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Abstract

Compositional data sets are ubiquitous in science, including geology, ecology, and 

microbiology. In microbiome research, compositional data primarily arise from 

high-throughput sequence-based profiling experiments. These data comprise micro-

bial compositions in their natural habitat and are often paired with covariate meas-

urements that characterize physicochemical habitat properties or the physiology of 

the host. Inferring parsimonious statistical associations between microbial compo-

sitions and habitat- or host-specific covariate data is an important step in explora-

tory data analysis. A standard statistical model linking compositional covariates 

to continuous outcomes is the linear log-contrast model. This model describes the 

response as a linear combination of log-ratios of the original compositions and has 

been extended to the high-dimensional setting via regularization. In this contribu-

tion, we propose a general convex optimization model for linear log-contrast regres-

sion which includes many previous proposals as special cases. We introduce a prox-

imal algorithm that solves the resulting constrained optimization problem exactly 

with rigorous convergence guarantees. We illustrate the versatility of our approach 

by investigating the performance of several model instances on soil and gut microbi-

ome data analysis tasks.
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1 Introduction

Compositional data sets are ubiquitous in many areas of science, spanning such 

disparate fields as geology and ecology. In microbiology, compositional data arise 

from high-throughput sequence-based microbiome profiling techniques, such as 

targeted amplicon sequencing (TAS) and metagenomic profiling. These meth-

ods generate large-scale genomic survey data of microbial community composi-

tions in their natural habitat, ranging from marine ecosystems to host-associated 

environments. Elaborate bioinformatics processing tools [5, 6, 13, 17, 28] typi-

cally summarize TAS-based sequencing reads into sparse compositional counts 

of operational taxonomic units (OTUs). The quantification of the relative abun-

dances of OTUs in the environment is often accompanied by measurements of 

other covariates, including physicochemical properties of the underlying habitats, 

variables related to the health status of the host, or those coming from other high-

throughput protocols, such as metabolomics or flow cytometry.

An important step in initial exploratory analysis of such data sets is to infer 

parsimonious and robust statistical relationships between the microbial composi-

tions and habitat- or host-specific measurements. Standard linear regression mod-

eling cannot be applied in this context because the microbial count data carry 

only relative or compositional information. One of the most popular approaches 

to regression modeling with compositional covariates is the log-contrast regres-

sion model, originally proposed in [2] in the context of experiments with mix-

tures. The linear log-contrast model expresses the continuous outcome of interest 

as a linear combination of the log-transformed compositions subject to a zero-

sum constraint on the regression vector. This leads to the intuitive interpretation 

of the response as a linear combination of log-ratios of the original compositions. 

In a series of papers, the linear log-contrast model has been generalized to the 

high-dimensional setting via regularization. The sparse linear log-contrast model, 

introduced in [20], considers variable selection via �1 regularization and has been 

extended (i) to multiple linear constraints for sub-compositional coherence across 

predefined groups of predictors [30]; (ii) to sub-composition selection via tree-

structured sparsity-inducing penalties [33]; (iii) to longitudinal data modeling via 

a constraint group lasso penalty [32]; and (iv) to outlier detection via a mean shift 

modeling approach [23]. A common theme of these statistical approaches to log-

contrast modeling is the formulation of the estimators as the solution of a convex 

optimization problem, and the theoretical analysis of the statistical properties of 

these estimators under suitable assumptions on the data.

In the present paper, we take a complementary approach and focus on the 

structure of the optimization problems underlying log-contrast modeling. We 

propose an general optimization model for linear log-contrast regression which 

includes previous proposals as special cases and allows for a number of novel 

formulations that have not yet been explored. A particular feature of our model 

is the joint estimation of regression vectors and associated scales for log-contrast 

models, similar to the scaled Lasso approach in high-dimensional linear regres-

sion [31]. This is achieved by leveraging recent results on the connection between 



1 3

Statistics in Biosciences 

perspective functions and statistical models [8–10]. We introduce a Doug-

las–Rachford splitting algorithm that produces an exact solution to the resulting 

constrained optimization problems with rigorous guarantees on the convergence 

of the iterates. By contrast, most existing approaches to solve such problems pro-

ceed by first approximating it and then employing coordinate descent methods 

with less demanding convergence guarantees. We illustrate the versatility of our 

modeling approach by applying novel log-contrast model instances to environ-

mental and gut microbiome data analysis tasks.

2  Linear Log‑Contrast Models

We first introduce the statistical log-contrast data formation model under consid-

eration. We then review several prominent estimators for regularized log-contrast 

regression models.

2.1  Statistical Log‑Contrast Data Formation Model

Let Z be a known (n × p)-dimensional compositional design matrix with rows 

(zi)1⩽i⩽n in the simplex 
�
(�1,… , �p) ∈ ]0, 1]p ��

∑p

k=1
�k = 1

�
 . In the microbiome con-

text, each row represents a composition of p OTUs or components at a higher taxo-

nomic rank. We apply a log transform (xi)1⩽i⩽n = (log zi)1⩽i⩽n resulting in the design 

matrix X ∈ ℝ
n×p . In this context, we introduce the following log-contrast data for-

mation model.

Model 1 The vector y = (�i)1⩽i⩽n ∈ ℝn of observations is

where X ∈ ℝ
n×p is the aforementioned design matrix with rows (x

i
)
1⩽i⩽n

 , b ∈ ℝ
p is 

the unknown regression vector (location), o ∈ ℝ
n is the unknown mean shift vector 

containing outliers, e ∈ ℝ
n is a vector of realizations of i.i.d. zero mean random var-

iables, S ∈ [0,+∞[n×n is a diagonal matrix the diagonal of which are the (unknown) 

standard deviations, and C ∈ ℝ
p×K is a matrix expressing K linear constraints on the 

regression vector.

The linear log-contrast data formation model is similar to the standard (hetero-

scedastic) linear model with the important difference that there are linear equal-

ity constraints on the regression vector. This stems from the fact that the entries in 

X ∈ ℝ
n×p are not independent due to the compositional nature. In the original model 

[2], the constraint matrix C ∈ ℝ
p×K is the p-dimensional all-ones vector �

p
 , result-

ing in a zero-sum constraint on the regression vector. To gain some intuition about 

the implications of this constraint, consider a two-dimensional example with given 

estimates b = (�1, �2) , and denote by �
i,1 and �

i,2 the first and second column entries 

of X. The linear equality constraint enforces �
2
= −�

1
 , and thus each observation can 

be expressed as

(1)y = Xb + o + Se, with C⊤b = 0,



 Statistics in Biosciences

1 3

Due to the construction of the design matrix as the log transformation of the compo-

sitions, this model is equivalent to

which expresses the response as a linear function of the log-ratios of the original 

compositional components. This example also shows that the regression coefficients 

in the log-contrast model bear a different interpretation than in the standard linear 

model. Combined log-ratio coefficients relate the response to log-fold changes of the 

corresponding component ratios.

2.2  Statistical Estimators for Log‑Contrast Models

2.2.1  Sparse Log‑Contrast Regression

In the low-dimensional setting, the standard log-contrast model with zero-sum 

constraints can be estimated by solving a least-squares problem subject to a 

linear constraint, or alternatively, via standard linear regression applied to iso-

metrically log-ratio transformed compositions [14]. In the high-dimensional set-

ting, we need structural assumptions on the regression vector for consistent esti-

mation. To this end, the sparse log-contrast model was introduced in [20]. It is 

based on the optimization problem

where ‖ ⋅ ‖
1
 is the �1 norm and � ∈ [0,+∞[ is a tuning parameter that balances 

model fit and sparsity of the solution. The estimator enjoys several desirable prop-

erties, including scale invariance, permutation invariance, and selection invari-

ance. The latter property is intimately related to the principle of sub-compositional 

coherence [1] and means that the estimator is unchanged if one knew in advance 

the sparsity pattern of the solution and applied the procedure to the sub-composi-

tions formed by the nonzero components. In [20], model consistency guarantees are 

derived for the estimator and the underlying optimization problem is approached 

via penalization. The proposed iterative algorithm alternates between estimating the 

Lagrange multipliers and solving a convex subproblem with a coordinate descent 

strategy. Model selection for the regularization parameter � is performed with a gen-

eralized information criterion.

