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Abstract

Compositional data sets are ubiquitous in science, including geology, ecology, and
microbiology. In microbiome research, compositional data primarily arise from
high-throughput sequence-based profiling experiments. These data comprise micro-
bial compositions in their natural habitat and are often paired with covariate meas-
urements that characterize physicochemical habitat properties or the physiology of
the host. Inferring parsimonious statistical associations between microbial compo-
sitions and habitat- or host-specific covariate data is an important step in explora-
tory data analysis. A standard statistical model linking compositional covariates
to continuous outcomes is the linear log-contrast model. This model describes the
response as a linear combination of log-ratios of the original compositions and has
been extended to the high-dimensional setting via regularization. In this contribu-
tion, we propose a general convex optimization model for linear log-contrast regres-
sion which includes many previous proposals as special cases. We introduce a prox-
imal algorithm that solves the resulting constrained optimization problem exactly
with rigorous convergence guarantees. We illustrate the versatility of our approach
by investigating the performance of several model instances on soil and gut microbi-
ome data analysis tasks.
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1 Introduction

Compositional data sets are ubiquitous in many areas of science, spanning such
disparate fields as geology and ecology. In microbiology, compositional data arise
from high-throughput sequence-based microbiome profiling techniques, such as
targeted amplicon sequencing (TAS) and metagenomic profiling. These meth-
ods generate large-scale genomic survey data of microbial community composi-
tions in their natural habitat, ranging from marine ecosystems to host-associated
environments. Elaborate bioinformatics processing tools [5, 6, 13, 17, 28] typi-
cally summarize TAS-based sequencing reads into sparse compositional counts
of operational taxonomic units (OTUs). The quantification of the relative abun-
dances of OTUs in the environment is often accompanied by measurements of
other covariates, including physicochemical properties of the underlying habitats,
variables related to the health status of the host, or those coming from other high-
throughput protocols, such as metabolomics or flow cytometry.

An important step in initial exploratory analysis of such data sets is to infer
parsimonious and robust statistical relationships between the microbial composi-
tions and habitat- or host-specific measurements. Standard linear regression mod-
eling cannot be applied in this context because the microbial count data carry
only relative or compositional information. One of the most popular approaches
to regression modeling with compositional covariates is the log-contrast regres-
sion model, originally proposed in [2] in the context of experiments with mix-
tures. The linear log-contrast model expresses the continuous outcome of interest
as a linear combination of the log-transformed compositions subject to a zero-
sum constraint on the regression vector. This leads to the intuitive interpretation
of the response as a linear combination of log-ratios of the original compositions.
In a series of papers, the linear log-contrast model has been generalized to the
high-dimensional setting via regularization. The sparse linear log-contrast model,
introduced in [20], considers variable selection via ! regularization and has been
extended (i) to multiple linear constraints for sub-compositional coherence across
predefined groups of predictors [30]; (ii) to sub-composition selection via tree-
structured sparsity-inducing penalties [33]; (iii) to longitudinal data modeling via
a constraint group lasso penalty [32]; and (iv) to outlier detection via a mean shift
modeling approach [23]. A common theme of these statistical approaches to log-
contrast modeling is the formulation of the estimators as the solution of a convex
optimization problem, and the theoretical analysis of the statistical properties of
these estimators under suitable assumptions on the data.

In the present paper, we take a complementary approach and focus on the
structure of the optimization problems underlying log-contrast modeling. We
propose an general optimization model for linear log-contrast regression which
includes previous proposals as special cases and allows for a number of novel
formulations that have not yet been explored. A particular feature of our model
is the joint estimation of regression vectors and associated scales for log-contrast
models, similar to the scaled Lasso approach in high-dimensional linear regres-
sion [31]. This is achieved by leveraging recent results on the connection between
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perspective functions and statistical models [§-10]. We introduce a Doug-
las—Rachford splitting algorithm that produces an exact solution to the resulting
constrained optimization problems with rigorous guarantees on the convergence
of the iterates. By contrast, most existing approaches to solve such problems pro-
ceed by first approximating it and then employing coordinate descent methods
with less demanding convergence guarantees. We illustrate the versatility of our
modeling approach by applying novel log-contrast model instances to environ-
mental and gut microbiome data analysis tasks.

2 Linear Log-Contrast Models

We first introduce the statistical log-contrast data formation model under consid-
eration. We then review several prominent estimators for regularized log-contrast
regression models.

2.1 Statistical Log-Contrast Data Formation Model

Let Z be a known (n X p)-dimensional compositional design matrix with rows
(z)1<i<n in the simplex { (&, ..., $)elo 1y | X &= 1}. In the microbiome con-
text, each row represents a composition of p OTUs or components at a higher taxo-
nomic rank. We apply a log transform (x;) ¢;¢,, = (10g 7;) ¢, resulting in the design
matrix X € R™". In this context, we introduce the following log-contrast data for-
mation model.

Model 1 The vector y = (1,), <<, € R" of observations is
y=Xb+0+Se, with C'b=0, (1)

where X € R™? is the aforementioned design matrix with rows (x;);<;<,» beRPis
the unknown regression vector (location), 0 € R" is the unknown mean shift vector
containing outliers, e € R" is a vector of realizations of i.i.d. zero mean random var-
iables, S € [0, +oo[™" is a diagonal matrix the diagonal of which are the (unknown)
standard deviations, and C € R”*K is a matrix expressing K linear constraints on the
regression vector.

