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1. Introduction

A generic problem in nonlinear analysis and optimization is to find a zero of a maximally monotone
operator M : X — 2% where X is a real Hilbert space. The most elementary method designed for this task
is the proximal point algorithm [34]

(Yn €N) zp41=Jy, MTn, where 7, €]0,+00] and J, a = (Id+y, M) (1.1)

In practice, the execution of (1.1) may be hindered by the difficulty of evaluating the resolvents (J., ar)neN-
Thus, even in the simple case when M is the sum of two monotone operators A and B, there is no mechanism
to express conveniently the resolvent of M in terms of operators involving A and B separately. To address
this issue, various splitting strategies have been proposed to handle increasingly complex formulations in
which M is a composite operator assembled from several elementary blocks that can be linear operators
and monotone operators [5,7,9-12,17,18,21,22,30,37]. In the present paper, we explore a different path by
placing at the core of our analysis the following extension of the classical notion of a resolvent.
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Definition 1.1 (Warped resolvent). Let X be a reflexive real Banach space with topological dual X*, let D
be a nonempty subset of X, let K: D — X*, and let M: X — 2% be such that ran K C ran(K + M) and
K + M is injective (see Definition 2.1). The warped resolvent of M with kernel K is JX = (K + M) 1o K.

A main motivation for introducing warped resolvents is that, through judicious choices of a kernel K
tailored to the structure of an inclusion problem, one can create simple patterns to design and analyze
new, flexible, and modular splitting algorithms. At the same time, the theory required to analyze the static
properties of warped resolvents as nonlinear operators, as well as the dynamics of algorithms using them,
needs to be developed as it cannot be extrapolated from the classical case, where K is simply the identity
operator. In the present paper, this task is undertaken and we illustrate the pertinence of warped iteration
methods through applications to challenging monotone inclusion problems.

The paper is organized as follows. Section 2 is dedicated to notation and background. In Section 3,
we provide important illustrations of Definition 1.1 and make connections with constructions found in the
literature. The properties of warped resolvents are also discussed in that section. Weakly and strongly
convergent warped proximal iteration methods are introduced and analyzed in Section 4. Besides the use
of kernels varying at each iteration, our framework also features evaluations of warped resolvents at points
that may not be the current iterate, which adds considerable flexibility and models in particular inertial
phenomena and other perturbations. New splitting algorithms resulting from the proposed warped iteration
constructs are devised in Section 5 to solve monotone inclusions.

2. Notation and background

Throughout the paper, X, ), and Z are reflexive real Banach spaces. We denote the canonical pairing
between X and its topological dual X* by (-,-), and by Id the identity operator. The weak convergence of
a sequence (Tp)neN to x is denoted by x, — x, while z,, — = denotes its strong convergence. The space
of bounded linear operators from X to Y is denoted by B(X,Y), and we set B(X) = B(X, X).

Let M: X — 2% . We denote by graM = {(z,2*) € X x X* | 2* € Ma} the graph of M, by
domM = {ze€X | Mz# @} the domain of M, by ranM = {z* € X* | 3z € X) z* € Mz} the
range of M, by zer M = {w eX|0e Mx} the set of zeros of M, and by M~! the inverse of M, i.e.,
graM~! = {(z*,2) € X* x X | 2* € Mz}. Further, M is monotone if

(V(z,2%) € gra M) (Y(y,y") € gralM) (2 —y,a* —y") >0, (2.1)

and maximally monotone if, in addition, there exists no monotone operator A: X — 2" such that gra M C
gra A # gra M. We say that M is uniformly monotone with modulus ¢: [0, +oo[ — [0, +00] if ¢ is increasing,
vanishes only at 0, and

(V(z,2") € gra M) (V(y,y") € graM) (v —y,2" —y") = o([lz — y]). (2.2)

In particular, M is strongly monotone with constant « € ]0, +o0[ if it is uniformly monotone with modulus

p=al
Definition 2.1. An operator M : X — 2% is injective if (Vo € X)(Vy € X) Me N My # @ = = = .

The following lemma, which concerns a type of duality for monotone inclusions studied in [20,29,32], will
be instrumental.

Lemma 2.2. Let A: Y — 2¥" and B: Z — 22" be mazimally monotone, let L € B, Z), let s* € Y*, and
let r € Z. Suppose that X =Y x Z x Z* (hence X* = Y* x Z2* x Z), define
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M:X = 2% (2,y,0%) = (=s* + Az + L*v*) x (By —v*) x {r — Lz +y}, (2.3)

and set Z = {(;mv*) eYxZ*|s*—L*v"e€Avand Ly —r € B_lv*}, In addition, denote by & the set
of solutions to the primal problem

find x €Y such that s* € Az + L*(B(Lz — 1)), (2.4)
and by 2 the set of solutions to the dual problem
find v* € Z* such that —r € —L(A™'(s* — L*v*)) + B~ 'v*". (2.5)
Then the following hold:

(i) Z is a closed convex subset of & x 9.

(ii) M is mazimally monotone.

(iii) Suppose that (z,y,v*) € zer M. Then (z,v*) € Z, x € P, and v* € 9.
(iv) P40 9+ 7+ S zerM #£ 0.

Proof. (i): [20, Proposition 2.1(i)(a)].
(ii): Define

C: X — 2% (x,y,v") = (—s* + Ax) x By x {r} (2.6)

S X = X*: (z,y,v") — (L*v*, —v*, —Lx + y). .

It follows from the maximal monotonicity of A and B that C' is maximally monotone. On the other hand,
S is linear and bounded, and

(V(z,y,0") € X)) ((z,,0"), S(2,y,v7)) = (&, Lv") — (y,v") + (y — L, v") = 0. (2.7)

Thus, we derive from [35, Section 17] that S is maximally monotone with domS = X. In turn, [35,
Theorem 24.1(a)] asserts that M = C 4 S is maximally monotone.

(iii): We deduce from (2.3) that s* € Ax + L*v*, v* € By, and y = Lz — r; hence v* € B(Lz — r).
Consequently, s* — L*v* € Ax and Lz —r € B~v*, which yields (x,v*) € Z. Finally, (i) entails that z € &
and v* € 9.