(2)�
i
= �1�i,1 − �1�i,2 .

(3)�
i
= �1 log �

i,1 − �1 log �
i,2 = �1 log

�
i,1

�
i,2

,

(4)
minimize
b ∈ ℝ

p

∑p

k=1
�k = 0

1

2n
‖Xb − y‖2

2
+ �‖b‖1,
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2.2.2  Sparse Log‑Contrast Regression with Side Information

In many situations, it is desirable to incorporate side information about the covariates 

into log-contrast modeling. For instance, for microbial compositions, each component 

can be associated with taxonomic or phylogenetic information, thus relating the p com-

ponents through a rooted taxonomic or phylogenetic tree T
p
 . One way to use this hier-

archical tree information is to perform log-contrast regression at a higher taxonomic 

level, effectively reducing the dimensionality of the regression problem. Let T
p
 be a tree 

with 1 ⩽ i
h
⩽ h levels and p leaves and assume that, at given level i

h
 , the p composi-

tions split into K groups with sizes (pk)1⩽k⩽K . Sub-compositional coherence across the 

groups can be expressed by the linear constraints C⊤b = 0 , where C is an orthogonal 

(p × K)-dimensional binary matrix. The kth column comprises pk ones at the coordi-

nates of the components that belong to the kth group. Sparse log-contrast regression 

with group-level compositional coherence can thus be achieved by solving the optimi-

zation problem

where � ∈ [0,+∞[ is a tuning parameter. In [30], model consistency guarantees are 

derived for this estimator as well as a debiasing procedure for the final estimates. 

This is done by extending results from [16] to the log-contrast setting. In [20], 

the underlying optimization problem is approached via an augmented Lagrangian 

approach, while model selection is achieved by scaling a theoretically derived �
0
 

with a data-driven heuristic estimate of the standard deviation � [31], resulting in 

� = �
0
�.

An alternative way of incorporating tree information has been proposed in [33]. 

There, the tree structure is encoded in a parameterized matrix J
�
∈ ℝ

m−1×p , where m 

is the number of vertices in the tree. An estimator based on the minimization problem

is proposed, where � ∈ [0,+∞[ is a tuning parameter. The structure of J
�
 promotes 

tree-guided sparse sub-composition selection and comprises a weighting parameter 

� ∈ [0, 1] . The authors of [33] are unable to solve the optimization in (6) exactly 

and resort to a heuristic that abandons the linear constraints and solves a generalized 

Lasso problem instead. The two tuning parameters � and � are selected via an infor-

mation criterion.

2.2.3  Robust Log‑Contrast Regression

The previous estimators assume the response to be outlier-free with respect to 

the statistical model under consideration. One way to relax this assumption and 

(5)
minimize
b ∈ ℝ

p

C⊤b = 0

1

2n
‖Xb − y‖2

2
+ 𝜆‖b‖1,

(6)
minimize

b ∈ ℝ
p

∑p

k=1
�k = 0

1

2n
‖Xb − y‖2

2
+ �‖J�b‖

1
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to guard against outliers in the response is to use a robust data fitting term. In 

[23], the robust log-contrast regression is introduced via mean shift modeling; 

see, e.g., [3, 29]. One specific instance of this framework considers the estima-

tion problem

and where nonzero elements in the mean shift vector o ∈ ℝ
n capture outlier data, 

and �
1
 and �

2
 are tuning parameters. In [25], the objective function in (7) is approxi-

mated in the form of (5) with a single tuning parameter. As shown in [3] for partial 

linear models and in [29] for outlier detection, an equivalent form of (7) is to use the 

Huber function [15] as robust data fitting function and the �1 norm as regularizer. 

The Huber function is defined as

where � ∈]1,+∞[ is a fixed parameter with default value � = 1.345 that determines 

the transition from the quadratic to the linear part. The model in (7) can be written 

as

After model estimation, each data point in the linear region of the Huber function is 

considered an outlier. The latter two models thus allow for joint sparse selection of 

predictors and outliers in a convex framework.

3  Optimization of General Log‑Contrast Models

We introduce an optimization model for general log-contrast regression that 

includes all previous examples as special cases. We assume that the data follow 

the data formation model outlined in Model 1. Our model belongs to the class of 

perspective M-estimation models [10] and allows for joint estimation of regres-

sion parameters and corresponding scales while preserving the overall convexity 

of the model. We then present a proximal algorithm that can solve instances of 

the optimization model with theoretical guarantees on the convergence of the 

iterates. Finally, we propose two model selection schemes for practical regulari-

zation parameter selection that leverage the joint scale estimation capability of 

our optimization model.

(7)

minimize
b ∈ ℝ

p, o ∈ ℝ
n

1

2n
‖Xb − y − o‖2

2
+ 𝜆1‖b‖1 + 𝜆2‖o‖1, where C⊤b = 0,

(8)h𝜌 ∶ ℝ → ℝ ∶ u ↦

⎧
⎪
⎨
⎪
⎩

𝜌�u� −
𝜌2

2
, if �u� > 𝜌;

�u�2

2
, if �u� ⩽ 𝜌 ,

(9)
minimize

b ∈ ℝ
p

C⊤b = 0

1

2n

n�

i=1

h𝜌(xib − 𝜂i) + 𝜆
1
‖b‖

1
.
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3.1  Convex Optimization Model

Let us first introduce some notation (see [4, 27] for details). We denote by �
0
(ℝn) 

the class of lower semicontinuous convex functions � ∶ ℝ
n
→] − ∞,+∞] such 

that dom𝜑 =
{

x ∈ ℝ
n |
| 𝜑(x) < +∞

}
≠ ∅ . Given � ∈ �

0
(ℝn) and x ∈ ℝ

n , the 

unique minimizer of � + ‖x − ⋅‖2

2
∕2 is denoted by prox

�
x . In other words

Now let D be a convex subset of ℝn . Then �
D
 is the indicator function of D (it takes 

values 0 on D and +∞ on its complement), ri D is the relative interior of D (its inte-

rior relative to its affine hull), and, if D is nonempty and closed, proj
D
= prox

�
D

 is the 

projection operator onto D.

The following general log-contrast optimization model enables the joint 

estimation of the regression vector b = (�k)1⩽k⩽p ∈ ℝp and of the scale vector 

s = (�
i
)
1⩽i⩽N

∈ ℝN in Model 1 within a convex optimization setting.

Problem 1 Consider the setting of Model 1. Let N and M be strictly positive inte-

gers, let D be a vector subspace of ℝN , let (n
i
)
1⩽i⩽N

 be strictly positive integers such 

that 
∑N

i=1
n

i
= n , let (m

i
)
1⩽i⩽M

 be strictly positive integers, and set m =

∑M

i=1
m

i
 . For 

every i ∈ {1,… , N} , let �
i
∈ �

0
(ℝn

i ) , let

be the perspective of �
i
 , let Xi ∈ ℝ

ni×p , and let yi ∈ ℝ
ni be such that

Finally, set

and, for every i ∈ {1,… , M} , let �
i
∈ �

0
(ℝm

i) and Li ∈ ℝ
mi×p . The objective is to

Remark 1 Problem  1 comprises four main components which are associated with 

different aspects of the general log-contrast regression model.

