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Cache-aided communications have shown potential for sub-
stantial improvement in network performance, which goes 
far beyond that of traditional caching. Traditional caching 

(i.e., the bringing and storing of data closer to the end users) is 
only efficient when a significant portion of the popular files 
can be locally stored. In cache-aided communications, how-
ever, information stored at one user is useful for interference 
mitigation even if it is requested only by another user. The core 
idea in cache-aided communication is to use this interference-
cancellation opportunity to simultaneously serve multiple users 
by sending a sum of multiple packets. By creating opportunities 
for multicasting, the improved performance scales with the ac-
cumulated cache size at all users. This is a great advantage for 
modern networks, where the number of users is typically large, 
and a small amount of memory can easily be allocated at each 
user. This article presents the novel techniques of cache-aided 
communications while focusing on the signal processing aspects 
that lie in the heart of these schemes. In particular, we examine 

the three well-studied signal processing problems at the core of 
cache-aided communications: resource allocation, beamform-
ing design, and interference mitigation.

Introduction
The increased demand for large files (e.g., media) has pro-
duced overwhelming network traffic. The nature of the data 
has shifted from voice and short messages to large files. It is 
expected that by 2020, 75% of total mobile data traffic will be 
attributable to video. The characteristics of this type of data 
can be exploited to improve the performance of data delivery 
networks. In particular, popular videos are typically repeat-
edly requested by multiple users in an asynchronous manner. 
Moreover, prime time is usually associated with videos, i.e., 
the demand peaks during certain hours of the day, rather than 
being uniformly distributed over time.

Caching, bringing the data closer to where they will be 
used and storing them locally, is an efficient approach used 
to exploit the characteristics of such large-size contents to 
reduce the network traffic. Currently, caching is being used 
for data delivery systems, e.g., Netflix and Facebook’s photo 
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caching. However, these systems work based on predicting 
content with high demand and storing popular files on local 
storage units close to the end users. The gain provided by 
such strategies is limited by the size of the local memory and 
the prediction accuracy. In other words, if the individual local 
storage units are not large enough to store a significant por-
tion of the popular files, cached data will be almost useless 
(when users request other files) and the gain of caching will 
be negligible.

Despite the dramatic drop in the cost of memory, the storage 
size on individual fixed or mobile devices is still too small to 
store a substantial fraction of the popular data. However, mobile 
devices have become more popular and the number of mobile 
users is rapidly growing. This leads to a sub-
stantial amount of aggregate storage, which 
is distributed across the network. The ques-
tion is: How can multiple small caches be 
utilized in a cooperative manner to perform 
as a giant cache?

Recently, Maddah-Ali and Niesen [1] 
introduced a novel caching technique, 
called coded caching, which provides a gain 
that scales with the total cache distributed over the network. 
Unlike classical caching, coded caching is beneficial even if 
packets requested by one user are stored in the cache of other 
users. This surprising caching benefit is due to the opportunity 
for multicasting, i.e., when multiple users can be served by a 
single transmission. With coded caching, each transmission is 
a combination of multiple requested packets, where each user 
can retrieve its desired packet by removing the interference 
using the data stored in its cache.

The new coded caching scheme was first proposed for a 
fixed and homogeneous single-hop network. Following this 
pioneering work [1], the benefits of coded caching have been 
studied for various scenarios and applications, including 
device-to-device (D2D) communication [2], dynamic set-
tings where the placement is not necessarily controlled by 
the server (decentralized caching) [3], [4], multihop networks 
[5], cloud networks [6], and multiple-input, multiple-output 
(MIMO) settings [7]–[11]. Currently, the main attention of 
the community is on the practical challenges of coded cach-
ing under nonideal channel models, e.g., packet erasure or 
fading [10], [12]–[16].

Despite its name, the main feature of coded caching is not 
coding in the information-theoretic sense (e.g., error correction 
codes) but rather combining multiple packets, each requested by 
one receiver so that each target receiver can cancel the inter-
fering packets using its previously stored data and retrieve its 
desired packet. This allows for simultaneously serving multiple 
users, and hence leads to an increase in the number of degrees of 
freedom (DoF) in the system. As a result, the cache-aided com-
munication problem can be formulated in the signal processing 
language and solved using the tools and techniques of signal 
processing. In this article, we present the novel aspects of cache-
aided communication while focusing on the signal processing 
problems that lie at the heart of these schemes. In particular, we 

present a simple and tractable problem formulation while high-
lighting the relations to common signal processing problems. 
We show that the challenges of cache-aided communication can 
be largely decomposed into three main problems: resource allo-
cation, the design and coordination of beamforming/precoding 
vectors, and interference mitigation. These problems have been 
well studied in the signal processing community in different 
contexts, and (close to) optimum solutions are advised. However, 
these solutions must be adapted to the emerging field of cache-
aided communication before this technique can be utilized for 
practical networks.

As practical implementations of cache-aided communication 
systems are approaching, many practical concerns and complex-

ity issues still need to be addressed. Thus, 
the signal processing community can make a 
significant contribution to the derivation and 
optimization of novel cache-aided communi-
cation schemes. Furthermore, the signal pro-
cessing community’s experience with solving 
the aforementioned problems and, in particu-
lar, with handling the imperfections and prac-
tical constraints in the network can be crucial 

as cache-aided communication continues to be adopted for prac-
tical implementations.

Relevant works 
The topic of coded caching has received a considerable amount 
of attention in recent years and is highlighted in several sur-
vey papers. In particular, [17] addressed the scaling laws of 
throughput in wireless networks with caching, with a special 
focus on the D2D approach. The challenges of edge caching 
in wireless networks are studied in [18], where the differences 
between wired and wireless caching are outlined. Specifically, 
this article discusses the essential limitations of wireless cach-
ing and the possible tradeoffs between spectral efficiency, en-
ergy efficiency, and cache size. Context-aware networks using 
edge/cloud computing and the exploitation of big data analyt-
ics are investigated in [19]. A tutorial on coded caching is pre-
sented in [20], which provides an introduction for the seminal 
and pioneering papers that opened new avenues in caching as 
well as a brief overview of existing caching solutions from 
an information-theoretic perspective. Moreover, [20] surveys 
some of the industrial challenges of caching and identifies 
bottleneck issues that need to be resolved to unleash the full 
potential of caching in practical systems.

The main distinction of this article from other surveys is its 
focus on the signal processing aspects of caching. In particular, 
we focus on interference mitigation using caching in wireless 
networks. This article also emphasizes the role of spatial reuse 
and the open issues that must be addressed prior to a practical 
adoption of coded caching.