The linear log-contrast data formation model is similar to the standard (hetero-
scedastic) linear model with the important difference that there are linear equal-
ity constraints on the regression vector. This stems from the fact that the entries in
X € R™? are not independent due to the compositional nature. In the original model
[2], the constraint matrix C € RP*X is the p-dimensional all-ones vector lp, result-
ing in a zero-sum constraint on the regression vector. To gain some intuition about
the implications of this constraint, consider a two-dimensional example with given
estimates b = (f;, f,), and denote by &; | and &;, the first and second column entries
of X. The linear equality constraint enforces f, = —f,, and thus each observation can
be expressed as
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n; = ﬁlfz‘,l - ﬂléi,z . 2)

Due to the construction of the design matrix as the log transformation of the compo-
sitions, this model is equivalent to

n; = Pylog &y — Bylog¢;, = B, log & ) A3)
Gin
which expresses the response as a linear function of the log-ratios of the original
compositional components. This example also shows that the regression coefficients
in the log-contrast model bear a different interpretation than in the standard linear
model. Combined log-ratio coefficients relate the response to log-fold changes of the
corresponding component ratios.

2.2 Statistical Estimators for Log-Contrast Models
2.2.1 Sparse Log-Contrast Regression

In the low-dimensional setting, the standard log-contrast model with zero-sum
constraints can be estimated by solving a least-squares problem subject to a
linear constraint, or alternatively, via standard linear regression applied to iso-
metrically log-ratio transformed compositions [14]. In the high-dimensional set-
ting, we need structural assumptions on the regression vector for consistent esti-
mation. To this end, the sparse log-contrast model was introduced in [20]. It is
based on the optimization problem

minimize 2i X6 — I3 + Allb]l,.
n

b eR? 4)
p —
kzlﬂk =0

where || - ||, is the #! norm and 4 € [0, +oco[ is a tuning parameter that balances

model fit and sparsity of the solution. The estimator enjoys several desirable prop-
erties, including scale invariance, permutation invariance, and selection invari-
ance. The latter property is intimately related to the principle of sub-compositional
coherence [1] and means that the estimator is unchanged if one knew in advance
the sparsity pattern of the solution and applied the procedure to the sub-composi-
tions formed by the nonzero components. In [20], model consistency guarantees are
derived for the estimator and the underlying optimization problem is approached
via penalization. The proposed iterative algorithm alternates between estimating the
Lagrange multipliers and solving a convex subproblem with a coordinate descent
strategy. Model selection for the regularization parameter A is performed with a gen-
eralized information criterion.
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2.2.2 Sparse Log-Contrast Regression with Side Information

In many situations, it is desirable to incorporate side information about the covariates
into log-contrast modeling. For instance, for microbial compositions, each component
can be associated with taxonomic or phylogenetic information, thus relating the p com-
ponents through a rooted taxonomic or phylogenetic tree 7,. One way to use this hier-
archical tree information is to perform log-contrast regression at a higher taxonomic
level, effectively reducing the dimensionality of the regression problem. Let 7, be a tree
with 1 < i, < & levels and p leaves and assume that, at given level i,, the p composi-
tions split into K groups with sizes (p;);<<x- Sub-compositional coherence across the
groups can be expressed by the linear constraints C'h = 0, where C is an orthogonal
(p X K)-dimensional binary matrix. The kth column comprises p, ones at the coordi-
nates of the components that belong to the kth group. Sparse log-contrast regression
with group-level compositional coherence can thus be achieved by solving the optimi-
zation problem

minimize ~—[1Xb — y[I2 + Allbll;.
beRr 2n
CTh=0

)

where A € [0, +o0[ is a tuning parameter. In [30], model consistency guarantees are
derived for this estimator as well as a debiasing procedure for the final estimates.
This is done by extending results from [16] to the log-contrast setting. In [20],
the underlying optimization problem is approached via an augmented Lagrangian
approach, while model selection is achieved by scaling a theoretically derived A,
with a data-driven heuristic estimate of the standard deviation ¢ [31], resulting in
A= Ayo.

An alternative way of incorporating tree information has been proposed in [33].
There, the tree structure is encoded in a parameterized matrix J, € R"™=1X7 where m
is the number of vertices in the tree. An estimator based on the minimization problem

minimize - X6 = yII + AlJ,bll,
beRr 2n

Zi:l b =0

is proposed, where A € [0, +oo[ is a tuning parameter. The structure of J, promotes
tree-guided sparse sub-composition selection and comprises a weighting parameter
a € [0, 1]. The authors of [33] are unable to solve the optimization in (6) exactly
and resort to a heuristic that abandons the linear constraints and solves a generalized
Lasso problem instead. The two tuning parameters A and « are selected via an infor-
mation criterion.

(6)

2.2.3 Robust Log-Contrast Regression

The previous estimators assume the response to be outlier-free with respect to
the statistical model under consideration. One way to relax this assumption and

@ Springer



Statistics in Biosciences

to guard against outliers in the response is to use a robust data fitting term. In
[23], the robust log-contrast regression is introduced via mean shift modeling;
see, e.g., [3, 29]. One specific instance of this framework considers the estima-
tion problem

minimize i||Xb —-y- 0||§ + A 16ll, + A,lloll,,  where CTh =0,
beRr, ocR" 21

(N
and where nonzero elements in the mean shift vector o € R” capture outlier data,
and A, and 4, are tuning parameters. In [25], the objective function in (7) is approxi-
mated in the form of (5) with a single tuning parameter. As shown in [3] for partial
linear models and in [29] for outlier detection, an equivalent form of (7) is to use the
Huber function [15] as robust data fitting function and the #' norm as regularizer.
The Huber function is defined as

0
plul = —, if |u| > p;
hp:IR—>IR:ub—> lul? 2 (8)

T’ if |u| < P,
where p €]1, +oo[ is a fixed parameter with default value p = 1.345 that determines
the transition from the quadratic to the linear part. The model in (7) can be written
as

1%

minimize — ) h (x;b —n) + A4,||bll;.
beRr 2n ; ’

C'h=0

C))

After model estimation, each data point in the linear region of the Huber function is
considered an outlier. The latter two models thus allow for joint sparse selection of
predictors and outliers in a convex framework.