(iv): By [20, Proposition 2.1(i)(c)], & # @ & 9 # & < Z # @. In addition, in view of (iii), zer M # @&
= Z # @. Suppose that (z,v*) € Z and set y = Lz —r. Then y = Lz —r € B~ 1v* and s* € Az + L*v*.
Hence 0 € By—v* and 0 € —s* 4+ Az + L*v*. Altogether, 0 € (—s*+ Az + L*v*) x (By—v*) x{r—Lax+y} =
M(x,y,v*), ie., (z,y,v*) €Ezer M. O

Now suppose that X is a real Hilbert space with scalar product (- |-). An operator T: X — X is
nonexpansive if it is 1-Lipschitzian, a-averaged with o € ]0,1[ if Id +(1/a)(T — Id) is nonexpansive, firmly
nonexpansive if it is 1/2-averaged, and [-cocoercive with 8 € ]0, 4-o00[ if ST is firmly nonexpansive. Averaged
operators were introduced in [4]. The projection operator onto a nonempty closed convex subset C of X is
denoted by projc. The resolvent of M: X — 2% is Jy, = (Id+M) L.

3. Warped resolvents
We provide illustrations of Definition 1.1 and then study the properties of warped resolvents.

Our first example is the warped resolvent of a subdifferential. This leads to the following notion, which
extends Moreau’s classical proximity operator in Hilbert spaces [28].
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Fig. 1. Warped projections onto the closed unit ball C centered at the origin in the Euclidean plane. Sets of points projecting onto
p1, p2, and p3 for the kernels K; = Id (in green) and Ka: (£1,&2) — (5;”/2 +&1/5 —&2,&1 + &2) (in red). Note that K5 is not a
gradient. (For interpretation of the colors in the figure, the reader is referred to the web version of this article.)

Example 3.1 (Warped prozimity operator). Let D be a nonempty subset of X, let K: D — X*, and let
p: X — ]—00, +00] be a proper lower semicontinuous convex function such that ran K’ C ran(K + d¢) and
K + 0y is injective. The warped proximity operator of ¢ with kernel K is proxf =(K+0dp) toK. It is
characterized by the variational inequality

(V(z,p) e X x X) p=proxsaz & (WeX) (y—p Kz—Kp)+opp) <o) (3.1)
In particular, in the case of normal cones, we arrive at the following definition (see Fig. 1).

Example 3.2 (Warped projection operator). Let D be a nonempty subset of X, let K: D — X*, and let C
be a nonempty closed convex subset of X with normal cone operator N¢ such that ran K C ran(K + N¢)
and K + N¢ is injective. The warped projection operator onto C' with kernel K is projg = (K+N¢) loK.
It is characterized by

(V(z,p) € X x X) p=projiz & [peC and (VyeC) (y—p Kz—Kp)<O0]. (3.2)

Example 3.3. Suppose that X is strictly convex, let M: X — 2% be maximally monotone, and let K be
the normalized duality mapping of X. Then JI is a well-defined warped resolvent which was introduced in
[26].

Example 3.4. Let M: X — 2% be maximally monotone such that zer M # &, let f: X — |—00, +00]
be a Legendre function [6] such that dom M C intdom f, and set K = Vf. Then it follows from [6,
Corollary 3.14(ii)] that JI is a well-defined warped resolvent, called the D-resolvent of M in [6].

Example 3.5. Let M : X — 2% be maximally monotone and let K : X — X* be strictly monotone, surjec-
tive, and 3* monotone in the sense that [39, Definition 32.40(c)]

(Vx € dom M)(Vz* € ran M) sup  (r—y,y" — ") < +o0. (3.3)
(y,y*)€gra M

Then it follows from [8, Theorem 2.3] that JE is a well-defined warped resolvent, called the K-resolvent of
M in [8].
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Example 3.6. Let A: X — 2% and B: X — 2% be maximally monotone, and let f: X — ]—o0, +00] be a
proper lower semicontinuous convex function which is essentially smooth [6]. Suppose that D = (int dom f)N
dom A is a nonempty subset of int dom B, that B is single-valued on int dom B, that V f is strictly monotone
on D, and that (Vf — B)(D) C ran(Vf + A). Set M = A+ Band K: D — X*: 2z — Vf(z) — Bx.
Then the warped resolvent J1 is well defined and coincides with the Bregman forward-backward operator
(Vf+A)~to (Vf— B) investigated in [13], where it is shown to capture a construction found in [31].

Example 3.7. Consider the setting of Lemma 2.2. For simplicity (more general kernels can be considered),
take s* = 0, r = 0, and assume that Y and Z* are strictly convex, with normalized duality mapping Ky and
Kz-. As seen in Lemma 2.2(i), finding a zero of the Kuhn-Tucker operator U: Y x Z2* — 2Y %2 (z,0*)
(Az+L*v*)x (B~1v* — Lz) provides a solution to the primal-dual problem (2.4)—(2.5). Now set K : (x,v*)
(Kyx — L*v*, Lz + K z«v*). Then the warped resolvent J& is well defined and

JE e (x0) = (Ky + A7 (Kyz — L), (Kz« + B™') 7Y (Le + Kz-v")). (3.4)

For instance, in a Hilbertian setting, J& : (z,v*) — (Ja(x—L*v*), Jg-1(Lz+v*)), whereas Jy is intractable;
note also that the kernel K is a non-Hermitian bounded linear operator.

Further examples will appear in Section 5. Let us turn our attention to the properties of warped resolvents.

Proposition 3.8 (Viability). Let D be a nonempty subset of X, let K: D — X*, and let M: X — 2% be
such that ran K C ran(K + M) and K + M s injective. Then J&: D — D.

Proof. By assumption, domJf; = dom((K + M)™' o K) = {z €domK | Kz € dom(K + M)~'} =
{# € D| Kz eran(K + M)} = D. Next, observe that

ran Jf; =ran (K + M) ' oK) Cran(K + M) ™' = dom(K + M) C dom K = D. (3.5)

Finally, to show that (K + M)~! is at most single-valued, suppose that (z*,z;) € gra(K + M)~! and
(z*,22) € gra(K + M)~!. Then {z*} C (K + M)z; N (K + M)z and, since K + M is injective, it follows
that x1 = 25. O

Sufficient conditions that guarantee that warped resolvents are well defined are made explicit below.

Proposition 3.9. Let D be a nonempty subset of X, let K: D — X*, and let M: X — 2% . Then the
following hold:

(i) Suppose that one of the following is satisfied:

[a] K + M is surjective.

[b] K + M is mazimally monotone and D Ndom M is bounded.