Notation
Throughout this article, we use calligraphic symbols (e.g., )W  
to denote sets. The size of a set A  is denoted by .A; ;  For an 
integer ,N  we denote the set { , , , }N1 2 f  by [ ].N

With coded caching, 
each transmission is a 
combination of multiple 
requested packets, where 
each user can retrieve  
its desired packet. 
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Classical coded caching
The application of caching was conventionally limited to pre-
storing popular contents in storage units close to the end us-
ers and delivering the data from the local copies to reduce the 
server load and bandwidth requirements [21], [22]. The main 
challenge there is to predict users’ requests before they actually 
ask for the data [21], [23], [24]. More importantly, the advan-

tage provided by conventional caching schemes is limited to 
its capacity of local memory/cache and can be negligible if the 
cache size is much smaller than the total size of popular data.

In wireless networks, the available memory on individu-
al devices is small compared to the database size; however, 
with the growing popularity of mobile devices, plenty of such 
small-size memories are available and distributed over all the 

Consider the network in Figure S1(a) with N 2=  files, 
namely W1  and ,W2  each of size 1 megabyte, and 
K 2=  users, each equipped with a local cache size of 
1  megabyte. Assume a perfect broadcast link from the 
server to the receivers. Figure S1(b) displays a naive 
placement strategy, where each user caches one of the 
files. Once the user requests are revealed, the server must 
transmit all of the files that were requested and not stored 
at the requesting user. The tables show the files to be 
broadcast and the load of delivery under different demands. 
The load of delivery is not fixed and its average size over 
different demands is 1 megabyte.

Figure S1(c) depicts a smarter placement strategy 
wherein each file is divided into two halves, each of 
size 0.5 megabytes, i.e., ( , )W W W, ,1 1 1 1 2= " ", ,  and 

( , ).W W W, ,2 2 1 2 2= " ", ,  Each user caches one half of each 
file, i.e, the cache content of user 1 is ( , )Z W W, ,1 1 1 2 1= " ", ,  
and that of user 2 is ( , ).Z W W, ,2 1 2 2 2= " ", ,  Again, the sub-
files to be broadcast for each demand are listed in the 
table. For any demand, the server must send two subfiles, 
each of size 0.5 megabytes.

However, in all cases, the load of broadcast can be 
reduced to only 0.5 megabytes by sending a coded pack-
et. Thus, coded caching can send twice as much informa-
tion over the same period of time.

For instance, consider demands d 11 =  and d 22 =  shown 
in Figure S1(d), i.e., assume user 1 needs W1  and user 2 
needs .W2  Because user 1 has already cached the first 
half of ,W1  it only needs the second half of ,W1  which is

.W ,1 2" ,  Similarly, user 2 needs W ,2 1" , to be able to recov-
er its desired file, .W2  Instead of sending these two pack-
ets separately (uncoded caching), the server can combine 
them and send .X W W, ,2 11 2 5= " ", ,  User 1 can remove 
the interfering part, ,W ,2 1" ,  from X  using its cached data, 

,Z1  and recover .W ,1 2" ,  Similarly, user 2 can decode its 
missing part, .W { }, 12  Clearly, X  is the summation (e.g., 
binary exclusive-OR) of two (binary) packets of size 0.5 
megabytes, and hence we are only broadcasting 0.5 mega-
bytes in a coded scheme, whereas separately broadcasting 
W ,1 2" , and W ,2 1" , requires 1 megabyte of data transmis-
sion. Similar arguments hold for all of the other demands, 
as presented in the figure. 

Traditional Versus Coded Caching for Two Users
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FIGURE S1. Traditional versus coded caching. (a) System model, (b) 
placement of a subset of files, (c) placement of parts of files, and (d) 
coded delivery.
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 networks. A key question is: How can a file stored at one user’s 
cache be utilized to reduce the network traffic when it is only 
requested by other users?

Recently, Maddah-Ali and Niesen [1] demonstrated 
that distributed storage units can be utilized in a cooper-
ative manner to achieve a global gain that is proportional 
to the total available cache. Coded caching is a central 
placement mechanism that stores packets of the popular 
files in users’ memory all over the network. This allows 
for an opportunistic multicasting in the delivery phase 
of the coded caching, in which a single (coded) packet 
can simultaneously serve multiple requests. The multi-
casting of packets to several users increases the utility 
of packets, and reduces the network load and conges-
tion probability during peak traffic time (at the delivery 
phase). A simple coded caching scheme for a two-user 
scenario is depicted in “Traditional Versus Coded Cach-
ing for Two Users.” 

More generally, the single shared-link network studied in 
[1] consists of a network with K  users and a server [base sta-
tion (BS)] with a library of N  files , , , ,W W WN1 2 f" ,  each 
consisting of F  bits, i.e., FWn; ;=  for [ ].n N!  For the sake of 
simplicity, we assume that the number of users does not exceed 
the size of the library, i.e., .N K$  Each user is equipped with a 
storage memory to store up to MF bits in the placement phase, 
which happens during the off-peak time of the network. Then, 
in the delivery phase, each user requests one file and the server 
is required to serve all the users by broadcasting a message 
through a perfect and shared channel.

Placement phase
In the placement phase, prior to receiving users’ requests and 
during the off-peak time of the network, the server selects sub-
sets of all the bits in the library and stores them in the memory 
of user [ ],k K!  which is denoted by Zk  with .MFZk; ; #  The 
placement strategy of coded caching proposed by Maddah-
Ali and Niesen (referred to as the MAN scheme) is symmet-
ric across files and users and allocates a /N1  fraction of each 
user’s cache to each file. Thus, each user will store a /M Nn =  
fraction of each file in its cache.

Focusing on the case that /KM Na =  is an integer, the 
MAN scheme stores each packet in the cache of a  users. Thus, 
each file is split into 

a
K` j equal segments, each of size aF/ K` j 

bits. It is more convenient to index the segments by subsets 
of [ ]K  of size .a  File Wi  will therefore be partitioned into 
{ : [ ], },KW SS,i S 3 ; ; a=  and each segment W ,i S  will be 
stored in the cache of every user k  satisfying k S!  (see Fig-
ure 1). The content of the cache at user k  will be

 { : [ ], , }.K kS S SZ WMAN
,k n S 3 ; ; "a= =  (1)

Using this method, each user will cache 1a -
K 1-` j segments out 

of a total a
K` j segments, for each file. It is easy to verify that 

the number of bits from each file stored in each user’s cache is 
/ .KF Fa n=

Delivery phase
Upon receiving the requests { : [ ]}d k Kk !  from the users (i.e., 
user k  requests file ),Wdk  the server broadcasts a message, ,X  
which is a sequence of coded packets, to serve all user demands. 
The formation of this combination depends on the actual de-
mand profile ( , , )d dk1 f  and thus can be denoted by .X( , , )d dk1 f  
Upon receiving ,X  user k  should be able to reconstruct its de-
sired file Wdk  using its cache content Zk  and ,X  i.e.,