3 Optimization of General Log-Contrast Models

We introduce an optimization model for general log-contrast regression that
includes all previous examples as special cases. We assume that the data follow
the data formation model outlined in Model 1. Our model belongs to the class of
perspective M-estimation models [10] and allows for joint estimation of regres-
sion parameters and corresponding scales while preserving the overall convexity
of the model. We then present a proximal algorithm that can solve instances of
the optimization model with theoretical guarantees on the convergence of the
iterates. Finally, we propose two model selection schemes for practical regulari-
zation parameter selection that leverage the joint scale estimation capability of
our optimization model.
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3.1 Convex Optimization Model

Let us first introduce some notation (see [4, 27] for details). We denote by I',(R")
the class of lower semicontinuous convex functions ¢ : R” —] — o0, +00] such
that domg = {x € R" | p(x) < +o0} # @. Given ¢ € I',(R") and x € R", the
unique minimizer of ¢ + ||x — -||§/2 is denoted by prox ,x. In other words

prox,, : R" — R" ! x > argmin <(p(y) + %llx —y||2>. (10)
yER"

Now let D be a convex subset of R”. Then 1, is the indicator function of D (it takes
values 0 on D and +oo on its complement), ri D is the relative interior of D (its inte-
rior relative to its affine hull), and, if D is nonempty and closed, proj, = prox, is the
projection operator onto D.

The following general log-contrast optimization model enables the joint
estimation of the regression vector b = (f;); <, € R” and of the scale vector
5 = (0,)1<icv € RY in Model 1 within a convex optimization setting.

Problem 1 Consider the setting of Model 1. Let N and M be strictly positive inte-
gers, let D be a vector subspace of RV, let (n;)1<i<n be strictly positive integers such
that Zi\;l n; = n, let (m;) ;<) be strictly positive integers, and set m = Zf‘il m;. For
everyi € {1,...,N}, letp; € I';,(R™), let

@; t RXR" - ] =00, +00]

o,0;(u;/0;), if o; > 0;
(6., 1) sup ((pi(u +u;)— (pi(u)), if 0; =0; (11)
e u€dom @;
+o00, if 6, <0

be the perspective of @;, let X; € R"*P, and let y; € R" be such that

X Y1
X=]: and y=]:|. (12)
Xy YN
Finally, set
E={beR’|CTb=0} (13)

and, forevery i € {1,...,M}, lety; € I;(R™) and L, € R™>*P. The objective is to

N M
minimize @0, Xb—y;)+ ) w;(Lb). (14)
seD,beE ; ( l ) l; ( )

Remark 1 Problem 1 comprises four main components which are associated with
different aspects of the general log-contrast regression model.
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— The perspective functions (@;);¢;<y Play the role of the loss function in statisti-
cal estimation and couple the estimation of the scale vector s and the regression
vector b. Because the functions (@,),;¢y are convex, the overall minimization
problem (14) remains a convex one in (s, b).

— Problem 1 allows for the partitioning of the design matrix X and response y into
N blocks with individual scale parameters (o;);¢;y- This is beneficial when
data from multiple measurement sources are available for the prediction of the
response or when heteroscedasticity in the design matrix is expected for different
groups of measurements. Introducing multiple scales has also numerical advan-
tages. Indeed, as discussed in [10], certain proximity operators of perspective
functions are easier to compute in separable form.

— The vector subspaces D and E (see (13)) enforce linear constraints on the scale
vector s = (0;)1 ¢,y and the regression vector b, respectively.

— Additional properties of the regression vector, such as (structured) sparsity, are
promoted through the use of the penalization functions (y;), ;<) and the matri-
ces (L;)1<i<p- The penalization functions typically contain a free parameter A the
setting of which requires a model selection strategy.

Perspective functions are discussed in [4, 8—10, 27]. The construction (11)
guarantees that (Vi € {1,...,N}) @, € I,(R"). We provide below two examples of
perspective functions that will be used in the numerical investigations of Sect. 4.

Example 1 Consider the function ¢ = || - ||§ + 1/2 defined on the standard Euclid-
ean space R”. Then (11) yields (see Fig. 1)

@ RxRP 5 ]— 00, +0]

lluell3
% 2, if o0 >0; (15)
@u =9 if 0 =0 and u = 0;
+o0, otherwise.

Fig. 1 Perspectiveof @ = |- |>+1/2

@ Springer



Statistics in Biosciences

Now fix (o,u) € R X R” and y €10, +oo[. If 475 + ||ull3 > 2y, let ¢ be the unique
solution in ]0, +oo[ to the equation

¥t 4+ 220 + 3y)t — 8]jull, = 0, (16)

and set p = tu/||u||, if u # 0, and p = 0 if u = 0. Then [10, Example 2.4] yields

(2N ) s
prox, (o, u) = <6+2<2 1>,u J’P),lf dyo + |lull; > 2%

(0,0, if 4yo + Jull3 <272

a7

A prominent estimator where the perspective function (15) is used as a loss func-
tion in conjunction with the #! norm as penalization function is the scaled Lasso
estimator for high-dimensional sparse linear regression [31].

Example 2 Set ¢ = h, + 1/2, where h, is the Huber function of (8). Then (11) yields
(see Fig. 2)

@ RXR - ]—o00,+00]

1— 2
Q=200 o ol if [u] > opand o > 0:
2 18
(o,u) —» %+%, if |u| <opando >0; (18)
plul, if 6 =0;
400, if ¢ <0.