[c] K+ M is mazimally monotone, K + M is uniformly monotone with modulus ¢, and ¢(t)/t — +00
as t — +o00.

[d] K+ M is mazimally monotone and strongly monotone.

[e] M is mazimally monotone, D = X, and K is mazimally monotone, strictly monotone, 3* monotone,
and surjective.

[f] K is mazimally monotone and there exists a lower semicontinuous coercive convez function ¢: X —
R such that M = Op.

Then ran K C ran(K + M).
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(ii) Suppose that one of the following is satisfied:
[a] K + M is strictly monotone.
[b] M is monotone and K is strictly monotone on dom M.
[c] K is monotone and M is strictly monotone.
[d] —(K + M) is strictly monotone.
Then K + M is injective.

Proof. Set A=K + M.

(i): Item [a] is clear. We prove the remaining ones as follows.

[b]: It follows from [39, Theorem 32.G] that ran A = X D ran K.

[c]&[d]: Since [20, Lemma 2.7(ii)] and [39, Corollary 32.35] assert that A is surjective, the claim follows
from (i)[a].

[e]: See [8, Theorem 2.3].

[f]: Take z € D and set B = A(- + z) — Kz. By coercivity of ¢, there exists p € |0, +o00[ such that

NMexeX) |z =zp = inf(x,0p(x+2)) = ex+2)—¢p(z)=0. (3.6)

Now take (z,2*) € gra B and suppose that ||z|| > p. Then 2* + Kz — K(z + z) € 9p(x + z) and it follows
from (3.6) and the monotonicity of K that

0<(z,2"+Kz—K(z+2)) =(z,2%) — ((x+2) — 2, K(z + z) — Kz) < (x,2). (3.7)

On the other hand, since dom dp = X [38, Theorems 2.2.20(b) and 2.4.12], A is maximally monotone [35,
Theorem 24.1(a)], and so is B. Altogether, [33, Proposition 2] asserts that there exists T € X’ such that
0 € Bz. Consequently, Kz € A(T + z) C ran(K + M).

(ii): We need to prove only [a] since [b] and [c] are special cases of it, and [d] is similar. To this end, let
(21,72) € X2 and suppose that Az; N Azs # &. We must show that x; = 2. Take x* € Azxy N Axs. Then
(x1,2*) and (z2,2*) lie in gra A. In turn, since A is strictly monotone and (x1 — 2, 2* — z*) = 0, we obtain
r1 =x2. 0O

Proposition 3.10. Let M: X — 2% ety €0, +oo[, and let K: X — X* be such that ran K C ran(K +vyM)
and K + yM 1is injective. Then the following hold:

(i) Fix JIS, = zer M.
(ii) Letx € X andp € X. Then p = Jfo & (p,7 Y (Kx — Kp)) € graM.
(iii) Suppose that M is monotone. Let x € X and y € X, and set p = Jfo and q = JfMy. Then
(p—q,Kz—Ky) > (p—q,Kp— Kq).
(iv) Suppose that M is monotone, that K is uniformly continuous and ¢-uniformly monotone, and that
:t = o(t)/t is real-valued on ]0, or some £ € 0,400 and strictly increasing. Then JX, is
¢ Y g ~yM
uniformly continuous.
(v) Suppose that M is monotone and that K is B-Lipschitzian and a-strongly monotone for some « €
10, +o0[ and B € ]0,+o0[. Then JfM is (B8/a)-Lipschitzian.
vi) Suppose tha is monotone. Let x € X, and set y = x and y* =~" x — Kvy). Then zer M C
i) S that M 4 t L X d set JfM d y* YK Ky). Th M
{zeX | (z-y,y") <0}

Proof. (i): We derive from Proposition 3.8 that (Ve € X) x € zer M & Koz € Kz +yMz & x = J,ffo &
x € Fix Jﬁw.
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(ii): We have p = J,i(M.Z‘ s p=(K+yM) Y (Kz) & Kz € Kp+yMp & Kz — Kp € YMp &
(p,y Kz — Kp)) € gra M.

(iii): This follows from (ii) and the monotonicity of M.

(iv): Let 2 and y be in X, and set p = J,f(Mx and ¢ = J,fMy. Then we deduce from (iii) that

o(lp—al) <(p—¢,Kp—Kq) < (p—q, Kz — Ky) <|lp—q|| |[Kz — Ky (3.8)

Now fix ¢ € ]0,¢[ and let n € 0, (¢)]. By uniform continuity of K, there exists 6 € ]0,+oo[ such that
|l —y|| < = ||Kx — Ky| <n. Without loss of generality, suppose that p # ¢. Then, if ||z — y|| < §, we
derive from (3.8) that ¥(|lp — ¢q|) < ||Kz — Ky|| < n < ¢(g). Consequently, since 1 is strictly increasing,

lp—dql <e.
v): Let 2 and y be in X and set p = JX 2 and ¢ = JX ;y. Then we deduce from (iii) that
yM yM

alp—qll’<(p—q¢.Kp—Kq) < (p—q. Kz — Ky) < |lp—q| |Kz — Ky|| < Bllp—qll |z —yll. (3.9

In turn, [[p —gf| < (B/)]|z -yl
(vi): Suppose that z € zer M. Then (z,0) € gra M. On the other hand, we derive from (ii) that (y,y*) €
gra M. Hence, by monotonicity of M, (y — z,y*) > 0. O

In Hilbert spaces, standard resolvents are firmly nonexpansive, hence 1/2-averaged. A related property
for warped resolvents is the following.

Proposition 3.11. Suppose that X is a Hilbert space. Let M: X — 2% be mazimally monotone and let
K: X — X be averaged with constant o € )0, 1[. Suppose that K + M is 1-strongly monotone. Then JI is
averaged with constant 1/(2 — «).