, , [ ].X k KZ W( , , )d d k dk k1 7 !f^ h
In the MAN scheme, at the delivery phase, the server 

provides user k  with missing (not cached) segments of its 
requested file ,Wdk  i.e., all W ,d Sk  where .k S"  However, 
such a missing segment is cached in the local memory of 
exactly a  other users, indexed by elements of .S  The sym-
metric placement guarantees a similar situation with respect 
to every other user in { }.kSA ,=  Thus, at any given time, 
the server can simultaneously serve a subset A  of 1a +  
users by multicasting a linear combination of all such pack-
ets. That is, for any subset [ ]KA 3  with ,1A; ; a= +  the 
server sends

 , [ ], .X K 1A AW \, { }A
j

d j
A

Aj 6 3 ; ; a= = +
!
5  (2)

Z Z Z

Wi

Wi Wi Wi Wi W Wi

Wi WiWi

FIGURE 1. A file partitioning used for placement.
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Note that we consider the file segments as bit streams of the 
same length, and +  denotes binary-exclusive-OR (XOR). It is 
worth mentioning that later in this article, we show that a sim-
ilar operation can be performed using finite field summation 
on modulated sequences, which will be denoted by + instead 
of .+  Each user k A!  has every term in this linear combina-
tion cached in its memory, except .W \, { }d kAk  So, the user can 
suppress the interference to recover its desired packet. Such a 
combined packet has utility ( ),1a +  because it can simultane-
ously serve ( )1a +  users. An example of the MAN scheme 
with K 3=  users is given in “Three-User Coded Caching.”

Performance evaluation
The load of delivery is defined as the normalized size of ,X  
which is the sum of the (normalized) size of the broadcast com-
binations, i.e.,
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This leads to a delivery time [1] of 
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where R  is the rate supported by the common and shared 
links from the server to the users. This represents a significant 
improvement compared to that of conventional and uncoded 
caching, which has a load of ( )D K 1uncoded n= -  and requires 
a delivery time of

 .T K
N
M

R
F1uncoded = -` j  (5)

Another interpretation of (4) can be expressed: Each user 
has cached Fn  bits of its desired file and requires another 
( )F1 n-  bits. Thus, a total of /( )K F K FM N1 1n- = -^ h  
bits are requested by all the users, which can be sent at a com-
mon rate of R. The factor /M N1-  is the (typically small) 
local caching gain due to the parts of the requested files that 
where prestored in the cache of the requesting users. The more 

Consider K 3=  users in the system, where all of the users 
receive information from the server through a common 
perfect broadcast link that supports a rate of R  bits/s. 
Each user is equipped with a cache of size ,MF  where 

/ ,M N2 3=  i.e., each user can prefetch two-thirds of 
each file. We first partition each of the files into

/MK N
K

2
3 3= =c cm m

segments and label them with subsets of {1, 2, 3} of size 
/ ,MK N 2=  as shown in Figure S2(a). Then, each user k  

prefetches all of the segments in W ,i S  with .k S!  The result-
ing placement is displayed in Figure S2(b). Assume that user 
k  requested file ,Wk  for ,k 1=  2, and 3. Each user has two 
segments of its desired file in the cache, and the remaining 
segment should be sent during the delivery phase.

More precisely, segments , ,W W,{ , } ,{ , }1 2 3 2 1 3  and W ,{ , }3 1 2  
must be delivered to the users. To this end, the base station 
(BS) transmits the combination

 .X W W W,{ , } ,{ , } ,{ , }1 2 3 2 1 3 3 1 25 5=  (S1)

Upon receiving ,X  user 1 can remove W ,{ , }2 1 3  and W ,{ , }3 1 2  
using its cache content and recover .W ,{ , }1 2 3  A similar 
argument holds for users 2 and 3.

Note that in each time slot, the BS is broadcasting a seg-
ment (combination) whose size is one-third of the size of a 
file. Given the common rate of R  bits/s and the file length 
of F  bits, the transmission takes only /F R3  seconds. During 
this time, three files are delivered to the users, resulting in 
an overall network throughput of /( / )F F R R3 3 9=  bits/s.

Three-User Coded Caching 

FIGURE S2. A cache-aided communication with K 3=  users. (a) File 
partitioning and (b) cache placement.
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significant gain comes from the fact that each transmission 
can simultaneously serve /KM N1 1a+ = +  users. This 
global caching gain is due to the joint placement and deliv-
ery scheme. In the context of wireless communication, this 
can be captured as a ( )1 a+  prefactor for the rate, which is 
referred to as its DoF.

We also use network throughput to quantify the overall 
number of bits (including the prestored segments) delivered to 
the users per unit of time. Hence, the throughput of the basic 
MAN scheme will be // ( .( ) )KF T 1 1a n= + -  Note that the 
network throughput grows unboundedly as .1"n

For non-integer values a  we can use memory sharing, 
i.e., the network can be treated as an interpolation between 
two separate systems, one with cache / /KM N KM N1 = 6 @ 
and another with / / .KM N KM N2 = ^ h  Hence, the delivery 
load and transmission time can be obtained as a linear  
combination of those of networks with two closest inte-
ger values.

With the description of the placement and delivery phases 
of MAN presented in this section, we provided the necessary 
background information to understand the signal process-
ing aspects of cache-aided communication discussed in the 
“Signal Processing Problem Formulation” section. We 
refer interested readers to the “Coded Caching: A Broader 
Picture” section, where some of the most important follow-
up works related to coded caching are presented.

Signal processing problem formulation

Linear combining versus coding
The main idea of cache-aided communication is the joint 
transmission of information to several users, where each 
user is able to decode its desired data using the data stored 
in its cache. The original approach used an XORing of the 
data required by the different users after making sure that 
all served users have their interfering data in their cache (as 
described previously). The so-called coded caching refers to 
the XOR operation (addition in the binary field), which is 
mostly used in the field of coding and not very typical as a 
signal processing technique. However, the practical imple-
mentation of such schemes in wireless communications will 
definitely be used in the field of signal processing and will 
typically not include XORing.

To introduce the signal processing aspects, we first note 
that a superposition of modulated signals instead of the XOR-
ing in (2) (see also “Traditional Versus Coded Caching for 
Two Users”) will do the work at a high signal-to-noise ratio 
(SNR) [25]. If the transmitter transmits X W W,{ } ,{ }1 2 2 1= +u u  
where W ,{ }i k

u  is the modulated version of W ,{ }i k  and + is 
a simple addition of the coded and modulated data, then 
each user can extract its desired information by simple sub-
traction (e.g., user 1 will estimate ).XW W,{ } ,{ }1 2 2 1= -t u  
The only drawback of this approach is that transmitting 
W W,{ } ,{ }1 2 2 1+u u  will take twice as much power than will 
transmitting ( ).WW ,{ } ,{ }1 2 2 15  This difference becomes 
negligible at a high SNR.

