv): Let x and y be in X , and set p = JK
γM x and q = JK

γM y. Then we deduce from (iii) that

φ(‖p − q‖) � 〈p − q, Kp − Kq〉 � 〈p − q, Kx − Ky〉 � ‖p − q‖ ‖Kx − Ky‖. (3.8)

Now fix ε ∈ ]0, ξ[ and let η ∈ ]0, ψ(ε)]. By uniform continuity of K, there exists δ ∈ ]0, +∞[ such that 

‖x − y‖ � δ ⇒ ‖Kx − Ky‖ � η. Without loss of generality, suppose that p 
= q. Then, if ‖x − y‖ � δ, we 

derive from (3.8) that ψ(‖p − q‖) � ‖Kx − Ky‖ � η � ψ(ε). Consequently, since ψ is strictly increasing, 

‖p − q‖ � ε.

(v): Let x and y be in X and set p = JK
γM x and q = JK

γM y. Then we deduce from (iii) that

α‖p − q‖2
� 〈p − q, Kp − Kq〉 � 〈p − q, Kx − Ky〉 � ‖p − q‖ ‖Kx − Ky‖ � β‖p − q‖ ‖x − y‖. (3.9)

In turn, ‖p − q‖ � (β/α)‖x − y‖.

(vi): Suppose that z ∈ zer M . Then (z, 0) ∈ gra M . On the other hand, we derive from (ii) that (y, y∗) ∈

gra M . Hence, by monotonicity of M , 〈y − z, y∗〉 � 0. �

In Hilbert spaces, standard resolvents are firmly nonexpansive, hence 1/2-averaged. A related property 

for warped resolvents is the following.

Proposition 3.11. Suppose that X is a Hilbert space. Let M : X → 2X be maximally monotone and let 

K : X → X be averaged with constant α ∈ ]0, 1[. Suppose that K + M is 1-strongly monotone. Then JK
M is 

averaged with constant 1/(2 − α).

Proof. Since K is nonexpansive by virtue of [7, Remark 4.34(i)], it follows from the Cauchy–Schwarz in-

equality that

(∀x ∈ X )(∀y ∈ X ) 〈x − y | (2 Id +K)x − (2 Id +K)y〉 = 2‖x − y‖2 + 〈x − y | Kx − Ky〉

� 2‖x − y‖2 − ‖x − y‖2

= ‖x − y‖2 (3.10)

and therefore, by continuity of 2 Id +K, that 2 Id +K is maximally monotone [7, Corollary 20.28]. Thus, in 

the light of [7, Corollary 25.5(i)], 2 Id +K +M is maximally monotone. In turn, since 2 Id +K +M is strongly 

monotone by (3.10), [7, Proposition 22.11(ii)] entails that ran(3 Id +K + M − Id) = ran(2 Id +K + M) = X , 

which yields ran(Id +(K +M − Id)/3) = X . Hence, by monotonicity of K +M − Id and Minty’s theorem [7, 

Theorem 21.1], we infer that K + M − Id is maximally monotone. Thus, in view of [7, Corollary 23.9], (K +

M)−1 = (Id +K+M −Id)−1 is averaged with constant 1/2. Consequently, we infer from [7, Proposition 4.44]

that JK
M = (K + M)−1 ◦ K is averaged with constant 1/(2 − α). �

4. Warped proximal iterations

Throughout this section, X is a real Hilbert space identified with its dual. We start with an abstract 

principle for the basic problem of finding a zero of a maximally monotone operator.

Proposition 4.1. Let M : X → 2X be a maximally monotone operator such that Z = zer M 
= ∅, let x0 ∈ X , 

let ε ∈ ]0, 1[, let (λn)n∈N be a sequence in [ε, 2 − ε], and let (yn, y∗
n)n∈N be a sequence in gra M . Set
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(∀n ∈ N) xn+1 =

⎧
⎨
⎩

xn +
λn〈yn − xn | y∗

n〉

‖y∗
n‖2

y∗
n, if 〈yn − xn | y∗

n〉 < 0;

xn, otherwise.

(4.1)

Then the following hold:

(i)
∑

n∈N
‖xn+1 − xn‖2 < +∞.

(ii) Suppose that every weak sequential cluster point of (xn)n∈N is in Z. Then (xn)n∈N converges weakly 

to a point in Z.

Proof. By [7, Proposition 23.39], Z is a nonempty closed convex subset of X . Set (∀n ∈ N) Hn ={
z ∈ X | 〈z − yn | y∗

n〉 � 0
}

. For every z ∈ Z and every n ∈ N, since (z, 0) and (yn, y∗
n) lie in gra M , 

the monotonicity of M forces 〈yn − z | y∗
n〉 � 0. Thus Z ⊂

⋂
n∈N

Hn. In addition, [7, Example 29.20] asserts 

that

(∀n ∈ N) projHn
xn =

⎧
⎨
⎩

xn +
〈yn − xn | y∗

n〉

‖y∗
n‖2

y∗
n, if 〈yn − xn | y∗

n〉 < 0;

xn, otherwise.

(4.2)

Hence, we derive from (4.1) that

(∀n ∈ N) xn+1 = xn + λn(projHn
xn − xn). (4.3)

Therefore (i) follows from [16, Equation (10)] and (ii) follows from [16, Proposition 6i)]. �

To implement the conceptual principle outlined in Proposition 4.1, one is required to construct points in 

the graph of the underlying monotone operator. Towards this end, our strategy is to use Proposition 3.10(ii). 

