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This paper introduces a new identification- and singularity-robust conditional
quasi-likelihood ratio (SR-CQLR) test and a new identification- and singularity-
robust Anderson and Rubin (1949) (SR-AR) test for linear and nonlinear moment
condition models. Both tests are very fast to compute. The paper shows that the
tests have correct asymptotic size and are asymptotically similar (in a uniform
sense) under very weak conditions. For example, in i.i.d. scenarios, all that is re-
quired is that the moment functions and their derivatives have 2 + γ bounded
moments for some γ > 0. No conditions are placed on the expected Jacobian of
the moment functions, on the eigenvalues of the variance matrix of the moment
functions, or on the eigenvalues of the expected outer product of the (vectorized)
orthogonalized sample Jacobian of the moment functions.

The SR-CQLR test is shown to be asymptotically efficient in a GMM sense un-
der strong and semi-strong identification (for all k ≥ p, where k and p are the
numbers of moment conditions and parameters, respectively). The SR-CQLR test
reduces asymptotically to Moreira’s CLR test when p = 1 in the homoskedastic
linear IV model. The same is true for p ≥ 2 in most, but not all, identification sce-
narios.

We also introduce versions of the SR-CQLR and SR-AR tests for subvector hy-
potheses and show that they have correct asymptotic size under the assumption
that the parameters not under test are strongly identified. The subvector SR-CQLR
test is shown to be asymptotically efficient in a GMM sense under strong and
semi-strong identification.
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1. Introduction

Weak identification and weak instruments (IVs) can arise in a wide variety of empiri-
cal applications in economics. Examples include: in macroeconomics and finance, new
Keynesian Phillips curve models, dynamic stochastic general equilibrium (DSGE) mod-
els, consumption capital asset pricing models (CCAPM), and interest rate dynamics
models; in industrial organization, the Berry, Levinsohn, and Pakes (1995) (BLP) model
of demand for differentiated products; and in labor economics, returns-to-schooling
equations that use IVs, such as quarter of birth or Vietnam draft lottery status, to avoid
ability bias. Other examples include nonlinear regression, autoregressive-moving aver-
age, GARCH, and smooth transition autoregressive (STAR) models; parametric selec-
tion models estimated by Heckman’s two-step method or maximum likelihood; mixture
models and regime switching models; and all models where hypothesis testing prob-
lems arise where a nuisance parameter appears under the alternative hypothesis, but
not under the null.1

Given this wide range of applications and models, it is useful to have tests and
confidence sets (CSs) that are identification-robust under nearly minimal conditions.
This paper introduces two tests (and CSs) with this feature. The two new tests are a
singularity-robust (SR) conditional quasi-likelihood ratio (SR-CQLR) test and a SR non-
linear Anderson and Rubin (1949) (SR-AR) test. These tests and CSs are shown to have
correct asymptotic size and to be asymptotically similar (in a uniform sense) under very
weak conditions. All that is required is that the expected moment functions equal zero
at the true parameter value and the moment functions and their derivatives satisfy mild
moment conditions. Thus, no identification assumptions of any type are imposed. The
results hold for arbitrary fixed k�p ≥ 1, where k is the number of moment conditions
and p is the number of parameters. The results allow for any of the p parameters (or
any transformations of them) to be weakly or strongly identified, which covers multiple
possible sources of weak identification. Results are given for independent identically
distributed (i.i.d.) observations as well as stationary strong mixing time series observa-
tions.

The asymptotic results allow the variance matrix of the moments to be near singu-
lar or singular. This is particularly important in models where weak identification (or
lack of identification) is necessarily accompanied by near singularity (or exact singular-
ity) of the variance matrix of the moments. This occurs in all maximum likelihood sce-
narios and many quasi-likelihood scenarios. Furthermore, in models of this type where
robustness against lack of identification—not just against weak identification—is im-
portant, allowing for singularity of the variance matrix of the moments—not just near

1For references, see Section 12 in the Online Supplemental Material (Andrews and Guggenberger (2019)).
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singularity—is necessary. This occurs in likelihood-based models that nest submodels
of interest, when the parameters are not identified in the submodel. For examples, this
occurs with (i) factor models with multiple factors, where the submodels of interest have
reduced numbers of factors, (ii) mixture models, including regime switching models,
where the submodel of interest has only one regime, (iii) asset return models with jumps,
where the submodel of interest has no jumps, (iv) random coefficient models with possi-
ble correlation between the coefficients, where the submodel has constant coefficients,
(v) random coefficient models with possible correlation between a random coefficient
and an error term, where the submodel has constant coefficients, (vi) GARCH models
and ARCH and GARCH in mean models, where the submodel of interest has no condi-
tional heteroskedasticity, and (vii) ARMA models, where the submodel has i.i.d. (or un-
correlated) observations. In all of these models, ruling out singularity of the variance ma-
trix, rules out the submodel. Note that in these likelihood scenarios (where the moment
function is the score function) the SR-AR test is the same as the nonlinear Anderson–
Rubin statistic (that is, the S statistic in Stock and Wright (2000)) and the LM statistic in
Andrews and Mikusheva (2015) if the model is identified, but not if it is not identified.
Neither Stock and Wright (2000) nor Andrews and Mikusheva (2015) dealt with the case
where the model is unidentified. Some finite-sample simulation results, given in the On-
line Supplemental Material (SM) to this paper, show that the SR-AR and SR-CQLR tests
perform well (in terms of null rejection probabilities) under singular and near singular
variance matrices of the moments in the model considered.

The asymptotic results also allow the expected outer-product of the vectorized or-
thogonalized sample Jacobian to be singular. For example, this occurs when some mo-
ment conditions do not depend on some parameters. Finally, the asymptotic results al-
low the true parameter to be on, or near, the boundary of the parameter space.

In sum, the conditions for correct asymptotic size of these tests and CSs are suffi-
ciently weak and transparent that the practitioner is easily assured of avoiding asymp-
totic size distortions.

The SR-CQLR test is shown to be asymptotically efficient in a GMM sense under
strong and semi-strong identification (when the variance matrix of the moments is non-
singular and the null parameter value is not on the boundary of the parameter space).
Furthermore, it reduces to Moreira’s (2003) CLR test in the homoskedastic linear IV
model with fixed IVs when p = 1. This is desirable because the latter test has been shown
to have approximate optimal power properties in this model under normality; see An-
drews, Moreira, and Stock (2006, 2008), Chernozhukov, Hansen, and Jansson (2009),
Mikusheva (2010), and Andrews, Marmer, and Yu (2019). A drawback of the SR-CQLR
test is that it is not known to have optimality properties under weak identification in
other models. The SR-CQLR test is easy to compute and its conditional critical value can
be simulated easily and very quickly.

We recommend the use of the SR-CQLR test over the SR-AR test in overidentified
moment condition models based on power advantages. In exactly-identified models,
the SR-CQLR and SR-AR tests are asymptotically equivalent and we recommend the use
of the SR-AR test because its critical value is not simulated, whereas that of the SR-CQLR
test is simulated.
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To establish the asymptotic size and similarity results of the paper, we use the ap-
proach in Andrews, Cheng, and Guggenberger (forthcoming) and Andrews and Guggen-
berger (2010). With this approach, one needs to determine the asymptotic null rejection
probabilities of the tests under various drifting sequences of distributions {Fn : n ≥ 1}.
Different sequences can yield different strengths of identification of the unknown pa-
rameter θ. The strength of identification of θ depends on the expected Jacobian of the
moment functions evaluated at the true parameter, which is a k×p matrix. When k< p,
the parameter θ is unidentified. When k ≥ p, the magnitudes of the p singular values of
this matrix determine the strength of identification of θ. The SR-CQLR statistic has a χ2

p

asymptotic null distribution under strong and semi-strong identification and a notice-
ably more complicated asymptotic null distribution under weak identification.

To obtain the robustness of the two new tests to exact singularity of the variance ma-
trix of the moments, we use the rank of the sample variance matrix of the moments to
estimate the rank of the population variance matrix. We use a spectral decomposition
of the sample variance matrix to estimate the linear combinations of the moments that
are stochastic. We construct the test statistics using these estimated stochastic linear
combinations of the moments. When the sample variance matrix is singular, we employ
an extra rejection condition that improves power by fully exploiting the nonstochastic
part of the moment conditions associated with the singular part of the variance matrix.
We show that the resulting tests and CSs have correct asymptotic size. In contrast, arbi-
trarily discarding moment conditions when the sample variance matrix is singular can
affect the outcome of the test and the power of the test depending on which moment
conditions are deleted; see Section 15.2 in the SM for an illustration. In addition, it ig-
nores the information in the extra rejection condition referred to above. The robustness
of the SR-CQLR test to any form of the expected outer product matrix of the vectorized
orthogonalized Jacobian occurs because the SR-CQLR test statistic does not depend on
Kleibergen’s (2005) LM statistic, but rather, on a minimum eigenvalue statistic.

The SR-CQLR and SR-AR tests are for full vector inference. We develop subvector in-
ference for scenarios in which the nuisance parameters under the null hypothesis are
strongly identified. We show that the SR-CQLR subvector test is asymptotically efficient
under strong and semi-strong identification. We compare the power of the subvector
SR-CQLR and SR-AR tests with the power of the S test in Stock and Wright (2000) and
the CLR test in I. Andrews and Mikusheva (2016), which we refer to as the AM test. The
model considered is an endogenous probit model with a six- or eight-dimensional nui-
sance parameter and a scalar parameter of interest. The SR-CQLR and AM tests out per-
form the SR-AR and S tests in the scenarios considered. The SR-CQLR and AM tests have
crisscrossing power functions, which makes a ranking difficult. It takes about 4 minutes
to calculate 5000 CQLR tests using an Intel Core 3�4 GHz, 6 MB processor, which is about
59 times faster than for the AM test. The speed difference should be increasing rapidly
in the dimension, p, of the parameter specified by the null hypothesis because the AM
test requires an optimization over a p dimensional space for each simulation used to
compute its conditional critical value, whereas the CQLR test has a closed-form expres-
sion. See Section 12 in the SM for references to other subvector inference methods in the
literature.
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We carry out some asymptotic power comparisons of the full-vector versions of the
tests via simulation using eleven linear IV regression models with heteroskedasticity
and/or autocorrelation and one right-hand side (rhs) endogenous variable (p = 1) and
four IVs (k = 4). The scenarios considered are the same as in I. Andrews (2016). They
are designed to mimic models for the elasticity of inter-temporal substitution estimated
by Yogo (2004) for eleven countries using quarterly data from the early 1970s to the late
1990s. The results show that, in an overall sense, the SR-CQLR test introduced here per-
forms well in the scenarios considered. It has asymptotic power that is competitive with
that of the PI-CLC test of I. Andrews (2016) and the MM2-SU test of Moreira and Mor-
eira (forthcoming), has somewhat better overall power than the JVW-CLR and MVW-CLR
tests of Kleibergen (2005) and the MM1-SU test of Moreira and Moreira (forthcoming),
and has noticeably higher power than Kleibergen’s (2005) LM test and the AR test.

Fast computation of tests is very useful when constructing confidence sets by invert-
ing the tests. In the model above, the SR-CQLR test (employed using 5000 critical value
repetitions) can be computed 29,411 times in 1 minute using a laptop with Intel i7-3667U
CPU @2�0 GHz in the (k�p) = (4�1) scenarios described above. This is found to be 115,
292, and 302 times faster than the PI-CLC, MM1-SU, and MM2-SU tests, respectively. For
p ≥ 2, the speed advantage is much larger.

We show how the proposed confidence intervals are implemented by constructing
confidence intervals for the elasticity of intertemporal substitution (EIS) and its recip-
rocal using the models considered in Yogo (2004) and the data from Campbell (2003).
The empirical results show no sign of the equity premium puzzle that arises when con-
fidence intervals are constructed using methods that are not robust to weak identifica-
tion.

The paper is organized as follows. Section 2 discusses the related literature. Section 3
defines the moment condition model. Sections 4 and 5 introduce the SR-AR and SR-
CQLR tests, respectively. Section 6 provides the asymptotic size and similarity results
for the tests. Section 7 establishes the asymptotic efficiency of the SR-CQLR test under
strong and semi-strong identification. Section 8 provides the empirical application con-
cerning the EIS using the data and models in Yogo (2004). Section 9 provides subvector
tests under the assumption that the parameters not under test are strongly identified.
Section 9.4 provides the finite-sample results for the subvector tests in the probit model
with endogeneity. Section 10 provides the asymptotic power comparisons based on the
estimated linear IV models in Yogo (2004).

The SM, that is, Andrews and Guggenberger (2019), contains the proofs. It also pro-
vides (i) time series results, (ii) finite-sample simulations of the null rejection probabili-
ties of the SR-AR and SR-CQLR tests for cases where the variance matrix of the moment
functions is singular and near-singular, (iii) analysis of the behavior of the SR-CQLR test
and Kleibergen’s (2005, 2007) CLR tests in the homoskedastic linear IV model with fixed
IVs, (iv) the definition of a new SR-CQLRP test that reduces asymptotically to Moreira’s
(2003) CLR test for all p ≥ 1, but only applies when the moment functions are of a prod-
uct form, ui(θ)Zi, where ui(θ) is a scalar and Zi is a k-vector of instrumental variables,
and (v) the definition of a new SR-LM test.

All limits below are taken as n→ ∞ and A := B denotes that A is defined to equal B.
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2. Discussion of the related literature

Stock and Wright (2000) considered the nonlinear AR test for nonlinear moment con-
dition models, building on the analysis of Staiger and Stock (1997) for linear IV models
with weak identification. Papers in the literature that deal with identification-robust LM
and CLR tests for nonlinear moment condition models include Guggenberger and Smith
(2005), Kleibergen (2005, 2007), Otsu (2006), Smith (2007), Guggenberger, Ramalho, and
Smith (2012), and I. Andrews (2016). None of these papers provide asymptotic size re-
sults. Kleibergen (2005) considered standard weak identification and strong identifica-
tion. This excludes all cases in the nonstandard weak and semi-strong identification cat-
egories; see Section 6.2 below. All of the other papers listed obtain asymptotic results
under Stock and Wright’s (2000) Assumption C. This assumption is an innovative con-
tribution to the literature, but it has some notable drawbacks. For a detailed discussion,
see Section 2 of Andrews and Guggenberger (2017) (AG1). The asymptotic results in this
paper do not require Assumption C or any related conditions of this type.

I. Andrews and Mikusheva (2016) considered a different form of CLR test than those
above. Their test is asymptotically similar conditional on the entire sample mean pro-
cess that is orthogonalized to be asymptotically independent of the sample moments
evaluated at the null parameter value. They establish correct asymptotic size of this test
under an assumption that bounds the minimum eigenvalue of the variance matrix of
the sample moments away from zero. While this condition applies to many models, it
rules out likelihood-based models with weak identification.

AG1 analyzes the asymptotic size properties of a class of LM and CLR tests for non-
linear moment condition models. Next, we contrast the asymptotic size results for the
SR-AR and SR-CQLR tests with the asymptotic size results of AG1 for variants of Kleiber-
gen’s (2005) CLR tests.