The problem becomes more interesting in multiantenna 
systems, where the information can be further differentiated 
in the spatial domain. In this case, the XORing alternative has 
a disadvantage, as it requires that all served users will be able 
to decode the joint message. Thus, the joint message must be 
sent in a “direction” and at a code rate that will allow for proper 
detection by all of the users. Conversely, the simple addition of 
the massages can be much more efficient because each user 
is only required to decode its own message (and interference 
subtraction does not require decoding).

Adding messages is therefore an important alternative. Fur-
thermore, this allows for simple adaptations of many signal 
processing techniques. In the following section, we focus on 
this approach and give a straightforward description of a cach-
ing scheme that has no “coding,” i.e., the cache is placed in the 
users’ memory without coding and the BS transmits sums of 
modulated data for different users.

System model and problem formulation

Cache placement
The notations for the cache placement were introduced 
in the “Placement Phase” section. At the placement phase, 
the BS divides each file into segments indexed by the 
subset ,S  and stores in the cache of user k  all segments 
W ,i S  for which .k S!  Thus, the cache content of user k  
is { : [ ], [ ], }.n N K kZ W S S,k n S ! 1 !=  We denote the 
 normalized cache size of user k  by / ,M FZk k; ;=  where, for 
generality’s sake, we allow the cache sizes to be different. The 
overall performance is mostly dominated by the average cache 
size //( ) .KMF M F1 k k=

Transmission and channel model
At the beginning of the delivery phase, once the user requests, 
{ },dk  are known, each requested segment, ,W ,d Sk  is encoded 
at the rate supported by its requesting user. If multiple users 
request the same file, it will be encoded at the rate that will 
enable decoding by the weakest user (while other users may 
be able to decode the message after receiving only some of the 
coded symbols).

We denote with W ,i S
u  the digitally modulated symbol set 

resulting from mapping the data packet W ,i S  into a suitable 
signal space codebook. In this article, we do not discuss the 
details of how this can be done. Any suitable coded-modu-
lation technique (e.g., low-density parity check code concat-
enated with a suitable high-order signal constellation) may be a 
practical implementation of the scheme.

Consider a multiple-input, single-output (MISO) commu-
nication scheme, where the BS has L  antennas and each user 
has a single antenna. The nth symbol after match filtering and 
sampling at the kth user is given by

 [ ] [ ] [ ],y n n z nh xk k k= +  (6)

where [ ]nx  is the transmit vector, [ ] ~ ( , )z n N0CNk 0  is the ad-
ditive noise sample, N0  is the power spectral density of the 
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complex white Gaussian noise at each receiver, and h Ck
N1! #  

is the channel vector from the BS to user .k  For this descrip-
tion, we focus on the case where the BS has perfect channel 
state information.

System requirements
The system objective is to allow each user to decode each of 
its desired segments, while transmitting the least number of 
symbols. The ability to detect a message depends on the ex-
act system definition. Using the general definition given so far, 
the ability to decode can be stated using information-theoretic 
terms: we need a sufficient amount of mutual information be-
tween the transmitted symbols and the received signal together 
with the cache content at the specific user.

However, this formulation does not reveal the structure of 
the problem and, in particular, does not tell us how to construct 
the transmitted symbol vectors. Thus, we turn to linear precod-
ing to obtain more insight.

Linear precoding

General linear precoding
For linear precoding, we assign symbols from several seg-
ments to be transmitted at every time interval. The transmis-
sion scheduling is described by a sequence of transmission 
assignments. Each transmission assignment is a set [ ],nT  
where ( , ) [ ]i nS T!  indicates that a symbol from W ,i S

u  is 
transmitted at time n. Then, the transmitted vector is con-
structed by

 [ ] [ ] [ ] [ ],fn E n n u nx ,
( , ) [ ]

, ,i
i n

i iS
S T

S S$=
!

u/  (7)

where [ ]E n,i S  is the energy assigned for this transmission, 
[ ]nf ,i S  is the precoding vector (normalized to [ ] ),n 1f ,i

2
S< < =  

and [ ]u n W, ,i i SS !u u  is the transmitted symbol (a different sym-
bol from the segment at each assigned time).

Considering a specific symbol, described by ( , ) [ ],i nS T!  
user k  will need to decode this symbol if d ik =  (i.e., if user k  
requested this file) and k S"  (i.e., the symbol is not stored at 
user ).k  Attempting to decode the symbol, the desired signal 
gain is

 [ ] [ ] [ ].A n E n nh f, , , ,k i i k iS S S$=  (8)

The receiver can subtract all of the cached symbols, and the 
residual noise plus interference power is given by the condi-
tional variance

 u[ ] [ ] [ ] [ ] ).(n y n A n u nVar Z, , , , ,k i k k i i k
2

S SSv = - u  (9)

To ensure the proper decoding of all the requested files, we 
must verify that each segment is decodable at all requesting us-
ers. A common approximation for the decodability of a packet 
uses the Shannon capacity of an additive white Gaussian noise 
channel, with a multiplicative constant that represents that sys-
tem imperfections. This constant, ,c  is commonly referred to 

as the Shannon gap and takes values between 2-  and .10 dB-  
Thus, we say that segment W ,d Sk  is decodable at user k  if
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Hence, cache-aided communication with linear precoding 
is solvable if there exist assignments, [ ],nT  and matching pre-
coding vectors, such that all users can decode all segments of 
their requested files. This is still a difficult assignment prob-
lem, and the optimal linear assignment is not yet known. The 
only approach that has been solved thus far is that of limiting 
the discussion to zero-forcing (ZF) precoding. We note that ZF 
is typically efficient at the high SNR regime.

The ZF system
Using this approach, we make the following limiting assump-
tions as compared to the general linear case. These assumptions 
result in the most tractable problem formulation thus far:

 ■ Each beamforming vector is selected in the unique direction 
that is orthogonal to the channel vectors of L 1-  users.

 ■ At any given time, exactly /L L KM Na+ = +  users are 
active.

 ■ After cache subtraction, all symbols are detected in the 
presence of noise only.

 ■ The transmission rate to each user is set independently 
from the scheduling decisions.

Also, for simplicity’s sake, we describe only the worst case sce-
nario for the delivery phase, i.e., the case where all users request 
different files.

The first assumption allows for L 1-  users to not be inter-
fered with during the transmission to another user. To comply 
also with the second and third assumptions, we need to remove 
the interference at additional a  users by cache subtraction. 
Hence, every symbol must be stored at the cache of exactly a  
users. Compared to (9), the third assumption guarantees that for 
all the symbols, [ ] .n N, ,k i

2
0Sv =

The last assumption is required for simplifying the trans-
mission scheduling. As stated previously, for each symbol, 
the choice of precoding vectors is completely determined 
by the choice of L 1-  users that receive messages at the 
same time and cannot subtract the given message using 
their cache. Thus, the effective gain for each user (and its 
achievable rate) will be different depending on the combina-
tion of interfered users. This may significantly complicate 
the scheduling [25].