We shall then seamlessly obtain in Section 5 a broad class of algorithms to solve a variety of monotone 

inclusions. It will be convenient to use the notation

(∀y∗ ∈ Y∗) (y∗)
�

=

⎧
⎨
⎩

y∗

‖y∗‖
, if y∗ 
= 0;

0, if y∗ = 0.
(4.4)

Our first method employs, at iteration n, a warped resolvent based on a different kernel, and this warped 

resolvent is applied at a point x̃n that may not be the current iterate xn.

Theorem 4.2. Let M : X → 2X be a maximally monotone operator such that Z = zer M 
= ∅, let x0 ∈ X , 

let ε ∈ ]0, 1[, let (λn)n∈N be a sequence in [ε, 2 − ε], and let (γn)n∈N be a sequence in [ε, +∞[. Further, for 

every n ∈ N, let x̃n ∈ X and let Kn : X → X be a monotone operator such that ran Kn ⊂ ran(Kn + γnM)

and Kn + γnM is injective. Iterate

for n = 0, 1, . . .
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

yn = JKn

γnM x̃n

y∗
n = γ−1

n (Knx̃n − Knyn)

if 〈yn − xn | y∗
n〉 < 0

⌊
xn+1 = xn +

λn

〈
yn − xn | y∗

n

〉

‖y∗
n‖2

y∗
n

else
⌊

xn+1 = xn.

(4.5)
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Then the following hold:

(i)
∑

n∈N
‖xn+1 − xn‖2 < +∞.

(ii) Suppose that the following are satisfied:

[a] x̃n − xn → 0.

[b]
〈
x̃n − yn | (Knx̃n − Knyn)

�
〉

→ 0 ⇒

{
x̃n − yn ⇀ 0

Knx̃n − Knyn → 0.

Then (xn)n∈N converges weakly to a point in Z.

Proof. By Proposition 3.10(ii),

(∀n ∈ N) (yn, y∗
n) ∈ gra M. (4.6)

Therefore, (i) follows from Proposition 4.1(i). It remains to prove (ii). To this end, take a strictly increasing 

sequence (kn)n∈N in N and a point x ∈ X such that xkn
⇀ x. In view of Proposition 4.1(ii), we must show 

that x ∈ Z. We infer from (ii)[a] that

x̃kn
⇀ x. (4.7)

Next, by (4.4) and (4.5), for every n ∈ N, if 〈xn − yn | y∗
n〉 > 0, then y∗

n 
= 0 and

〈
xn − yn | (y∗

n)
�
〉

=
〈xn − yn | y∗

n〉

‖y∗
n‖

= λ−1
n ‖xn+1 − xn‖ � ε−1‖xn+1 − xn‖; (4.8)

otherwise, 〈xn − yn | y∗
n〉 � 0 and it thus results from (4.4) that

〈
xn − yn | (y∗

n)
�
〉

=

⎧
⎪⎨
⎪⎩

0, if y∗
n = 0;

〈xn − yn | y∗
n〉

‖y∗
n‖

, otherwise

� 0

= ε−1‖xn+1 − xn‖. (4.9)

Therefore, using (i) and the monotonicity of (Kn)n∈N , we obtain

0 ← ε−1‖xn+1 − xn‖

� 〈xn − yn | (y∗
n)

�
〉

=
〈
xn − x̃n | (Knx̃n − Knyn)

�
〉

+
〈
x̃n − yn | (Knx̃n − Knyn)

�
〉

�
〈
xn − x̃n | (Knx̃n − Knyn)

�
〉
. (4.10)

However, by the Cauchy–Schwarz inequality and (ii)[a],

∣∣∣
〈

xn − x̃n | (Knx̃n − Knyn)
�
〉∣∣∣ � ‖xn − x̃n‖ → 0. (4.11)

Hence, (4.10) implies that 〈x̃n − yn | (Knx̃n − Knyn)
�
〉 → 0. In turn, we deduce from (ii)[b] that x̃n−yn ⇀ 0

and Knx̃n − Knyn → 0. Altogether, since supn∈N γ−1
n � ε−1, it follows from (4.6) and (4.7) that

ykn
= x̃kn

+ (ykn
− x̃kn

) ⇀ x (4.12)



10 M.N. Bùi, P.L. Combettes / J. Math. Anal. Appl. 491 (2020) 124315

and

Mykn
� y∗

kn
= γ−1

kn
(Kkn

x̃kn
− Kkn

ykn
) → 0. (4.13)

Appealing to the maximal monotonicity of M , [7, Proposition 20.38(ii)] allows us to conclude that x ∈ Z. �

Remark 4.3. Condition (ii)[b] in Theorem 4.2 is satisfied in particular when there exist α and β in ]0, +∞[

such that the kernels (Kn)n∈N are α-strongly monotone and β-Lipschitzian.

Remark 4.4. The auxiliary sequence (x̃n)n∈N in Theorem 4.2 can serve several purposes. In general, it 

provides the flexibility of not applying the warped resolvent to the current iterate. Here are some noteworthy 

candidates.

(i) At iteration n, x̃n can model an additive perturbation of xn, say x̃n = xn +en. Here the error sequence 

(en)n∈N need only satisfy ‖en‖ → 0 and not the usual summability condition 
∑

n∈N
‖en‖ < +∞

required in many methods, e.g., [11,17,21,37].