Now fix (o,u) € RXR and y €]0,+oo[. Then [10, Example 2.5] asserts that
prox, (o, u) is computed as follows.

(i) Suppose that|u| < yp and|u|?> < y(y — 26). Then prox, (o, u) = (0,0).

Fig.2 Perspective of ¢ = h; + 1/2, where h, is the Huber function
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(ii) Suppose that o < y(1 — p*)/2 and |u| > yp. Then

proxm(a, u) = <0, <1 - %)u) (19)

(iii) Suppose that e > y(1 — p?)/2 and |u| > po + yp(1 + p*)/2. Then

proxy¢(6,u)= <6+%(p2—1),<1—ﬁ>u>. (20)

(iv) Suppose that |u|> > y(y —20) and |u| < po +yp(1 + p*)/2. If u # 0, let t be
the unique solution in ]0, +oo[ to the equation

v + Q26 + y)t —2|u| = 0. (21)
Then
o+ y(t* = 1)/2,u—ytsign(u)), if 2yc + |u|> > y%;
PIO%yg(010) = { 20,0), h 20+ ul? <2 2P

Using the perspective function (18) as a loss function and the #! norm as a penaliza-
tion function recovers a robust version of the scaled Lasso approach [10, 26].

3.2 Algorithm

Our algorithmic solution method to solve Problem 1 relies on an application of the
Douglas—Rachford splitting algorithm in a higher-dimensional space. To describe our
methodology let us first note that, since (14) involves non differentiable functions and
hard constraints, it cannot be handled via methods which employ gradients. Rather,
we must proceed with nonsmooth first order methods, i.e., methods which activate the
functions present in the model via their proximity operators defined in (10). Let us con-
sider the basic problem of minimizing the sum of two lower semicontinuous convex
functions F and G in a Euclidean space ‘H, i.e.,

minimize F(u) + G(u).
ueH (23)

Let us assume that this problem has a least one solution. A key property of the prox-
imity operator proxy is that its set of fixed points is the set of minimizers of F [4,
Proposition 12.29]. A naive approach to solve (23) would therefore be to construct
iteratively a fixed point of proxg, ;. However, this is not viable because proxp., ¢ is
typically intractable. On the other hand, in many instances, the operators prox and
prox are computable explicitly, which suggest that we design a splitting algorithm,
i.e., one in which F and G are activated separately. The most popular splitting algo-
rithm to solve (23) is the Douglas—Rachford algorithm [4, 7, 11, 12, 19, 21]. This
algorithm exploits the following remarkable fact: given an arbitrary y €]0, +oo[, if a
point v € H satisfies the fixed point property
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prox, . (2prox,gv — v) = prox,gv, (24)

then the point u = prox,gv solves (23). This leads to the following result (see [4,
Sect. 28.3]).

Theorem 2 (Douglas—Rachford algorithm) Let H be a Euclidean space, let
y €10,+00[, let € €]0,1[, let vy € H, and let F € I,(H) and G € I,(H) be such
that (ridom F) N (ridom G) # @. Let (4 )y be a sequence in[g,2 — €] and iterate

fork=0,1,...
uk = pI‘OXvak
Wy = prox, g (2u; — ;)
Virtr = Vi + Wy — wy).

(25)

Then (u;),cn converges to a solution to (23).

Our method for solving Problem 1 (Algorithm 3 below) is an implementation of (25)
in a suitably constructed product space. The details of this construction are provided in
Appendix A. To present the algorithm, it is convenient to introduce the matrices

o] Q=AT1d +AAT)"!, and W=1d —C(CTO)"'C", (26)

together with the function

g RV XR" X oo X R™ X R™ X -+ X R™ — ] — 00, 400]

N ) M @7
(S 0pseee Uy Vs V) 2 (o, u; = y) + Z wi(v),
i=1 i=1

and to define, for every iteration index k € N, the vectors

Sk = (Gl,k’ “en ’GN,k) (S [RN

hop = (s o> tiyg) € RY

hb,k = (hl,lw 7hN,1<7 hN+l,k’ 7hN+M,k)

ERM X oo X R™W X R™ X o X R™M
Y 2ok = @i s ZN ko ENF 1L -+ > INHME) (28)

eRM X« X R™W XR™ % o X R"™
ds,k = (617](, ooy 5N,k) (S RN
dypg = (s oo 5 dy o Ay o -+ > Ay i)
ERM X X R™ X R™ X oo X R,

L
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Algorithm 3 Let y €]0,4+o0[, £ €]0,1[, x,0€R", x,, €R?, hy€RY, and
hy,o € R™™. Iterate

fork=0,1,...

M, Ele,2 — €]

QS,k = xs,k - hs,k

Gpi = AXpp — iy

Sk = Xk — Gyi/2

by = Xy — OGpi

C‘v,k = projD(zsk - x‘v,k)
Cop = W2y — x4)

Xy jp1 = Xgp + Hi(Cope = 5p) (29)
Xp g1 = Xp g+ Mi(Chp = by)
fori=1,...,N

ik = Xy

(i dig) = (0,y;) + prox, g, (20, = 1 225 = Iy = ;)
fori=1,...,.M
{ZN+i,k = L;b;

dyyix = Prox,, zyyix = hyyig)

hygir = hog + mldyy — 1)
| g = Py + ii(dp e — 2 p0)-

Proposition 1 Consider the setting of Problem 1. Suppose that
lim g(s,Ab) = +0
seD, beE (30)
lIslly + 1I6ll; — +o0
and that
(D xA(E)) nridomg # @. (31)

Then Problem 1 has at least one solution. Now let (s;);en and (by)ien e sequences
generated by Algorithm 3. Then (s;);en converges to some s € RN and (by)ien con-
verges to some b € R? such that (s, b) solves Problem 1.