To resolve this, most works turned to either the high 
SNR or ergodic fading regime. With the high SNR regime, 
we consider the performance as the transmission power 
grows to infinity. In such an asymptotic scenario, the 
resulting rate is proportional to the logarithm of the trans-
mission power. Hence, in this regime it is assumed that 
the actual channel gains are negligible and all rates are 
approximately equal.

Another approach, which does not lead to equal rates for all 
users, assumes that each transmission has sufficient-enough 
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diversity so that its rate will converge to its expected rate. For 
example, the ergodic fading regime can be approached in a 
wideband system, where the transmission bandwidth is large 
and spread over many frequency bins. When the bandwidth, 

,B  is large enough compared to the channel coherence time, 
using the law of large numbers, the spectral efficiency con-
verges to its expectation:
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This limit results in a rate per user, that is independent of the oth-
er users in the network. This independent rate can still be differ-
ent for each user. Yet, it allows a tractable problem formulation.

Once the rate per user is determined and does not depend 
on the transmission scheduling, checking whether a segment 
is decodable can be done by simply counting the symbols 
received for this segment by the intended user. In this sec-
tion, we give a mathematical statement of the conditions that 
guarantee decodability. Prior to that, we give a mathematical 
formulation of the aforementioned assumptions, i.e., we define 
what transmission assignments, [ ],nT  are valid.

Let ( [ ]) { :( , ) [ ]}n k d nK T S Tk !=  be the set of active users 
for the specific assignment [ ].nT  A transmission assignment, 

[ ],nT  is valid if ( [ ])n LK T; ; a= +  and for each ( , ) [ ]:d nS Tk !

 ■ Each bit is stored at a  users, i.e., .S; ; a=
 ■ All users that store the relevant segment are also actively 

receiving data, i.e., ( [ ]).nS K T1

 ■ The BS does not send a segment to a user that already 
stores it in its cache, i.e., .k S"

Note that a transmission assignment, [ ],nT  also uniquely de-
fines the precoding vectors. Each precoding vector, [ ]nf ,i S  is 
chosen in the unique direction that is orthogonal to the L 1-  
users that are active and not in the set ,S  i.e., if ,i dk=  we have 

[ ]n 0h f ,i S =,  for any \( [ ]) { }.n kK T S,, !

To design and analyze the network, we do not need to 
choose the actual assignment of symbols for each transmis-
sion. It suffices to characterize the number of symbols sent 
using each assignment type. Denote by nT  the number of 
symbols dedicated to a specific transmission assignment type, 
i.e., uu{ : [ ] } .n n nT TT = =  The problem can be formulated as 
an optimization problem on the variables { }nT  for all valid .T  
The optimization goal is to minimize the transmission time, 
i.e., / ,nT T  subject to the decodability of all the requested seg-
ments. This constraint can now be simply stated as: For each 
user, ,k  and each set S  with S; ; a=  and ,k S"  we require 
that the number of received symbols will be the number of 
coded symbols, i.e.,

 uu .n W
:( , )

,
d

dT
T

S
T Sk

k=
!

u/  (12)

An example of the optimal cache placement and transmission 
scheduling in the homogeneous case is given in “A Multiple-
Input, Single-Output Cache-Aided Communication System,” 
while an example of nonhomogeneous rates is given in “A 
Multiple-Input, Single-Output Cache-Aided Communication 
Systems With Heterogeneous Rates.”

Posing the question as an optimization problem allows us 
to find the best transmission scheduling for each network. The 
resulting optimization problem is linear, and we may utilize a 
variety of algorithms for efficient solution. Note that the for-
mulation herein focuses only on the optimization of the worst-
case scenario, in which all users request different files. A more 
detailed formulation can lead to further improvement in cases 
where several users request the same file.

Keep in mind that the optimization approach rarely leads 
to closed-form performance expressions. For example, for the 
case of arbitrary user rates, the only case with such a closed-
form expression is the case that ,K L a= +  with integer .a  
This is a limited case, as it typically requires unreasonably 
large users’ cache. Nevertheless, it is interesting because it 
shows that for many user rate combinations, all L a+  users 
can be simultaneously served using L  antennas, where each 
user receives information at its own rate. It was shown [10] that 
a minimal time of
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is achievable if the user rates satisfy /( / )LR R1 K
k 1# , ,=  for  

every k  in { , , , }.K1 2 f
For the completeness of the network description, we next 

show that the presented scheme is indeed feasible and achieves 
a DoF of / .L KM N+  In the next section, we present a trans-
mission scheduling scheme for the simple homogeneous case.

Performance in the homogeneous case
In the homogeneous case, all files are of equal size and popu-
larity, and all users have the same rate. In this case, we show 
that all users can receive their desired files while L a+  users 
are served at any given time with no interference. We note that 
this also represents the high SNR regime, and hence proves 
that the system achieves the expected DoF as claimed above.
Again, we focus on the worst-case scenario, where all the users 
request different files.

In the homogeneous case, it is reasonable to adopt the cache 
allocation of the centralized MAN scheme described in (1). This 
cache allocation divides each file into a

K` j equal parts denoted 
by ,W ,k S  where S; ; a=  and the set index, ,S  indicates the set 
of users that store W ,k S  in their cache, i.e., W Z,k iS !  if and 
only if .i S!  This cache allocation is useful in many cases and, 
in particular, when the network is symmetric.

The delivery phase in the homogeneous case is solved by 
simply setting the number of symbols in each valid transmis-
sion assignment type to be identical. Inspecting the conditions 
for a valid transmission assignment in the previous section, 
we note that there are L a+

K` j possible choices for the set of 
L a+  active users in the assignment. Given the active users, the 
transmission to each user, ,k  is characterized by a pair ( , ),d Sk  
where S  is selected from the other active users; therefore, there 
are 

a
L a+ 1- L a+` j  possible assignments for each set of active 

users. Thus, in total, we have aL a+Q $= L 1a+ -K L a+` `j j  
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possible transmission assignment types, and we assign an iden-
tical number of symbols to each: i.e., .n cT =

Each transmission assignment includes L a+  seg-
ments, and each specific segment W ,d Sk  appears in ( )L a+ /  

aK $ K 1-` ` jj  of the transmission assignments, i.e., we have 
a total of a( )J Q L K$ $a= + / K 1-` ` jj  assignments. To 
decode each segment, we need to receive all of its symbols, 
i.e., we need /u u .c JW ,d Sk= u  Knowing ,c  and noting that the 

Consider a cache-aided network with K 3=  users and 
L 2=  antennas at the transmitter. The channel from the 
base station (BS) to user k  is denoted by h ,k  and we 
assume that all the users can decode at a rate of R bits/s. 
Each user has a memory of size of / / ,M N 1 3=  and thus, 
can prefetch only one-third of each file. We first partition 
each of the files into /MK N

K
1
3 3= =c cm m  segments, and 

label them as , ,W W,{ } ,{ }i i1 2  and ,W ,{ }i 3  respectively, for 
every [ ],i N!  as shown in Figure S3(a). Then, each user, 
,k  prefetches segments W ,{ }i k  for all [ ] .i N!  The resulting 

placement is presented in Figure S3(b). Assuming for sim-
plicity that user k  requests the file with an index of ,d kk =  
i.e., ,d 11 =  ,d 22 =  and .d 33 =  Note that, each user has 
one segment of its desired file in the cache, and the two 
remaining segments should be sent during the delivery 
phase.