(10)prox
�
∶ ℝ

n
→ ℝ

n ∶ x ↦ argmin
y∈ℝn

�
�(y) +

1

2
‖x − y‖2

�
.

(11)

𝜑̃
i
∶ ℝ ×ℝ

n
i → ] − ∞,+∞]

(𝜎
i
, u

i
) ↦

⎧
⎪⎨⎪⎩

𝜎
i
𝜑

i
(u

i
∕𝜎

i
), if 𝜎

i
> 0;

sup
u∈dom𝜑

i

�
𝜑

i
(u + u

i
) − 𝜑

i
(u)

�
, if 𝜎

i
= 0;

+∞, if 𝜎
i
< 0

(12)X =

⎡
⎢
⎢
⎣

X
1

⋮

XN

⎤
⎥
⎥
⎦

and y =

⎡
⎢
⎢
⎣

y
1

⋮

yN

⎤
⎥
⎥
⎦

.

(13)E =

{
b ∈ ℝ

p |
| C⊤b = 0

}

(14)minimize
s ∈ D, b ∈ E

N
∑

i=1

𝜑̃i

(

𝜎i, Xib − yi

)

+

M
∑

i=1

𝜓i

(

Lib
)

.
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– The perspective functions (𝜑̃
i
)
1⩽i⩽N

 play the role of the loss function in statisti-

cal estimation and couple the estimation of the scale vector s and the regression 

vector b. Because the functions (�
i
)
1⩽i⩽N

 are convex, the overall minimization 

problem (14) remains a convex one in (s, b).

– Problem 1 allows for the partitioning of the design matrix X and response y into 

N blocks with individual scale parameters (�
i
)
1⩽i⩽N

 . This is beneficial when 

data from multiple measurement sources are available for the prediction of the 

response or when heteroscedasticity in the design matrix is expected for different 

groups of measurements. Introducing multiple scales has also numerical advan-

tages. Indeed, as discussed in [10], certain proximity operators of perspective 

functions are easier to compute in separable form.

– The vector subspaces D and E (see (13)) enforce linear constraints on the scale 

vector s = (�
i
)
1⩽i⩽N

 and the regression vector b, respectively.

– Additional properties of the regression vector, such as (structured) sparsity, are 

promoted through the use of the penalization functions (�
i
)
1⩽i⩽M

 and the matri-

ces (L
i
)
1⩽i⩽M

 . The penalization functions typically contain a free parameter � the 

setting of which requires a model selection strategy.

Perspective functions are discussed in [4, 8–10, 27]. The construction (11) 

guarantees that (∀i ∈ {1,… , N}) 𝜑̃
i
∈ 𝛤

0
(ℝn

i ) . We provide below two examples of 

perspective functions that will be used in the numerical investigations of Sect. 4.

Example 1 Consider the function � = ‖ ⋅ ‖2

2
+ 1∕2 defined on the standard Euclid-

ean space ℝP . Then (11) yields (see Fig. 1)

(15)

𝜑̃ ∶ ℝ ×ℝ
P
→ ] − ∞,+∞]

(𝜎, u) ↦

⎧
⎪
⎨
⎪
⎩

𝜎

2
+

‖u‖2

2

𝜎
, if 𝜎 > 0;

0, if 𝜎 = 0 and u = 0;

+∞, otherwise.

Fig. 1  Perspective of � = | ⋅ |2 + 1∕2
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Now fix (�, u) ∈ ℝ ×ℝ
P and � ∈ ]0,+∞[ . If 4𝛾𝜎 + ‖u‖2

2
> 2𝛾2 , let t be the unique 

solution in ]0,+∞[ to the equation

and set p = tu∕‖u‖
2
 if u ≠ 0 , and p = 0 if u = 0 . Then [10, Example 2.4] yields

A prominent estimator where the perspective function (15) is used as a loss func-

tion in conjunction with the �1 norm as penalization function is the scaled Lasso 

estimator for high-dimensional sparse linear regression [31].

Example 2 Set � = h
1
+ 1∕2 , where h

1
 is the Huber function of (8). Then (11) yields 

(see Fig. 2)

Now fix (�, u) ∈ ℝ ×ℝ and � ∈]0,+∞[ . Then [10, Example  2.5] asserts that 

prox𝛾𝜑̃(𝜎, u) is computed as follows. 

 (i) Suppose that |u| ⩽ �� and |u|2 ⩽ �(� − 2�) . Then prox𝛾𝜑̃(𝜎, u) = (0, 0).

(16)�t
3 + 2(2� + 3�)t − 8‖u‖2 = 0,

(17)prox𝛾𝜑̃(𝜎, u) =

⎧
⎪⎨⎪⎩

�
𝜎 +

𝛾

2

�
t2

2
− 1

�
, u − 𝛾p

�
, if 4𝛾𝜎 + ‖u‖2

2
> 2𝛾2;

(0, 0), if 4𝛾𝜎 + ‖u‖2
2
⩽ 2𝛾2.

(18)

𝜑̃ ∶ ℝ ×ℝ → ] − ∞,+∞]

(𝜎, u) ↦

⎧
⎪
⎪
⎨
⎪
⎪
⎩

(1 − 𝜌2)𝜎

2
+ 𝜌�u�, if �u� > 𝜎𝜌 and 𝜎 > 0;

𝜎

2
+

�u�2

2𝜎
, if �u� ⩽ 𝜎𝜌 and 𝜎 > 0;

𝜌�u�, if 𝜎 = 0;

+∞, if 𝜎 < 0.

Fig. 2  Perspective of � = h
1
+ 1∕2 , where h

1
 is the Huber function
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 (ii) Suppose that � ⩽ �(1 − �
2)∕2 and |u| > 𝛾𝜌 . Then 

 (iii) Suppose that 𝜎 > 𝛾(1 − 𝜌2)∕2 and |u| ⩾ �� + ��(1 + �
2)∕2 . Then 

 (iv) Suppose that |u|2 > 𝛾(𝛾 − 2𝜎) and |u| < 𝜌𝜎 + 𝛾𝜌(1 + 𝜌2)∕2 . If u ≠ 0 , let t be 

the unique solution in ]0,+∞[ to the equation 

 Then 

Using the perspective function (18) as a loss function and the �1 norm as a penaliza-

tion function recovers a robust version of the scaled Lasso approach [10, 26].

3.2  Algorithm

Our algorithmic solution method to solve Problem  1 relies on an application of the 

Douglas–Rachford splitting algorithm in a higher-dimensional space. To describe our 

methodology let us first note that, since (14) involves non differentiable functions and 

hard constraints, it cannot be handled via methods which employ gradients. Rather, 

we must proceed with nonsmooth first order methods, i.e., methods which activate the 

functions present in the model via their proximity operators defined in (10). Let us con-

sider the basic problem of minimizing the sum of two lower semicontinuous convex 

functions F and G in a Euclidean space H , i.e.,

Let us assume that this problem has a least one solution. A key property of the prox-

imity operator prox
F
 is that its set of fixed points is the set of minimizers of F [4, 

Proposition 12.29]. A naive approach to solve (23) would therefore be to construct 

iteratively a fixed point of prox
F+G

 . However, this is not viable because prox
F+G

 is 

typically intractable. On the other hand, in many instances, the operators prox
F
 and 

prox
G
 are computable explicitly, which suggest that we design a splitting algorithm, 

i.e., one in which F and G are activated separately. The most popular splitting algo-

rithm to solve (23) is the Douglas–Rachford algorithm [4, 7, 11, 12, 19, 21]. This 

algorithm exploits the following remarkable fact: given an arbitrary � ∈]0,+∞[ , if a 

point v ∈ H satisfies the fixed point property

(19)prox𝛾𝜑̃(𝜎, u) =

(
0,

(
1 −

𝛾𝜌

|u|

)
u

)
.