(ii) Mimicking the behavior of so-called inertial methods [3,19], let (αn)n∈N be a bounded sequence in 

R and set (∀n ∈ N � {0}) x̃n = xn + αn(xn − xn−1). Then Theorem 4.2(i) yields ‖x̃n − xn‖ =

|αn| ‖xn − xn−1‖ → 0 and therefore assumption (ii)[a] holds in Theorem 4.2. More generally, weak 

convergence results can be derived from Theorem 4.2 for iterations with memory, that is,

(∀n ∈ N) x̃n =

n∑

j=0

μn,jxj , where (μn,j)0�j�n ∈ R
n+1 and

n∑

j=0

μn,j = 1. (4.14)

Here condition (ii)[a] holds if (1 −μn,n)xn −
∑n−1

j=0 μn,jxj → 0. In the case of standard inertial methods, 

weak convergence requires more stringent conditions on the weights (μn,j)n∈N,0�j�n [19].

(iii) Nonlinear perturbations can also be considered. For instance, at iteration n, x̃n = projCn
xn is an 

approximation to xn from some suitable closed convex set Cn ⊂ X .

Remark 4.5. The independent work [23] was posted on arXiv at the same time as the report [14] from which 

our paper is derived. The former uses a notion of resolvents subsumed by Definition 1.1 to explore the 

application of an algorithm similar to (4.5) with no perturbation (i.e., for every n ∈ N, x̃n = xn). The work 

[23] nicely complements ours in the sense that it proposes applications to splitting schemes not discussed 

here, which further attests to the versatility and effectiveness of the notion of warped proximal iterations.

We now turn our attention to a variant of Theorem 4.2 that guarantees strong convergence of the 

iterates to a best approximation. In the spirit of Haugazeau’s algorithm (see [24, Théorème 3-2] and [7, 

Corollary 30.15]), it involves outer approximations consisting of the intersection of two half-spaces. For 

convenience, given (x, y, z) ∈ X 3, we set

H(x, y) =
{

u ∈ X | 〈u − y | x − y〉 � 0
}

(4.15)

and, if R = H(x, y) ∩ H(y, z) 
= ∅, Q(x, y, z) = projR x. The latter can be computed explicitly as follows 

(see [24, Théorème 3-1] or [7, Corollary 29.25]).

Lemma 4.6. Let (x, y, z) ∈ X 3. Set R = H(x, y) ∩ H(y, z), χ = 〈x − y | y − z〉, μ = ‖x − y‖2, ν = ‖y − z‖2, 

and ρ = μν − χ2. Then exactly one of the following holds:

(i) ρ = 0 and χ < 0, in which case R = ∅.
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(ii) [ρ = 0 and χ � 0] or ρ > 0, in which case R 
= ∅ and

Q(x, y, z) =

⎧
⎪⎪⎨
⎪⎪⎩

z, if ρ = 0 and χ � 0;

x + (1 + χ/ν)(z − y), if ρ > 0 and χν � ρ;

y + (ν/ρ)
(
χ(x − y) + μ(z − y)

)
, if ρ > 0 and χν < ρ.

(4.16)

Our second abstract convergence principle can now be stated.

Proposition 4.7. Let M : X → 2X be a maximally monotone operator such that Z = zer M 
= ∅, let x0 ∈ X , 

and let (yn, y∗
n)n∈N be a sequence in gra M . For every n ∈ N, set

xn+1/2 =

⎧
⎨
⎩

xn +
〈yn − xn | y∗

n〉

‖y∗
n‖2

y∗
n, if 〈yn − xn | y∗

n〉 < 0;

xn, otherwise

and xn+1 = Q
(
x0, xn, xn+1/2

)
. (4.17)

Then the following hold:

(i)
∑

n∈N
‖xn+1 − xn‖2 < +∞ and 

∑
n∈N

‖xn+1/2 − xn‖2 < +∞.

(ii) Suppose that every weak sequential cluster point of (xn)n∈N is in Z. Then (xn)n∈N converges strongly 

to projZ x0.

Proof. Set (∀n ∈ N) Hn =
{

z ∈ X | 〈z − yn | y∗
n〉 � 0

}
. Then, as in the proof of Proposition 4.1, Z is a 

nonempty closed convex subset of X and Z ⊂
⋂

n∈N
Hn. On the one hand,

(∀n ∈ N) xn+1/2 = projHn
xn and xn+1 = Q

(
x0, xn, xn+1/2

)
. (4.18)

On the other hand, by (4.15),

(∀n ∈ N) H
(
xn, xn+1/2

)
=

{
X , if x ∈ Hn;

Hn, otherwise

⊃ Z. (4.19)

The claims therefore follow from [2, Proposition 2.1]. �

Theorem 4.8. Let M : X → 2X be a maximally monotone operator such that Z = zer M 
= ∅, let x0 ∈ X , 

and let (γn)n∈N be a sequence in ]0, +∞[ such that infn∈N γn > 0. For every n ∈ N, let x̃n ∈ X and let 

Kn : X → X be a monotone operator such that ran Kn ⊂ ran(Kn +γnM) and Kn +γnM is injective. Iterate

for n = 0, 1, . . .
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

yn = JKn

γnM x̃n

y∗
n = γ−1

n (Knx̃n − Knyn)

if 〈yn − xn | y∗
n〉 < 0

⌊
xn+1/2 = xn +

〈yn − xn | y∗
n〉

‖y∗
n‖2

y∗
n

else⌊
xn+1/2 = xn

xn+1 = Q(x0, xn, xn+1/2).