For a certain parameter space of null distributions F0, AG1 establishes correct
asymptotic size for Kleibergen’s CLR tests that are based on (what AG1 calls) moment-
variance-weighting (MVW) of the orthogonalized sample Jacobian matrix, combined
with a rank statistic, such as the Robin and Smith (2000) rank statistic. Tests of this type
have been considered by Guggenberger, Ramalho, and Smith (2012). AG1 also deter-
mines a formula for the asymptotic size of Kleibergen’s CLR tests that are based on (what
AG1 calls) Jacobian-variance-weighting (JVW) of the orthogonalized sample Jacobian
matrix, which is the weighting suggested by Kleibergen. However, AG1 does not show
that the latter CLR tests necessarily have correct asymptotic size when p ≥ 2. The reason
is that for some sequences of distributions, the asymptotic versions of the sample mo-
ments and the (suitably normalized) rank statistic are not necessarily independent and
using asymptotic independence is the only known way of showing that the asymptotic
null rejection probabilities reduce to the nominal size α. AG1 does show that these tests
have correct asymptotic size when p = 1, for a certain subset of the parameter space F0.

Although Kleibergen’s CLR tests with moment-variance-weighting have correct
asymptotic size for F0, they have some drawbacks. First, the variance matrix of the mo-
ment functions must be nonsingular, which can be restrictive. Second, the parameter
space F0 restricts the eigenvalues of the expected outer product of the vectorized or-
thogonalized sample Jacobian, which can be restrictive and can be difficult to verify in
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some models. Third, as shown in the SM, Kleibergen’s CLR tests with moment-variance-
weighting do not reduce to Moreira’s CLR test in the homoskedastic normal linear IV
model with fixed IVs when p = 1. Simulation results in Section 21 of the SM show that
this leads to substantial power loss in some scenarios of this model, relative to the SR-
CQLR tests considered here, Moreira’s CLR test, and Kleibergen’s CLR test with Jacobian-
variance weighting. Fourth, the form of Kleibergen’s CLR test statistic for p ≥ 2 is based
on the form of Moreira’s test statistic when p = 1. In consequence, one needs to make a
somewhat arbitrary choice of some rank statistic to reduce the k×p weighted orthogo-
nalized sample Jacobian to a scalar random variable.

Kleibergen’s CLR tests with Jacobian-variance weighting also possess drawbacks
one, two, and four stated in the previous paragraph, as well as the asymptotic size is-
sue discussed above when p ≥ 2. In contrast, the SR-CQLR test does not have any of
these drawbacks.

Compared to the standard GMM tests considered in Hansen (1982), the SR-CQLR
and SR-AR tests have correct asymptotic size even when any of the following conditions
employed in Hansen (1982) fails: (i) the moment functions have a unique zero at the true
value, (ii) the expected Jacobian of the moment functions has full column rank, (iii) the
variance matrix of the moment functions is nonsingular, and (iv) the true parameter lies
on the interior of the parameter space. Under strong and semi-strong identification, the
full-vector SR-CQLR test is asymptotically equivalent under contiguous local alterna-
tives to the test in Hansen (1982) that uses an asymptotically efficient weight matrix.

The SR-CQLR and SR-AR tests are shown to be robust to the singularity and near-
singularity of the variance matrix of the moments. In somewhat related work, Caner
and Yildez (2012) considered robustness of the continuous updating estimator to near-
singularity of the variance matrix of the moments in a many weak IVs context.

A drawback of the SR-CQLR test is that it does not have any known optimal power
properties under weak identification, except in the homoskedastic normal linear IV
model with p = 1. In contrast, Moreira and Moreira (forthcoming) constructed finite-
sample unbiased tests that maximize a weighted average power criterion in the het-
eroskedastic and autocorrelated normal linear IV regression model with p = 1. I. An-
drews (2016) developed a test that minimizes asymptotic maximum regret among tests
that are linear combinations of Kleibergen’s LM and AR tests for linear and nonlinear
minimum distance and moment condition models. For moment condition models, this
test is not computationally tractable, so he proposes a plug-in test that aims to mimic the
features of the infeasible optimal test. This feasible plug-in test does not have optimal-
ity properties. I. Andrews (2016) also discussed the relative power performance of the
K test in scenarios with Kronecker product and non-Kronecker product variance ma-
trices. Montiel Olea (forthcoming) considered tests that have weighted average power
optimality properties in a GMM sense under weak identification in moment condition
models when p = 1. Whether these tests are asymptotically efficient under strong identi-
fication seems to be an open question. None of the previous papers provide asymptotic
size results. Elliott, Müller, and Watson (2015) considered tests that maximize weighted
average power in a variety of (finite-sample) parametric models where a nuisance pa-
rameter appears under the null. The test in I. Andrews and Mikusheva (2016) utilizes
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information in the entire sample moment process, which other CLR tests do not. But,
like the SR-CQLR test, it does not have general asymptotic optimality properties.

Robust inference methods in scenarios where the source of weak identification is
known includes Andrews and Cheng (2013), Cox (2017), and Han and McCloskey (2019).

3. Moment condition model

3.1 Moment functions

The general moment condition model that we consider is

EFg(Wi�θ)= 0k� (3.1)

where the equality holds when θ ∈ Θ ⊂ Rp is the true value, 0k = (0� � � � �0)′ ∈ Rk, {Wi ∈
Rm : i = 1� � � � � n} are i.i.d. observations with distribution F , g is a known (possibly non-
linear) function from Rm+p to Rk, EF(·) denotes expectation under F , and p�k�m ≥ 1.
As noted in the Introduction, we allow for k ≥ p and k < p. In Section 18 in the SM, we
consider models with stationary strong mixing observations.

The Jacobian of the moment functions is

G(Wi�θ) := ∂

∂θ′ g(Wi�θ) ∈Rk×p�2 (3.2)

For notational simplicity, we let gi(θ) and Gi(θ) abbreviate g(Wi�θ) and G(Wi�θ),
respectively. We denote the jth column of Gi(θ) by Gij(θ) and Gij = Gij(θ0), where θ0 is
the (true) null value of θ, for j = 1� � � � �p. Likewise, we often leave out the argument θ0
for other functions as well. Thus, we write gi and Gi, rather than gi(θ0) and Gi(θ0). We
let Ir denote the r dimensional identity matrix.

We are concerned with tests of the null hypothesis

H0 : θ = θ0 versus H1 : θ �= θ0� (3.3)

3.2 Parameter spaces of distributions F

The variance matrix of the moments, ΩF(θ), its rank, and its spectral decomposition are

ΩF(θ) := EF

(
gi(θ)−EFgi(θ)

)(
gi(θ)−EFgi(θ)

)′
�

rF(θ) := rk
(
ΩF(θ)

)
� and ΩF(θ) := AΩ

F (θ)ΠF(θ)A
Ω
F (θ)

′�
(3.4)

where rk(·) denotes the rank of a matrix, ΠF(θ) is the k × k diagonal matrix with the
eigenvalues of ΩF(θ) on the diagonal in nonincreasing order, and AΩ

F (θ) is a k × k or-
thogonal matrix of eigenvectors corresponding to the eigenvalues in ΠF(θ). We allow

2The asymptotic size results given below do not actually require G(Wi�θ) to be the derivative matrix of
g(Wi�θ). The matrix G(Wi�θ) can be any k × p matrix that satisfies the conditions in FSR, defined in (3.6)
below. For example, G(Wi�θ) can be the derivative of g(Wi�θ) almost surely, rather than for all Wi , which
allows g(Wi�θ) to have kinks. The function G(Wi�θ) also can be a numerical derivative, such as

((
g(Wi�θ+

εe1)− g(Wi�θ)
)
/ε� � � � �

(
g(Wi�θ + εep)− g(Wi�θ)

)
/ε

) ∈ Rk×p for some ε > 0, where ej is the jth unit vector,
for example, e1 = (1�0� � � � �0)′ ∈ Rp.
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for the case where ΩF(θ) is singular. We partition AΩ
F (θ) according to whether the cor-

responding eigenvalues are positive or zero:

AΩ
F (θ) = [

AF(θ)�A
⊥
F (θ)

]
� where AF(θ) ∈Rk×rF (θ) and A⊥

F (θ) ∈Rk×(k−rF (θ))� (3.5)

The columns of AF(θ) are eigenvectors of ΩF(θ) that correspond to positive eigenvalues
of ΩF(θ). Let Π1F(θ) denote the upper left rF(θ)× rF(θ) submatrix of ΠF(θ). The matrix
Π1F(θ) is diagonal with the positive eigenvalues of ΩF(θ) on its diagonal in nonincreas-
ing order.

The rF vector Π−1/2
1F A′

Fgi is a vector of nonredundant linear combinations of the mo-
ment functions evaluated at θ0 rescaled to have variances equal to one:

VarF(Π
−1/2
1F A′

Fgi) = Π
−1/2
1F A′

FΩFAFΠ
−1/2
1F = IrF . The rF × p matrix Π

−1/2
1F A′

FGi is the
analogously transformed Jacobian matrix.

For the SR-AR and SR-CQLR tests, we consider the following parameter spaces for
the distribution F that generates the data under H0 : θ = θ0:

FSR
AR := {

F : EFgi = 0k and EF

∥∥Π−1/2
1F A′

Fgi
∥∥2+γ ≤M

}
and

FSR := {
F ∈ FSR

AR :EF

∥∥vec(Π−1/2
1F A′

FGi

)∥∥2+γ ≤M
}
�

(3.6)

respectively, for some γ > 0 and some M < ∞, where ‖ · ‖ denotes the Euclidean norm,
and vec(·) denotes the vector obtained from stacking the columns of a matrix.

The first condition in FSR
AR is the defining condition of the model. The second con-

dition in FSR
AR is a mild moment condition on the rescaled nonredundant moment func-

tions Π
−1/2
1F A′

Fgi. For example, consider the case where Wi ∼ iid N(θ�ΩF) for θ ∈ Rk,

ΩF ∈ Rk×k, g(Wi�θ) := Wi − θ, ΩF has spectral decomposition AFΠFA
′
F , and some

eigenvalues of ΩF may be close to zero or equal to zero. In this case, Π−1/2
F A′

Fgi is a
vector of independent standard normal random variables and the moment conditions
in FSR

AR and FSR hold immediately. The condition in FSR is a mild moment condition on

the analogously transformed derivatives of the moment conditions Π−1/2
1F A′

FGi.
Identification issues arise when EFGi has, or is close to having, less than full column

rank, which occurs when k< p or k≥ p and one or more of its singular values is zero or
close to zero. The sets FSR

AR and FSR place no restrictions on the column rank or singular
values of EFGi.

The conditions in FSR
AR and FSR also place no restrictions on the variance matrix

ΩF := EFgig
′
i of gi, such as λmin(ΩF) ≥ δ for some δ > 0 or λmin(ΩF) > 0. This is partic-

ularly desirable in cases where identification failure yields singularity of ΩF (and weak
identification is accompanied by near singularity of ΩF .) This occurs in all likelihood
scenarios. In such scenarios, gi(θ) is the score function, the negative expected Jaco-
bian matrix −EFGi equals the expected outer product of the score function ΩF , that is,
−EFGi =ΩF (by the information matrix equality), and weak identification occurs when
ΩF is close to being singular.

Another example where ΩF can be singular is in the model for interest rate dynam-
ics in Jagannathan, Skoulakis, and Wang (2002, Section 6.2) (JSW). JSW consider five
moment conditions for a four-dimensional parameter θ. Grant (2013) showed that the
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variance matrix of the moment functions for this model is singular when one or more of
three restrictions on the parameters holds. When any two of these restrictions hold, the
parameter also is unidentified; see Section 15.1 in the SM for details.

In these examples and others like them, EFGi is close to having less than full column
rank and ΩF is close to being singular when the null value θ0 is close to a value which
yields reduced column rank of EFGi and singularity of ΩF . Null hypotheses of this type
are important for CSs because uniformity over null hypothesis values is necessary for
CSs to have correct asymptotic size. Hence, it is important to have procedures available
that place no restrictions on either EFGi or ΩF .

The parameter spaces for (F�θ) for the SR-AR and SR-CQLR CSs are

FSR
Θ�AR := {

(F�θ0) : F ∈ FSR
AR(θ0)�θ0 ∈Θ

}
and

FSR
Θ := {

(F�θ0) : F ∈ FSR(θ0)�θ0 ∈Θ
}
�

(3.7)

respectively, where FSR
AR(θ0) and FSR(θ0) denote FSR

AR and FSR with the latter sets’ depen-
dence on θ0 made explicit.

4. Singularity-robust nonlinear Anderson–Rubin test

The nonlinear Anderson–Rubin (AR) test was introduced by Stock and Wright (2000).
(They refer to it as an S test.) It is robust to identification failure and weak identification,
but it relies on nonsingularity of the variance matrix of the moment functions. In this
section, we introduce a singularity-robust nonlinear AR (SR-AR) test that generalizes the
S test of Stock and Wright (2000) and allows for a singular variance matrix of the moment
functions.

As noted in the Introduction, there are a number of likelihood-based models that
nest submodels of interest within which the parameter is not identified. In such mod-
els, it is undesirable and unnatural to rule out the case where the true distribution lies
in the submodel. In consequence, for such models, the SR-AR test introduced in this
section—which allows for lack of identification and singularity of the variance matrix of
the moments—has significant advantages over the standard nonlinear AR test—which
does not. Seven examples of models of this type are listed in the Introduction. At the end
of this section, we provide more detail concerning these models.

The sample moments and an estimator of the variance matrix of the moments,
ΩF(θ), are

ĝn(θ) := n−1
n∑

i=1

gi(θ) and Ω̂n(θ) := n−1
n∑

i=1

gi(θ)gi(θ)
′ − ĝn(θ)ĝn(θ)

′� (4.1)

The usual nonlinear AR statistic is

ARn(θ) := nĝn(θ)
′Ω̂−1

n (θ)ĝn(θ)� (4.2)

The nonlinear AR test rejects H0 : θ = θ0 if ARn(θ0) > χ2
k�1−α, where χ2

k�1−α is the 1 − α

quantile of the chi-square distribution with k degrees of freedom.
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Now, we introduce sample versions of the population quantities rF(θ), AΩ
F (θ),

AF(θ), A⊥
F (θ), and ΠF(θ) in (3.4) and (3.5). The rank and spectral decomposition of

Ω̂n(θ) are

r̂n(θ) := rk
(
Ω̂n(θ)

)
and Ω̂n(θ) := ÂΩ

n (θ)Π̂n(θ)Â
Ω
n (θ)

′� (4.3)

where Π̂n(θ) is the k× k diagonal matrix with the eigenvalues of Ω̂n(θ) on the diagonal

in nonincreasing order, and ÂΩ
n (θ) is a k × k orthogonal matrix of eigenvectors cor-

responding to the eigenvalues in Π̂n(θ). We partition ÂΩ
n (θ) according to whether the

corresponding eigenvalues are positive or zero:

ÂΩ
n (θ)= [

Ân(θ)� Â
⊥
n (θ)

]
� where Ân(θ) ∈Rk×̂rn(θ) and Â⊥

n (θ) ∈Rk×(k−̂rn(θ))� (4.4)

The columns of Ân(θ) are eigenvectors of Ω̂n(θ) that correspond to positive eigenval-

ues of Ω̂n(θ). The eigenvectors in Ân(θ) are not uniquely defined, but the eigenspace

spanned by these vectors is. The tests and CSs defined here and below using Ân(θ) are

numerically invariant to the particular choice of Ân(θ) (by the invariance results given

in Lemma 5.1 below).