(20)prox𝛾𝜑̃(𝜎, u) =

(
𝜎 +

𝛾

2

(
𝜌2 − 1

)
,

(
1 −

𝛾𝜌

|u|

)
u

)
.

(21)�t
3 + (2� + �)t − 2|u| = 0.

(22)prox𝛾𝜑̃(𝜎, u) =

{(
𝜎 + 𝛾(t2 − 1)∕2, u − 𝛾tsign(u)

)
, if 2𝛾𝜎 + |u|2 > 𝛾2;(

0, 0
)
, if 2𝛾𝜎 + |u|2 ⩽ 𝛾2.

(23)
minimize

u ∈ H

F(u) + G(u).
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then the point u = prox
�G

v solves (23). This leads to the following result (see [4, 

Sect. 28.3]).

Theorem  2 (Douglas–Rachford algorithm) Let H be a Euclidean space, let 

� ∈ ]0,+∞[ , let � ∈ ]0, 1[ , let v
0
∈ H , and let F ∈ �

0
(H) and G ∈ �

0
(H) be such 

that (ri dom F) ∩ (ri dom G) ≠ ∅ . Let (�
k
)
k∈ℕ be a sequence in [�, 2 − �] and iterate

Then (u
k
)
k∈ℕ converges to a solution to (23).

Our method for solving Problem 1 (Algorithm 3 below) is an implementation of (25) 

in a suitably constructed product space. The details of this construction are provided in 

Appendix A. To present the algorithm, it is convenient to introduce the matrices

together with the function

and to define, for every iteration index k ∈ ℕ , the vectors

(24)prox
�F

(

2prox
�G

v − v
)

= prox
�G

v,

(25)

for k = 0, 1,…

⎢⎢⎢⎣

u
k
= prox

�G
v

k

w
k
= prox

�F

�
2u

k
− v

k

�
v

k+1 = v
k
+ �

k
(w

k
− u

k
).

(26)A =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

X1

⋮

XN

L1

⋮

LM

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, Q = A⊤(Id + AA⊤)−1, and W = Id − C(C⊤C)−1C⊤,

(27)

𝗀 ∶ ℝ
N ×ℝ

n1 ×⋯ ×ℝ
nN ×ℝ

m1 ×⋯ ×ℝ
mM → ] − ∞,+∞]

(

s, u1,… , uN , v1,… , vM

)

↦

N
∑

i=1

𝜑̃i(𝜎i, ui − yi) +

M
∑

i=1

𝜓i(vi),

(28)

⎧
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎩

sk = (�1,k,… , �N,k) ∈ ℝ
N

hs,k = (�1,k,… , �N,k) ∈ ℝ
N

hb,k = (h1,k,… , hN,k, hN+1,k,… , hN+M,k)

∈ ℝ
n1 ×⋯ ×ℝ

nN ×ℝ
m1 ×⋯ ×ℝ

mM

zb,k = (z1,k,… , zN,k, zN+1,k,… , zN+M,k)

∈ ℝ
n1 ×⋯ ×ℝ

nN ×ℝ
m1 ×⋯ ×ℝ

mM

ds,k = (�1,k,… , �N,k) ∈ ℝ
N

db,k = (d1,k,… , dN,k, dN+1,k,… , dN+M,k)

∈ ℝ
n1 ×⋯ ×ℝ

nN ×ℝ
m1 ×⋯ ×ℝ

mM .
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Algorithm  3 Let � ∈ ]0,+∞[ , � ∈]0, 1[ , x
s,0 ∈ ℝ

N , xb,0 ∈ ℝ
p , h

s,0 ∈ ℝ
N , and 

h
b,0 ∈ ℝ

n+m . Iterate

Proposition 1 Consider the setting of Problem 1. Suppose that

and that

Then Problem 1 has at least one solution. Now let (s
k
)
k∈ℕ and (b

k
)
k∈ℕ be sequences 

generated by Algorithm 3. Then (s
k
)
k∈ℕ converges to some s ∈ ℝ

N and (b
k
)
k∈ℕ con-

verges to some b ∈ ℝ
p such that (s, b) solves Problem 1.

Proof See Appendix A.   ◻

In most practical situations, (30) and (31) are typically satisfied. For example the 

following describes a scenario that will be encountered in Sect. 4.

Proposition 2 Consider the setting of Problem  1 and suppose that the following 

additional properties hold:

 (i) For every i ∈ {1,… , N} , �
i
= �

i
+ �

i
 , where �

i
∶ ℝ

n
i → [0,+∞[ is convex and 

�
i
∈ ]0,+∞[.

 (ii) For every i ∈ {1,… , M} , �
i
∶ ℝ

m
i → [0,+∞[.

(29)

for k = 0, 1,…

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜇k ∈ [𝜀, 2 − 𝜀]

qs,k = xs,k − hs,k

qb,k = Axb,k − hb,k

sk = xs,k − qs,k∕2

bk = xb,k − Qqb,k

cs,k = projD(2sk − xs,k)

cb,k = W(2bk − xb,k)

xs,k+1 = xs,k + 𝜇k(cs,k − sk)

xb,k+1 = xb,k + 𝜇k(cb,k − bk)

for i = 1,… , N�
zi,k = Xibk

(𝛿i,k, di,k) = (0, yi) + prox𝛾𝜑̃i
(2𝜎i,k − 𝜂i,k, 2zi,k − hi,k − yi)

for i = 1,… , M�
zN+i,k = Libk

dN+i,k = prox𝛾𝜓i
(2zN+i,k − hN+i,k)

hs,k+1 = hs,k + 𝜇k(ds,k − sk)

hb,k+1 = hb,k + 𝜇k(db,k − zb,k).

(30)

lim
s ∈ D, b ∈ E

‖s‖2 + ‖b‖2 → +∞

𝗀(s, Ab) = +∞

(31)
(

D × A(E)
)

∩ ri dom � ≠ ∅.
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 (iii) For some j ∈ {1,… , M} , �j(Ljb) → +∞ as ‖b‖
2
→ +∞ while C⊤b = 0.

 (iv) D∩]0,+∞[N≠ ∅.

Then (30) and (31) are satisfied.

Proof See Appendix B.   ◻

3.3  Model Selection

In the context of log-contrast regression, a number of different model selection 

strategies have been proposed, including stability selection [20, 22] and General-

ized Information Criteria [32]. In [30], a scale-dependent tuning parameter has 

been derived where the optimal scale has been found via line search. Our joint scale 

and regression modeling approach makes this line search obsolete, thus yielding a 

parameter-free model selection scheme. More specifically, we consider two model 

selection schemes. Firstly, following [30], we consider

where qn(t) = n−1∕2
�

−1(1 − t) , �−1 is the quantile function for the standard normal 

distribution, and r is the solution to the equation r = q
4

1
(r∕p) + 2q

2

1
(r∕p) . In prac-

tice, this data-independent model selection scheme may lead to inclusion of spuri-

ous coefficients. To assess the robustness of the inferred solutions we combine this 

theoretically derived regularization with stability selection [22]. The original stability 

selection approach selects, for every subsample, a small set of predictors from the 

regularization path, e.g., the first q predictors that appear along the path or the q coef-

ficients that are largest in absolute value across the entire path. We here propose to 

select, for every subsample, the nonzero coefficients present at regularization param-

eter �
0
 . Note that �

0
 is sample-size dependent and hence needs to be adapted to the 

specific subsample size used in stability selection. As default values, we consider a 

subsample size of ⌈n∕2⌉ and generate 100 subsamples. The key diagnostic in stability 

selection is the selection frequency profile for each coefficient. To select a stable set 

of coefficients, a threshold parameter t
s
∈ [0.6, 0.9] is recommended [22], where all 

coefficients with selection frequency above t
s
 are included in the final model.