Proof See Appendix A. O

In most practical situations, (30) and (31) are typically satisfied. For example the
following describes a scenario that will be encountered in Sect. 4.

Proposition 2 Consider the setting of Problem 1 and suppose that the following
additional properties hold:

(i) Foreveryi€ {1,...,N}, @, =0, + a;, where0; : R" — [0, +oo[ is convex and

a; €10, +oo[.
(i) Foreveryi€ {1,....M},y; : R™ — [0, 4o0].
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(iii) For some j € {1,...,M}, y,(L;b) = +co as |bll, — +oco while CTh = 0.
(iv) DNJ0, +oo[V+£ @.

Then (30) and (31) are satisfied.

Proof See Appendix B. O

3.3 Model Selection

In the context of log-contrast regression, a number of different model selection
strategies have been proposed, including stability selection [20, 22] and General-
ized Information Criteria [32]. In [30], a scale-dependent tuning parameter has
been derived where the optimal scale has been found via line search. Our joint scale
and regression modeling approach makes this line search obsolete, thus yielding a
parameter-free model selection scheme. More specifically, we consider two model
selection schemes. Firstly, following [30], we consider

Ao = V2q,(r/p). (32)

where g,(t) = n~'/2®~'(1 — 1), @' is the quantile function for the standard normal
distribution, and r is the solution to the equation r = q‘]‘(r/p) + Zq%(r/p). In prac-
tice, this data-independent model selection scheme may lead to inclusion of spuri-
ous coefficients. To assess the robustness of the inferred solutions we combine this
theoretically derived regularization with stability selection [22]. The original stability
selection approach selects, for every subsample, a small set of predictors from the
regularization path, e.g., the first g predictors that appear along the path or the g coef-
ficients that are largest in absolute value across the entire path. We here propose to
select, for every subsample, the nonzero coefficients present at regularization param-
eter ;. Note that A, is sample-size dependent and hence needs to be adapted to the
specific subsample size used in stability selection. As default values, we consider a
subsample size of [n/2] and generate 100 subsamples. The key diagnostic in stability
selection is the selection frequency profile for each coefficient. To select a stable set
of coefficients, a threshold parameter ¢, € [0.6,0.9] is recommended [22], where all
coefficients with selection frequency above ¢, are included in the final model.

4 Applications to Compositional Microbiome Data

We apply several instances of the general log-contrast model outlined in Problem 1
in the context of microbiome data analysis tasks. We set M = 1, m; =m, L, =1d,
and employ as a regularization function the #! norm w, = || - ||,. We use the func-
tions in Examples 1 and 2 as instances of the perspective loss functions ;. We refer
to these instances as Least Squares and Huber log-contrast model, respectively.
Thus, in case of the Least Squares model, (14) becomes

i remﬂrél,n;;zeeE - 13(e. Xb — y) + AllbII; (33)
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while in the case of the Huber model it becomes

n
minimize i (o-i,xib - 11;) + Allblly,
sED,bEE Z‘” (34)

where D = {(o-,...,a) eR" | = R}.

Note that the projection of a vector s € R" onto D, as required in Algorithm 3, is
given by
n

proj,s = <%Za%§a> 35)

i=1

Dependent on the application, we use different zero-sum constraints on b as speci-
fied by the matrix C. To solve the various instances of Problem 1, we use Algo-
rithm 3 and set the parameter 4, = 1.9 and y = 1. We consider that the algorithm
has converged when ||b, — by ||, < 1076, All computational experiments are fully
reproducible with the code available at https://github.com/muellsen/PCM/tree/maste
r/examples/LogContrastModels.

4.1 Body Mass Index Prediction from Gut Microbiome Data

We first consider a cross-sectional study that examines the relationship between diet and
gut microbiome composition, where additional demographic covariates, including body
mass index (BMI) are available, referred to as COMBO data set [34]. After pre-pro-
cessing and filtering, the data set comprises the log-transformed relative abundances of
p = 87 taxa at the genus level across n = 96 healthy subjects. Following previous analy-
ses [20, 30], we investigate the relationship between BMI and the microbial composi-
tions in a log-contrast regression framework. We use C = 1, to model the standard zero-
sum constraint. In addition to the compositional covariates, two covariate measurements,
fat and calorie intake, are also taken into account via joint unpenalized least squares. We
investigate the influence of different loss functions, Least Squares and Huber, as well as
the sub-compositional constraints on the quality of the estimation, the size of the support
set, and the predictive power. Further numerical results can be found in Appendix C.

To highlight the ability of the algorithm to jointly estimate regression and scale we
solve the two problems over the regularization path with 40 A values on a log-linear grid
in[0.00609, ..., 0.6989]. We also consider the theoretically derived regularization param-
eter Ay = 0.1997 from (32). Figure 3a and b show the solution path of the regression
vector b for the sparse Least Squares log-contrast model and the Huber model, respec-
tively. Figure 3c displays the corresponding joint scale estimates ¢ for the Least Squares
and the Huber models. The estimated regression coefficients at A, are highlighted in
Fig. 3d. Both models agree on a set of six genera, including Clostridium as strongest
negative and Acidaminococcus as the strongest positive predictors. This implies that
the log-ratio of Acidaminococcus to Clostridium is positively associated with BML
Other genera include Alistipes, Megamonas, and Coprobacillus with negative coeffi-
cients, and Dorea with positive coefficient. In [20, 30], the genera Alistipes, Clostridium,
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Acidaminococcus, and Allisonella have been identified as key predictors. The solutions
of the perspective log-contrast models corroborates these finding for Clostridium and
Acidaminococcus, and to a less extent to Alistipes, whereas the genus Allisonella has
only a small strictly positive coefficient in both log-contrast models (Fig. 3d).