Define ĝAn(θ) and Ω̂An(θ) as ĝn(θ) and Ω̂n(θ) are defined in (4.1), but with

Ân(θ)
′gi(θ) in place of gi(θ). That is,

ĝAn(θ) := Ân(θ)
′ĝn(θ) ∈Rr̂n(θ) and Ω̂An(θ) := Ân(θ)

′Ω̂n(θ)Ân(θ) ∈ Rr̂n(θ)×̂rn(θ)�

(4.5)

The SR-AR test statistic is defined by

SR-ARn(θ) := nĝAn(θ)
′Ω̂−1

An(θ)ĝAn(θ)� (4.6)

The SR-AR test rejects the null hypothesis H0 : θ = θ0 if

SR-ARn(θ0) > χ2
r̂n(θ0)�1−α or Â⊥

n (θ0)
′ĝn(θ0) �= 0k−̂rn(θ0)� (4.7)

where by definition the latter condition does not hold if r̂n(θ0) = k. If r̂n(θ0) = 0, then

SR-ARn(θ0) := 0 and χ2
r̂n(θ0)�1−α := 0 and the SR-AR test rejects H0 if ĝn(θ0) �= 0k.

The extra rejection condition in (4.7), Â⊥
n (θ0)

′ĝn(θ0) �= 0k−̂rn(θ0), improves power,

but we show it has no effect under H0 with probability that goes to one (wp → 1); see

Lemma 17.1 in the SM. It improves power because it fully exploits, rather than ignores,

the nonstochastic part of the moment conditions associated with the singular part of

the variance matrix. For example, if the moment conditions include some identities and

the moment variance matrix excluding the identities is nonsingular, then Â⊥
n (θ0)

′ĝn(θ0)
consists of the identities and the SR-AR test rejects H0 if the identities do not hold when

evaluated at θ0 or if the SR-AR statistic, which ignores the identities, is sufficiently large.
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Two other simple examples where the extra rejection condition improves power are
given in Section 15.2 in the SM.3,4

The SR-AR test statistic can be written equivalently as

SR-ARn(θ)= nĝn(θ)
′Ω̂+

n (θ)ĝn(θ)� (4.8)

where Ω̂+
n (θ) is the Moore–Penrose generalized inverse of Ω̂n(θ); see (69) in the SM.

The nominal 100(1− α)% SR-AR CS is

CSSR-AR�n := {
θ0 ∈Θ : SR-ARn(θ0) ≤ χ2

r̂n(θ0)�1−α and Â⊥
n (θ0)

′ĝn(θ0)= 0k−̂rn(θ0)
}
� (4.9)

By definition, if r̂n(θ0) = k, the condition Â⊥
n (θ0)

′ĝn(θ0) = 0k−̂rn(θ0) holds. When

r̂n(θ0) = k, SR-ARn(θ0) = ARn(θ0) because Ân(θ0) is invertible and Ω̂−1
An(θ0) =

Â−1
n (θ0)Ω̂

−1
n (θ0)Â

−1
n (θ0)

′.
Section 20 in the SM provides some finite-sample simulations of the null rejection

probabilities of the SR-AR test when the variance matrix of the moments is singular and
near singular. The results show that the SR-AR test works very well in the model that is
considered in the simulations.

Now we discuss the seven models listed in the Introduction. In each model, the sam-
ple moments are the likelihood score. In factor models, it is usually the case that the
number of factors is uncertain. Hence, in a factor model with Nf factors, one is usu-
ally interested in the case where the actual number of factors is J = 0� � � � �Nf . However,
when the factor loadings are such that only J <Nf factors enter the model, the variances
of the Nf − J factors that do not enter the model are not identified. Hence, in order to
carry out inference that is robust to different numbers of factors in the model, one re-
quires robustness to weak and lack of identification and near and exact singularity of the
variance matrix of the moments.

In mixture models and regime switching models, it is usually of interest to consider
the submodel in which no mixing (or switching) occurs. But, typically the parameter
vector is not identified in this submodel. For example, consider the simple mixture of
normals model with mixing distributions N(μ1�σ

2
1 ) and N(μ2�σ

2
2 ) and mixing probabil-

ity p. In this model, the nested submodel is a N(μ�σ2) model and it arises when p = 0 or
1 or (μ1�σ

2
1 ) = (μ2�σ

2
2 ). In this submodel, the parameter vector (μ1�σ

2
1 �μ2�σ

2
2 �p) is not

identified and the variance matrix of the moments is singular. Close to this submodel,
this parameter vector is weakly identified and the variance matrix is near singular.

3In addition, the extra rejection condition has no effect on the finite-sample null rejection probabilities
if rk(Ω̂n(θ0)) = rk(ΩF(θ0)) (:= rF ) a.s.; see the proof of Lemma 17.1(b) in the SM. The stochastic part of
gi(θ0) is AF(θ0)

′gi(θ0) and its variance matrix, AF(θ0)
′ΩF(θ0)AF(θ0), is nonsingular by construction. The

previous rank condition holds whenever the sample variance matrix of {AF(θ0)
′gi(θ0) : i ≤ n} has full rank

rF a.s. The latter often holds whenever n≥ k+ 1.
4When the sample variance matrix is singular, an alternative to using the SR-ARn(θ0) statistic is to arbi-

trarily delete some moment conditions. However, this typically leads to different test statistic values given
the same data and can yield substantially different power properties of the test depending on which mo-
ment conditions are deleted, which is highly undesirable. See Section 15.2 in the SM for an example that
illustrates this.
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A model for asset returns with jumps is another example of a mixture model. The ex-
istence or nonexistence of jumps is often an issue of considerable interest. It is common
to take the jump component to be of the form

∑NJ
j=0 ξj , where ξj ∼ N(μξ�σ

2
ξ) and NJ

has a Poisson distribution with parameter λξ, for example, see Jorion (1988) and Chan
and Maheu (2002). When λξ = 0, there are no jumps, the parameters (μξ�σ

2
ξ) are not

identified, and the variance matrix of sample moments is singular.
In a random coefficients model, it is usually of interest to consider the case where

the coefficients are nonrandom. In this case, the parameter vector often is not identified
and the variance matrix of the sample moments is singular. For example, consider a lin-
ear regression model Yi = μ+X ′

iβi + ui, where βi := β+ ξi ∈ R2, β is a constant vector,
ξi ∼ N(02� Vξ) independent of the error ui ∼ N(0�σ2

u), and Vξ is a 2 × 2 variance matrix
with variances σ2

ξ1 and σ2
ξ2 and correlation ρξ. In the partially or wholly constant coeffi-

cient model, we have σ2
ξ1

= 0 and/or σ2
ξ2

= 0 and ρξ is not identified. As another example,
suppose βi := β+ ξi is a scalar random coefficient in the linear regression model above,
(ξi�ui) ∼N(02� Vξu), Vξu is a 2× 2 variance matrix with variances σ2

ξ and σ2
u and correla-

tion ρξu. In the constant coefficient submodel, we have σ2
ξ = 0, ρξu is not identified, and

the sample moments have a singular variance matrix.
A GARCH model of conditional heteroskedasticity nests a homoskedastic model,

which is often of empirical interest for financial or macroeconomic variables observed
at a relatively low frequency, such as a month. For example, the GARCH(1�1) model is
of the form: Yi = σiεi, σ2

i = ω + αε2i−1 + ρσ2
i−1, Eεi = 0, and Eε2i = 1. When the GARCH

parameter α equals zero, σ2
i = ω/(1 − ρ), (ω�ρ) is not identified, and the variance ma-

trix of the sample moments is singular. Similarly, an ARCH or GARCH in mean model
nests a homoskedastic model with no heteroskedastic mean effect and lack of identifi-
cation. For example, the ARCH(1) in mean model is of the form: Yi = μ + σ2

i β + σiεi,
σ2
i = ω+ αε2i−1, Eεi = 0, and Eε2i = 1. When the ARCH parameter α equals zero, σ2

i = ω,
the mean of Yi becomes μ+ωβ, (μ�β) is not identified, and the variance matrix of the
sample moments is singular.

The ARMA(1�1) model is a workhorse model of time series analysis. It nests the
important submodel with no serial correlation. This submodel arises when the AR and
MA parameters are equal. The model is of the form: Yi = ρYi−1 +εi −πεi−1, where Eεi =
0, Eε2i = σ2

ε , and {εi : i ≥ 1} are serially uncorrelated. When ρ = π, the model reduces to
Yi = εi, the value of ρ = π is not identified, and the sample moments have a singular
variance matrix. Similar “common factor” identification and variance singularity issues
also arise in higher-order ARMA(p�q) models.

5. SR-CQLR test

This section defines the SR-CQLR test. For expositional clarity and convenience (here
and in the proofs), we first define the test in Section 5.1 for the case of nonsingular sam-
ple and population moments variance matrices, Ω̂n(θ) and ΩF(θ), respectively. Then
we extend the definition in Section 5.2 to the case where these variance matrices may be
singular.
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5.1 CQLR test for nonsingular moments variance matrices

The sample Jacobian is

Ĝn(θ) := n−1
n∑

i=1

Gi(θ)= (
Ĝ1n(θ)� � � � � Ĝpn(θ)

) ∈Rk×p� (5.1)

The conditioning matrix D̂n(θ) is defined, as in Kleibergen (2005), to be the sample
Jacobian matrix Ĝn(θ) adjusted to be asymptotically independent of the sample mo-
ments ĝn(θ):

D̂n(θ) := (
D̂1n(θ)� � � � � D̂pn(θ)

) ∈Rk×p� where

D̂jn(θ) := Ĝjn(θ)− Γ̂jn(θ)Ω̂
−1
n (θ)ĝn(θ) ∈Rk for j = 1� � � � �p� and (5.2)

Γ̂jn(θ) := n−1
n∑

i=1

(
Gij(θ)− Ĝjn(θ)

)
gi(θ)

′ ∈Rk×k for j = 1� � � � �p�

We call D̂n(θ) the orthogonalized sample Jacobian matrix. This statistic requires that
Ω̂−1

n (θ) exists.
Next, we define

R̂n(θ) := (
B(θ)′ ⊗ Ik

)
V̂n(θ)

(
B(θ)⊗ Ik

) ∈R(p+1)k×(p+1)k� where

V̂n(θ) := n−1
n∑

i=1

(
fi(θ)− f̂n(θ)

)(
fi(θ)− f̂n(θ)

)′ ∈R(p+1)k×(p+1)k� (5.3)

fi(θ) :=
(

gi(θ)

vec
(
Gi(θ)

)) � f̂n(θ) :=
(

ĝn(θ)

vec
(
Ĝn(θ)

)) � and B(θ) :=
(

1 0′
p

−θ −Ip

)
�

The estimator R̂n(θ), as well Σ̂n(θ) and L̂n(θ) defined below, are defined so that the
CQLR and SR-CQLR tests, which employ them, are asymptotically equivalent to Mor-
eira’s (2003) CLR test in the homoskedastic linear IV model with fixed IVs with p = 1 rhs
endogenous variable and under standard weak, semi-strong, and strong identification
for any p ≥ 2 rhs endogenous variables. See Section 19 in the SM for details. (In the non-
standard weak identification category (see Section 6.2 below), asymptotic nonequiva-
lence is due only to the difference between fixed and random IVs and, in consequence,
it is small.)

We define Σ̂n(θ) ∈R(p+1)×(p+1) to be the symmetric positive definite (pd) matrix that
minimizes ∥∥(

Ip+1 ⊗ Ω̂
−1/2
n (θ)

)[
Σ⊗ Ω̂n(θ)− R̂n(θ)

](
Ip+1 ⊗ Ω̂

−1/2
n (θ)

)∥∥ (5.4)

over all symmetric pd matrices Σ ∈R(p+1)×(p+1), where ‖·‖ denotes the Frobenius norm.
This is a weighted minimization problem with the weights given by Ip+1 ⊗ Ω̂

−1/2
n (θ). In

the homoskedastic linear IV model, the population version of R̂n(θ) has a Kronecker
product form and, therefore, the Kronecker product approxmation in (5.4) leads to
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the asymptotic equivalence of the CQLR test and Moreira’s (2003) CLR test in the ho-
moskedastic linear IV model. We employ the weights above because they lead to a ma-
trix Σ̂n(θ) that is invariant to the multiplication of gi(θ) and Gi(θ) by any nonsingular
matrix M ∈ Rk×k; see Lemma 5.1 below. Let Σ̂j�n(θ) denote the (j� �) element of Σ̂n(θ)

and R̂j�n(θ) the (j� �) k× k submatrix of dimension of R̂n(θ).5 By Theorems 3 and 10 of
Van Loan and Pitsianis (1993), for j� � = 1� � � � �p+ 1, the solution to (5.4) is

Σ̂j�n(θ)= tr
(
R̂j�n(θ)

′Ω̂−1
n (θ)

)
/k�6 (5.5)

We use an eigenvalue-adjusted version of Σ̂n(θ), denoted Σ̂ε
n(θ), that improves the

asymptotic and finite-sample size performance of the CQLR test in some scenarios by
making it robust to singularities and near singularities of the matrix that Σ̂n(θ) estimates.

The adjustment affects the test statistic (that is, Σ̂ε
n(θ) �= Σ̂n(θ)) only if the condition

number of Σ̂n(θ) (that is, λmax(Σ̂n(θ))/λmin(Σ̂n(θ))) exceeds 1/ε. Hence, for a reason-
able choice of ε, it often has no effect even in finite samples. Based on the finite-sample
simulations, we recommend using ε = 0�01.

Let H ∈ RdH×dH be any nonzero positive semi-definite (psd) matrix with spectral
decomposition AHΛHA′

H , where ΛH = Diag{λH1� � � � � λHdH } is the diagonal matrix of
eigenvalues of H with nonnegative nonincreasing diagonal elements and AH is a cor-
responding orthogonal matrix of eigenvectors of H. For ε > 0, the eigenvalue-adjusted
matrix Hε is

Hε := AHΛε
HA′

H� where

Λε
H := Diag

{
max

{
λH1�λmax(H)ε

}
� � � � �max

{
λHdH �λmax(H)ε

}}
�

(5.6)

where λmax(H) denotes the maximum eigenvalue of H. Note that Hε = H whenever
the condition number of H is less than or equal to 1/ε (for ε ≤ 1). In Lemma 22.1
in the SM, we show that the eigenvalue-adjustment procedure possesses the fol-
lowing desirable properties: (i) Hε is uniquely defined, (ii) λmin(H

ε) ≥ λmax(H)ε,
(iii) λmax(H

ε)/λmin(H
ε) ≤ max{1/ε�1}, (iv) for all c > 0, (cH)ε = cHε, and (v) Hε

n → Hε

for any sequence of psd matrices {Hn : n ≥ 1} with Hn →H.
The QLR statistic is

QLRn(θ) := ARn(θ)− λmin
(
nQ̂n(θ)

)
� where

Q̂n(θ) := (
Ω̂

−1/2
n (θ)ĝn(θ)� D̂

∗
n(θ)

)′(
Ω̂

−1/2
n (θ)ĝn(θ)� D̂

∗
n(θ)

) ∈ R(p+1)×(p+1)� (5.7)

D̂∗
n(θ) := Ω̂

−1/2
n (θ)D̂n(θ)L̂

1/2
n (θ) ∈Rk×p� L̂n(θ) := (θ� Ip)

(
Σ̂ε
n(θ)

)−1
(θ� Ip)

′ ∈ Rp×p�

and Σ̂ε
n(θ) is defined in (5.6) with H = Σ̂n(θ).