4  Applications to Compositional Microbiome Data

We apply several instances of the general log-contrast model outlined in Problem 1 

in the context of microbiome data analysis tasks. We set M = 1 , m
1
= m , L

1
= Id , 

and employ as a regularization function the �1 norm �
1
= �‖ ⋅ ‖

1
 . We use the func-

tions in Examples 1 and 2 as instances of the perspective loss functions 𝜑̃
1
 . We refer 

to these instances as Least Squares and Huber log-contrast model, respectively. 

Thus, in case of the Least Squares model, (14) becomes

(32)�0 =
√

2q
n
(r∕p),

(33)minimize
� ∈ ℝ, b ∈ E

‖̃ ⋅ ‖2

2

�
�, Xb − y

�
+ �‖b‖1,
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while in the case of the Huber model it becomes

Note that the projection of a vector s ∈ ℝ
n onto D, as required in Algorithm 3, is 

given by

Dependent on the application, we use different zero-sum constraints on b as speci-

fied by the matrix C. To solve the various instances of Problem  1, we use Algo-

rithm 3 and set the parameter �
k
= 1.9 and � = 1 . We consider that the algorithm 

has converged when ‖b
k
− b

k+1
‖

2
< 10

−6 . All computational experiments are fully 

reproducible with the code available at https ://githu b.com/muell sen/PCM/tree/maste 

r/examp les/LogCo ntras tMode ls.

4.1  Body Mass Index Prediction from Gut Microbiome Data

We first consider a cross-sectional study that examines the relationship between diet and 

gut microbiome composition, where additional demographic covariates, including body 

mass index (BMI) are available, referred to as COMBO data set [34]. After pre-pro-

cessing and filtering, the data set comprises the log-transformed relative abundances of 

p = 87 taxa at the genus level across n = 96 healthy subjects. Following previous analy-

ses [20, 30], we investigate the relationship between BMI and the microbial composi-

tions in a log-contrast regression framework. We use C = �p to model the standard zero-

sum constraint. In addition to the compositional covariates, two covariate measurements, 

fat and calorie intake, are also taken into account via joint unpenalized least squares. We 

investigate the influence of different loss functions, Least Squares and Huber, as well as 

the sub-compositional constraints on the quality of the estimation, the size of the support 

set, and the predictive power. Further numerical results can be found in Appendix C.

To highlight the ability of the algorithm to jointly estimate regression and scale we 

solve the two problems over the regularization path with 40 � values on a log-linear grid 

in [0.0069,… , 0.6989] . We also consider the theoretically derived regularization param-

eter �
0
= 0.1997 from (32). Figure 3a and b show the solution path of the regression 

vector b for the sparse Least Squares log-contrast model and the Huber model, respec-

tively. Figure 3c displays the corresponding joint scale estimates � for the Least Squares 

and the Huber models. The estimated regression coefficients at �
0
 are highlighted in 

Fig. 3d. Both models agree on a set of six genera, including Clostridium as strongest 

negative and Acidaminococcus as the strongest positive predictors. This implies that 

the log-ratio of Acidaminococcus to Clostridium is positively associated with BMI. 

Other genera include Alistipes, Megamonas, and Coprobacillus with negative coeffi-

cients, and Dorea with positive coefficient. In [20, 30], the genera Alistipes, Clostridium, 

(34)
minimize

s ∈ D, b ∈ E

n�

i=1

h̃�

�
�

i
, x

i
b − �

i

�
+ �‖b‖1,

where D =
�
(�,… , �) ∈ ℝ

n �� � ∈ ℝ
�

.

(35)proj
D

s =

(

1

n

n
∑

i=1

�
i
,… ,

1

n

n
∑

i=1

�
i

)

.

https://github.com/muellsen/PCM/tree/master/examples/LogContrastModels
https://github.com/muellsen/PCM/tree/master/examples/LogContrastModels
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Acidaminococcus, and Allisonella have been identified as key predictors. The solutions 

of the perspective log-contrast models corroborates these finding for Clostridium and 

Acidaminococcus, and to a less extent to Alistipes, whereas the genus Allisonella has 

only a small strictly positive coefficient in both log-contrast models (Fig. 3d).

Next, we consider the stability selection scheme introduced in Sect.  3.3 with 

default parameters and threshold t
s
= 0.7 . Figure 4a shows the stability-based fre-

quency profile for the sparse Least Squares and Huber log-contrast models. For both 

models, only Clostridium and Acidaminococcus are selected. Stability selection thus 

leads to a simple explanatory log-ratio model formed by the ratio of the relative 

abundances of Acidaminococcus to Clostridium. However, when considering the 

final model prediction results, as shown in Fig. 4b for the Huber model, this model 

can only explain normal to overweight participants (BMI 20–30) because 34 out of 

96 participants are considered outliers in the Huber model. The overall refitted R2 is 

0.19 under the Huber model but increases to 0.43 for the 62 inlier participants.

Next, we investigate the influence of sub-compositional constraints on the stabil-

ity selection frequency for the two estimation procedures. We follow the analysis of 

Fig. 3  a Solution path of regression vector b in the sparse Least Squares log-contrast model on the full 

COMBO data. The grey line marks the theoretical �
0
 from (32). b Solution path of regression vector b 

in sparse Huber log-contrast model on the full COMBO data. c Solution path of the scale estimates � for 

both log-contrast models on the full COMBO data. d Comparison of the regression estimates of both 

models at regularization parameter �
0
 on the full data set. Both models agree on the two strongest predic-

tors, the genera Clostridium and Acidaminococcus (Color figure online)



 Statistics in Biosciences

1 3

[30] and consider a subset of 45 genera that have the highest relative abundances 

in the data set. These 45 genera belong to K = 4 distinct phyla: Actinobacteria (two 

genera), Bacteroides (eight genera), Firmicutes (32 genera), and Proteobacteria (three 

genera). The constraint matrix C is hence an orthogonal (45 × 4)-dimensional binary 

matrix. Figure 5a and b show stability selection profile for both the Least Squares 

and the Huber model with and without compositional constraints, respectively. Fig-

ure 5c shows the difference in the selection frequency profiles. Although several gen-

era, including Collinsella, Paraprevotella, Parabacteroides, Faecalibacterium, Oscil-

libacter, and Parasutterela display significant frequency differences, the two genera 

Clostridium and Acidaminococcus, both belonging to the Firmicutes phylum, demon-

strate again the highest stability both with and without sub-compositional constraints.