(4.20)
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Then the following hold:

(i)
∑

n∈N
‖xn+1 − xn‖2 < +∞ and 

∑
n∈N

‖xn+1/2 − xn‖2 < +∞.

(i) Suppose that the following are satisfied:

[a] x̃n − xn → 0.

[b]
〈
x̃n − yn | (Knx̃n − Knyn)

�
〉

→ 0 ⇒

{
x̃n − yn ⇀ 0

Knx̃n − Knyn → 0.

Then (xn)n∈N converges strongly to projZ x0.

Proof. Proposition 3.10(ii) asserts that (∀n ∈ N) (yn, y∗
n) ∈ gra M . Thus, we obtain (i) from Proposi-

tion 4.7(i). In the light of Proposition 4.7(ii), to establish (ii), we need to show that every weak sequential 

cluster point of (xn)n∈N is a zero of M . Since (i) asserts that xn+1/2 − xn → 0, this is done as in the proof 

of Theorem 4.2(ii). �

We complete this section with the following remarks.

Remark 4.9. Suppose that Y and Z are real Hilbert spaces and that X = Y × Z. Let A : Y → 2Y and 

B : Z → 2Z be maximally monotone, and let L ∈ B(Y, Z). Define

M : X → 2X : (x, v∗) �→ (Ax + L∗v∗) × (−Lx + B−1v∗). (4.21)

In [1,2,18] the problem of finding a zero of M (and hence a solution to the monotone inclusion 0 ∈ Ax +

L∗(B(Lx))) is approached by generating, at each iteration n, points (an, a∗
n) ∈ gra A and (bn, b∗

n) ∈ gra B. 

This does provide a point (yn, y∗
n) = ((an, b∗

n), (a∗
n + L∗b∗

n, −Lan + bn)) ∈ gra M , which shows that the 

algorithms proposed in [1,2,18] are actually instances of the conceptual principles laid out in Propositions 4.1

and 4.7. In particular, the primal-dual framework of [1] corresponds to applying Theorem 4.2 to the operator 

M of (4.21) with kernels

(∀n ∈ N) Kn : X → X : (x, v∗) �→
(
γ−1

n x − L∗v∗, Lx + μnv∗
)
. (4.22)

Likewise, that of [2] corresponds to the application of Theorem 4.8 to this setting.

Remark 4.10. In Theorems 4.2 and 4.8, the algorithms operate by using a single point (yn, y∗
n) in gra M at 

iteration n. It may be advantageous to use a finite family (yi,n, y∗
i,n)i∈In

of points in gra M , say

(∀i ∈ In) (yi,n, y∗
i,n) =

(
J

Ki,n

γi,nM x̃i,n, γ−1
i,n(Ki,nx̃i,n − Ki,nyi,n)

)
. (4.23)

By monotonicity of M , (∀i ∈ In)(∀z ∈ zer M) 〈z | y∗
i,n〉 � 〈yi,n | y∗

i,n〉. Therefore, using ideas found in the 

area of convex feasibility algorithms [15,27], at every iteration n, given strictly positive weights (ωi,n)i∈In

adding up to 1, we average these inequalities to create a new half-space Hn containing zer M , namely

zer M ⊂ Hn =
{

z ∈ X | 〈z | y∗
n〉 � ηn

}
, where

⎧
⎨
⎩

y∗
n =

∑
i∈In

ωi,ny∗
i,n

ηn =
∑

i∈In
ωi,n〈yi,n | y∗

i,n〉.
(4.24)

Now set
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Λn =

⎧
⎪⎨
⎪⎩

∑
i∈In

ωi,n〈yi,n − xn | y∗
i,n〉

∥∥∑
i∈In

ωi,ny∗
i,n

∥∥2 , if
∑

i∈In
ωi,n〈xn − yi,n | y∗

i,n〉 > 0;

0, otherwise.

(4.25)

Then, employing projHn
xn = xn + Λn

∑
i∈In

ωi,ny∗
i,n as the point xn+1 in (4.5) and as the point xn+1/2 in 

(4.20) results in multi-point extensions of Theorems 4.2 and 4.8.

5. Applications

We apply Theorem 4.2 to design new algorithms to solve complex monotone inclusion problems in a real 

Hilbert space X . We do not mention explicitly minimization problems as they follow, with usual constraint 

qualification conditions, by considering monotone inclusions involving subdifferentials as maximally mono-

tone operators [7,17]. For brevity, we do not mention either the strongly convergent counterparts of each of 

the corollaries below that can be systematically obtained using Theorem 4.8.

Let us note that the most basic instantiation of Theorem 4.2 is obtained by setting (∀n ∈ N) Kn = Id, 

x̃n = xn, and λn = 1. In this case, the warped proximal algorithm (4.5) reduces to the basic proximal point 

algorithm (1.1).

In connection with Remark 4.4, let us first investigate the convergence of a novel perturbed forward-

backward-forward algorithm with memory. This will require the following fact.