5That is, R̂j�n(θ) contains the elements of R̂n(θ) indexed by rows (j − 1)k+ 1 to jk and columns (�− 1)k
to �k.

6Moreira and Moreira (forthcoming) utilized the best unweighted Kronecker-product approximation to
a matrix, as developed in Van Loan and Pitsianis (1993), but with a different application and purpose than
here.



1718 Andrews and Guggenberger Quantitative Economics 10 (2019)

The CQLR test uses a conditional critical value that depends on the k × p matrix
n1/2D̂∗

n(θ0). For nonrandom D ∈Rk×p, let

CLRk�p(D) := Z′Z − λmin
(
(Z�D)′(Z�D)

)
� where Z ∼N

(
0k� Ik

)
� (5.8)

Define ck�p(D�1−α) to be the 1−α quantile of the distribution of CLRk�p(D). For given
D, ck�p(D�1− α) can be computed by simulation very quickly and easily.

For α ∈ (0�1), the nominal α CQLR test rejects H0 : θ = θ0 if

QLRn(θ0) > ck�p
(
n1/2D̂∗

n(θ0)�1− α
)
� (5.9)

The nominal 100(1− α)% CQLR CS is

CSCQLR�n := {
θ0 ∈Θ : QLRn(θ0)≤ ck�p

(
n1/2D̂∗

n(θ0)�1− α
)}
�

Next, we show that the CQLR test is invariant to nonsingular transformations of the
moment functions/IVs. We suppress the dependence on θ of the statistics in the follow-
ing lemma.

Lemma 5.1. The statistics QLRn, ck�p(n1/2D̂∗
n�1−α), D̂∗′

n D̂
∗
n, ARn, Σ̂n, and L̂n are invariant

to the transformation (gi�Gi)� (Mgi�MGi) ∀i ≤ n for any k× k nonsingular matrixM .
This transformation induces the following transformations: ĝn �Mĝn, Ĝn �MĜn, Ω̂n �
MΩ̂nM

′, Γ̂jn � MΓ̂jnM
′ ∀j ≤ p, D̂n � MD̂n, V̂n � (Ip+1 ⊗ M)V̂n(Ip+1 ⊗ M ′), and R̂n �

(Ip+1 ⊗M)R̂n(Ip+1 ⊗M ′).

Comment. This lemma is used to obtain the correct asymptotic size of the CQLR test
without assuming that λmin(ΩF) is bounded away from zero. It suffices that ΩF is non-
singular. In the proofs, we transform the moments by gi �MFgi, where MFΩFM

′
F = Ik,

such that the transformed moments have a variance matrix whose eigenvalues are
bounded away from zero for some δ > 0 (since VarF(MFgi) = Ik) even if the original
moments gi do not.

5.2 Singularity-robust CQLR test

Now, we extend the CQLR test to allow for singularity of the population and sample vari-
ance matrices of gi(θ). First, we adjust D̂n(θ) to obtain a conditioning statistic that is
robust to the singularity of Ω̂n(θ). For r̂n(θ)≥ 1, where r̂n(θ) is defined in (4.3), we define
D̂An(θ) as D̂n(θ) is defined in (5.2), but with Ân(θ)

′gi(θ), Ân(θ)
′Gij(θ), and Ω̂An(θ) in

place of gi(θ), Gij(θ), and Ω̂n(θ), respectively, for j = 1� � � � �p, where Ân(θ) and Ω̂An are
defined in (4.4) and (4.5), respectively:

D̂An(θ) := (
D̂A1n(θ)� � � � � D̂Apn(θ)

) ∈Rr̂n(θ)×p� where

D̂Ajn(θ) := ĜAjn(θ)− Γ̂Ajn(θ)Ω̂
−1
An(θ)ĝAn(θ) ∈Rr̂n(θ) for j = 1� � � � �p�

ĜAn(θ) := Ân(θ)
′Ĝn(θ)= (

ĜA1n(θ)� � � � � ĜApn(θ)
) ∈ Rr̂n(θ)×p� and

Γ̂Ajn(θ) := Ân(θ)
′Γ̂jn(θ)Ân(θ) for j = 1� � � � �p�

(5.10)
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Similarly, we define R̂An(θ), Σ̂An(θ), L̂An(θ), and D̂∗
An(θ) just as R̂n(θ), Σ̂n(θ), L̂n(θ),

and D̂∗
n(θ) are defined in Section 5.1, but with ĝAn(θ), ĜAn(θ), Ω̂An(θ), and r̂n(θ) in place

of ĝn(θ), Ĝn(θ), Ω̂n(θ), and k, respectively:

R̂An(θ) := (
B(θ)′ ⊗ Îrn(θ)

)
V̂An(θ)

(
B(θ)⊗ Îrn(θ)

) ∈R(p+1)̂rn(θ)×(p+1)̂rn(θ)� where

V̂An(θ) := (
Ip+1 ⊗ Ân(θ)

′)V̂n(θ)(Ip+1 ⊗ Ân(θ)
) ∈ R(p+1)̂rn(θ)×(p+1)̂rn(θ)�

Σ̂Aj�n(θ) := tr
(
R̂Aj�n(θ)

′Ω̂−1
An(θ)

)
/̂rn(θ) for j� � = 1� � � � �p+ 1�

L̂An(θ) := (θ� Ip)
(
Σ̂ε
An(θ)

)−1
(θ� Ip)

′ ∈Rp×p�

D̂∗
An(θ) := Ω̂

−1/2
An (θ)D̂An(θ)L̂

1/2
An(θ) ∈Rr̂n(θ)×p�

(5.11)

Ân(θ) is defined in (4.4), Σ̂Aj�n(θ) denotes the (j� �) element of Σ̂An(θ), and R̂Aj�n(θ)

denotes the (j� �) submatrix of dimension r̂n(θ)× r̂n(θ) of R̂An(θ).
For r̂n(θ) > 0, the SR-QLR statistic is defined by

SR-QLRn(θ) := SR-ARn(θ)− λmin
(
nQ̂An(θ)

)
� where

Q̂An(θ) := (
Ω̂

−1/2
An (θ)ĝAn(θ)� D̂

∗
An(θ)

)′(
Ω̂

−1/2
An (θ)ĝAn(θ)� D̂

∗
An(θ)

)
∈R(p+1)×(p+1)�

(5.12)

For α ∈ (0�1), the nominal size α SR-CQLR test rejects H0 : θ = θ0 if

SR-QLRn(θ0) > ĉrn(θ0)�p
(
n1/2D̂∗

An(θ0)�1− α
)

or Â⊥
n (θ0)

′ĝn(θ0) �= 0k−̂rn(θ0)�7 (5.13)

The nominal size 100(1 − α)% SR-CQLR CS is CSSR-CQLR�n := {θ0 ∈ Θ : SR-QLRn(θ0) ≤
ĉrn(θ0)�p(n

1/2D̂∗
An(θ0)�1− α) and Â⊥

n (θ0)
′ĝn(θ0)= 0k−̂rn(θ0)}.8

When r̂n(θ0) = k, Ân(θ0) is a nonsingular k × k matrix. In consequence, by Lem-
ma 5.1, SR-QLRn(θ0) = QLRn(θ0) and

ĉrn(θ0)�p
(
n1/2D̂∗

An(θ0)�1− α
) = ck�p

(
n1/2D̂∗

n(θ0)�1− α
)
�

That is, the SR-CQLR test is the same as the CQLR test defined in Section 5.1. Of
course, when r̂n(θ) < k, the CQLR test defined in Section 5.1 is not defined, whereas
the SR-CQLR test is. Furthermore, if rk(ΩFn(θ0)) = k for all n large, then r̂n(θ0) = k

and SR-QLRn(θ0) = QLRn(θ0) wp → 1 under {Fn ∈ FSR : n ≥ 1} (by Lemma 5.1 and
Lemma 17.1 in the SM). Note that, if r̂n(θ0) ≤ p, then the critical value for the SR-CQLR
test is the 1−α quantile of χ2

r̂n(θ0)
(because Z′Z−λmin((Z�D)′(Z�D)) =Z′Z ∼ χ2

r in (5.8)
when r ≤ p).

Section 20 in the SM provides finite-sample null rejection probabilities of the SR-
CQLR test for singular and near singular variance matrices of the moment functions.
The results show that singularity and near singularity of the variance matrix does not

7By definition, Â⊥
n (θ0)

′ĝn(θ0) �= 0k−̂rn(θ0) does not hold if r̂n(θ0) = k. If r̂n(θ0) = 0, then SR-QLRn(θ0) := 0
and χ2

r̂n(θ0)�1−α := 0. In this case, Â⊥
n (θ0)= Ik and the SR-CQLR test rejects H0 if ĝn(θ0) �= 0k.

8By definition, if r̂n(θ0) = k, the condition Â⊥
n (θ0)

′ĝn(θ0) = 0k−̂rn(θ0) holds.
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lead to distorted null rejection probabilities. The method of robustifying the SR-CQLR
test to allow for singular variance matrices, which is introduced above, works quite well
in the model that is considered.

5.3 Computation

The SR-CQLR test is relatively fast to compute. It is found to be 115, 292, and 302 times
faster to compute than the PI-CLC, MM1-SU, and MM2-SU tests, respectively, 1�2 times
slower to compute than the JVW-CLR and MVW-CLR tests, and 372 and 495 times slower
to compute than the LM and AR tests in the linear IV scenarios described in the In-
troduction. The SR-CQLR test is found to be noticeably easier to implement than the
PI-CLC, MM1-SU, and MM2-SU tests and comparable to the JVW-CLR and MVW-CLR
tests, in terms of the choice of implementation parameters (see Section 14.2 in the SM
for details) and the robustness of the results to these choices.

The computation time of the SR-CQLR test increases relatively slowly with k and p.
For example, the times (in minutes) to compute the SR-CQLR test 5000 times (using 5000
critical value repetitions) for k = 8 and p = 1, 2, 4, 8 are 0�26, 0�49, 1�02, 2�46. The times
for p = 1 and k = 1, 2, 4, 8, 16, 32, 64, 128 are 0�14, 0�15, 0�18, 0�26, 0�44, 0�99, 2�22, 7�76.
The times for (k�p) = (64�8) and (128�8) are 14�5 and 57�9. Hence, computing tests for
large values of (k�p) is quite feasible. These times are for linear IV regression models,
but they are the same for any model, linear or nonlinear, when one takes as given the
sample moment vector and sample Jacobian matrix. Note that most of the computation
time for the SR-CQLR test is due to the computation of its conditional critical values.

In contrast, computation of the PI-CLC, MM1-SU, and MM2-SU tests can be ex-
pected to increase very rapidly in p. The computation time of the PI-CLC test can be ex-
pected to increase in p proportionally to n

p
θ , where nθ is the number of points in the grid

of alternative parameter values for each component of θ = (θ1� � � � � θp)
′, which are used

to assess the minimax regret criterion. We use nθ = 41 in the simulations reported above.
Hence, the computation time for p = 3 should be 1681 times longer than for p = 1. The
MM1-SU and MM2-SU tests are not defined in Moreira and Moreira (forthcoming) for
p > 1, but doing so should be feasible. However, even for p = 2, one would obtain an
infinite number of constraints on the directional derivatives to impose local unbiased-
ness, in contrast to the k constraints required when p = 1. In consequence, computation
of the MM1-SU and MM2-SU tests can be expected to be challenging when p ≥ 2.

6. Asymptotic size

6.1 Definitions of asymptotic size and similarity

Let RPn(θ0�F�α) denote the null rejection probability of a nominal size α test with sam-
ple size n when the null distribution of the data is F . The asymptotic size of the test for a
null parameter space F(θ0) is

AsySz := limsup
n→∞

sup
F∈F(θ0)

RPn(θ0�F�α)� (6.1)



Quantitative Economics 10 (2019) Identification and singularity robust inference 1721

The test is asymptotically similar (in a uniform sense) for the null parameter space F(θ0)

if

lim inf
n→∞ inf

F∈F(θ0)
RPn(θ0�F�α)= limsup

n→∞
sup

F∈F(θ0)

RPn(θ0�F�α)� (6.2)

The asymptotic size of a CS obtained by inverting tests of H0 : θ = θ0 for the pa-
rameter space FΘ := {(F�θ0) : F ∈ F(θ0)�θ0 ∈ Θ} is AsySz := lim infn→∞ inf(F�θ0)∈FΘ

(1 −
RPn(θ0�F�α)). The CS is asymptotically similar (in a uniform sense) for FΘ if
lim infn→∞ inf(F�θ0)∈FΘ

(1 − RPn(θ0�F�α)) = lim supn→∞ sup(F�θ0)∈FΘ
(1 − RPn(θ0�F�α)).

Asymptotic size and similarity of a CS require uniformity over the null values θ0 ∈ Θ,
as well as uniformity over null distributions F for each null value θ0. With the SR-AR
and SR-CQLR CSs, this additional level of uniformity does not cause complications. The
same proofs for tests deliver results for CSs with very minor adjustments.

6.2 Identification categories

To determine the asymptotic size of a test (or CS), one needs to determine the test’s
asymptotic null rejection probabilities under sequences that exhibit: (i) standard weak,
(ii) nonstandard weak, (iii) semi-strong, and (iv) strong identification, as defined imme-
diately below.9

Let {sjF : j ≤ p} denote the singular values of Ω−1/2
F (θ0)EFGi(θ0) in nonincreasing or-

der (when ΩF(θ0) is nonsingular).10 For a sequence of distributions {Fn : n ≥ 1}, we say
that the parameter θ0 is: (i) weakly identified in the standard sense if limn1/2s1Fn < ∞,
(ii) weakly identified in the nonstandard sense if limn1/2spFn < ∞ and limn1/2s1Fn = ∞,
(iii) semi-strongly identified if limn1/2spFn = ∞ and lim spFn = 0, and (iv) strongly iden-
tified if lim spFn > 0. For sequences {Fn : n ≥ 1} for which the previous limits exist (and
may equal ∞), these categories are mutually exclusive and exhaustive. We say that the
parameter θ0 is weakly identified if limn1/2spFn < ∞, which is the union of the standard
and nonstandard weak identification categories. The asymptotics considered in Staiger
and Stock (1997) are of the standard weak identification type. The nonstandard weak
identification category can be divided into two subcategories: some weak/some strong
identification and joint weak identification; see AG1 for details. The asymptotics consid-
ered in Stock and Wright (2000) are of the some weak/some strong identification type.
For example, joint weak identification occurs in a linear IV model with p > 1 when the
reduced-form coefficient matrix converges to a matrix of ones.

The SR-CQLR statistic has a χ2
p asymptotic null distribution under strong and semi-

strong identification and a noticeably more complicated asymptotic null distribution
under weak identification. Standard weak identification sequences are relatively easy to
analyze asymptotically because all p of the singular values are O(n−1/2). Nonstandard

9As used in this paper, the term “identification” means “local identification.” It is possible for a value
θ ∈ Θ to be “strongly identified,” but still be globally unidentified if there exist multiple solutions to the
moment functions. The asymptotic size and similarity results given below do not rely on local or global
identification.