The transmitter broadcast message can be represented 
(intuitively) as
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1
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2 1 3 3 2 1 1 3 2

= + +

= + +

= = =

= = =

u u u

u u u  (S2)

where W ,i Su  denotes the digitally modulated sequence of 
symbols corresponding to the file segment .W ,i S  Also note 
that the precoder vector hk

=  indicates that the beamformed 
signal is perpendicular to the channel of user k  and will 
be zero forced at this user. The exact mathematical repre-
sentation of the transmitted signals is given in (7).

Let us study the signal received by user 1. During the first 
time slot, user 1 receives

h x h h h h( ) ( ) ( ) ( ),y z z1 1 1 1WW ,{ } ,{ }1 1 1 1 3 1 2 1 2 3 1 1= + = + += =u u

where ( )z tk  is the additive white Gaussian noise observed 
at user k  in time slot t. Note that one interference term is 
zero forced, i.e., h h .0W ,{ }1 1 2 3 =

= u  Moreover, ( )y 11  is a 
combination of the desired codeword W ,{ }1 2u  and another 
interfering codeword .W ,{ }3 1u  However, this interfering 
codeword can be reconstructed from the segment W ,{ }3 1  
stored in .Z1  Once the interference is subtracted, user 1 
can decode segment .W ,{ }1 2  A similar argument holds for 
all the users and all the time slots, where each user can 
decode one desired segment at each time slot.

Note that each transmission can simultaneously serve 
/L KM N 2 1 3+ = + =  users. This is due to the possibility 

of interference cancellation using the cache content at 
/KM N 1=  user and using zero forcing at L 1 1- =  user. In 

each time slot the BS is broadcasting a segment (combina-
tion) of length one-third of the size of a file, at rate R 
(which is decodable for all users). Thus, the duration of 
each transmission will only be /F R3  seconds, where F  is 
the file size. This leads to a total transmission time of 

/F R2 3  seconds. During this time, three files are delivered 
to the users, and therefore, we have an overall network 
throughput of /( / ) .F F R R3 2 3 4 5=  bits/s.

A Multiple-Input, Single-Output Cache-Aided Communication System

FIGURE S3. A multiple-input, single-output cache-aided communication 
system with L 2=  transmit antennas, K 3=  users, and normalized cache 
size of / / .M N 1 3=  The (a) file partitioning and (b) cache placement.
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Consider a multiple-input, single-output (MISO) broadcast 
channel with L 2=  transmit antennas and K 3=  users with 
single antenna, as shown in Figure S3. We assume a total 
cache constraint so that only one copy of each (packet of 
each) file can be prefetched among all of the users, i.e., 

.NFZkk 1
3

=
=

/  We denote the link capacity of user k  
by Rk  and assume a heterogeneous topology, in which 
users 1 and 2 have good channels to support R R 21 2= =  
bits/s, while the third user is further away from the trans-
mitter and can decode only at rate R 13 =  bits/s. We con-
sider a placement strategy that is symmetric across files but 
not necessarily symmetric across users. It is natural to 
expect that a larger cache will be allocated to the weak 
user to minimize the overall transmission time of the deliv-
ery phase.

It turns out that the optimal cache allocation places 
// /M F N M F N F 51 2= =  bits in the cache of users 1 

and 2, while user 3 stores //M F N F3 53 =  bits to compen-
sate for its weakness. The cache allocation is accomplished 
by partitioning each file into three segments, i.e., , ,W W,{ } ,{ }i i1 2  
and ,W ,{ }i 3  which are stored at the cache of users 1, 2, and 
3, respectively, as depicted in Figure S4(b). Note that the 
cache placement is performed prior to the user’s request and is 
identical for all files. In this example, we assume that user k  
requested d kk =  for { , , } .k 1 2 3!

The delivery phase includes the broadcasting of four 
messages. To present the broadcast messages, we must 
further divide the cached messages into smaller segments 
a s  , ,W WW ,{ } ,{ }

( )
,{ }

( )a b
3 1 3 1 3 1= ` j  , ,W WW ,{ } ,{ }

( )
,{ }

( )a b
3 2 3 2 3 2= ` j  

, , ,W W WW ,{ } ,{ }
( )

,{ }
( )

,{ }
( )a b c

1 3 1 3 1 3 1 3= ` j  a n d  ,W W,{ } ,{ }
( )a

2 3 2 3= `  

A Multiple-Input, Single-Output Cache-Aided Communication Systems With Heterogeneous Rates

FIGURE S4. A cache-aided communication with L 2=  transmit antennas. The (a) file partitioning and (b) cache placement.
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number of coded symbols in a segment is a/ ,( )F R / K` j  the 
total number of symbols required to serve all users is

 

a

a // ( )
.T c Q F R

L

K

L
K M N

R
F1

$ $
$

$
a a

= =
+

=
+
-

K

K 1-

`
`

j
j

 (14)

Here, KF  is the total number of bits in the files requested by all the 
users. Compared to (5), we see that the number of DoF given by

 / ,L L KM NDoF a= + = +  (15)

where we see the combination of /KM N  DoF that are achieved 
through cache-aided communication and L  DoF of spatial 
multiplexing using L  antennas.

Related problems

Demand prediction
In some limited systems, the number of files in the database 
is relatively small, hence the notation in the previous section 
seems reasonable. However, in most cases, and in particular if 
we consider cellular systems of 5G and beyond, the database 
size can be huge. As can be verified from the performance 
measures in (14) and (15), a huge database size, ,N  can com-
pletely diminish the gain of caching.

Accordingly, cache-aided communications in large 
systems should cache only a subset of the files in the 
database, preferably the most popular ones [26]. Yet, the 
popularity of files changes over time, and a proper system 
operation would require a continuous update of the most 
popular sets [27].