Proof. Since K is nonexpansive by virtue of [7, Remark 4.34(i)], it follows from the Cauchy—Schwarz in-
equality that

VzeX)(VyeX) (z—y|RId+K)z — (2Id+K)y) = 2|z —y||> + (z —y | Kz — Ky)
> 2|z —y[?* — ||z — yl?
= |z -yl (3.10)

and therefore, by continuity of 2Id +K, that 2Id + K is maximally monotone [7, Corollary 20.28]. Thus, in
the light of [7, Corollary 25.5(i)], 2Id +K + M is maximally monotone. In turn, since 2 Id + K + M is strongly
monotone by (3.10), [7, Proposition 22.11(ii)] entails that ran(3Id + K + M —Id) = ran(2Id+K + M) = X,
which yields ran(Id +(K + M —1d)/3) = X. Hence, by monotonicity of K + M —1Id and Minty’s theorem [7,
Theorem 21.1], we infer that K + M — Id is maximally monotone. Thus, in view of [7, Corollary 23.9], (K +
M)~ = (Id+K+M —1d) ! is averaged with constant 1/2. Consequently, we infer from [7, Proposition 4.44]
that JE = (K + M)~! o K is averaged with constant 1/(2 —«a). O

4. Warped proximal iterations

Throughout this section, & is a real Hilbert space identified with its dual. We start with an abstract
principle for the basic problem of finding a zero of a maximally monotone operator.

Proposition 4.1. Let M: X — 2% be a mazximally monotone operator such that Z = zer M # @, let g € X,
let e €10, 1], let (A\n)nen be a sequence in [e,2 — €], and let (Yn, Y )neN be a sequence in gra M. Set
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Tnt+ = Yn i (Yn—an [ y) <0
(VneN) x4 = [y 12 (4.1)

T, otherwise.

Then the following hold:

(i) EnEN ”mn-i-l - xn”Q < +o00.
(ii) Suppose that every weak sequential cluster point of (Tp)nen @ in Z. Then (xn)neN converges weakly
to a point in Z.

Proof. By [7, Proposition 23.39], Z is a nonempty closed convex subset of X. Set (Vn € N) H,, =
{zeX | (z—yn|y;) <0}. For every z € Z and every n € N, since (2,0) and (y,,y;) lie in gra M,
the monotonicity of M forces (y, — 2 | y;;) > 0. Thus Z C (), .y Hy- In addition, [7, Example 29.20] asserts
that

. Ty + s Yy A (Y — | ) <05
(Vn € N) projy x, = [y lI? " (4.2)
T, otherwise.
Hence, we derive from (4.1) that
(VneN) zpp =2, + A(Projy, Tn — xn). (4.3)

Therefore (i) follows from [16, Equation (10)] and (ii) follows from [16, Proposition 6i)]. O

To implement the conceptual principle outlined in Proposition 4.1, one is required to construct points in
the graph of the underlying monotone operator. Towards this end, our strategy is to use Proposition 3.10(ii).
We shall then seamlessly obtain in Section 5 a broad class of algorithms to solve a variety of monotone
inclusions. It will be convenient to use the notation

y—*, ify* #0;
[ly|]

0, ify* =0.

(v €Y () = (4.4)

Our first method employs, at iteration n, a warped resolvent based on a different kernel, and this warped
resolvent is applied at a point z,, that may not be the current iterate z,,.

Theorem 4.2. Let M: X — 2% be a mazimally monotone operator such that Z = zer M # @, let g € X,
let € €10,1[, let (An)neN be a sequence in [e,2 — ], and let (y,)neN be a sequence in [e,+o00[. Further, for
every n € N, let &, € X and let K,,: X — X be a monotone operator such that ran K, C ran(K, + v, M)
and K, + v, M is injective. Iterate

forn=0,1,...

Yn = T30 Tn

Yn = V0 (KT — Knyn)
if (Yn —an [ yn) <0

)‘n<yn — Tp | y;> y
[y 12 "

(4.5)

\\anrl =Tp +

else

[$n+1 = Tn.
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Then the following hold:

(i) ZnEN ||xn+1 - xn”Q < Fo00.
ii) Suppose that the following are satisfied:
ii) S that the followsi tisfied

[a] Z, — 2, — 0.

_ . Ty,
bl (Zn — yn | (KnZn — Kpyn)') =0 =
bl I ") K Fn — Knyn — 0.
Then (T )nen converges weakly to a point in Z.

Proof. By Proposition 3.10(ii),
(Vn €N)  (yn,yy) € gra M. (4.6)

Therefore, (i) follows from Proposition 4.1(i). It remains to prove (ii). To this end, take a strictly increasing
sequence (k)nen in N and a point x € X such that z, — x. In view of Proposition 4.1(ii), we must show
that € Z. We infer from (ii)[a] that

Next, by (4.4) and (4.5), for every n € N, if (2, — y,, | y3) > 0, then y # 0 and

. (T = Yn | yn) _
(T =y | (43)°) = W =X zngr — @nll 67 @ng1 — zall; (4.8)

otherwise, (x, — yn | ¥5) < 0 and it thus results from (4.4) that

0, if y, = 0;
EAV AN «
(zn = [ (00)) = (&0 = Yn | yn) otherwise
sl
<0
= 5_1||x7l+1 - xn” (49)

Therefore, using (i) and the monotonicity of (K, ),en, we obtain

0« 5_1||:rn+1 - ;vn||
<xn — In ‘ Kz, — Knyn)u> + <-%n — Yn | (Kn%n - Knyn)u>

However, by the Cauchy—Schwarz inequality and (ii)[a],
(0 = T | (K = Kngn)*)| <l = Full = 0. (4.11)

Hence, (4.10) implies that (Z, — ypn | (KnZn — Kpyn)') — 0. In turn, we deduce from (ii)[b] that Z, —y, — 0
and K,Z, — K,y, — 0. Altogether, since sup,,cn 7, + < €1, it follows from (4.6) and (4.7) that

Ykn = T, + Yk, — Th,) — @ (4.12)
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and
My, 3 vk, = ., (Kk, T, — K, yk,) — 0. (4.13)
Appealing to the maximal monotonicity of M, [7, Proposition 20.38(ii)] allows us to conclude that z € Z. O

Remark 4.3. Condition (ii)[b] in Theorem 4.2 is satisfied in particular when there exist o and 5 in ]0, +00]
such that the kernels (K, )nen are a-strongly monotone and S-Lipschitzian.

Remark 4.4. The auxiliary sequence (Z,)nen in Theorem 4.2 can serve several purposes. In general, it
provides the flexibility of not applying the warped resolvent to the current iterate. Here are some noteworthy
candidates.

(i) At iteration n, T, can model an additive perturbation of x,,, say Z,, = x,, + e,. Here the error sequence
(en)nen need only satisfy [e,| — 0 and not the usual summability condition ) _y llen| < +oo
required in many methods, e.g., [11,17,21,37].