10The definitions of the identification categories when ΩF(θ0) may be singular, as is allowed in this pa-
per, is somewhat more complicated than the definitions given here.
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weak identification sequences are much more difficult to analyze asymptotically be-
cause the p singular values have different orders of magnitude. This affects the asymp-
totic properties of both the test statistics and the conditioning statistics. Contiguous al-
ternatives θ are at most O(n−1/2) from θ0 when θ0 is strongly identified, but more distant
when θ0 is semi-strongly or weakly identified. Typically, the parameter θ is not consis-
tently estimable when it is weakly identified.

6.3 Asymptotic size results

The asymptotic size and similarity results for the SR-AR and SR-CQLR tests are as fol-
lows.

Theorem 6.1. The asymptotic sizes of the SR-AR and SR-CQLR tests defined in (4.7) and
(5.13), respectively, equal their nominal size α ∈ (0�1) for the null parameter spaces FSR

AR
and FSR, respectively. These tests are asymptotically similar (in a uniform sense) for the
subsets of these parameter spaces that exclude distributions F under which gi = 0k a.s.
Analogous results hold for the corresponding SR-AR and SR-CQLR CSs for the parameter
spaces FSR

Θ�AR and FSR
Θ .

Comment. (i) For distributions F under which gi = 0k a.s., the SR-AR and SR-CQLR
tests reject the null hypothesis with probability zero when the null is true. Hence, asymp-
totic similarity only holds when these distributions are excluded from the null parameter
spaces.

(ii) SR-LM versions of Kleibergen’s LM test and CS are defined in Section 23 in the SM.
However, as discussed there, these procedures are only partially singularity robust.

7. Asymptotic efficiency of the SR-CQLR test under strong and semi-strong

identification

Next, we show that the SR-CQLR test is asymptotically efficient in a GMM sense under
strong and semi-strong identification (when the variance matrix of the moments is non-
singular and the null parameter value is not on the boundary of the parameter space).
By this, we mean that it is asymptotically equivalent (under the null and contiguous al-
ternatives) to a Wald test constructed using an asymptotically efficient GMM estimator
and to the standard GMM LM test; see Newey and West (1987). More specifically, we
consider drifting sequences {λ∗

n�h : n ≥ 1} of data-generating processes taken from FSR

in (3.6) that correspond to strong or semi-strong identification and establish that the
SR-CQLR test statistic equals the standard GMM LM test statistic up to a op(1) term and
that the conditional critical value of the SR-CQLR test converges in probability to χ2

p�1−α.
Kleibergen’s LM statistic and the standard GMM LM statistic are defined by

LMn := nĝ′
nΩ̂

−1/2
n P

Ω̂
−1/2
n D̂n

Ω̂
−1/2
n ĝn and LMGMM

n := nĝ′
nΩ̂

−1/2
n P

Ω̂
−1/2
n Ĝn

Ω̂
−1/2
n ĝn� (7.1)

respectively, where Ĝn is the sample Jacobian defined in (4.1) with θ = θ0 and PA de-
notes the projection matrix onto the column space of the matrix A (that is, PA =
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A(A′A)−1A′ when A is full column rank). The critical value for the LMn and LMGMM
n

tests is χ2
p�1−α, the 1 − α quantile of the χ2

p distribution. The test based on LMGMM
n is

asymptotically equivalent to the Wald test based on an asymptotically efficient GMM es-
timator under (i) strong identification (which requires k≥ p), (ii) nonsingular moments-
variance matrices (that is, λmin(ΩFn)≥ δ > 0 for all n ≥ 1), and (iii) a null parameter value
that is not on the boundary of the parameter space; see Newey and West (1987). This
also holds true under semi-strong identification (which also requires k ≥ p). For exam-
ple, Theorem 5.1 of Andrews and Cheng (2013) shows that the Wald statistic for testing
H0 : θ = θ0 based on a GMM estimator with asymptotically efficient weight matrix has a
χ2
p distribution under semi-strong identification. This Wald statistic can be shown to be

asymptotically equivalent to the LMGMM
n statistic under semi-strong identification. (For

brevity, we do not do so here.)
Suppose k≥ p. The drifting sequences {λ∗

n�h : n ≥ 1} referred to above are rather com-
plicated and so, for brevity, we define them at the beginning of Section 28 in the SM.
They are defined so that various population quantities that affect the asymptotic distri-
butions of the SR-CQLR test statistic and critical value converge as n → ∞. We restrict
{λ∗

n�h : n ≥ 1} to be a sequence for which λmin(EFngig
′
i) > 0 for all n ≥ 1. Most impor-

tantly, we have that, along {λ∗
n�h : n ≥ 1}, n1/2(s1Fn� � � � � spFn) converges to some vector

(h∗
1�1� � � � �h

∗
1�p) whose elements may be finite or infinite, where (s1Fn� � � � � spFn) denote

the singular values of the population Jacobian EFGi ∈Rk×p. Strong or semi-strong iden-
tification occurs if the smallest singular value of EFGi diverges to infinity after renormal-
ization by n1/2, that is, if h∗

1�p = ∞.

Theorem 7.1. Suppose k≥ p. For any sequence {λ∗
n�h ∈ Λ∗ : n ≥ 1} that exhibits strong or

semi-strong identification (where the latter and Λ∗ are defined precisely in Section 28 in
the SM), we have

(a) SR-QLRn = QLRn + op(1) = LMn + op(1) = LMGMM
n + op(1) and

(b) ck�p(n
1/2D̂∗

n�1− α) →p χ2
p�1−α.

Comment. Theorem 7.1 establishes the asymptotic efficiency (in a GMM sense) of the
SR-CQLR test under strong and semi-strong identification. Note that Theorem 7.1 pro-
vides asymptotic equivalence results under the null hypothesis, but by the definition of
contiguity, these asymptotic equivalence results also hold under contiguous local alter-
natives.

8. Empirical application

In this section, we use the AR and CQLR type tests introduced above to do inference on
the elasticity of intertemporal substitution (EIS) in consumption. We follow the analysis
in Yogo (2004) based on data used in Campbell (2003). Specifically, consider the regres-
sion model

�ci+1 = τ +ψri+1 + ξi+1 for i = 1� � � � � n� (8.1)
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where τ is a constant, ψ denotes EIS, �ci+1 is consumption growth at time i + 1, ri+1 is
the real return on an asset at time i+ 1, and ξi+1 is the error term that is correlated with
the regressor. (Note that Yogo (2004) uses a subscript t rather than i.) To identify EIS, we
use a vector Zi ∈ R4 of IVs consisting of the nominal interest rate, inflation, consump-
tion growth, and log dividend-price ratio, all of which are lagged twice and then satisfy
E(Ziξi+1)= 04. We also consider the reversed form of (8.1):

ri+1 = μ+ (1/ψ)�ci+1 +ηi+1 for i = 1� � � � � n� (8.2)

where μ is a constant and ηi+1 is the error term, and exploit E(Ziηi+1) = 04 to do infer-
ence on 1/ψ.

Classical inference methods lead to the empirical puzzle that ψ is found to be sig-
nificantly less than one but 1/ψ is not found to be significantly different from one.
Yogo (2004) addresses this puzzle by applying identification-robust methods. His find-
ings based on the data in Campbell (2003) suggest that ψ is significantly less than one
and not significantly different from zero. The magnitude of ψ is of economic impor-
tance because, as summarized in Yogo (2004), if ψ< 1 (ψ> 1) then an investor’s optimal
consumption-wealth ratio is increasing (decreasing) in expected returns. The analysis
based on the AR and CQLR procedures introduced in this paper support the main con-
clusion in Yogo (2004).

We first replicate the identification-robust inference results in Tables 3, 5, and 6 from
Yogo (2004) based on the homoskedastic versions of the AR, LM, and CLR tests (see (25)–
(27) in Yogo (2004)) and the heteroskedasticity-robust S-test of Stock and Wright (2000)
(see (30) in Yogo (2004)). We then add the new SR-AR and SR-CQLR tests defined in
(4.7) and (5.13), respectively, that only impose quite weak restrictions on the parameter
space, namely uniform bounds on the moment functions and its derivative, in order to
have correct asymptotic size; recall the discussion above regarding the parameter space
in (3.6) for the SR-AR and SR-CQLR tests. In particular, heteroskedasticity is allowed. In
all of the examples considered here, the estimator of the variance matrix of the moments
defined in (4.1) is nonsingular and, therefore, those tests simplify to the ones defined in
(4.2) and (5.9), the first of which is similar to the S-test of Stock and Wright (2000) (see
(30) in Yogo (2004)), but differs because we use the recentered estimator of the variance
matrix; see (4.1).

We calculate 95% confidence intervals for ψ and 1/ψ (that is, α = 0�05) by collecting
the values of θ0 = ψ for which the null hypothesis in (3.3) is not rejected at the 5% nom-
inal size. To do so, we use a grid of null values with stepsize 0�001 in [−200�200] and also
consider the additional null values ±500 and ±1000 (and in some cases larger values).

To implement our procedures, first premultiply (8.1) and (8.2) by M1n = In − P1n ,
where 1n ∈ Rn denotes a vector of ones, to eliminate the constant term from the regres-
sion. Denote by Z ∈ Rn×4 the IV matrix with rows given by Z′

i for i = 1� � � � � n, and define
analogously the vectors �c and r ∈Rn.

Then define

gi(θ) = (
M1n(�c −ψr)

)
i
(M1nZ)′i ∈R4 (8.3)
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in the case of regression (8.1) (and analogously gi(θ)= (M1n(r − (1/ψ)�c))i(M1nZ)′i ∈R4

in the case of regression (8.2), where θ =ψ (or θ = 1/ψ). We then obtain

Gi(θ) =Gi = −(M1nr)i(M1nZ)′i ∈ R4 (8.4)

for the Jacobian defined in (3.2) (and analogously Gi = −(M1n�c)i(M1nZ)′i in the case of
regression (8.2)).

Note that in the regression models considered here the dimension of the parameter
of interest equals one, that is, p = 1. Next, calculate the quantities ĝn(θ) and Ω̂−1

n (θ) in
(4.1), Ĝ1n, Γ̂1n(θ), and D̂1n(θ) defined in (5.2), and fi(θ), f̂n(θ), V̂n(θ), and R̂n(θ) defined
in (5.3), with all of these quantities evaluated with θ equal to θ0 = ψ. Then calculate
Σ̂n(θ) and its eigenvalue adjusted version Σ̂ε

n(θ); see (5.5) and (5.6). For the output below,
we use ε = 0�01. (We also calculated CIs for ε = 0�05 and 0�001, which led to identical
results for the case of the real asset being ri = rf�i, defined below, and comparable results
for the case of ri = re�i, defined below.) Finally, calculate the quantities L̂n(θ), D̂∗

n(θ), and
Q̂n(θ), the test statistic QLRn(θ) defined in (5.7), and the test statistic ARn(θ) in (4.2).

The critical value for the AR test is the χ2
4�1−α quantile given that there are four

instruments. The critical value for the CQLR test is obtained by simulation. Specif-
ically, we generate 10,000 draws from a N(04� I4) distribution and for each draw we
calculate CLRk�p(n

1/2D̂∗
n(θ0)) defined in (5.8). The critical value of the CQLR test is

then defined as the 1 − α sample quantile of these observations, which is denoted by
ck�p(n

1/2D̂∗
n(θ0)�1− α).

The data set from Campbell (2003) employed here consists of quarterly data for the
following eleven developed countries: Australia, Canada, France, Germany, Italy, Japan,
Netherlands, Sweden, Switzerland, United Kingdom (U.K.), and the United States (U.S.).
The sample period varies across different countries with sample sizes equal to 114, 115,
113, 79, 106, 114, 86, 116, 91, 115, and 114, respectively. For ri two candidates for asset re-
turns are used, namely, the real interest rate and the real aggregate stock return, denoted
by rf�i and re�i, respectively. See Yogo (2004, Section IV. A., p. 803) for details on the data
and the precise definition of the variables.

Table 1 reports the results based on the real interest rate rf�i, whereas Table 2 reports
the results based on the real aggregate stock return re�i. In each case, we report the CQLR
and AR CI’s for ψ and 1/ψ based on the regressions (8.1) and (8.2). If a CI contains the
right endpoint of the search interval, namely 200, and the additional points of the search
500 and 1000, we report the right endpoint of the CI as ∞, and analogously for the left
endpoint.

We now discuss the findings for ψ and the implications for the equity premium puz-
zle obtained from the new inference procedures.11 We start with the results based on
rf�i. Yogo (2004, p. 806) concludes from the CIs based on the homogenous CLR test that

11Our analysis reveals certain discrepancies with the results reported in Yogo (2004). Namely, the CIs for
ψ using rf�i based on the LM test (see (26) in Yogo (2004)) are as follows: Australia [−0�22�0�27]∪ [5�13�13�74]
by our calculations versus (vs.) [−0�22�13�74] in Table 3 in Yogo (2004), Canada [−0�73�0�02] ∪ [3�9�14�16] vs.
[−0�73�14�15], France [−50�06�−36�28] ∪ [−0�47�0�31] vs. [−0�47�0�31], Germany [−1�21�0�26] ∪ [11�3�16�02]
vs. [−1�21�0�26], Italy [−6�51�−3�83] ∪ [−0�24�0�11] vs. [−0�24�0�11], Japan (−∞�−11�29] ∪ [−0�58�0�47] ∪
[6�15�∞) vs. [−0�24�0�11], Netherlands (−∞�−17�21] ∪ [−0�76�0�48] ∪ [35�63�∞) vs. (−∞�∞), Sweden
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Table 1. CQLR and AR CIs for EIS, ψ, and its inverse, 1/ψ, using rf�i.

ψ 1/ψ

Country CQLR AR CQLR AR

Australia [−0�24�0�34] [−0�12�0�27] (−∞�−4�2] ∪ [2�9�∞) (−∞�−8�3] ∪ [3�8�∞)

Canada [−0�88�0�21] [−0�71�0�05] (−∞�−1�1] ∪ [4�8�∞) (−∞�−1�4] ∪ [21�8�∞)

France [−0�39�0�16] [−0�55�0�33] (−∞�−2�6] ∪ [6�1�∞) (−∞�−1�8] ∪ [3�0�∞)

Germany [−1�5�0�90] [−1�8�1�28] (−∞�−0�66] ∪ [1�1�∞) (−∞�−0�56] ∪ [0�78�∞)

Italy [−0�25�0�10] [−0�32�0�18] (−∞�−4�0] ∪ [9�6�∞) (−∞�−3�1] ∪ [5�6�∞)

Japan [−0�78�0�29] [−0�86�0�34] (−∞�−1�3] ∪ [3�5�∞) (−∞�−1�2] ∪ [2�9�∞)

Netherlands [−0�72�1�79] [−0�44�−0�11] (−∞�−1�4] ∪ [0�56�∞) [−9�2�−2�3]
Sweden [−0�20�0�20] [−0�27�0�26] (−∞�−5�1] ∪ [5�0�∞) (−∞�−3�8] ∪ [3�8�∞)

Switzerland [−1�04�0�18] [−1�32�0�41] (−∞�−0�96] ∪ [5�5�∞) (−∞�−0�76] ∪ [2�4�∞)

U.K. [−0�97�0�54] [−0�01�0�47] (−∞�−1�0] ∪ [1�9�∞) (−∞�−68�9] ∪ [2�1�∞)

U.S. [−0�30�0�49] ∅ (−∞�−3�3] ∪ [2�0�∞) ∅

Table 2. CQLR and AR CIs for EIS, ψ, and its inverse, 1/ψ, using re�i with ε= 0�01.