Even more challenging is the prediction of the popular-
ity of the files. This problem has already attracted much 
attention, although, not necessarily in the context of cache-
aided communications. Because the problem is outside the 
scope of this article, we only refer the interested reader to 
[19] and [28] as two starting points where this problem in 
the context of caching is discussed. These highlight the 
importance of popularity prediction and cache updates. 
They also emphasize the effectiveness of machine-learning 
techniques, as the actual distribution of file popularity is 
typically unknown.

It is worth pointing out that these types of works are more 
related to web caching and content distribution networks or, in 
the wireless framework, on scenarios known as femtocaching. 
In coded caching, there is typically a substantial separation 
between the time scale at which users’ requests are served and 
the time scale at which the popularity of the content evolves. 
As an example, the collection may include the most popular 
1,000 titles from the Netflix library, and every week some new 
movies are included and some old ones are eliminated (while 
a streaming session is on the order of tens of minutes). In this 
context, demand prediction is virtually orthogonal and comple-
mentary with coded caching. One can use a standard scheme 
(e.g., as done by Netflix) to track what users want at the large 
time scale and use coded caching for the delivery of files from 
the current library.

Resource allocation
Resource allocation is one of the most important tasks in 
the optimization of any communication system. In cache-
aided communication systems, traditional resource alloca-
tion problems become more challenging and new problems 

,W W,{ }
( )

,{ }
( )b c

2 3 2 3 j  to keep up with the capacity of the links to 
the users. All three users can be served in four time slots by 
transmitting
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where x ( ),  is the collection of all transmission vectors for 
the th,  time slot and W ,i Su  denotes the digitally modulated 
sequence of symbols corresponding to file segment .W ,i S  
Moreover, beamforming a codeword with precoder vector 
hk
=  guarantees that the received signal corresponding to 

that codeword will be zero forced at user k. The exact 
mathematical representation of the transmitted signals is 
given in (7).

Let us consider the decoding at user 1. For instance, dur-
ing time slot 1, user 1 receives

h x h h h h( ) ( ) ( ) ( ).y z z1 1 1 1WW ,{ }
( )

,{ }
( )a a

1 1 1 1 2 1 3 1 2 3 1 1= + = + += =u u

The user subtracts codeword W ,
( )a
3 1
u " , using its cache con-

tent and then uses the remaining signal to decode .W ,
( )a
1 3" ,  

Similarly, each user can decode all of the missing seg-
ments of its requested file.

Note that each transmission time takes /F 10 seconds, and 
the total transmission time is . F0 4  seconds, after which, all 
users can decode their requested files. Because three users 
are served during this time, the overall network throughput is 

/ . .F F3 0 4 7 5=  bits/s. In contrast, with equal cache place-
ment, the minimal time to serve user 3 is · R

F
3
2

3
 seconds, 

which leads to a throughput of only 4.5 bits/s. This shows that 
an optimized coded caching in MISO brings additional gain 
by balancing the load of the network.

A Multiple-Input, Single-Output Cache-Aided Communication Systems With Heterogeneous Rates 
(Continued )
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need to be addressed. In this section, we discuss the power 
allocation as an example of a traditional resource alloca-
tion problem that becomes more complicated, and then we 
discuss the cache allocation as an example of a new alloca-
tion problem.

Note that any resource allocation problem is strongly relat-
ed to the transmission scheduling problem. The transmission 
scheduling is, by itself, a resource allocation problem that 
determines which segments will be allocated to each transmis-
sion time. So, allocating any additional resources can only be 
done in coordination with transmission scheduling.

Power allocation
The power allocation problem requires finding the optimal 
transmission energy for each symbol, which minimizes the 
time required to serve all the users. The main difficulty in the 
optimization of the power allocation is the need for a closed-
form performance expression. Such an expression, which can 
be written as a function of the transmission powers, currently 
exists only for the limited case where the number of users 
is exactly / .K L KM N= +  As a result, this is also the only 
cache-aided communication scenario where the optimal power 
allocation is known [10], [29].

This power allocation is shown to be a variation of the 
water-filling algorithm with a rate saturation. As the cache-
aided communication cannot take advantage of users with a 
very high rate, the rate of such users is saturated and the extra 
power is used for other users. Optimal power allocation for 
other cache-aided communication scenarios still remains an 
open problem.

Cache allocation
Cache allocation includes 1) allocating the memory (cache 
size) for each user and 2) allocating the cache content. The al-
location of cache content means the choice of sets W ,i S  for 
each i  and ,S  usually under the constraint of user cache size 
of MF bits.

For example, for nonuniform file popularity, it is likely that 
popular files will be stored more often than others. Thus, we 
may have u u uu WW , ,i j SS !  when files i  and j  have different 
popularity. This has mostly been studied for a single-antenna 
BS and formulated as linear optimization problem [30]. It was 
shown that the uniform placement of the centralized MAN 
scheme [1] is indeed optimal when the file popularity is uni-
form. However, in the case of nonuniform popularity, the opti-
mal placement performs better than the uniform.

Contrarily, in the case of uniform file popularity, while the 
placement is still symmetric across the files, it is not necessar-
ily symmetric across users. That is, if the BS decides that user 
k  stores bit number ,n  then it will store this bit from all files in 
the database. So, we have u u u uW W, ,i jS S=  for all i and j, but 
not necessarily u u u u.W W, ,i iS S1 2=

For such a case, we observe that the cache placement optimi-
zation is much simpler for /u u .KM N 1S = =  In this case, there 
is no meaning to the question “Which specific bit is stored at 
which user?” Hence, the only cache allocation decision that has 

an effect on the performance is the users’ cache sizes. Converse-
ly, for / ,KM N 12  there will be overlap between users’ caches 
(i.e., a bit may be stored at more than one user). The choice of 
which users’ caches will overlap can have an effect on perfor-
mance in a nonhomogenous network.

Another improvement can be gained in networks that allow 
for an optimization of the cache size per user depending on the 
channel qualities. Recall that cache allocation occurs during 
the placement phase, and in most scenarios, at this stage the 
system has no knowledge of the future states of the channels. 
The typical approach employed is to use an equal cache size 
for all users.

In some cases, the users’ delivery rates can be predicted. Two 
examples of this are 1) in fixed wireless networks, where the 
rates are rather fixed or 2) in low-orbit satellite communications, 
where the rates change faster but more predictably because satel-
lites travel in known orbits. In such cases, the cache size at each 
user can be adjusted to partly compensate for the different rates 
and increase the network throughput (an illustrative example 
is discussed in “A Multiple-Input, Single-Output Cache-Aided 
Communication Systems With Heterogeneous Rates”). In the 
case of multiantennas, this problem was framed as a linear opti-
mization problem, albeit with a number of variables that grows 
exponentially with the number of users [10].