Next, we consider the stability selection scheme introduced in Sect. 3.3 with
default parameters and threshold ¢, = 0.7. Figure 4a shows the stability-based fre-
quency profile for the sparse Least Squares and Huber log-contrast models. For both
models, only Clostridium and Acidaminococcus are selected. Stability selection thus
leads to a simple explanatory log-ratio model formed by the ratio of the relative
abundances of Acidaminococcus to Clostridium. However, when considering the
final model prediction results, as shown in Fig. 4b for the Huber model, this model
can only explain normal to overweight participants (BMI 20-30) because 34 out of
96 participants are considered outliers in the Huber model. The overall refitted R? is
0.19 under the Huber model but increases to 0.43 for the 62 inlier participants.

Next, we investigate the influence of sub-compositional constraints on the stabil-
ity selection frequency for the two estimation procedures. We follow the analysis of
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Fig. 3 a Solution path of regression vector b in the sparse Least Squares log-contrast model on the full
COMBO data. The grey line marks the theoretical A, from (32). b Solution path of regression vector b
in sparse Huber log-contrast model on the full COMBO data. ¢ Solution path of the scale estimates ¢ for
both log-contrast models on the full COMBO data. d Comparison of the regression estimates of both
models at regularization parameter A, on the full data set. Both models agree on the two strongest predic-
tors, the genera Clostridium and Acidaminococcus (Color figure online)
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[30] and consider a subset of 45 genera that have the highest relative abundances
in the data set. These 45 genera belong to K = 4 distinct phyla: Actinobacteria (two
genera), Bacteroides (eight genera), Firmicutes (32 genera), and Proteobacteria (three
genera). The constraint matrix C is hence an orthogonal (45 X 4)-dimensional binary
matrix. Figure 5a and b show stability selection profile for both the Least Squares
and the Huber model with and without compositional constraints, respectively. Fig-
ure 5c shows the difference in the selection frequency profiles. Although several gen-
era, including Collinsella, Paraprevotella, Parabacteroides, Faecalibacterium, Oscil-
libacter, and Parasutterela display significant frequency differences, the two genera
Clostridium and Acidaminococcus, both belonging to the Firmicutes phylum, demon-
strate again the highest stability both with and without sub-compositional constraints.

4.2 Relationship Between Soil Microbiome and pH Concentration

We next consider a dataset put forward in [18] comprising n = 88 soil samples from
North and South America. Both amplicon sequencing data and environmental covari-
ates, including pH concentrations, are available and have been re-analyzed via a bal-
ance tree approach in [24]. The amplicon data contains p = 116 OTUs, and we con-
sider C =1,. We perform stability selection with default parameters as outlined in
Sect. 3.3. We refer to Appendix D for results regarding variable selection with the
theoretical A, value. The selection frequency of the different regression coefficients
is shown Fig. 6a. At stability threshold z, = 0.7, seven taxa are selected in the Least
Squares models, and six taxa in the Huber model, respectively. After re-estimation
of the two perspective log-contrast models on the selected subset, two taxa of order
Ellin6513, one taxon of family Koribacteraceae, and one taxon of genus Rhodoplanes
have negative coefficients whereas two taxa belonging to the genus Balneimonas as
well as one Rubrobacter taxon and one taxon of order RB41 have positive coefficients

ST/ N

10 15 20 25 30 35 40 45

BMI measurements

Megamon:

8 53
Genera

Fig.4 a Stability selection profile for all taxa selected with a frequency > 0.1 in the Least Squares model
(blue) or the Huber log-contrast model (red), respectively. The green solid line marks the stability thresh-
old #, = 0.7, selecting the genera Clostridium and Acidaminococcus. b Prediction of BMI from the log-
contrast of the two genera in the Huber log-contrast model vs. measurements for 62 inliers (blue) and 34
outliers (red) (overall R* = 0.19) (Color figure online)
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(Fig. 6b). The seven taxa identified in the Least Squares model thus allow for a com-
pact representation with four log-ratios of compositions. The Huber model with six
identified taxa requires only three log-ratios. The five coefficients that are selected in
both models agree in coefficient sign but show small variations in coefficient values.
The Huber model (R?> = 0.86) deems 33 data points to be outliers in the final estimate
(Fig. 6¢). For completeness, we include the mean absolute deviation (MAD) between
model estimates and data in Fig. 6d. The selected taxa cover a wide range of average
pH levels (as provided in [24]), ranging from 4.9 to 6.75, implying that the learned
model may indeed generalize to other soil types not present in the current data set.

5 Discussion and Conclusion
Finding linear relationships between continuous variables and compositional predic-

tors is a common task in many areas of science. We have proposed a general esti-
mation model for high-dimensional log-contrast regression which includes many
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Fig. 6 a Stability selection profile for all taxa (denoted by the lowest taxonomic rank available) selected
with a frequency > 0.1 in either the sparse Least Squares (blue) log-contrast model or the Huber
model (red). The green solid line marks the stability selection threshold ¢z, = 0.7. b Refitted values of
all selected log-contrast regression coefficients for Least Squares (seven coefficients in blue) and the
Huber model (six coefficients in red). ¢ Prediction of pH measurements from the Huber model for inliers
(blue) and outliers (red) (R*> = 0.86). d Table summarizing the mean absolute deviation (MAD) of the
two model estimates on the data. Numbers in parentheses represent the number of inlier and outlier data
points for the Huber model (Color figure online)

previous proposals as special cases [20, 23, 30, 33]. Our model belongs to the class
of perspective M-estimation models [10] which allows for scale estimation in the data
fitting term while preserving the overall convexity of the underlying model. This is
made possible due to recent advances in the theory of perspective functions [8—10].