(ii) Mimicking the behavior of so-called inertial methods [3,19], let (a,)nen be a bounded sequence in
R and set (Vn € N \ {0}) Z,, = @, + an(xn — p—1). Then Theorem 4.2(i) yields ||Z, — x,| =
|an| |n — Xn—1]] — 0 and therefore assumption (ii)[a] holds in Theorem 4.2. More generally, weak
convergence results can be derived from Theorem 4.2 for iterations with memory, that is,

n

n
(VneN) Iz, = Z“”’jxj’ where  (finj)o<j<n € R™ and Z,un,j =1 (4.14)
=0 =0

Here condition (ii)[a] holds if (1 — tiy 5 )@ — Z;L:_Ol n,jx; — 0. In the case of standard inertial methods,
weak convergence requires more stringent conditions on the weights (1tn,;)neN,0<j<n [19]-

(iii) Nonlinear perturbations can also be considered. For instance, at iteration n, ¥, = projo, z, is an
approximation to x, from some suitable closed convex set C,, C X.

Remark 4.5. The independent work [23] was posted on arXiv at the same time as the report [14] from which
our paper is derived. The former uses a notion of resolvents subsumed by Definition 1.1 to explore the
application of an algorithm similar to (4.5) with no perturbation (i.e., for every n € N, Z,, = x,,). The work
[23] nicely complements ours in the sense that it proposes applications to splitting schemes not discussed
here, which further attests to the versatility and effectiveness of the notion of warped proximal iterations.

We now turn our attention to a variant of Theorem 4.2 that guarantees strong convergence of the
iterates to a best approximation. In the spirit of Haugazeau’s algorithm (see [24, Théoréme 3-2] and [7,
Corollary 30.15]), it involves outer approximations consisting of the intersection of two half-spaces. For
convenience, given (z,y,z) € X3, we set

H(z,y)={ue X | (u—y|z—y) <0} (4.15)

and, if R = H(xz,y) N H(y,2) # &, Q(z,y,z) = projg x. The latter can be computed explicitly as follows
(see [24, Théoreme 3-1] or [7, Corollary 29.25]).

Lemma 4.6. Let (x7y72) € X?. Set R = H(xay) ﬂH(y,Z), X = <.13 -y | Y- Z>, n= ||$ - yH27 V= ||y - 2”27
and p = pv — x2. Then exactly one of the following holds:

(i) p=0 and x <0, in which case R = @.
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(ii) [p=0 and x = 0] or p > 0, in which case R # & and

z, ifp=0andx = 0;
Q(z,y,2) =S o+ (1+x/v)(z —y), ifp>0andxv = p; (4.16)
y+ (w/p)(x(z —y) +p(z —y)), ifp>0andxv <p.

Our second abstract convergence principle can now be stated.

Proposition 4.7. Let M : X — 2% be a mazimally monotone operator such that Z = zer M #+ @, let g € X,
and let (Yn, Y2 ) nen be a sequence in gra M. For every n € N, set

Tnt1/2 = " [y1?
Tn, otherwise

R} - ) <0
A nlv) and Tpiq = Q(mo,xmxn+1/2). (4.17)

Then the following hold:

(i) ZnGN [ Znt1 — xn”Q < 400 and ZnGN ”xn+1/2 - xn”2 < +o00.
(ii) Suppose that every weak sequential cluster point of (zn)nen s in Z. Then (x,)neN converges strongly
to proj, xo.

Proof. Set (Vn € N) H,, = {2 € X | (z—y, | y;) <0}. Then, as in the proof of Proposition 4.1, Z is a
nonempty closed convex subset of X and Z C (), .y Hn. On the one hand,

(Yn€N) @,41/2 =projg, zn and x,41 = Q(mo,xn,xnﬂ/g). (4.18)

On the other hand, by (4.15),

X, ifx e Hy;
VneN) H(zx,,z, =
( ) ( +1/2) {Hn, otherwise
D Z. (4.19)

The claims therefore follow from [2, Proposition 2.1]. O

Theorem 4.8. Let M: X — 2% be a mazimally monotone operator such that Z = zer M # @, let g € X,
and let (Yn)nen be a sequence in |0, 4+o00] such that inf,en yn > 0. For every n € N, let T, € X and let
K, : X = X be a monotone operator such that ran K,, C ran(K,, +~v,M) and K,, +~, M is injective. Iterate

forn=0,1,...

Yn = LT

Y = Vo BTy — Kpyn)
if (Yn —an [ yn) <0

(Yn — Tn | y;kz> yr
[y 112 "

(4.20)
an+1/2 =z, +

else
Lwn+1/2 =Tn

L Zni1 = Q(T0, Ty Trg1/2)-
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Then the following hold:

(i) ZnEN ”z”‘f‘l - x"”2 < +o0 and ZneN ||xn+1/2 - InHz < +o0.
(i) Suppose that the following are satisfied:
[a] Z,, —x, — 0.
b] (Fn =y | (Ko — Knyn)') =0 = {x" “n 0
K.z, — Ky, — 0.
Then (zn)nen converges strongly to proj, xg.

Proof. Proposition 3.10(ii) asserts that (¥n € N) (yn,y)) € graM. Thus, we obtain (i) from Proposi-
tion 4.7(i). In the light of Proposition 4.7(ii), to establish (ii), we need to show that every weak sequential
cluster point of (x,),en is a zero of M. Since (i) asserts that 2,41 /o — 2, — 0, this is done as in the proof
of Theorem 4.2(ii). O

We complete this section with the following remarks.

Remark 4.9. Suppose that ) and Z are real Hilbert spaces and that X = )Y x Z. Let A: Y — 2% and
B: Z — 2% be maximally monotone, and let L € B(Y, Z). Define

M: X — 2% (z,v") = (Az + L*v*) x (~Lz + B~ 1v"). (4.21)

In [1,2,18] the problem of finding a zero of M (and hence a solution to the monotone inclusion 0 € Az +
L*(B(Lx))) is approached by generating, at each iteration n, points (a,,a)) € gra A and (b,,b}) € gra B.
This does provide a point (yn,yy) = ((an,b}), (a + L*bY, —La, + b,)) € gra M, which shows that the
algorithms proposed in [1,2,18] are actually instances of the conceptual principles laid out in Propositions 4.1
and 4.7. In particular, the primal-dual framework of [1] corresponds to applying Theorem 4.2 to the operator
M of (4.21) with kernels

(VneN) K,: X = X: (z,0")— (7, 'z — L*v*, Lt + p,0*). (4.22)
Likewise, that of [2] corresponds to the application of Theorem 4.8 to this setting.