Lemma 5.1. Let B : X → X be Lipschitzian with constant β ∈ ]0, +∞[, let W : X → X be strongly monotone 

with constant α ∈ ]0, +∞[, let ε ∈ ]0, α[, let γ ∈ ]0, (α − ε)/β], and set K = W − γB. Then the following 

hold:

(i) K is ε-strongly monotone.

(ii) Suppose that α = 1 and W = Id. Then K is cocoercive with constant 1/(2 − ε).

Proof. (i): By the Cauchy–Schwarz inequality,

(∀x ∈ X )(∀y ∈ X ) 〈x − y | Kx − Ky〉 = 〈x − y | Wx − Wy〉 − γ〈x − y | Bx − By〉

� α‖x − y‖2 − γ‖x − y‖ ‖Bx − By‖

� α‖x − y‖2 − γβ‖x − y‖2

� ε‖x − y‖2. (5.1)

(ii): Since γB is (1 − ε)-Lipschitzian, [7, Proposition 4.38] entails that γB is averaged with constant 

(2 − ε)/2. Hence, since γB = Id −K, [7, Proposition 4.39] implies that K is cocoercive with constant 

1/(2 − ε). �

Corollary 5.2. Let A : X → 2X be maximally monotone, let B : X → X be monotone and β-Lipschitzian 

for some β ∈ ]0, +∞[, let (α, χ) ∈ ]0, +∞[
2
, and let ε ∈ ]0, α/(β + 1)[. For every n ∈ N, let Wn : X → X

be α-strongly monotone and χ-Lipschitzian, and let γn ∈ [ε, (α − ε)/β]. Take x0 ∈ X , let (λn)n∈N be a 

sequence in ]0, 2[ such that 0 < infn∈N λn � supn∈N λn < 2, and let (en)n∈N be a sequence in X such 

that en → 0. Furthermore, let m ∈ N � {0} and let (μn,j)n∈N,0�j�n be a real array that satisfies the 

following:

[a] For every integer n > m and every integer j ∈ [0, n − m − 1], μn,j = 0.
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[b] For every n ∈ N, 
∑n

j=0 μn,j = 1.

[c] supn∈N max0�j�n |μn,j | < +∞.

Iterate

for n = 0, 1, . . .
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x̃n = en +
∑n

j=0 μn,jxj

v∗
n = Wnx̃n − γnBx̃n

yn = (Wn + γnA)−1v∗
n

y∗
n = γ−1

n (v∗
n − Wnyn) + Byn

if 〈yn − xn | y∗
n〉 < 0

⌊
xn+1 = xn +

λn〈yn − xn | y∗
n〉

‖y∗
n‖2

y∗
n

else⌊
xn+1 = xn.

(5.2)

Suppose that zer(A + B) 
= ∅. Then the following hold:

(i)
∑

n∈N
‖xn+1 − xn‖2 < +∞.

(ii) (xn)n∈N converges weakly to a point in zer(A + B).

Proof. We apply Theorem 4.2 with M = A +B and (∀n ∈ N) Kn = Wn −γnB. First, [7, Corollary 20.28] as-

serts that B is maximally monotone. Therefore, M is maximally monotone by virtue of [7, Corollary 25.5(i)]. 

Next, in view of Lemma 5.1(i), the kernels (Kn)n∈N are ε-strongly monotone. Furthermore, the kernels 

(Kn)n∈N are Lipschitzian with constant α + χ since

(∀x ∈ X )(∀y ∈ X ) ‖Knx − Kny‖ � ‖Wnx − Wny‖ + γn‖Bx − By‖

� χ‖x − y‖ +
α − ε

β
β‖x − y‖

� (α + χ)‖x − y‖. (5.3)

Therefore, for every n ∈ N, since Kn + γnM is maximally monotone, Proposition 3.9(i)[d]&(ii)[b] entail 

that ran Kn ⊂ ran(Kn + γnM) and Kn + γnM is injective. Let us also observe that (5.2) is a special case 

of (4.5).

(i): This follows from Theorem 4.2(i).

(ii): Set μ = supn∈N max0�j�n |μn,j |. For every integer n > m, it results from [a] and [b] that

‖x̃n − xn‖ =

∥∥∥∥en +
n∑

j=n−m

μn,j(xj − xn)

∥∥∥∥

� ‖en‖ +
n∑

j=n−m

|μn,j |‖xj − xn‖
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� ‖en‖ + μ
n∑

j=n−m

‖xj − xn‖

= ‖en‖ + μ
m∑

j=0

‖xn − xn−j‖. (5.4)

Therefore, (i) and [c] imply that x̃n − xn → 0. On the other hand, it follows from Remark 4.3 that 

condition (ii)[b] in Theorem 4.2 is satisfied. Hence, the conclusion follows from Theorem 4.2(ii). �

Next, we recover Tseng’s forward-backward-forward algorithm [7,36].

Corollary 5.3. Let A : X → 2X be maximally monotone, let B : X → X be monotone and β-Lipschitzian for 

some β ∈ ]0, +∞[. Suppose that zer(A + B) 
= ∅, take x0 ∈ X , let ε ∈ ]0, 1/(β + 1)[, and let (γn)n∈N be a 

sequence in [ε, (1 − ε)/β]. Iterate

for n = 0, 1, . . .
⎢⎢⎢⎢⎣

v∗
n = γnBxn

yn = JγnA(xn − v∗
n)

xn+1 = yn − γnByn + v∗
n.

(5.5)

Then (xn)n∈N converges weakly to a point in zer(A + B).