4.2  Relationship Between Soil Microbiome and pH Concentration

We next consider a dataset put forward in [18] comprising n = 88 soil samples from 

North and South America. Both amplicon sequencing data and environmental covari-

ates, including pH concentrations, are available and have been re-analyzed via a bal-

ance tree approach in [24]. The amplicon data contains p = 116 OTUs, and we con-

sider C = �p . We perform stability selection with default parameters as outlined in 

Sect.  3.3. We refer to Appendix  D for results regarding variable selection with the 

theoretical �
0
 value. The selection frequency of the different regression coefficients 

is shown Fig. 6a. At stability threshold t
s
= 0.7 , seven taxa are selected in the Least 

Squares models, and six taxa in the Huber model, respectively. After re-estimation 

of the two perspective log-contrast models on the selected subset, two taxa of order 

Ellin6513, one taxon of family Koribacteraceae, and one taxon of genus Rhodoplanes 

have negative coefficients whereas two taxa belonging to the genus Balneimonas as 

well as one Rubrobacter taxon and one taxon of order RB41 have positive coefficients 

Fig. 4  a Stability selection profile for all taxa selected with a frequency > 0.1 in the Least Squares model 

(blue) or the Huber log-contrast model (red), respectively. The green solid line marks the stability thresh-

old t
s
= 0.7 , selecting the genera Clostridium and Acidaminococcus. b Prediction of BMI from the log-

contrast of the two genera in the Huber log-contrast model vs. measurements for 62 inliers (blue) and 34 

outliers (red) (overall R2
= 0.19 ) (Color figure online)
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(Fig. 6b). The seven taxa identified in the Least Squares model thus allow for a com-

pact representation with four log-ratios of compositions. The Huber model with six 

identified taxa requires only three log-ratios. The five coefficients that are selected in 

both models agree in coefficient sign but show small variations in coefficient values. 

The Huber model ( R2
= 0.86 ) deems 33 data points to be outliers in the final estimate 

(Fig. 6c). For completeness, we include the mean absolute deviation (MAD) between 

model estimates and data in Fig. 6d. The selected taxa cover a wide range of average 

pH levels (as provided in [24]), ranging from 4.9 to 6.75, implying that the learned 

model may indeed generalize to other soil types not present in the current data set.

5  Discussion and Conclusion

Finding linear relationships between continuous variables and compositional predic-

tors is a common task in many areas of science. We have proposed a general esti-

mation model for high-dimensional log-contrast regression which includes many 

Fig. 5  a Stability selection profiles for the subset of 45 taxa selected with a frequency > 0.1 in either the 

sparse Least Squares (blue) or the Huber (red) log-contrast model with sub-compositional constraints. b 

Same as (a) but without sub-compositional constraints. c Stability selection frequency differences between 

the two approaches. Several genera show significant differences. The colors signify the different phyla that 

the genera belong to and the non-compositional covariates fat and diet intake (Color figure online)
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previous proposals as special cases [20, 23, 30, 33]. Our model belongs to the class 

of perspective M-estimation models [10] which allows for scale estimation in the data 

fitting term while preserving the overall convexity of the underlying model. This is 

made possible due to recent advances in the theory of perspective functions [8–10].

Several data fitting and penalty functions are available in the present framework. 

For instance, the robust Huber model is a convenient choice when outliers are sus-

pected in the continuous outcome vector, or equivalently, when only a subset of the 

outcome data is expected to follow a linear log-contrast relationship with the com-

positional predictors [10, 23]. Combined with a sparsity-inducing penalty, the model 

allows for joint scale estimation, outlier detection, and variable selection in a single 

framework. Alternative choices for data fitting and regularization models are available 

in [10]. Our framework also enables sub-compositional coherence across groups of 

variables, e.g., bacterial phyla in microbiome data, via general linear constraints.

We have introduced a Douglas–Rachford algorithm that can solve the correspond-

ing constrained nonsmooth convex optimization problems with rigorous guarantees on 

the convergence of the iterates. Furthermore, we have illustrated the viability of our 

approach on two microbiome data analysis tasks: body mass index (BMI) prediction 

Fig. 6  a Stability selection profile for all taxa (denoted by the lowest taxonomic rank available) selected 

with a frequency > 0.1 in either the sparse Least Squares (blue) log-contrast model or the Huber 

model (red). The green solid line marks the stability selection threshold t
s
= 0.7 . b Refitted values of 

all selected log-contrast regression coefficients for Least Squares (seven coefficients in blue) and the 

Huber model (six coefficients in red). c Prediction of pH measurements from the Huber model for inliers 

(blue) and outliers (red) ( R2
= 0.86 ). d Table summarizing the mean absolute deviation (MAD) of the 

two model estimates on the data. Numbers in parentheses represent the number of inlier and outlier data 

points for the Huber model (Color figure online)
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from gut microbiome data in the COMBO study and pH prediction from soil micro-

bial abundance data. Our joint regression and scale estimation enabled the use of a 

universal single tuning parameter �
0
 [30] to control the sparsity of the estimates. We 

have combined this approach with stability-based model selection [22] to determine 

sparse stable sets of log-contrast predictors. For the gut microbiome BMI analysis, the 

robust Huber log-contrast model identified two genera whose log-ratio predicts BMI 

well for normal to overweight participants while simultaneously identifying outliers 

with respect to the log-contrast model. In the soil microbiome data set, we derived par-

simonious pH prediction models. The Least Squares model requires four log-ratios of 

microbial compositions and achieves an overall R2
= 0.88 . The Huber model requires 

only three log-ratios of microbial compositions with an overall R2
= 0.86.

Going forward, we believe that the general log-contrast model and the associated 

optimization and model selection techniques presented here will provide a valuable 

off-the-shelf tool for log-contrast regression analysis when compositional data such 

as microbial relative abundance data are used as predictors in exploratory data anal-

ysis. Future efforts will include the integration of the presented models in modern 

computational microbiome analysis software workflows.
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Appendix A: Proof of Proposition 1

Define � as in (27) and set

Then � ∈ �
0
(ℝN+p) as the indicator of the vector subspace D × E , and

(36)

⎧⎪⎨⎪⎩

𝖿 = �E×D

𝖫 ∶ ℝ
N ×ℝ

p
→ ℝ

N ×ℝ
n1 ×⋯ ×ℝ

nN ×ℝ
m1 ×⋯ ×ℝ

mM

(s, b) ↦ (s, Ab) =
�
s, X1b,… , XNb, L1b,… , LMb

�
.

(37)(∀(s, b) ∈ ℝ
N+p) prox

��
(s, b) =

(

projDs, projEb
)

=
(

projDs, Wb
)

,

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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where the last identity follows from [4, Proposition 29.17(iii))]. On the other hand, 

it follows from [8, Proposition 2.3(ii)] and [4, Proposition 8.6] that � ∈ �
0
(ℝN+n+m) . 

Furthermore, we derive from [4, Propositions 24.11 and 24.8(ii)] that

In addition, (31) implies that

Consequently, dom (� + �◦�) ≠ ∅ . Thus,

while, using the variable � = (s, b) ∈ ℝ
N+p , (30) and (36) imply that

It therefore follows from [4, Proposition 11.15(i)] that

Since (14) is equivalent to

we infer from (42) that Problem 1 admits at least one solution. Note that (43) can be 

rewritten as

Now set u = (�, �) ∈ H = ℝ
2N+m+n+p and

Then F ∈ �
0
(H) , G ∈ �

0
(H) , and (44) is equivalent to

Moreover, we deduce from (31) that

(38)

(∀
(

s, u1,… , uN , v1,… , vM

)

∈ ℝ
N ×ℝ

n1 ×⋯ ×ℝ
nN )

prox𝛾�(s, u1,… , uN , v1,… , vM) =
(

(0, y1) + prox𝛾𝜑̃1
(𝜎1, u1 − y1),…

… , (0, yN) + prox𝛾𝜑̃N
(𝜎N , uN − yN), prox𝛾𝜓1

v1,… , prox𝛾𝜓M
vM

)

.