Several data fitting and penalty functions are available in the present framework.
For instance, the robust Huber model is a convenient choice when outliers are sus-
pected in the continuous outcome vector, or equivalently, when only a subset of the
outcome data is expected to follow a linear log-contrast relationship with the com-
positional predictors [10, 23]. Combined with a sparsity-inducing penalty, the model
allows for joint scale estimation, outlier detection, and variable selection in a single
framework. Alternative choices for data fitting and regularization models are available
in [10]. Our framework also enables sub-compositional coherence across groups of
variables, e.g., bacterial phyla in microbiome data, via general linear constraints.

We have introduced a Douglas—Rachford algorithm that can solve the correspond-
ing constrained nonsmooth convex optimization problems with rigorous guarantees on
the convergence of the iterates. Furthermore, we have illustrated the viability of our
approach on two microbiome data analysis tasks: body mass index (BMI) prediction
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from gut microbiome data in the COMBO study and pH prediction from soil micro-
bial abundance data. Our joint regression and scale estimation enabled the use of a
universal single tuning parameter A, [30] to control the sparsity of the estimates. We
have combined this approach with stability-based model selection [22] to determine
sparse stable sets of log-contrast predictors. For the gut microbiome BMI analysis, the
robust Huber log-contrast model identified two genera whose log-ratio predicts BMI
well for normal to overweight participants while simultaneously identifying outliers
with respect to the log-contrast model. In the soil microbiome data set, we derived par-
simonious pH prediction models. The Least Squares model requires four log-ratios of
microbial compositions and achieves an overall R?> = 0.88. The Huber model requires
only three log-ratios of microbial compositions with an overall R* = 0.86.

Going forward, we believe that the general log-contrast model and the associated
optimization and model selection techniques presented here will provide a valuable
off-the-shelf tool for log-contrast regression analysis when compositional data such
as microbial relative abundance data are used as predictors in exploratory data anal-
ysis. Future efforts will include the integration of the presented models in modern
computational microbiome analysis software workflows.
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Appendix A: Proof of Proposition 1

Define g as in (27) and set

f=tgp
L:RYXR - RY XR™M X - X R™ X R™ X - X R (36)
(s,b) > (s,Ab) = (s, X\b, ..., Xyb,Lb, ..., Lyb).

Then f € I,(RV*?) as the indicator of the vector subspace D X E, and

(V(s,b) € RN*?)  prox,¢(s, b) = (projps, projgb) = (projps, Wb),  (37)
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where the last identity follows from [4, Proposition 29.17(iii))]. On the other hand,
it follows from [8, Proposition 2.3(ii)] and [4, Proposition 8.6] that g € I,(RN ™),
Furthermore, we derive from [4, Propositions 24.11 and 24.8(ii)] that

(V(s,ul, e UNS VL, ,vM) € RV X R™M X --- X R™)
PrOX, (8, 1y, . Uy, Vs e, Vi) = ((0,3)) + Prox, g (o1, 1y = yp), ... (38)

w0,y + prox},@N(aN, Uy — Yy)» Prox,, vi, ... ,proxWMvM).
In addition, (31) implies that

L(domf)ndomg = (L(D X E)) N domg

= (DX A(E)) ndomg (39)
# 0.
Consequently, dom (f + goL) # @. Thus,
f + goL € I (R*?) (40)

while, using the variable w = (s, b) € R¥*?, (30) and (36) imply that

lim f(w) + g(Lw) = +o0. (41)

WERN*P ||w||, >+0c0

It therefore follows from [4, Proposition 11.15(1)] that

Argmin(f + gol) # @. 42)
Since (14) is equivalent to
inimi f(w) + g(Lw),
minimize F(w) +g(bw) (43)

we infer from (42) that Problem 1 admits at least one solution. Note that (43) can be
rewritten as

minimize  f(w) + g(2).
w e RN+
ze RN+n+m

Lw=1z

Now setu = (w, z) € H = R2V+m+n4p gpd

(44)

{F 1 H =] —00,+0] : (W,z) = f(w) +g(2)

G=1,, where V= {(x,h)E’H | Lx=h}. 45)

Then F € I'y(H), G € I,(H), and (44) is equivalent to

minimize Fu) + G(u).
ueH (46)

Moreover, we deduce from (31) that
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L(domf)nridomg = (DX A(E)) Nnridomg # @. (47)
Consequently, using standard relative interior calculus [27, Sect. 6], (45) yields

ri(domG)Nri(domF)=Vnri (domf X domg)
=Vn (ridomf X ridom g)
=V Nn(domf X ridomg) (48)
= {(x,Lx) | x € R"*?} n (dom f x ridom g)
# 0.
Therefore, given y €10,+co[, € €]0,1[, v, € H, and a sequence (u;)icy in
[e,2 — €], the nonsmooth convex minimization problem (46) can be solved using
the Douglas—Rachford algorithm (25) which, by Theorem 2, produces a sequence

(u)ren that converges to a solution to (46). Next, it follows from [4, Proposi-
tion 24.11 and Example 29.19(i)] that

prox,p : (w,z) (proxyfw, proxygz) 1 49)
prox,¢ : (x,h) = (w,Lw), where w=x—LT(Id +LL") (Lx —h).
Now define
u, = (Wk, Zk)
R=LTdd +LL")™ and (VkeN) 3 v, =(x.hy) (50)

wk = (Ck’ dk)'

Then we derive from (49) that, given x, € RV*? and h, € RY*"+™ (25) becomes

fork=0,1,...
q = Lx, —hy
W =X, — Ry
Z/(=ka

51
Cr = Prox,¢ 2wy — x;) S

di = prox,,(2z; — hy)
X1 = X+ (S — W)
| M =y + i (dy — zp).