Proof. We apply Theorem 4.2 with M = A + B and (∀n ∈ N) Kn = Id −γnB and x̃n = xn. Note that 

the kernels (Kn)n∈N are cocoercive with constant 1/(2 − ε) by virtue of Lemma 5.1(ii). Moreover, using 

Lemma 5.1(i), we deduce that the kernels (Kn)n∈N are strongly monotone with constant ε. Thus, for 

every n ∈ N, since Kn + γnM = Id +γnA is maximally monotone, Proposition 3.9(i)[d]&(ii)[b] assert that 

ran Kn ⊂ ran(Kn + γnM) and Kn + γnM is injective. Now set

(∀n ∈ N) y∗
n = γ−1

n (Knxn − Knyn) and λn =

⎧
⎪⎨
⎪⎩

γn‖y∗
n‖2

〈xn − yn | y∗
n〉

, if 〈xn − yn | y∗
n〉 > 0;

ε, otherwise.

(5.6)

Fix n ∈ N. Then, by strong monotonicity of Kn and the Cauchy–Schwarz inequality,

ε‖xn − yn‖2
� 〈xn − yn | Knxn − Knyn〉 � ‖xn − yn‖ ‖Knxn − Knyn‖. (5.7)

This implies that 〈xn − yn | y∗
n〉 = γ−1

n 〈xn − yn | Knxn − Knyn〉 � γ−1
n ‖xn − yn‖ ‖Knxn − Knyn‖ �

(εγn)−1‖Knxn − Knyn‖2 = ε−1γn‖y∗
n‖2 and therefore that λn � ε. In addition, by cocoercivity of Kn, 

γn‖y∗
n‖2 = γ−1

n ‖Knxn − Knyn‖2 � (2 − ε)γ−1
n 〈xn − yn | Knxn − Knyn〉 = (2 − ε)〈xn − yn | y∗

n〉 and thus 

λn � 2 − ε. Next, we derive from (5.5) that yn = JKn

γnM xn. If 〈xn − yn | y∗
n〉 > 0, then (5.5) and (5.6) yield 

xn+1 = xn − γny∗
n = xn + λn〈yn − xn | y∗

n〉y∗
n/‖y∗

n‖2. Otherwise, 〈xn − yn | y∗
n〉 � 0 and the cocoercivity of 

Kn yields ‖y∗
n‖2 = γ−2

n ‖Knxn − Knyn‖2 � (2 − ε)γ−2
n 〈xn − yn | Knxn − Knyn〉 � 0. Hence, y∗

n = 0 and 

we therefore deduce from (5.5) that xn+1 = xn. Thus, (5.5) is an instance of (4.5). Next, condition (ii)[a] 

in Theorem 4.2 is trivially satisfied and, in view of Remark 4.3, condition (ii)[b] in Theorem 4.2 is also 

fulfilled. �

We conclude this section by further illustrating the effectiveness of warped resolvent iterations by design-

ing a new method to solve an intricate system of monotone inclusions and its dual. We are not aware of a 
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splitting method that could handle such a formulation with a comparable level of flexibility. Special cases 

of this system appear in [1,10,18,25].

Problem 5.4. Let (Yi)i∈I and (Zj)j∈J be finite families of real Hilbert spaces. For every i ∈ I and j ∈ J , let 

Ai : Yi → 2Yi and Bj : Zj → 2Zj be maximally monotone, let Ci : Yi → Yi be monotone and μi-Lipschitzian 

for some μi ∈ ]0, +∞[, let Dj : Zj → Zj be monotone and νj-Lipschitzian for some νj ∈ ]0, +∞[, let 

Lji ∈ B(Yi, Zj), let s∗
i ∈ Yi, and let rj ∈ Zj . Consider the system of coupled inclusions

find (xi)i∈I ∈ ×
i∈I

Yi such that

(∀i ∈ I) s∗
i ∈ Aixi +

∑

j∈J

L∗
ji

(
(Bj + Dj)

(∑

k∈I

Ljkxk − rj

))
+ Cixi, (5.8)

its dual problem

find (v∗
j )j∈J ∈ ×

j∈J

Zj such that

(
∃ (xi)i∈I ∈ ×

i∈I

Yi

)
(∀i ∈ I)(∀j ∈ J)

⎧
⎪⎪⎨
⎪⎪⎩

s∗
i −

∑

k∈J

L∗
kiv

∗
k ∈ Aixi + Cixi

v∗
j ∈ (Bj + Dj)

(∑

k∈I

Ljkxk − rj

)
,

(5.9)

and the associated Kuhn–Tucker set

Z =

{(
(xi)i∈I , (v∗

j )j∈J

) ∣∣∣∣ (∀i ∈ I) xi ∈ Yi and s∗
i −

∑

k∈J

L∗
kiv

∗
k ∈ Aixi + Cixi,

and (∀j ∈ J) v∗
j ∈ Zj and

∑

k∈I

Ljkxk − rj ∈ (Bj + Dj)−1v∗
j

}
. (5.10)

We denote by P and D the sets of solutions to (5.8) and (5.9), respectively. The problem is to find a point 

in Z.