(39)

�(dom �) ∩ dom � =
(

�(D × E)
)

∩ dom �

=
(

D × A(E)
)

∩ dom �

≠ ∅.

(40)� + �◦� ∈ �
0
(ℝN+p)

(41)
lim

𝗐∈ℝN+p,‖𝗐‖2→+∞
𝖿(𝗐) + 𝗀(𝖫𝗐) = +∞.

(42)Argmin(� + �◦�) ≠ ∅.

(43)
minimize
� ∈ ℝ

N+p
�(�) + �(��),

(44)

minimize

� ∈ ℝ
N+p

� ∈ ℝ
N+n+m

�� = �

�(�) + �(�).

(45)

{
F ∶ H →] − ∞,+∞] ∶ (𝗐, 𝗓) ↦ 𝖿(𝗐) + 𝗀(𝗓)

G = �
V

, where V =
{
(𝗑, 𝗁) ∈ H || 𝖫𝗑 = 𝗁

}
.

(46)
minimize

u ∈ H

F(u) + G(u).
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Consequently, using standard relative interior calculus [27, Sect. 6], (45) yields

Therefore, given � ∈ ]0,+∞[ , � ∈ ]0, 1[ , v
0
∈ H , and a sequence (�

k
)
k∈ℕ in 

[�, 2 − �] , the nonsmooth convex minimization problem (46) can be solved using 

the Douglas–Rachford algorithm (25) which, by Theorem 2, produces a sequence 

(u
k
)
k∈ℕ that converges to a solution to (46). Next, it follows from [4, Proposi-

tion 24.11 and Example 29.19(i)] that

Now define

Then we derive from (49) that, given �
0
∈ ℝ

N+p and �
0
∈ ℝ

N+n+m , (25) becomes

Let us partition the vectors appearing in (51) according to their scale and regression 

components as

(47)�(dom �) ∩ ri dom � =
(

D × A(E)
)

∩ ri dom � ≠ ∅.

(48)

ri (dom G) ∩ ri (dom F) = V ∩ ri
(
dom � × dom �

)

= V ∩
(
ri dom � × ri dom �)

= V ∩ (dom � × ri dom �)

=
{
(�,��) || � ∈ ℝ

N+p
}
∩ (dom � × ri dom �)

≠ ∅.

(49)

{

prox𝛾F
∶ (𝗐, 𝗓) ↦

(

prox𝛾𝖿𝗐, prox𝛾𝗀𝗓
)

prox𝛾G
∶ (𝗑, 𝗁) ↦ (𝗐,𝖫𝗐), where 𝗐 = 𝗑 − 𝖫⊤

(

Id + 𝖫𝖫⊤
)−1

(𝖫𝗑 − 𝗁).

(50)� = �
⊤(Id + ��

⊤)−1 and (∀k ∈ ℕ)

⎧
⎪
⎨
⎪
⎩

u
k
= (�

k
, �

k
)

v
k
= (�

k
, �

k
)

w
k
= (�

k
, �

k
).

(51)

for k = 0, 1,…

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

�
k
= ��

k
− �

k

�
k
= �

k
− ��

k

�
k
= ��

k

�
k
= prox

�� (2�k
− �

k
)

�
k
= prox

��(2�k
− �

k
)

�
k+1 = �

k
+ �

k
(�

k
− �

k
)

�
k+1 = �

k
+ �

k
(�

k
− �

k
).



 Statistics in Biosciences

1 3

In terms of these new variables, using the matrix Q of (26), (36) and (50) yield

and it follows from (26), (28), (37), (38), and (53) that (51) is precisely 

(29). Altogether, since (u
k
)
k∈ℕ = (�

k
, �

k
)
k∈ℕ converges to a solution to (46), 

(�
k
)
k∈ℕ = (s

k
, b

k
)
k∈ℕ converges to a solution to Problem 1.

Appendix B: Proof of Proposition 2

• If s ∉ [0,+∞[N , then (11) yields (∀b ∈ ℝ
p) �(s, Ab) = +∞ . On the other 

hand if, for some i ∈ {1,… , N} , �
i
∈]0,+∞[ then we deduce from  (i) that 

(∀b ∈ ℝ
p) 𝜑̃i(𝜎i, Xib − yi) = 𝜎i𝜃i((Xib − yi)∕𝜎i) + 𝛼i𝜎i ⩾ 𝛼i𝜎i → +∞ as 

�
i
→ +∞ . Hence, (ii) entails that (∀b ∈ ℝ

p) 𝗀(s, Ab) → +∞ as ‖s‖
2
→ +∞ while 

s ∈ [0,+∞[N . On the other hand, it follows from  (iii) that (∀s ∈ ℝ
N)(∀b ∈ E) 

𝗀(s, Ab) ⩾ �j(Ljb) → +∞ as ‖b‖
2
→ +∞ . Altogether, (30) holds.

• It follows from  (i) and (11) that (∀i ∈ {1,… , N}) ri dom 𝜑̃
i
=]0,+∞[×ℝn

i . 

Furthermore,  (ii) yields (∀i ∈ {1,… , M}) ri dom�
i
= ℝ

m
i . Therefore 

ri dom � =]0,+∞[N×ℝn ×ℝ
m . Since trivially A(E) ⊂ ℝ

n+m , (31) reduces to (iv).

Appendix C: Numerical Algorithm Comparison on BMI Data

We compare the numerical accuracy and the run time of the Algorithm  3 with 

the coordinate descent algorithm proposed in [30] for the special case of the con-

strained Lasso problem with joint scale estimation, defined in (33). We use a subset 

of the BMI dataset with n = 96 samples and p = 45 OTUs. The numerical example 

is reproduced with the following MATLAB script available at https ://githu b.com/

muell sen/PCM/tree/maste r/examp les/LogCo ntras tMode ls. 

(52)(∀k ∈ ℕ)

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

�k = (xs,k, xb,k) ∈ ℝ
N ×ℝ

p

�k = (hs,k, hb,k) ∈ ℝ
N ×ℝ

n+m

�k = (qs,k, qb,k) ∈ ℝ
N ×ℝ

n+m

�k = (sk, bk) ∈ ℝ
N ×ℝ

p

�k = (sk, zb,k) ∈ ℝ
N ×ℝ

n+m

�k = (cs,k, cb,k) ∈ ℝ
N ×ℝ

p

�k = (ds,k, db,k) ∈ ℝ
N ×ℝ

n+m
.

(53)(∀k ∈ ℕ) ��k =
(

qs,k∕2, Qqb,k

)

,

https://github.com/muellsen/PCM/tree/master/examples/LogContrastModels
https://github.com/muellsen/PCM/tree/master/examples/LogContrastModels
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On a MacBook Pro (2018) with 2.9 GHz Intel Core i9 processor and 32 GB 2400 

MHz DDR4, the run time of the general Douglas–Rachford scheme (with fixed 

� = 0.5 ) for solving the problem across the entire regularization path is 12 s at solu-

tion accuracy � = 1e − 8 . Further run time improvement could be achieved by set-

ting � in a regularization-dependent fashion. The coordinate descent scheme requires 

10.5 s. Since no convergence guarantees comparable to ours exist for the coordinate 

descent scheme, we also compare the solution quality across the regularization path. 