Remark 4.10. In Theorems 4.2 and 4.8, the algorithms operate by using a single point (y,, ) in gra M at
iteration n. It may be advantageous to use a finite family (y; n,y; ,)ier, of points in gra M, say

. * Kin ~ — ~
Vi€ ln) Win¥Yin)= (J,YLT;MZ'Z"“,’Y,L-J%(Ki’nifi,n - Kznyzn)) (4.23)

By monotonicity of M, (Vi € I,)(Vz € zer M) (2| y;,.) < (Yin | y;,). Therefore, using ideas found in the
area of convex feasibility algorithms [15,27], at every iteration n, given strictly positive weights (w; »)ier,
adding up to 1, we average these inequalities to create a new half-space H,, containing zer M, namely

Yn = 2ier, WinYin
zer M C Hy, ={2€ X | (2| y}) <mn}, where el ’ (4.24)

M = Zieln wi7n<yi,n | y::n>

Now set
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Dier, Win{Yin —Tn | yin)
e % - 2 — ) if ZiGITL wi,n<mn —Yin | y::n> > O7
An = H Zieln wi»nyi,nH

0, otherwise.

(4.25)

Then, employing projy, ¥n = n + Ay D ic; Winy;, as the point z,41 in (4.5) and as the point z,, 11/ in
(4.20) results in multi-point extensions of Theorems 4.2 and 4.8.

5. Applications

We apply Theorem 4.2 to design new algorithms to solve complex monotone inclusion problems in a real
Hilbert space X. We do not mention explicitly minimization problems as they follow, with usual constraint
qualification conditions, by considering monotone inclusions involving subdifferentials as maximally mono-
tone operators [7,17]. For brevity, we do not mention either the strongly convergent counterparts of each of
the corollaries below that can be systematically obtained using Theorem 4.8.

Let us note that the most basic instantiation of Theorem 4.2 is obtained by setting (Vn € N) K, = Id,
Tp = Xy, and A, = 1. In this case, the warped proximal algorithm (4.5) reduces to the basic proximal point
algorithm (1.1).

In connection with Remark 4.4, let us first investigate the convergence of a novel perturbed forward-
backward-forward algorithm with memory. This will require the following fact.

Lemma 5.1. Let B: X — X be Lipschitzian with constant 8 € |0, +oo[, let W: X — X be strongly monotone
with constant « € 10, +o0], let € € 10,af, let v € 10, (. —€)/f], and set K = W — vB. Then the following
hold:

(i) K is e-strongly monotone.
(ii) Suppose that « =1 and W =1d. Then K is cocoercive with constant 1/(2 — ¢€).

Proof. (i): By the Cauchy—Schwarz inequality,

(VeeX)(VyeX) (z—y|Ke—-Ky)=(z—y|Wz—-Wy)—y(x—-y|Bz— By
> allz —yl* =~z -yl | Bx — By
> allz -yl = ~Bllz - y?
> ellz —yl|*. (5.1)

(ii): Since vB is (1 — e)-Lipschitzian, [7, Proposition 4.38] entails that vB is averaged with constant
(2 — €)/2. Hence, since yB = Id—K, [7, Proposition 4.39] implies that K is cocoercive with constant
1/(2—¢). O

Corollary 5.2. Let A: X — 2% be mazimally monotone, let B: X — X be monotone and (-Lipschitzian
for some B € ]0,+o00], let (o, x) € ]0, +oo[2, and let € € 10,/(B+1)[. For everyn € N, let W,,: X = X
be a-strongly monotone and x-Lipschitzian, and let v, € [e,(a—¢)/B]. Take o € X, let (An)nen be a
sequence in |0,2[ such that 0 < inf,eny An < SUppen An < 2, and let (en)nen be a sequence in X such
that e, — 0. Furthermore, let m € N ~ {0} and let (fin,j)neN,0<j<n be a real array that satisfies the
following:

[a] For every integer n > m and every integer j € [0,n —m — 1], p, ; = 0.
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[b] For every n € N, 37 pinj = 1.

[c] sup, ey maxogj<n |tin | < +oo.

Tterate

forn=0,1,...

Tn = en + D 5_0 ln,jT;

vy = Wyxy, — BT,

Yn = (Wa + 7 d) "oy

Y = Y (05 = Wayn) + Byn (5.2)
if (yn — xn | yn) <0

>‘n<yn — In | y1t> *

{’”"“ ST e
n

else

{xn_‘_l = Tp.

Suppose that zer(A + B) # @&. Then the following hold:

(1) Ynen lentr — al? < +o0.
(ii) (Zn)nen converges weakly to a point in zer(A + B).

Proof. We apply Theorem 4.2 with M = A+ B and (Vn € N) K,, = W,, —v,, B. First, [7, Corollary 20.28] as-
serts that B is maximally monotone. Therefore, M is maximally monotone by virtue of [7, Corollary 25.5(i)].
Next, in view of Lemma 5.1(i), the kernels (K, ),ecN are e-strongly monotone. Furthermore, the kernels
(Ky)nen are Lipschitzian with constant « 4 x since

(Ve e X)(Vy € X)  |[Knz — Kny| < [Wnz = Wayll + 7| Bz — By

o — &

B

< (a+x)llz -yl (5-3)

< xllz =yl + Bllz =yl

Therefore, for every n € N, since K,, + v, M is maximally monotone, Proposition 3.9(i)[d]&(ii)[b] entail
that ran K, C ran(K,, + v, M) and K,, + v, M is injective. Let us also observe that (5.2) is a special case
of (4.5).

(i): This follows from Theorem 4.2(i).

(ii): Set p = sup,,cn MaxXog j<n |tn,;|. For every integer n > m, it results from [a] and [b] that

1Zn — 20|l =

ent Y pnglay —an)

j=n—m

n

<leall+ > lunglllzy —zal

j=n—m
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n
<lleall +1 Y llws — anll

j=n—m

m
= lleall + 1) llzn = 2. (5:4)
§=0

Therefore, (i) and [c] imply that Z, — 2, — 0. On the other hand, it follows from Remark 4.3 that
condition (ii)[b] in Theorem 4.2 is satisfied. Hence, the conclusion follows from Theorem 4.2(ii). O

Next, we recover Tseng’s forward-backward-forward algorithm [7,36].