ψ

Country CQLR AR

Australia (−∞�∞) (−∞�∞)

Canada (−∞�−1�33] ∪ [0�017�∞) (−∞�−0�35] ∪ [−0�01�∞)

France (−∞�0�04] ∪ [0�63�∞) (−∞�0�07] ∪ [0�46�∞)

Germany (−∞�∞) (−∞�∞)

Italy (−∞�∞) (−∞�∞)

Japan (−∞�−0�336] ∪ [−0�334�−0�333] ∪ [−0�06�∞) (−∞�−0�66] ∪ [−0�06�∞)

Netherlands (−∞�−0�002] ∪ [0�05�∞) (−∞�−0�01] ∪ [0�02�∞)

Sweden (−∞�∞) (−∞�∞)

Switzerland (−∞�∞) (−∞�∞)

U.K. (−∞�∞) (−∞�0�002] ∪ [0�04�∞)

U.S. (−∞�−0�01] ∪ [0�048�∞) (−∞�−0�01] ∪ [0�07�∞)

1/ψ

Country CQLR AR

Australia (−∞�∞) (−∞�∞)

Canada [−0�75�60�6] (−∞�−182�1] ∪ [−2�9�∞)

France (−∞�1�58] ∪ [24�75�∞) (−∞�2�16] ∪ [14�97�∞)

Germany (−∞�∞) (−∞�∞)

Italy (−∞�∞) (−∞�∞)

Japan (−∞�−15�8] ∪ [−2�994�−2�99] ∪ [−2�97�∞) (−∞�−15�7] ∪ [−1�5�∞)

Netherlands [−656�97�−609�34] ∪ [−484�1�20�9] [−67�27�51�98]
Sweden (−∞�∞) (−∞�∞)

Switzerland (−∞�∞) (−∞�∞)

U.K. (−∞�∞) (−∞�24�4] ∪ [509�1�∞)

U.S. [−135�01�21�03] [−159�57�13�93]
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the “EIS is small and not significantly different from 0 for the eleven developed coun-
tries.” This finding is supported also by the new results based on the CQLR test except
for the Netherlands (where the CI equals [−0�72�1�79]). All eleven CIs contain zero, and
nine CIs are bounded from above by 0�54 (with the exceptions of Germany, where the
right endpoint of the CI equals 0�90, and the Netherlands). The finding is also supported
by the CIs from the new AR test for almost all countries, with the exception of Germany
(where the right endpoint of the CI is 1�28), the Netherlands (where 0 is not included in
the CI), and the U.S. (where the CI is empty). The results based on the CQLR (and also
the new AR) CIs are consistent across the regressions (8.1) and (8.2) and the empirical
puzzle based on classical (identification nonrobust) inference procedures does not oc-
cur here. In particular, the left endpoints of the positive portions of the CIs for 1/ψ based
on the CQLR test equal 2�9, 4�8, 6�1, 1�1, 9�6, 3�5, 0�56, 5�0, 5�5, 1�9, and 2�0 for the eleven
countries, respectively, which translate into right endpoints of the positive portion of CIs
for ψ of 0�34, 0�21, 0�16, 0�91, 0�10, 0�29, 1�79, 0�20, 0�18, 0�53, and 0�50, respectively. The
actual right endpoints of the positive portion of the CIs for ψ based on the CQLR test
equal 0�34, 0�21, 0�16, 0�90, 0�10, 0�29, 1�79, 0�20, 0�18, 0�54, and 0�49, respectively.

Comparing the CIs based on the new AR and CQLR tests for ψ, we find that for Aus-
tralia, Canada, the Netherlands, the U.K., and the U.S. the former are shorter, while for
the other countries the latter are shorter. In fact, for the U.S., the CI from the AR proce-
dure is empty, which points to model misspecification.

Next, we discuss the findings when re�i is used. Inference on ψ and 1/ψ based on
re�i is completely uninformative for both the CQLR and AR CIs for Australia, Germany,
Italy, Sweden, and Switzerland with CIs all equal to (−∞�∞); see Table 2. Inference is
also relatively uninformative for all of the other countries, with unbounded CIs for all
countries except for Canada, the Netherlands, and the US. And even in the latter three
cases, the CIs are too wide to provide information of economic interest. These results
are mostly consistent with the findings based on the homoskedastic versions of the AR,
LM, and CLR tests that also produce unbounded CIs in almost all cases; see Yogo (2004,
Table 5). However, Canada, France, and Japan are three exceptions for which, based on
these homoskedastic tests, informative CIs are obtained that imply a small value of ψ.
It may be the case that the discrepancies between the results based on the new CIs and
those based on the homoskedastic AR, LM, and CLR CIs for these countries are a con-
sequence of undercoverage of the latter CIs because the actual DGP may not satisfy the
assumptions necessary for validity of these CIs, such as homoskedasticity.

(−∞�−59�26] ∪ [−0�21�0�2] ∪ [11�62�∞] vs. (−∞�∞), Switzerland [−1�19�0�07] ∪ [4�9�7�5] vs. [−1�19�0�07],
U.K. (−∞�−17�23] ∪ [−0�13�0�45] ∪ [7�22�∞) vs. (−∞�∞), and U.S. (−∞�−27�86] ∪ [−0�28�0�27] ∪ [1�41�∞)

vs. (−∞�∞).
Furthermore, the CIs for ψ using re�i based on the LM test are for Canada [−0�11�−0�09] ∪ [0�05�0�35] by

our calculations vs. [0�05�0�35] as reported in Table 5 in Yogo (2004), for France (−∞�−1�56]∪ [−0�12�0�07]∪
[0�74�∞) vs. (−∞�∞), and for Japan [−1�01�−0�16] ∪ [−0�02�0�2] vs. [−1�01�0�20].

The CIs for ψ using re�i based on the AR test (see (25) in Yogo (2004)) are for Australia (−∞�−0�21] ∪
[−0�04�∞) by our calculations vs. (−∞�∞) as reported in Table 5 in Yogo (2004) and for the U.S.
(−∞�−0�331] ∪ [0�048�∞) vs. (−∞�∞). Finally, the CI for ψ using re�i based on the CLR test (see (27) in
Yogo (2004)) for the U.S. is (−∞�−0�01] ∪ [0�048�∞) by our calculations vs. (−∞�∞) in Yogo (2004).



1728 Andrews and Guggenberger Quantitative Economics 10 (2019)

Note that for the countries where the new CIs are not equal to (−∞�∞), there is
complete consistency between the CIs for ψ and 1/ψ, analogous to the findings reported
in Table 1. For example, the CQLR CI for 1/ψ has right endpoint equal to 60�6 implying
that any positive value of ψ should be contained in [0�0165�∞). And indeed, the positive
portion of the CQLR type CI for ψ is reported as [0�017�∞]. Analogous statements are ob-
tained for the CQLR CI for 1/ψ, for example, see the results for France, the Netherlands,
and the U.S. In summary, the CIs based on the new tests reveal that ψ is very weakly
identified (or perhaps unidentified) when one uses re�i. Unlike CIs based on a classical
inference procedure, such as a t-test based CI, the identification-robust results based on
the regressions (8.1) and (8.2) are internally consistent.

9. Subvector inference

We now consider subvector inference based on the AR and CQLR tests under the as-
sumption that the parameters not under test are strongly identified. For brevity, in this
section, we assume that the variance matrix of the moment functions evaluated at the
true parameters has minimal eigenvalue bounded away from zero. This assumption is
eliminated in Section 13 in the SM.

The extension to subvector SR-AR and SR-CQLR tests is analogous to the extension
of the full vector tests described in Sections 4 and 5.2. Hence, for brevity, these exten-
sions are given in the SM; see Section 13.

9.1 Model and hypotheses

The model is

EFg(Wi�θ�β)= 0k� (9.1)

where the equality holds when η := (θ′�β′)′ ∈ Θ× B is the true value. Here, Θ ⊂ Rp and
B ⊂ Rb denote the parameter spaces for θ and β, respectively, with p�b≥ 1 and k−b ≥ 1.
We allow for the possibility that k− b < p.

We are concerned with tests of the null hypothesis

H0 : θ = θ0 versus H1 : θ �= θ0 (9.2)

in the presence of the nuisance parameter β and with confidence sets for θ obtained by
inverting the tests.

The first- and second-order partial derivatives of g(Wi�η) with respect to θ and β are
denoted by

G(Wi�η) := ∂

∂θ′ g(Wi�η) ∈Rk×p� Gβ(Wi�η) := ∂

∂β′ g(Wi�η) ∈Rk×b�

Gθjβ(Wi�η) := ∂2

∂θj∂β
′ g(Wi�η) ∈Rk×b for j = 1� � � � �p�

(9.3)
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and likewise for other expressions, such as Gβjβ(Wi�η). Let gi(η) := g(Wi�η) and
ĝn(η) := n−1 ∑n

i=1 gi(η) and likewise for other quantities, for example,

Ĝβn(η) := n−1
n∑

i=1

Giβ(η)� (9.4)

We use the notation Gij := ∂
∂θj

g(Wi�η0) ∈ Rk for j = 1� � � � �p, where η0 := (θ′
0�β

∗′)′

and β∗ denotes the true value of β, and likewise for other quantities. For example,

Giθjβ := ∂2

∂θj∂β′ g(Wi�η0), Giβjβ := ∂2

∂βj∂β′ g(Wi�η0), and gi := gi(η0).

9.2 Subvector tests for nonsingular moment variance matrices

9.2.1 Definitions of the subvector tests Define

Ω̂n(η) := n−1
n∑

i=1

gi(η)gi(η)
′ − ĝn(η)ĝn(η)

′� (9.5)

Let β̂n = β̂n(θ0) denote the null-restricted two-step GMM estimator of β. That is,

β̂n := argmin
β∈B

∥∥ϕ̂nĝn(θ0�β)
∥∥2� where ϕ̂n ∈ Rk×k� ϕ̂′

nϕ̂n = Ω̂−1
n (θ0� β̃n)� (9.6)

β̃n is a solution to (9.6) with ϕ̂n replaced by Ik. Rather than using the null-restricted
two-step GMM estimator β̂n, one could employ the null-restricted continuous-updating
estimator of β (e.g., as suggested in Kleibergen (2005)). The same asymptotic results as
below would be obtained.

Following Kleibergen’s (2005) approach for the Jacobian, as in (5.2), we now intro-
duce “orthogonalized” estimators of EFgig

′
i and EFGiβ whose asymptotic distributions

are designed to be independent of gSh, which denotes the asymptotic distribution of
n1/2ĝn(θ0� β̂n); see Lemma 31.5 in the SM. In particular, we do not estimate EFgig

′
i by

Ω̂n(θ0� β̂n). Rather, we estimate it by Ω̃n(θ0� β̂n), where

Ω̃n(η) := (
Ω̃1n(η)� � � � � Ω̃kn(η)

) ∈Rk×k�

Ω̃jn(η) := n−1
n∑

i=1

gi(η)gij(η)− �̂jn(η)Ω̂
−1
n (η)ĝn(η)− ĝn(η)ĝjn(η) ∈Rk� and

�̂jn(η) := n−1
n∑

i=1

(
gi(η)gij(η)− n−1

n∑
s=1

(
gs(η)gsj(η)

))
gi(η)

′

∈Rk×k for j = 1� � � � �k�

(9.7)

where ĝn(η)= (ĝ1n(η)� � � � � ĝkn(η))
′. Although it may not be obvious from the expression

in (9.7), Ω̃n(η) is symmetric, as desired.
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Likewise, we do not estimate EFGiβ by Ĝβn(θ0� β̂n). We estimate it by G̃βn(θ0� β̂n),

where

G̃βn(η) := (
G̃β1n(η)� � � � � G̃βbn(η)

) ∈Rk×b�

G̃βjn(η) := n−1
n∑

i=1

Giβj (η)− �̂jn(η)Ω̂
−1
n (η)ĝn(η) ∈Rk� and

�̂jn(η) := n−1
n∑

i=1

(
Giβj (η)− Ĝβjn(η)

)
gi(η)

′ ∈Rk×k� where

Ĝβjn(η) := n−1
n∑

i=1

Giβj (η)�

(9.8)

for j = 1� � � � � b.

We define the following estimator J̃n(θ0� β̂n) of (EFgig
′
i)

−1/2EFGiβ, which is de-

signed to be asymptotically independent of gSh. Let

J̃n(η) := Ω̃
−1/2
n (η)G̃βn(η) ∈ Rk×b� (9.9)

For any matrix A with k rows, let MA = Ik − PA, where PA denotes the projection

matrix onto the column space of A.

The subvector AR test statistic is

ARS
n(η) := nĝn(η)

′Ω̃−1/2
n (η)MJ̃n(η)

Ω̃
−1/2
n (η)ĝn(η)� (9.10)

The superscript S denotes “subvector.” The nominal size α subvector AR test (without

singularity adjustment) rejects H0, specified in (9.2), when ARS
n(θ0� β̂n) > χ2

k−b�1−α.

The subvector QLR test statistic QLRS
n(θ0� β̂n) is defined as the full vector statistic is

defined in (5.7), but with (θ� β̂n) in place of θ, Ω̃−1/2
n in place of Ω̂−1/2

n , and the projection

matrix MJ̃n(θ�β̂n)
inserted as a weight matrix. In particular, let D̂n(θ�β) ∈Rk×p be defined

as D̂n(θ) is defined in (5.2), but with (θ�β) in place of θ. Then define

QLRS
n(θ� β̂n) := ARS

n(θ� β̂n)− λmin
(
nQ̂S

n(θ� β̂n)
)
� where

Q̂S
n(η) := (

Ω̃
−1/2
n (η)ĝn(η)� D̂

∗
n(η)

)′
MJ̃n(η)

(
Ω̃

−1/2
n (η)ĝn(η)� D̂

∗
n(η)

)
∈ R(p+1)×(p+1)�

D̂∗
n(η) := Ω̃

−1/2
n (η)D̂n(η)L̂

1/2
n (η) ∈Rk×p�

L̂n(η) := (θ� Ip)
(
Σ̂ε
n(η)

)−1
(θ� Ip)

′ ∈Rp×p�

(9.11)

Σ̂ε
n(η) ∈ R(p+1)×(p+1) is defined as in (5.6) with H = Σ̂n(η), and Σ̂n(η) is defined as in

(5.3) and (5.5) with η in place of θ.
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Defining MJ̃n(η)
= Ik when b = 0, the definitions of the subvector AR and QLR statis-

tics reduce to the full vector statistics in (5.7), except that they employ Ω̃
−1/2
n , rather than

Ω̂
−1/2
n .12

Let ck�p(D�J�1− α) denote the 1− α quantile of CLRk�p(D�J), where

CLRk�p(D�J) := Z′MJZ − λmin
(
(Z�D)′MJ(Z�D)

)
and Z ∼N

(
0k� Ik

)
� (9.12)

The conditional critical value of the nominal size α CQLR test is

ck�p
(
n1/2D̂∗

n(θ0� β̂n)� J̃n(θ0� β̂n)�1− α
)
�

The nominal size α subvector CQLR test rejects the null in (9.2) if

QLRS
n(θ0� β̂n) > ck�p

(
n1/2D̂∗

n(θ0� β̂n)� J̃n(θ0� β̂n)�1− α
)
� (9.13)

9.2.2 Asymptotic size of the subvector tests We make the following assumptions about
the function g and the parameter space B of β. We denote by Cj(S) the set of j-times
continuously differentiable functions from a set S into Rk.