Let us partition the vectors appearing in (51) according to their scale and regression
components as
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X = (X0 Xpy) € RN X RP

hy = (hy g hyy) € RY X R

q; = (qs,k’ qb,k) e RN X R#+m

(VkeN) < w, =(s,b) €RVXR? (52)
7, = (5, 2y) € RN x R™™

¢, = (Copo Cpp) € RV X RP

d = (d,}.d,;) € RN X R™",

In terms of these new variables, using the matrix Q of (26), (36) and (50) yield
(VkeN) Rag = (¢,4/2. Qdpi) (53)

and it follows from (26), (28), (37), (38), and (53) that (51) is precisely
(29). Altogether, since (#;)cny = (Wi, Zieny cOnverges to a solution to (46),
(Wiren = (8¢ bpren converges to a solution to Problem 1.

Appendix B: Proof of Proposition 2

e If s¢&[0,+oo[", then (11) yields (Vb € R?) g(s,Ab) = +c0. On the other
hand if, for some i € {1,...,N}, o0; €]0,4+00[ then we deduce from (i) that
(Vb € RP) @0, X;b—y;) = 0,0,((X;b—y)/0;) + a;0; > a;06;, > +0 as
o; = +oo. Hence, (ii) entails that (Vb € RP) g(s,Ab) — +o0 as||s||, = +oco while
s € [0,+0o[". On the other hand, it follows from (iii) that (Vs € RY)(Vb € E)
g8(s,Ab) 2 wi(L;b) > +o0 as||bl|, = +oo. Altogether, (30) holds.

e It follows from (i) and (11) that (Vi € {I,...,N}) ridom @; =]0, +co[XR".
Furthermore, (ii)) yields (Vie {l,...,M}) ridomy;=R". Therefore
ridom g =]0, +co[VXR" x R™. Since trivially A(E) C R™™, (31) reduces to (iv).

Appendix C: Numerical Algorithm Comparison on BMI Data

We compare the numerical accuracy and the run time of the Algorithm 3 with
the coordinate descent algorithm proposed in [30] for the special case of the con-
strained Lasso problem with joint scale estimation, defined in (33). We use a subset
of the BMI dataset with n = 96 samples and p = 45 OTUs. The numerical example
is reproduced with the following MATLAB script available at https://github.com/
muellsen/PCM/tree/master/examples/LogContrastModels.
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>>runtimeBMI

% Comparison of the runtime of exact proximal scheme
% and the coordinate descent (with interval search) method
% (Shi et al. 2016) on the BMI example without covariates

% Load all data in MATLAB format (located in
% /PerspectiveFunctions/misc/ConstrLasso/)
load allData.mat;

% Solve the model using the product space Douglas—Rachford
method

t1=now;

[betaPCMMat, sigmaPCMMat, funPCMMat, outPCM] =
pemC2(x_cent, y_cent, pcmopts);

t2=now;

timePCM = (t2—t1)x(60x60x24)

% Solve the model using the method of Shi et al. (2016)
t1=now;

[betaConLMat, sigmaConLMat,outConL] =

concomlasso(x_cent, y_cent, concomopts);
t2=now;
timeConcom = (t2—-t1)*(60x60x24);

On a MacBook Pro (2018) with 2.9 GHz Intel Core i9 processor and 32 GB 2400
MHz DDRA4, the run time of the general Douglas—Rachford scheme (with fixed
y = 0.5) for solving the problem across the entire regularization path is 12 s at solu-
tion accuracy € = le — 8. Further run time improvement could be achieved by set-
ting y in a regularization-dependent fashion. The coordinate descent scheme requires
10.5 s. Since no convergence guarantees comparable to ours exist for the coordinate
descent scheme, we also compare the solution quality across the regularization path.
The results are summarized in Fig. 7. We observe that, for this example, both meth-
ods agree on the solution within six digits of accuracy, both for the regression vec-
tors (Af) and the scales (4c) across the entire regularization path.
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Fig. 7 Numerical comparison of Algorithm 3 and the coordinate descent (CD) scheme of [30] for the
constrained Lasso problem with joint scale estimation, defined in (33). a Shows the solution path for the
regression vector, found by Algorithm 3. b Shows the estimation difference between Algorithm 3 and
CD. c shows the scale estimates for both methods, and d the difference between the respective estimates.
The run times for both methods are 12 s and 10.5 s, respectively (Color figure online)

Appendix D: Solution Path and Variable Selection with Theoretical 1,
Regularization for the Soil Dataset

We here complement the analysis of the soil dataset [18], analyzed in Sect. 4.2,
comprising n = 88 soil samples and p = 116 OTUs. We show the full solution path
and variable selection with the theoretical A, = 0.2182 in Fig. 8, both for the Least
Squares (Fig. 8a) and the Huber model (Fig. 8c). Using the theoretical 4, both mod-
els select 27 and 25 variables, respectively. The joint set of 30 variables is shown
in Fig. 8b. For completeness, we also report the scale estimates for both models
(Fig. 8d).
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Fig.8 Solution path and variable selection with the theoretical 4, = 0.2182 for pH prediction on the
soil dataset for the Least Squares model (a) and Huber model (c), respectively. The selected solutions
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