Corollary 5.5. Consider the setting of Problem 5.4. For every i ∈ I and every j ∈ J , let (αi, χi, βj , κj) ∈

]0, +∞[
4
, let εi ∈ ]0, αi/(μi + 1)[, let δj ∈ ]0, βj/(νj + 1)[, let (Fi,n)n∈N be operators from Yi to Yi that are 

αi-strongly monotone and χi-Lipschitzian, let (Wj,n)n∈N be operators from Zj to Zj that are βj-strongly 

monotone and κj-Lipschitzian; in addition, let (γi,n)n∈N and (τj,n)n∈N be sequences in [εi, (αi − εi)/μi] and 

[δj , (βj − δj)/νj ], respectively. Suppose that Z 
= ∅ and that

Y = ×
i∈I

Yi, Z = ×
j∈J

Zj , and X = Y × Z × Z. (5.11)

Let ((xi,0)i∈I , (yj,0)j∈J , (v∗
j,0)j∈J ) and ((x̃i,n)i∈I , (ỹj,n)j∈J , (ṽ∗

j,n)j∈J)n∈N be in X , and let (λn)n∈N be a 

sequence in ]0, 2[ such that 0 < infn∈N λn � supn∈N λn < 2. Iterate
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for n = 0, 1, . . .
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

for every i ∈ I⎢⎢⎢⎢⎢⎣

l∗
i,n = Fi,nx̃i,n − γi,nCix̃i,n − γi,n

∑
j∈J L∗

jiṽ
∗
j,n

ai,n =
(
Fi,n + γi,nAi

)−1
(l∗

i,n + γi,ns∗
i )

o∗
i,n = γ−1

i,n(l∗
i,n − Fi,nai,n) + Ciai,n

for every j ∈ J
⎢⎢⎢⎢⎢⎢⎢⎣

t∗
j,n = Wj,nỹj,n − τj,nDj ỹj,n + τj,nṽ∗

j,n

bj,n =
(
Wj,n + τj,nBj

)−1
t∗
j,n

f∗
j,n = τ−1

j,n (t∗
j,n − Wj,nbj,n) + Djbj,n

cj,n =
∑

i∈I Ljix̃i,n − ỹj,n + ṽ∗
j,n − rj

for every i ∈ I
⌊

a∗
i,n = o∗

i,n +
∑

j∈J L∗
jicj,n

for every j ∈ J
⌊

b∗
j,n = f∗

j,n − cj,n

c∗
j,n = rj + bj,n −

∑
i∈I Ljiai,n

σn =
∑

i∈I ‖a∗
i,n‖2 +

∑
j∈J

(
‖b∗

j,n‖2 + ‖c∗
j,n‖2

)

θn =
∑

i∈I 〈ai,n − xi,n | a∗
i,n〉 +

∑
j∈J

(
〈bj,n − yj,n | b∗

j,n〉 + 〈cj,n − v∗
j,n | c∗

j,n〉
)

if θn < 0
⌊

ρn = λnθn/σn

else
⌊

ρn = 0

for every i ∈ I⌊
xi,n+1 = xi,n + ρna∗

i,n

for every j ∈ J
⌊

yj,n+1 = yj,n + ρnb∗
j,n

v∗
j,n+1 = v∗

j,n + ρnc∗
j,n.

(5.12)

Suppose that

(∀i ∈ I)(∀j ∈ J) x̃i,n − xi,n → 0, ỹj,n − yj,n → 0, and ṽ∗
j,n − v∗

j,n → 0. (5.13)

Set (∀n ∈ N) xn = (xi,n)i∈I and v∗
n = (v∗

j,n)j∈J . Then (xn)n∈N converges weakly to a point x ∈ P, (v∗
n)n∈N

converges weakly to a point v∗ ∈ D , and (x, v∗) ∈ Z.

Proof. Define

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A : Y → 2Y : (xi)i∈I �→ ×
i∈I

(Aixi + Cixi)

B : Z → 2Z : (yj)j∈J �→ ×
j∈J

(Bjyj + Djyj)

L : Y → Z : (xi)i∈I �→

(∑

i∈I

Ljixi

)

j∈J

s∗ = (s∗
i )i∈I and r = (rj)j∈J .

(5.14)
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We observe that

L∗ : Z → Y : (v∗
j )j∈J �→

(
∑

j∈J

L∗
jiv

∗
j

)

i∈I

. (5.15)

In the light of [7, Proposition 20.23], A and B are maximally monotone. On the other hand, we deduce from 

(5.10), (5.14), and (5.15) that

Z =
{

(x, v∗) ∈ Y × Z | s∗ − L∗v∗ ∈ Ax and Lx − r ∈ B−1v∗
}

. (5.16)

Define

M : X → 2X : (x, y, v∗) �→ (−s∗ + Ax + L∗v∗) × (By − v∗) × {r − Lx + y}. (5.17)

Lemma 2.2(ii) entails that M is maximally monotone. Furthermore, since Z 
= ∅, Lemma 2.2(iv) yields 

zer M 
= ∅. Next, set

S : X → X : (x, y, v∗) �→ (−L∗v∗, v∗, Lx − y) (5.18)

and, for every n ∈ N,

Kn : X → X : (x, y, v∗) �→
((

γ−1
i,nFi,nxi −Cixi

)
i∈I

−L∗v∗,
(
τ−1

j,n Wj,nyj −Djyj

)
j∈J

+v∗, Lx−y +v∗
)

(5.19)

and

Tn : X → X : (x, y, v∗) �→
((

γ−1
i,nFi,nxi − Cixi

)
i∈I

,
(
τ−1

j,n Wj,nyj − Djyj

)
j∈J

, v∗
)