Assumption gB. (a) For given θ0 the domain of g isW × {θ0} ×B, where B is compact.

(b) ∀w ∈W , g(w�θ0� ·) ∈ C0(B).

Note that Assumption gB(a) and gB(b) together imply uniform continuity of
g(w�θ0� ·) for any given w ∈ W . We use the latter to prove a uniform law of large numbers
via stochastic equicontinuity.

The parameter space F in (79) needs to be altered from the case of a full vector hy-
pothesis test to the subvector case. Let μ denote a probability measure on Rm for which
Eμ supβ∈B ‖gi(θ0�β)‖ <∞, where Eμ denotes expectation when Wi is distributed accord-

ing to the measure μ. For ϑ> 0 and β+ ∈ Rb, let B(β+�ϑ) = {β ∈Rb : ‖β+ −β‖<ϑ}. We
abbreviate “absolutely continuous with respect to” by “ac wrt” and “Radon–Nikodym
derivative” by “RNd.” Next, we define the null parameter spaces for (F�β∗), where F de-
notes the distribution of Wi and β∗ denotes the true value of β, for the subvector AR
and CQLR tests. The following set FS

AR�1 contains the restrictions needed to guarantee

consistency of β̂n and β̃n. Let

FS
AR�1 :=

{(
F�β∗) :EFgi = 0k�F is ac wrt μ with RNd f satisfying f ≤M�

inf
β∈B\B(β∗�ζ)

∥∥EFgi(θ0�β)
∥∥2 ≥ δζ ∀ζ > 0�Eμ sup

β∈B

∥∥gi(θ0�β)∥∥ <∞�

sup
β∈B

EF

∥∥gi(θ0�β)∥∥1+γ ≤M
}

(9.14)

12The reason Ω̃
−1/2
n is employed, rather than Ω̂

−1/2
n , is because MJ̃n(η)

�= Ik when b ≥ 1. When b ≥ 1,
MJ̃n(η)

has less than full rank and this has consequences for the asymptotic results and their proofs. See the
footnote following (309) in Section 31 in the SM for details.
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for constants δζ�γ > 0 and M <∞. Let

FS
AR�2 :=

{(
F�β∗) : for B

(
β∗�ϑ

) ⊂ B�g(w�θ0� ·) ∈ C2(B(
β∗�ϑ

)) ∀w ∈W�

Eμ sup
β∈B(β∗�ϑ)

∥∥hi(β)
∥∥ ≤M and sup

β∈B(β∗�ϑ)

EF

∥∥hi(β)
∥∥1+γ ≤M

for hi(β) ∈ {∥∥gi(θ0�β)∥∥2�Giβ(θ0�β)�gij(θ0�β)Giβ(θ0�β)�(
∂2/∂βm∂β

′)gi(θ0�β)� (∂2/∂θt∂β′)gi(β)}�
λmin

(
EFgig

′
i

) ≥ δ�τmin(EFGiβ)≥ δ
}

(9.15)

for indices j = 1� � � � �k, m = 1� � � � � b, and t = 1� � � � �p, and constants ϑ�δ�γ > 0 and M <

∞, where τmin(A) denotes the smallest singular value of the matrix A.13

The null parameter space for the subvector AR test is

FS
AR := FS

AR�1 ∩FS
AR�2� (9.16)

The null parameter space for the subvector CQLR test is

FS :=
{(
F�β∗) ∈ FS

AR : max
{
EF

∥∥gi(θ0�β∗)∥∥4+γ
�EF

∥∥Giβ

(
θ0�β

∗)∥∥2+γ
�

Eμ sup
β∈B(β∗�ϑ)

∥∥gi(θ0�β)∥∥3�Eμ sup
β∈B(β∗�ϑ)

∥∥Gi(θ0�β)
∥∥2�

sup
β∈B(β∗�ϑ)

EF

∥∥gi(θ0�β)∥∥3+γ
� sup
β∈B(β∗�ϑ)

EF

∥∥Gi(θ0�β)
∥∥2+γ

}
≤M

}
� (9.17)

The parameter spaces FS
AR and FS impose correct specification of the model, im-

pose uniform bounds on certain moments (which ensure that laws of large numbers and
central limit theorems hold under drifting sequences of distributions), include an iden-
tifiability condition for β∗ given θ0, guarantee invertibility of the covariance matrix of gi,
and impose a minimum singular value condition on the expected Jacobian with respect
to β of the moment functions. The condition B(β∗�ϑ) ⊂ B prevents β∗ from converging
to the boundary of B as n → ∞. The assumption that g is twice continuously differen-
tiable in β in a neighborhood of β∗ is used in the proof of consistency and asymptotic
normality of β̂n under drifting sequences of null distributions for Wi. The asymptotic
results allow β∗ to change with the sample size.

The asymptotic size and similarity properties of the subvector AR and CQLR tests are
given in the following theorem.

Theorem 9.1. Suppose Assumption gB holds. The subvector AR and CQLR tests (without
the SR extensions), defined in and above (9.13), have asymptotic size equal to their nom-
inal size α ∈ (0�1) and are asymptotically similar (in a uniform sense) for the parameter
spaces FS

AR and FS , respectively.

13As with the full vector test, the asymptotic size results given below do not require Gi(η) to be the deriva-
tive matrix of gi(η). The matrix Gi(η) can be any k×p matrix that satisfies the moment condition in FS .
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Comment. Theorem 9.1 is proved in Section 31 below.

9.3 Asymptotic efficiency of the subvector CQLR test under strong and semi-strong
identification

In Section 7, it is established that the (full vector) SR-CQLR test is asymptotically ef-
ficient under strong or semi-strong identification when ΩF has eigenvalues that are
bounded away from zero and the null value θ0 is not on the boundary. We next estab-
lish the analogous result for the subvector CQLR test. We consider drifting sequences
{λSn�h ∈ ΛS : n ≥ 1} of data-generating processes taken from FS in (9.17) that correspond
to strong or semi-strong identification and establish that the CQLR test statistic equals
the subvector LM test statistic up to a op(1) term and that the conditional critical value
of the subvector CQLR test converges in probability to χ2

p�1−α. Note that FS imposes
the minimal eigenvalue restriction λmin(EFgig

′
i) ≥ δ > 0. It also imposes the restriction

τmin(EFGiβ) ≥ δ, which implies strong identification of β.
As in Newey and West (1987, p. 780, third equation in (2.9)), define the subvector LM

test statistic as

LMS
n := nĝn(η̂)

′Ω̂−1
n (η̂)Ĝηn(η̂)

(
Ĝηn(η̂)

′Ω̂−1
n (η̂)Ĝηn(η̂)

)−1

× Ĝηn(η̂)
′Ω̂−1

n (η̂)ĝn(η̂)� where

Ĝηn(η̂) := [
Ĝn(η̂) : Ĝβn(η̂)

] ∈Rk×(p+b)

(9.18)

and η̂ := (θ0� β̂n). The critical value of the subvector LM test of (9.2) is given by χ2
p�1−α.

Suppose k− b ≥ p. The drifting sequences {λSn�h : n ≥ 1} referred to above are rather
complicated and so, for brevity, we define them in (321) and (322) in the SM. They are de-
fined so that various population quantities that affect the asymptotic distributions of the
CQLR test statistic and critical value converge as n → ∞. Most importantly, we have that,
along {λSn�h : n ≥ 1}, n1/2(τ1Fnt∗� � � � � τpFnt∗) converges to some vector (h1�1t∗� � � � �h1�pt∗)
whose elements may be finite or infinite, where (τ1Fnt∗� � � � � τpFnt∗) denote the singular
values of O′

Ft∗(EFgig
′
i)

−1/2(EFGi)UF ∈ R(k−b)×p. The latter quantity depends on the Ja-
cobian EFGi, the moment variance matrix EFgig

′
i, the matrix UF ∈ Rk×p, which is the

population counterpart of L̂
1/2
n (θ0� β̂n), and the matrix OFt∗ ∈ Rk×(k−b), which is de-

fined such that OFt∗O′
Ft∗ is a uniquely-defined population counterpart of the projection

weight matrix MJ̃n(η)
.14 Strong or semi-strong identification occurs if the smallest singu-

lar value of O′
Ft∗(EFgig

′
i)

−1/2(EFGi)UF diverges to infinity after renormalization by n1/2,
that is, if h1�pt∗ = ∞.

Theorem 9.2. Suppose Assumption gB holds and k − b ≥ p. For any sequence {λSn�h ∈
ΛS : n ≥ 1} that exhibits strong or semi-strong identification (where sequences {λSn�h ∈ΛS :
n ≥ 1} are defined precisely following (322) in Section 9.1 in the SM and strong and semi-
strong identification are defined precisely in Section 28 in the SM), we have

14The indexation of OFt∗ by t∗ is the result of the need to define a unique matrix OFt∗ out of the many
matrices OFt ∈ Rk×(k−b) for which OFtO

′
Ft is a population counterpart of MJ̃n(η)

. See (320) and (322) in the
SM for details.
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(a) SR-QLRS
n(θ0� β̂Ân) = QLRS

n(η̂)+ op(1) = LMS
n + op(1) and

(b)

ĉrn(θ0�β̃n)�p

(
n1/2D̂∗̂

An
(θ0� β̂Ân)� J̃Ân(θ0� β̂Ân)�1− α

)
= ck�p

(
n1/2D̂∗

n(η̂)� J̃n(η̂)�1− α
) + op(1) →p χ2

p�1−α�

9.4 Monte Carlo study: Probit model with endogeneity

In this section, we compare the finite-sample rejection probabilities (RPs), under the
null and alternative hypotheses, of the subvector AR and CQLR tests, defined in (9.10)
and (9.13), with two tests in the literature. These two tests are the subvector AR-type test
in Stock and Wright (2000, Theorem 3), which we refer to as the S test, and the subvector
CLR test in Andrews and Mikusheva (2016), which we refer to as the AM test. We consider
a probit model with endogeneity:

yi = 1
(
y∗
i > 0

)
�

y∗
i = β0 +β1x1i + θx2i + ui� and

x2i = Z̃′
iπ + v2i�

(9.19)

where Zi = (1�x1i� Z̃′
i)

′ ∈Rg is a vector of IVs, θ and β= (β0�β1�π
′)′ are parameters with

θ�β0�β1 ∈R and π ∈Rg−2, x1i and x2i are scalar exogenous and endogenous regressors,
respectively, and the observed variables are {(yi� x1i� x2i� Z̃′

i)
′ : i = 1� � � � � n}. The reduced

form for y∗
i is

y∗
i = β0 +β1x1i + θZ̃′

iπ + v1i� where v1i := θv2i + ui�

(v1i� v2i)
′ ∼ iid N

(
02� V

)
� V :=

(
1 ρσ

ρσ σ2

)
∈R2×2 (9.20)

for ρ ∈ (−1�1) and σ2 > 0, and (v1i� v2i)
′ is independent of Zi. Also, (x1i� Z̃

′
i)

′ ∼
iid N(0g−1� Ig−1).

The objective is to test H0 : θ = θ0 versus H1 : θ �= θ0 in the presence of the vector of
nuisance parameters β := (β0�β1�π

′)′ ∈Rg.15 We have

E(yi|Zi) = Pr(yi = 1|Zi)= Pr
(
y∗
i > 0|Zi

)
= Pr

(
β0 +β1x1i + θZ̃′

iπ > −v1i|Zi

) = �
(
β0 +β1x1i + θZ̃′

iπ
)
� (9.21)

The model implies the moment conditions Egi(θ�β)= 0, where

gi(θ�β) :=
((

yi −�
(
β0 +β1x1i + θZ̃′

iπ
))
Zi(

x2i − Z̃′
iπ

)
Zi

)
∈R2g� (9.22)

We proceed by estimating the vector of nuisance parameters β under the null by two-
step GMM. In the notation employed above, k= 2g, b = g, and p = 1.

15The other nuisance parameters ρ and σ do not enter the moment function gi defined below.
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Given a weighting matrix Ŵn, the GMM criterion function is QŴn
n (θ�β) := ĝn(θ�β)

′ ×
Ŵnĝn(θ�β). Taking Ŵn = Ik, the first-step GMM estimator β̂n�FS of β minimizes

Q
Ik
n (θ0�β). The second-step GMM estimator β̂n minimizes QŴn

n (θ0�β), where Ŵn :=
n−1 ∑n

i=1 gi(θ0� β̂n�FS)gi(θ0� β̂n�FS)
′.16

In the simulation results reported below, the nominal size of the tests is 5%. We take
θ0 = 1 (the null value of θ), β0 = β1 = 1, and σ = 2. In addition to the null value, we con-
sider three true values of θ on each side of the null such that the resulting RPs of the sub-
vector CQLR test are roughly equal to 40%, 65%, and 90%. We let π ∈Rg−2 be a multiple
of a vector of ones with a multiplicative constant π. The latter determines the strength
of identification of θ. We consider 16 parameter configurations consisting of all of the
combinations of g = 3�4 (which results in k = 6�8), ρ = 0�0�9, and π = 1�0�5�0�2�0�1.
The sample size is n = 1000. The results are based on 5000 simulation repetitions, and
5000 simulation repetitions are used to simulate the critical values for each data sample.
When calculating the QLR statistic in AM, we use 60 search points to find the infimum
over θ (see equation (2) on p. 1575 in AM).

First, we report RPs under the null hypothesis. Across the 16 parameter configura-
tions, the null RPs of the CQLR, AR, AM, and S tests fall into the intervals [5�0%�6�7%],
[5�4%�6�8%], [3�6%�6�5%], and [4�7%�5�8%], respectively. There is no apparent pattern
as to how the RPs depend on the various parameters g, ρ, or π. Therefore, while there
is overrejection under the null for some parameter configurations for all four tests con-
sidered, the overrejection is at most slight no matter what the strength or weakness of
identification.