Corollary 5.3. Let A: X — 2% be mazimally monotone, let B: X — X be monotone and (-Lipschitzian for
some B € ]0,4o00[. Suppose that zer(A + B) # &, take zo € X, let € € 10,1/(8 4 1)[, and let (yn)neN be a
sequence in [, (1 —¢)/0]. Iterate

forn=0,1,...
vy =y Bxy, (5.5)
Yn = J. nA(xn - U:;,) .

Tn+1 = Yn — ’VnByn + 7);.
Then (xn)nen converges weakly to a point in zer(A + B).

Proof. We apply Theorem 4.2 with M = A+ B and (Vn € N) K,, = Id —~, B and %,, = z,,. Note that
the kernels (K, ),en are cocoercive with constant 1/(2 — €) by virtue of Lemma 5.1(ii). Moreover, using
Lemma 5.1(i), we deduce that the kernels (K,),en are strongly monotone with constant e. Thus, for
every n € N, since K, + v, M = Id +7, A is maximally monotone, Proposition 3.9(i)[d]&(ii)[b] assert that
ran K, C ran(K,, + v, M) and K,, + v, M is injective. Now set

[

YallY, . *
1 < _H | w\ 7 if <In —Yn | yn> > O;
(VneN) i =7, (Knzp — Knya) and A, = { (0= Un [ ¥3) (5.6)

g, otherwise.

Fix n € N. Then, by strong monotonicity of K,, and the Cauchy—Schwarz inequality,
EHxn - yn||2 < <xn — Yn ‘ Kpzp — Knyn> < Hxn - yn” ||Knxn - KnynH (5.7)

This implies that (z, —yn |y5) = Y (@0 = Yn | Kn2n — Knyn) < 5 120 — ynll [Knzn — Kpynl <
(evn) Y Knrn — Knynll? = e tyallyi || and therefore that A\, > e. In addition, by cocoercivity of K,,
YVallynll? = v N Enzn — Knyall® < (2 = )7, H@n — yn | Knwn — Kpyn) = (2 = €){xn — yn | y;;) and thus
An € 2 — e. Next, we derive from (5.5) that y, = JiMxn If (xn — yn | ysi) > 0, then (5.5) and (5.6) yield
Tyt1 = T — Yol = Tn + A (Yn — Tn | yZ)y;/HyZIIz
Ky, yields [yil? = 72| Knan — Knynll? < (2 = )95 (@n = yn | Knan — Knyn) < 0. Hence, yj; = 0 and

. Otherwise, (z, — ¥, | ¥) < 0 and the cocoercivity of

we therefore deduce from (5.5) that x,1 = z,. Thus, (5.5) is an instance of (4.5). Next, condition (ii)[a]
in Theorem 4.2 is trivially satisfied and, in view of Remark 4.3, condition (ii)[b] in Theorem 4.2 is also
fulfilled. O

We conclude this section by further illustrating the effectiveness of warped resolvent iterations by design-
ing a new method to solve an intricate system of monotone inclusions and its dual. We are not aware of a
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splitting method that could handle such a formulation with a comparable level of flexibility. Special cases
of this system appear in [1,10,18,25].

Problem 5.4. Let (V;)icr and (Z;), e be finite families of real Hilbert spaces. For every ¢ € I and j € J, let
A Y; — 2Yi and B;: Z; — 2% be maximally monotone, let C;: V; — V; be monotone and wi-Lipschitzian
for some p; € ]0,4+00[, let D;: Z; — Z; be monotone and v;-Lipschitzian for some v; € ]0,+o0[, let
Lj; € B(Vi, Z5), let s7 € Vs, and let r; € Z;. Consider the system of coupled inclusions

find (z;)ier € X Vs such that
il

(VZ S I) Sr € Ax; + Z L;Z ((BJ + Dj)(Zijl‘k — T‘j)) + C;x;, (58)

jeJ kel

its dual problem

find (vj)jes € X Z; such that

jeJ
st =Y Livi € Aiwi + Cia;
(3 (z:)ic1 € X yi> (Vi € I)(Vj € J) el (5.9)
el B +D (ZL]kxk )
kel

and the associated Kuhn—Tucker set

7 = {((xi)ie[, (U;)jej) ’ (V’L S I) r; €Y; and S: — ZLZZ-UI: € A;x; + Cixy,
keJ

and (Vj € J) vj € Z; and > Ljrzx —1; € (B; +Dj)1u;}. (5.10)
kel

We denote by & and Z the sets of solutions to (5.8) and (5.9), respectively. The problem is to find a point
in Z.

Corollary 5.5. Consider the setting of Problem 5.4. For every i € I and every j € J, let (ay, xi, 05, k5) €
10, +oo[*, let &; €10, i /(s + 1)[, let 9; €10,5;/(vj +1)[, let (F; n)nen be operators from Y; to Y that are
a;-strongly monotone and x;-Lipschitzian, let (W, )nen be operators from Z; to Z; that are (j-strongly
monotone and k;-Lipschitzian; in addition, let (Vi n)neN and (Tjn)neN be sequences in [e;, (o; — €;)/ ;) and
[0, (B; — &;)/v ], respectively. Suppose that Z # & and that

Y=XYV:;, Z= X Zj, and X =Y x Z x Z. (5.11)
i€l jeJ

Let ((xi,o)ieb(yj,O)jer(U}F,o)jeJ) and ((Tin)ier, (Yjn)jes, (0 ]n)]EJ)TLEN be in X, and let (An)nen be a
sequence in |0,2[ such that 0 < inf, ey A, < SUP,en An < 2. Iterate
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forn=0,1,...
for everyi e I

l;n = i,n%i,n - 'Yi’nci?ﬁi,n — Yin ZjGJ L;Z%J;:n

-1
i = (Fin +7inAi) (I, 4+ Yins))
—1
_O;n = Yin (l:,n - Fi,nai,n) + C’iai,n
for everyj e J
* . a1 ~%
tjm = ijyj,n - Tj,nDjyj,n + TjnVjn
—1 "

bj,n = (ij + ijBj) tjy"

* _ —1 /4% ) ) 7

jm = Tjin (tj,n — Winbjn) + Djbjn

= o ~ ~%
LCjm =2 ier LjiTim = Yjm + 05 — 7
for everyi e I
%k .