The results are summarized in Fig. 7. We observe that, for this example, both meth-

ods agree on the solution within six digits of accuracy, both for the regression vec-

tors ( �� ) and the scales ( �� ) across the entire regularization path.
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Appendix D: Solution Path and Variable Selection with Theoretical �
0
 

Regularization for the Soil Dataset

We here complement the analysis of the soil dataset [18], analyzed in Sect.  4.2, 

comprising n = 88 soil samples and p = 116 OTUs. We show the full solution path 

and variable selection with the theoretical �
0
= 0.2182 in Fig. 8, both for the Least 

Squares (Fig. 8a) and the Huber model (Fig. 8c). Using the theoretical �
0
 , both mod-

els select 27 and 25 variables, respectively. The joint set of 30 variables is shown 

in Fig.  8b. For completeness, we also report the scale estimates for both models 

(Fig. 8d).

Fig. 7  Numerical comparison of Algorithm 3 and the coordinate descent (CD) scheme of [30] for the 

constrained Lasso problem with joint scale estimation, defined in (33). a Shows the solution path for the 

regression vector, found by Algorithm 3. b Shows the estimation difference between Algorithm 3 and 

CD. c shows the scale estimates for both methods, and d the difference between the respective estimates. 

The run times for both methods are 12 s and 10.5 s, respectively (Color figure online)



1 3

Statistics in Biosciences 

References

 1. Aitchison J (1986) The statistical analysis of compositional data. Chapman and Hall, London

 2. Aitchison J, Bacon-Shone J (1984) Log contrast models for experiments with mixtures. Biometrika 

71:323–330

 3. Antoniadis A (2007) Wavelet methods in statistics: some recent developments and their applica-

tions. Stat Surv 1:16–55. https ://doi.org/10.1214/07-SS014 

 4. Bauschke HH, Combettes PL (2017) Convex analysis and monotone operator theory in Hilbert 

spaces, 2nd edn. Springer, New York

 5. Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP (2016) DADA2: high-

resolution sample inference from illumina amplicon data. Nat Methods 13:581–583

 6. Caporaso JG et al (2010) QIIME allows analysis of high-throughput community sequencing data. 

Nat Methods 7:335–336. https ://doi.org/10.1038/nmeth 0510-335

 7. Combettes PL (2004) Solving monotone inclusions via compositions of nonexpansive averaged 

operators. Optimization 53:475–504

 8. Combettes PL (2018) Perspective functions: properties, constructions, and examples. Set-Valued 

Var. Anal. 26:247–264

 9. Combettes PL, Müller CL (2018) Perspective functions: proximal calculus and applications in high-

dimensional statistics. J Math Anal Appl 457:1283–1306

 10. Combettes PL, Müller CL (2020) Perspective maximum likelihood-type estimation via proximal 

decomposition. Electron J Stat 14:207–238

Fig. 8  Solution path and variable selection with the theoretical �
0
= 0.2182 for pH prediction on the 

soil dataset for the Least Squares model (a) and Huber model (c), respectively. The selected solutions 

with �
0
= 0.2182 are marked in black. b shows the selected variables (labeled by taxonomic order) for 

the Least Squares and Huber model, respectively. d shows the Least Squares and Huber scale estimates 

across the regularization path (Color figure online)

https://doi.org/10.1214/07-SS014
https://doi.org/10.1038/nmeth0510-335


 Statistics in Biosciences

1 3

 11. Combettes PL, Pesquet J-C (2007) A Douglas–Rachford splitting approach to nonsmooth convex 

variational signal recovery. IEEE J Select Topics Signal Process 1:564–574

 12. Eckstein J, Bertsekas DP (1992) On the Douglas–Rachford splitting method and the proximal point 

algorithm for maximal monotone operators. Math Progr 55:293–318

 13. Edgar RC (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat 

Methods 10:996–998

 14. Hron K, Filzmoser P, Thompson K (2012) Linear regression with compositional explanatory vari-

ables. J Appl Stat 39:1115–1128

 15. Huber P (1964) Robust estimation of a location parameter. Ann Math Stat 35:73–101

 16. Javanmard A, Montanari A (2014) Confidence intervals and hypothesis testing for high-dimensional 

regression. J Mach Learn Res 15:2869–2909

 17. Lagkouvardos I, Fischer S, Kumar N, Clavel T (2017) Rhea: a transparent and modular R pipeline 

for microbial profiling based on 16S rRNA gene amplicons. PeerJ 5:e2836

 18. Lauber CL, Hamady M, Knight R, Fierer N (2009) Pyrosequencing-based assessment of a soil pH 

as a predictor of soil bacterial community structure at the continental scale. Appl Environ Microbiol 

75:5111–5120

 19. Lenoir A, Mahey P (2017) A survey on operator splitting and decomposition of convex programs. 

RAIRO-Oper Res 51:17–41

 20. Lin W, Shi P, Feng R, Li H (2014) Variable selection in regression with compositional covariates. 

Biometrika 101:785–797

 21. Lions P-L, Mercier B (1979) Splitting algorithms for the sum of two nonlinear operators. SIAM J 

Numer Anal 16:964–979

 22. Meinshausen N, Bühlmann P (2010) Stability selection. J R Stat Soc Ser B Stat Methodol 

72:417–473

 23. Mishra A, Müller CL (2019) Robust regression with compositional covariates. arxiv. https ://arxiv 

.org/abs/1909.04990 

 24. Morton JT et al (2017) Balance trees reveal microbial niche differentiation. mSystems 2:e00162

 25. Nguyen NH, Tran TD (2013) Robust lasso with missing and grossly corrupted observations. IEEE 

Trans Inform Theory 59:2036–2058

 26. Owen AB (2007) A robust hybrid of lasso and ridge regression. Contemp Math 443:59–71

 27. Rockafellar RT (1970) Convex analysis. Princeton University Press, Princeton

 28. Schloss PD et al (2009) Introducing mothur: open-source, platform-independent, community-sup-

ported software for describing and comparing microbial communities. Appl Environ Microbiol 

75:7537–7541

 29. She Y, Owen AB (2011) Outlier detection using nonconvex penalized regression. J Am Stat Assoc 

106:626–639

 30. Shi P, Zhang A, Li H (2016) Regression analysis for microbiome compositional data. Ann Appl Stat 

10:1019–1040

 31. Sun T, Zhang CH, Campus B (2012) Scaled sparse linear regression. Biometrika 99:879–898

 32. Sun Z, Xu W, Cong X, Chen K (2018) Log-contrast regression with functional compositional pre-

dictors: linking preterm infant’s gut microbiome trajectories in early postnatal period to neurobehav-

ioral outcome. http://arxiv .org/abs/1808.02403 

 33. Wang T, Zhao H (2017) Structured subcomposition selection in regression and its application to 

microbiome data analysis. Ann Appl Stat 11:771–791

 34. Wu GD et  al (2011) Linking long-term dietary patterns with gut microbial enterotypes. Science 

334:105–108

https://arxiv.org/abs/1909.04990
https://arxiv.org/abs/1909.04990
http://arxiv.org/abs/1808.02403

	Regression Models for Compositional Data: General Log-Contrast Formulations, Proximal Optimization, and Microbiome Data Applications
	Abstract
	1 Introduction
	2 Linear Log-Contrast Models
	2.1 Statistical Log-Contrast Data Formation Model
	2.2 Statistical Estimators for Log-Contrast Models
	2.2.1 Sparse Log-Contrast Regression
	2.2.2 Sparse Log-Contrast Regression with Side Information
	2.2.3 Robust Log-Contrast Regression


	3 Optimization of General Log-Contrast Models
	3.1 Convex Optimization Model
	3.2 Algorithm
	3.3 Model Selection

	4 Applications to Compositional Microbiome Data
	4.1 Body Mass Index Prediction from Gut Microbiome Data
	4.2 Relationship Between Soil Microbiome and pH Concentration

	5 Discussion and Conclusion
	Acknowledgements 
	References