Figure 1 reports power for the four tests for ρ = 0�9 and π = 1�0�5�0�2�0�1 for g = 3
(upper row) and g = 4 (lower row) for three alternatives to the left of the null value of
θ, the null value, and three alternatives to the right of the null value. For clarity, the
graphs linearly interpolate the power between the seven θ values. Figure SM-1 in the
SM provides the corresponding results for ρ = 0. As expected, the powers of all tests
decrease as π decreases. Thus, the CQLR test reaches the 40, 65, and 90% RPs for al-
ternatives farther from the true value the smaller is π, with all other parameters held
constant. For example, in the upper panel of Figure 1, which reports power when g = 3,
the sum of the distances to the alternative θ values to the left and right of the null

16We use the Newton–Raphson algorithm to find the two-step GMM estimator for β. In both steps, we
initiate the search from a number of starting points and do ten Newton iterations from each starting point.
In particular, for the first step estimator we use (β̂0� β̂1� π̂) as one starting value, where (β̂0� β̂1) is the OLS
estimator of the slope coefficients in a regression of y−θ0x2 on a constant and x1 and π̂ is the OLS estimator
in a regression of x2 on Z̃ and we use (β̂0� β̂1�π) as another starting value, where π is the true value of the
slope coefficients in the third line of (9.19). For the second step, we use the same starting values and also the
estimator obtained in the first step. We also experimented using an additional fifteen randomly generated
starting points which had little effect on the results. In each Newton iteration, we incorporate a step size
control where along the search direction the step is divided in seven equal parts and the next iteration
proceeds from the step that yields the smallest criterion function. For numerical stability when inverting
matrices, we replace all eigenvalues of the matrices smaller than 10−11 by 10−11. We use ε = 0�01 for the
eigenvalue adjustment constant in (9.11). The estimator of β in each of the two steps is the minimizer of
the stochastic criterion function over all candidate vectors for which the criterion function was evaluated
in that step.
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value such that the CQLR test has 90% power are roughly 0�48, 0�78, 1�82, and 3�59 for
π = 1�0�5�0�2, and 0�1, respectively. The powers of the tests increase as g increases from
3 to 4 (with other parameters held constant) with the corresponding sum of the dis-
tances being roughly 0�43, 0�60, 1�34, and 3�55; see the lower panel of Figure 1. The pow-
ers of the tests decrease as ρ decreases from 0�9 to 0 with other parameters held con-
stant.

In all scenarios, the AR test has higher power than the S test for alternatives to the
left of the null value of θ. It also has higher power for alternatives to the right of the null
value of θ except in the most strongly identified case π = 1. The AM test has uniformly
higher power than the AR and S tests.

Overall, the CQLR and AM tests are the best two tests among the four tests consid-
ered. The CQLR test has higher power than the AM test for all alternatives to the left of
the null value in 14 of the 16 parameter configurations with power gains up to 16�5%
when π = 1 (see Figure 1 with g = 4 and π = 1) and up to 7�5% for π ≤ 0�5 (see Figure 1
with g = 3 and π = 0�2). The AM test has higher power than CQLR for alternatives to the
left in the two cases (g�π�ρ) = (4�0�1�0) and (4�0�1�0�9), for example, see Figure 1 with
g = 4 and π = 0�1. For this parameter configuration, the highest power advantage of the
AM test is 23% for θ = −0�42.

The CQLR test has comparable or slightly better power than the AM test for all alter-
natives to the right of the null value except when π = 1. When π = 1, the power advan-
tage of the AM test over CQLR is between 1�2% and 2�2% when (g�π�ρ) = (3�1�0) and it
is is between 2�7% and 6�0% when (g�π�ρ) = (4�1�0) over three alternatives considered
to the right of the null value; see Figure SM-1.

With regard to computation time, it takes about 231 minutes to calculate 5000 AM
tests when (g�π�ρ) = (4�0�5�0�9) under the specifications described above using an In-
tel Core 3�4 GHz, 6 MB processor. On the other hand, it only takes about 4 minutes to
calculate 5000 CQLR tests, that is, the CQLR test is about 58 times faster to calculate.
The difference in computation times is expected to be much larger in cases where θ is of
dimension greater than 1, because the computation time of the AM test increases expo-
nentially in the dimension of θ, whereas the computation time of the CQLR test does not
depend on the dimension of θ. Computation time is particularly important when com-
puting a confidence set by inverting a test, because the test has to be computed many
times.

10. Power comparisons in heteroskedastic/autocorrelated linear IV models

In this section, we present some power comparisons for the AR test, Kleibergen’s (2005)
LM, JVW-CLR, and MVW-CLR tests, and the SR-CQLR test introduced above.17 We also
consider the plug-in conditional linear combination (PI-CLC) test introduced in I. An-
drews (2016), as well as the MM1-SU and MM2-SU tests introduced in Moreira and Mor-
eira (forthcoming). The PI-CLC test aims to approximate the test that has minimum

17See (4.2), (7.1), and a footnote in Section 21 of the SM for the definitions of the AR test and Kleibergen’s
LM, MVW-CLR, and JVW-CLR tests. The AR test is called the S test in Stock and Wright (2000). The LM and
JVW-CLR tests are denoted by K and QCLR, respectively, in I. Andrews (2016).



1738 Andrews and Guggenberger Quantitative Economics 10 (2019)

regret among conditional tests constructed using linear combinations of the LM and
AR test statistics (with coefficients that depend on the conditioning statistic); see I. An-
drews (2016) for details.18 The MM1-SU and MM2-SU tests have optimal weighted av-
erage power for two different weight functions (over the alternative parameter values θ

and the strength of identification parameter vector μ, given in (10.1) below) among tests
that satisfy a sufficient condition for local unbiasedness.19

We consider the same designs as in I. Andrews (2016, Section 7.2). These designs are
for heteroskedastic and/or autocorrelated linear IV models with p = 1 and k = 4. The
designs are calibrated to mimic the linear IV models for the elasticity of intertemporal
substitution estimated by Yogo (2004) for eleven countries using quarterly data from the
early 1970s to the late 1990s. The power comparisons are for the limiting experiment
under standard weak identification asymptotics. In consequence, for the simulations,
the observations are drawn from the following model:(

Ω̂
−1/2
n n1/2ĝn(θ0)

Ω̂
−1/2
n n1/2Ĝn(θ0)

)
∼N

((
μθ

μ

)
�

(
Ik ΣgG

Σ′
gG ΣGG

))
(10.1)

for θ ∈ R, μ ∈ Rk, and ΣgG�ΣGG ∈ Rk×k, where ΣgG and ΣGG are assumed to be
known.20,21 The values of μ, ΣgG, and ΣGG are taken to be equal to the estimated values
using the data from Yogo (2004).22 A sample is a single observation from the distribu-
tion in (10.1) and the tests are constructed using the known values ΣgG and ΣGG.23 The
hypotheses are H0 : θ = 0 and H1 : θ �= 0.

Power is computed using 10,000 simulation repetitions for the rejection probabili-
ties, 10,000 simulation repetitions for the data-dependent critical values of the MVW-
CLR, JVW-CLR, and SR-CQLR tests, and two million simulation repetitions for the crit-
ical values for the PI-CLC tests (which are taken from a look-up table that is simulated
just one time).

Some details concerning the computation and definitions of the SR-CQLR, PI-CLC,
MM1-SU, and MM2-SU tests are as follows. The SR-CQLR test uses ε = 0�01, where ε

18The PI-CLC test does not possess an optimality property because it does not actually equal the mini-
mum regret test.

19The weight functions considered depend on the variance parameters ΣgG and ΣGG in (10.1) below.
20In linear IV models with i.i.d. observations, the matrix ΣgG is necessarily symmetric. However, with

autocorrelation, it need not be. In the eleven countries considered here, it is not.
21The variance matrix in the limit experiment varies slightly depending on whether one treats the IVs as

fixed or random. For example, the asymptotic variance of n1/2Ĝn(θ0) under standard weak IV asymptotics
varies slightly in these two cases. Power results for the SR-CQLRP test that is introduced in the SM when the
limiting variance is computed using fixed IVs are equivalent to those computed for the SR-CQLR test for
the case where the limiting variance is computed using random IVs. In consequence, we do not separately
report power results for the SR-CQLRP test.

22See I. Andrews (2016, Appendices D.3 and D.4) for details on the calculations of the simulation designs
based on Yogo’s (2004) data, as well as for details on the computation of I. Andrews’ PI test, referred to
here as PI-CLC, and the two tests of Moreira and Moreira (forthcoming), referred to here and in I. Andrews
(2016) as MM1-SU and MM2-SU. The JVW-CLR and LM tests here are the same as the QCLR and K tests,
respectively, in I. Andrews (2016).

23For example, Γ̂jn(θ0) in (5.2) is taken to be known and equal to Σ′
gG, and Ṽn(θ0) in (74) is taken to be

known and equal to the variance matrix in (10.1).
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appears in the definition of L̂n(θ) in (5.7).24 For the PI-CLC test, the number of values
“a” considered in the search over [0�1] is 100, the number of simulation repetitions used
to determine the best choice of “a” is 2000, and the number of alternative parameter
values considered in the search for the best “a” is 41. For the MM1-SU and MM2-SU
tests, the number of variables in the discretization of maximization problem is 1000, the
number of points used in the numerical approximations of the integrals h1 and h2 that
appear in the definitions of these tests is 1000, and when approximating integrals h1 and
h2 by sums of 1000 rectangles these rectangles cover [−4�4].

The asymptotic power functions are given in Figure 2. Each graph is based on 41
equispaced values on the x axis covering [−6�6]. The x axis variable is the parameter
θ scaled by a fixed value of ‖μ‖ for a given country, thus θ‖μ‖ ∈ [−6�6], where θ is the
alternative parameter value (when θ �= 0) defined in (10.1) and μ is the mean vector that
determines the strength of identification. The y axis variable is power ×100.

Table 3 provides the shortfall in average-power (×100) of each test for each coun-
try relative to the other seven tests considered, where average power is an unweighted
average over the 40 alternative parameter values. Table 4 provides the maximum power
shortfall (×100) of each test for each country relative to the other seven tests considered,
where the maximum is taken over the 40 alternative parameter values.25 The shortfall in
average-power is an unweighted average power criterion, whereas the maximum power
shortfall is a minimax regret criterion.

The last row of Table 3 shows the average (across countries) of the shortfall in
average-power (×100) of each test. This provides a summary measure. Similarly, the last
row of Table 4 shows the average (across countries) of the maximum power shortfall
(×100) of each test.

The second and third columns of Table 3 provide the concentration parameter, μ′μ,
which measures the strength of identification, and a non-Kronecker index, abbreviated
by non-Kron, which measures the deviation of the variance matrix in (10.1), call it Ψ ,
from a Kronecker matrix. This deviation is given by the formula 1000×minB�C ‖B ⊗C −
Ψ‖, where the minimum is taken over symmetric pd matrices B and C of dimensions 2×
2 and 4×4, respectively, ‖ ·‖ denotes the Frobenius norm, and the rescaling by 1000 is for
convenience.26 Germany, Japan, and the Netherlands exhibit the weakest identification,
while Sweden and Australia exhibit the strongest. The U.K., Australia, Italy, and Japan

24The numerical results are unchanged when ε = 0�001 or 0�05.
25More precisely, let APtc denote the average power of test t for country c, where the average is taken over

the 40 parameter values in the alternative hypothesis. By definition, the shortfall in average-power of test t
for country c is maxs≤8 APsc − APtc , where the maximum is taken over the eight tests considered.

Let Ptc(θ) denote the power of test t in country c against the alternative θ. By definition, the power short-
fall of test t in country c for alternative θ is maxs≤8 Psc(θ)− Ptc(θ) and the maximum power shortfall of test
t in country c is maxθ∈Θ40(maxs≤8 Psc(θ) − Ptc(θ)), where Θ40 contains the 40 alternative parameter values
considered.

Note that, as defined, the shortfall in average-power is not equal to the average of the power shortfalls
over θ ∈ Θ40.

26The non-Kronecker index is computed using the Framework 2 method given in Section 4 of Van Loan
and Pitsianis (1993) with symmetry of C imposed by replacing Âij by (Âij + Âji)/2 in equation (9) of that
paper.
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Table 3. Shortfalls in average-power (×100).

Country μ′μ non-Kron SR-CQLR JVW MVW PI-CLC MM1 MM2 LM AR

Australia 138 17 0�0 0�1 0�1 0�2 2�4 0�1 0�1 6�9
Canada 48 5 0�0 0�0 0�2 0�0 1�4 0�5 0�3 6�8
France 79 6 0�1 0�2 0�0 0�3 0�7 0�3 0�0 8�0
Germany 10 3 0�0 0�1 0�4 0�0 0�2 0�1 2�3 6�5
Italy 84 15 0�5 1�1 2�0 0�2 1�1 0�0 2�6 5�5
Japan 17 14 3�3 3�2 8�9 0�4 0�0 2�4 17�4 0�6
Netherlands 25 3 0�0 0�2 0�1 0�2 0�9 0�5 1�6 6�6
Sweden 174 9 0�3 0�2 0�3 0�2 1�5 0�0 0�3 7�5
Switzerland 31 4 0�1 0�0 0�0 0�4 1�3 1�1 0�5 7�2
U. K. 53 38 0�7 6�0 5�4 0�8 2�5 0�0 7�8 3�8
U.S. 81 10 0�8 2�0 2�9 0�0 7�3 0�8 3�5 3�2

Average over countries 0�5 1�2 1�8 0�2 1�8 0�5 3�3 5�7

have variance matrices that are farthest from Kronecker-product form, while Germany,
the Netherlands, and Switzerland have variance matrices that are closest to Kronecker-
product form.

The test that performs best in Tables 1 and 2 is the PI-CLC test, followed closely by
the SR-CQLR and MM2-SU tests. The difference between these tests is not large. For ex-
ample, the difference in the average (across countries) shortfall in average-power (not
rescaled by multiplication by 100 in contrast to the results in Table 3) of the PI-CLC test
and the SR-CQLR and MM2-SU tests is 0�003. This small power advantage is almost en-
tirely due to the relative performances for Japan, which exhibits very weak identification
and moderately large non-Kronecker index.

The remaining tests in decreasing order of power (in an overall sense) are the JVW-
CLR, MVW-CLR, MM1-SU, LM, and AR tests. Not surprisingly, the LM and AR tests have

Table 4. Maximum power shortfalls (×100).

Country μ′μ non-Kron SR-CQLR JVW MVW PI-CLC MM1 MM2 LM AR

Australia 138 17 0�5 0�6 0�8 1�0 8�2 1�3 0�9 17�2
Canada 48 5 0�6 0�5 0�9 0�7 5�4 3�0 1�7 17�7
France 79 6 0�7 0�8 0�5 1�0 3�0 1�6 0�4 19�9
Germany 10 3 0�8 0�8 2�2 0�6 1�0 0�8 10�6 18�4
Italy 84 15 4�4 5�7 6�5 3�9 9�7 2�3 7�1 17�7
Japan 17 14 21�3 41�4 44�9 8�6 10�1 13�6 85�8 11�9
Netherlands 25 3 0�9 1�1 0�9 1�4 3�9 3�3 8�2 18�6
Sweden 174 9 1�0 0�6 1�0 0�7 4�9 0�4 1�1 19�6
Switzerland 31 4 0�5 0�3 0�5 1�6 4�8 5�5 1�4 18�8
U. K. 53 38 8�4 27�3 23�2 9�0 20�6 7�1 37�0 14�7
U.S. 81 10 5�2 9�0 10�2 2�6 27�7 5�1 11�7 12�4

Average over countries 4�0 8�0 8�3 2�8 9�0 4�0 14�9 17�0
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noticeably lower power than the other tests in an overall sense, and the AR test has no-
ticeably lower power than the LM test.

We conclude that the SR-CQLR test has asymptotic power that is competitive with, or
better than, that of other tests in the literature for the particular parameters considered
here in the particular model considered here. The SR-CQLR test has advantages com-
pared to the PI-CLC, MM1-SU, and MM2-SU tests of (i) being applicable in almost any
moment condition model, whereas the latter tests are not,27 (ii) being easy to implement
(that is, program), and (iii) being fast to compute.
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