\‘aiﬂb =0in + Z]‘EJ Ljicj,n
for everyj e J

i : (5.12)
\‘bjm = Jjn —Cin
C;,n =7j+bjn— Zie[ Lja;n

0n = ier laf Il + 3,05 (105,117 + llctul1?)
On = Zie] (@i — Tim | a’;:n> + ZjeJ (<bj’n ~Yjin | b;,n> + <Cj’n - v;f,n | c;,n>)

iff, <0

Pn = Anen/an
else

pn =70

for everyi e I
_ *
Tint+l = xi,n + pnai’n

for everyj e J
Yin+1 = Yjn + Pnbj

* ok *
L Vn41 = Vjn + PnCjn-

Suppose that

(Vie)(Vj€J) Tin—Tin—0, Ujn—Yjn—0 and v;, —v;, —0. (5.13)

Set (Yn € N) x,, = (¥in)ier and v), = (v5,,
converges weakly to a point v° € 9, and (T,7*) € Z.

)jea. Then (zn)nen converges weakly to a point © € 2, (v)neN

Proof. Define

A Y =2V ()i = X (dizi + Cizy)
i€l
B: Z = 2%: (y;)jes = X (Bjy; + Djy;)
jeJ (514)
L:Y = Z:(x;)ier — (ZLjiu’Cz)
iel jeJ
s = (s7)ier and 1= (rj)jecs.
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We observe that

L':Z 5 Y: JEJH<ZLJ”> . (5.15)
el

jeJ

In the light of [7, Proposition 20.23], A and B are maximally monotone. On the other hand, we deduce from
(5.10), (5.14), and (5.15) that

Z={(z,v")€YxZ|s* —L** € Azand Lz —r € B~ 'v*}. (5.16)
Define
M: X — 2% (z,y,v*) = (=8 + Az + L*v*) x (By — v*) x {r — Lz + y}. (5.17)

Lemma 2.2(ii) entails that M is maximally monotone. Furthermore, since Z # &, Lemma 2.2(iv) yields
zer M # &. Next, set

S: X = X (z,y,v") — (—L"0v",v*, Lx — y) (5.18)
and, for every n € N,
K,: X = X: (2,y,0") — ((% NF; i — Cmi) — L*v*, ( *1Wj nYi — Djyj)jeJ+v*,Lx—y+v*) (5.19)
and
Tn: X = X: (2,y,0%) — ((’y;éanmZ - C’wi)iel’ (TJT,}Wj’nyj — Djyj)jEJ,v*>. (5.20)
For every i € I and every n € N, using the facts that C; is p;-Lipschitzian, that Fj, is «;-strongly

monotone, and that v; ,, € [e;, (o — €;) /], Lemma 5.1(i) implies that F; ,, —; »,C; is &;-strongly monotone
and therefore, since Vi 7} > ui/(a; — g;), it follows that Vi ;FZ n — C; is strongly monotone with constant

eipi/ (o — 51-) Likewise, for every j € J and every n € N, ;. iW — Dj is strongly monotone with constant
0;v;/(B; — d;). Thus, upon setting
i L 1)
9 = min { min —H , min ke 15, (5.21)
i€l oy — €5 jEJ B; —5

we get
(Vn € N)(V(z,y,v*) € X)(V(a,b,c*) € X)
<(ac7y,v*) — (a,b,c*) | Tn(z,y,v*) — Tn(a,b, c*)>
= Z (i —a; | (’Y;anznxz — Cii) — (v, W Fina; — Cia;))

i€l
#3052 Was = Di) = (75 Wiy = D)) + 1o =
jeJ
> 03 o=l + 0 3 gy = b +0ll” — P
el jeJ

:79”(553.%”*)_ (a’ab70*)H2' (522)
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Hence, the operators (T),),en are ¥-strongly monotone. However, S is linear, bounded, and S* = —S. It
follows that the kernels (K,,)nen = (T + S)nen are ¥-strongly monotone. Now, for every ¢ € I and every
n € N, since 'yi_’T}Fm is Lipschitzian with constant y;/e;, we deduce that %_gFm — C; is Lipschitzian with
constant x;/e; + p;. Likewise, for every j € J and every n € N, ijﬁ W;.n — Dj is Lipschitzian with constant
k;j/0; + v;. Hence, upon setting

7 = max { max{x;/e; + pi }, max{x;/d; + v;}, 1}, (5.23)
icl jeJ
we obtain

(Vn € N)(V(z,y,v*) € X)(V(a,b,c*) € X) ||Tn(z,y,v*) — Ta(a,b,c*)|?

= Z H (%_;mez - Ciz;) — (“YZ;Fz’,naz‘ — Csa;) ||2

el
+ 3 (A Winys — D) = (754 Wymbs — Djbs) |+ [l — e
jeJ
<’ Z i — a;||* +n° Z lly; — bj||2 + % |Jv* — ¢ ||?
il jed
:TI2||(fana”U*) - (avba C*)||2' (524)

This implies that the operators (T},),cn are n-Lipschitzian. On the other hand, S is Lipschitzian with
constant ||.S||. Altogether, the kernels (K, )nen are Lipschitzian with constant n + ||S]|. In turn, using
Proposition 3.9(i)[d]&(ii)[b], we infer that, for every n € N, ranK,, C ran(K,, + M) and K,, + M is
injective. Now set

(vn S N) Pn = ((xi,n)i61'7 (yj,n)jEJa (U;,n)jeJ)y ﬁn = ((§i7n)i617 (ﬂj,n)jEJa (5;,n)j€J)a

an = ((aim)icr; (bjn)jes, (Cim)jes), and g = ((af,)ier, 05 n)je0, (€ n)jes).  (5.25)
In view of (5.19), (5.17), (5.14), and (5.15), we deduce that (5.12) assumes the form

forn=0,1,...
qn = ]\I/([nﬁn
q; = Knﬁn - KnQn

An{Gn — D | @
{pnﬂzpﬁ% -
n
else
\‘anrl:pn-

In addition, (5.13) implies that p,, — p, — 0. Altogether, in the light of Theorem 4.2 and Remark 4.3, there
exists (Z,7,7*) € zer M such that p, — (Z,7,7"). It follows that z, — Z and v} — T*. Further, we
conclude by using Lemma 2.2(iii) that T € &, 7" € 2, and (Z,7%) € Z. O
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