. (5.20)

For every i ∈ I and every n ∈ N, using the facts that Ci is μi-Lipschitzian, that Fi,n is αi-strongly 

monotone, and that γi,n ∈ [εi, (αi − εi)/μi], Lemma 5.1(i) implies that Fi,n −γi,nCi is εi-strongly monotone 

and therefore, since γ−1
i,n � μi/(αi − εi), it follows that γ−1

i,nFi,n − Ci is strongly monotone with constant 

εiμi/(αi −εi). Likewise, for every j ∈ J and every n ∈ N, τ−1
j,n Wj,n −Dj is strongly monotone with constant 

δjνj/(βj − δj). Thus, upon setting

ϑ = min

{
min
i∈I

εiμi

αi − εi
, min

j∈J

δjνj

βj − δj
, 1

}
, (5.21)

we get

(∀n ∈ N)
(
∀(x, y, v∗) ∈ X

)(
∀(a, b, c∗) ∈ X

)

〈
(x, y, v∗) − (a, b, c∗) | Tn(x, y, v∗) − Tn(a, b, c∗)

〉

=
∑

i∈I

〈
xi − ai |

(
γ−1

i,nFi,nxi − Cixi

)
−
(
γ−1

i,nFi,nai − Ciai

)〉

+
∑

j∈J

〈
yj − bj |

(
τ−1

j,n Wj,nyj − Djyj

)
−
(
τ−1

j,n Wj,nbj − Djbj

)〉
+ ‖v∗ − c∗‖2

� ϑ
∑

i∈I

‖xi − ai‖
2 + ϑ

∑

j∈J

‖yj − bj‖2 + ϑ‖v∗ − c∗‖2

= ϑ‖(x, y, v∗) − (a, b, c∗)‖2. (5.22)
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Hence, the operators (Tn)n∈N are ϑ-strongly monotone. However, S is linear, bounded, and S∗ = −S. It 

follows that the kernels (Kn)n∈N = (Tn + S)n∈N are ϑ-strongly monotone. Now, for every i ∈ I and every 

n ∈ N, since γ−1
i,nFi,n is Lipschitzian with constant χi/εi, we deduce that γ−1

i,nFi,n − Ci is Lipschitzian with 

constant χi/εi + μi. Likewise, for every j ∈ J and every n ∈ N, τ−1
j,n Wj,n − Dj is Lipschitzian with constant 

κj/δj + νj . Hence, upon setting

η = max
{

max
i∈I

{χi/εi + μi}, max
j∈J

{κj/δj + νj}, 1
}

, (5.23)

we obtain

(∀n ∈ N)
(
∀(x, y, v∗) ∈ X

)(
∀(a, b, c∗) ∈ X

)
‖Tn(x, y, v∗) − Tn(a, b, c∗)‖2

=
∑

i∈I

∥∥(γ−1
i,nFi,nxi − Cixi

)
−
(
γ−1

i,nFi,nai − Ciai

)∥∥2

+
∑

j∈J

∥∥(τ−1
j,n Wj,nyj − Djyj

)
−
(
τ−1

j,n Wj,nbj − Djbj

)∥∥2
+ ‖v∗ − c∗‖2

� η2
∑

i∈I

‖xi − ai‖
2 + η2

∑

j∈J

‖yj − bj‖2 + η2‖v∗ − c∗‖2

= η2‖(x, y, v∗) − (a, b, c∗)‖2. (5.24)

This implies that the operators (Tn)n∈N are η-Lipschitzian. On the other hand, S is Lipschitzian with 

constant ‖S‖. Altogether, the kernels (Kn)n∈N are Lipschitzian with constant η + ‖S‖. In turn, using 

Proposition 3.9(i)[d]&(ii)[b], we infer that, for every n ∈ N, ran Kn ⊂ ran(Kn + M) and Kn + M is 

injective. Now set

(∀n ∈ N) pn =
(
(xi,n)i∈I , (yj,n)j∈J , (v∗

j,n)j∈J

)
, p̃n =

(
(x̃i,n)i∈I , (ỹj,n)j∈J , (ṽ∗

j,n)j∈J

)
,

qn =
(
(ai,n)i∈I , (bj,n)j∈J , (cj,n)j∈J

)
, and q∗

n =
(
(a∗

i,n)i∈I , (b∗
j,n)j∈J , (c∗

j,n)j∈J

)
. (5.25)

In view of (5.19), (5.17), (5.14), and (5.15), we deduce that (5.12) assumes the form

for n = 0, 1, . . .
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

qn = JKn

M p̃n

q∗
n = Knp̃n − Knqn

if 〈qn − pn | q∗
n〉 < 0

⌊
pn+1 = pn +

λn

〈
qn − pn | q∗

n

〉

‖q∗
n‖2

q∗
n

else⌊
pn+1 = pn.

(5.26)

In addition, (5.13) implies that p̃n − pn → 0. Altogether, in the light of Theorem 4.2 and Remark 4.3, there 

exists (x, y, v∗) ∈ zer M such that pn ⇀ (x, y, v∗). It follows that xn ⇀ x and v∗
n ⇀ v∗. Further, we 

conclude by using Lemma 2.2(iii) that x ∈ P, v∗ ∈ D , and (x, v∗) ∈ Z. �
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