Caching for scalable coding
The cache-aided communication problem is usually studied 
in the strict fairness setup. The typical problem formulation is 
of equal size files, and each user requests a single file. Thus, 
the objective is to supply to each user the same amount of 
data, regardless of the channel qualities. The strict fairness 
constraint makes the network very sensitive to the perfor-
mance of the weakest user. This is in contrast to other net-
work-optimization works, which typically focus on the total 
network throughput.

An interesting scenario that challenges this fairness 
assumption is scalable coding. With scalable coding, the same 
content (e.g., a movie) can be compressed at divergent rates 
to produce distinct types of quality for a variety of users. 
Reproducing lower-quality versions by using lower data rates 
is desired, e.g., for diverse equipment types (e.g., different 
screen sizes), dissimilar channel conditions, or a range of con-
tent pricing. Because of this, the same file may be requested 
in the network at several quality levels. Scalable coding allows 
for the encoding of the file at several layers. Users that decode 
only the first layer will reconstruct the content at the lowest 
quality (highest distortion), while users that decode multiple 
layers will be able to refine the reconstruction and realize 
higher quality.

Having several layers for each file makes cache alloca-
tion much more interesting [31]. In particular, if the desired 
quality of each user is known in advance, both the cache 
allocation and placement can be optimized for the specific 
desired quality of each user. Obviously, such an optimiza-
tion results in a better utilization of the cache and higher 
network throughput.
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Effect of transmitter cache
In a network with multiple single-antenna BSs, cache can be 
used to facilitate cooperation between the BSs. This was stud-
ied in a network where all BSs are synchronized and make 
joint scheduling decisions but do not store the complete data-
base. In such a case, each bit can be transmitted only from the 
BSs that store them in their cache. Thus, a ZF precoder that 
nulls the interference caused by the transmission of a symbol 
can only be used in these BSs. 

Denoting the cache size at each BS with M FT  and assum-
ing that /LM NT  is an integer (where L  is the number of BSs), 
each bit is accessible to /LM NT  antennas. Each transmission 
can therefore only be zero forced at /LM N 1T -  users. Com-
bined with the gain of the receivers cache, the number of users 
that can be served simultaneously (hence, the DoF of the sys-
tem) [32] is

 .
N

LM KMDoF T= +  (16)

Note that if each BS has access to the whole database, com-
plete cooperation can be established between all BSs, and the 
performance will be characterized by the single BS case that is 
equipped with L  antennas. In this case, we have ,M NT =  and 
(16) simplifies to (15).

It is important to emphasize that (16) gives an achievabil-
ity result, and the maximal performance is not yet known. 
For example, in the specific case of L 3=  and / /M N 2 3T =  
and ,M 0=  it was shown [32] that when using interference 
alignment the DoF is 18/7, which is significantly higher than 
the DoF of 2 that is achievable according to (16). The best-
known general upper bound on the DoF of linear precod-
ing (also termed one-shot coding) [32] is two times the DoF 
given in (16).

Multiserver wireline network
Surprisingly, a similar channel model can be found in wireline 
multiserver networks. Using the concept of network coding, in 
some scenarios it is beneficial for each server in the network to 
forward a linear combination of its incoming packets. This lin-
ear combination is performed over a large-enough finite field 
so that the network is invertible. The operation of the whole 
network can then be represented by a matrix.

A central network manager controls multiple servers, 
which need to jointly serve multiple users. These multiple 
servers act as antennas in the wireless model presented above. 
Accordingly, the output at each user is described as a multi-
plication of a transmitted vector and a channel matrix, just as 
in (6), with the only differences being the operations over a 
large finite field instead of over the field of complex numbers 
[8] and the absence of noise. The same transmission schemes 
are applicable and result in the same performance gain.

The subpacketization problem and the role  
of spatial multiplexing
For the single shared-link network presented in [1], the major 
problem of the applicability of coded caching schemes to real-

world systems is represented by the very large subpacketization 
order, i.e., the number of subpackets (segments) that each file 
Wi  in the library must be partitioned into. In the MAN scheme 
with K  users, N  files, and cache memory per user MF 
bits, assuming that /KM Na =  is an integer, each file must be 
split into a

K` j  subpackets. Letting / [ , ]M N 0 1!n =  denote 
the fractional memory level, i.e., the fraction of the 
whole l ibrary that each user can cache, the subpack-
etizat ion order of MAN is given by ( ( )),exp K

K
K H.
n

nc m  
where ( ) ( ) ( )log log1 1H n n n n n=- - - -  is the binary en-
tropy function. Therefore, the subpacketization order is expo-
nential in K  for a given fractional memory level .n  

Denoting the length of each file by F  bits, it is clear that 
F  must be at least as large as the subpacketization order, i.e., 
the file size required by MAN is also ( ( )).expO K  (In practice, 
the file size should be even larger as the transmission always 
processes a packet of many bits at a time.) For example, a sys-
tem with K 500=  users where each user caches a fraction 

.0 01n =  of the library, would require a minimum file size 
in bits . .F 2 5 10· 11.  This means that the required file size is 
at least 250 gigabits. Taking into account that the typical size 
of a movie encoded in standard definition is of the order of  
1 gigabits, we see that the file size required by such a scheme 
is between 1 and 2 orders of magnitude larger, and therefore, 
completely impractical.

The subpacketization order problem is exacerbated by the 
fact that, in a practical media streaming system, a streaming 
session consists of a sequence of demands of video “chunks,” 
corresponding to a few seconds of video. To cope with asyn-
chronous streaming sessions, each video chunk of each video 
file should be treated as a “file” Wi  in the formalism of 
MAN, presented in this section [1]. It follows that, in practi-
cal video steaming applications, the actual size of the video 
chunks, ,F  is of an order of a few megabytes, which is four or 
five orders of magnitude smaller than that required file size in 
the example above.

Furthermore, it was proved in [33] that any decentralized 
caching scheme based on symmetric random caching, i.e., 
where each user caches a fraction n  of the bits of each file 
selected at random with uniform probability, independently of 
the other users, must have F  that grows superexponentially in 
K  to achieve a ( ).O KDoF =  For example, the load expression 
of the decentralized MAN scheme in [3] [see (22)] is valid only 
in the limit of F " 3 and fixed .K  In contrast, in [33] it is 
shown that if F  grows less than superexponentially in ,K  then 
the maximum achievable DoF does not exceed 2.

Cache replication
Several methods have been proposed to cope with the subpack-
etization order problem (e.g., see [34]–[39]). These methods 
can be (roughly) classified into optimization-based (e.g., [34]–
[36]) and graph-theoretic/combinatorial methods (e.g., [37] and 
[38]). Unfortunately, they are typically quite complicated and 
not flexible in terms of system parameters.

A much simpler approach consists of cache replication. 
For the centralized case, we create a MAN packetization 
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for a nominal number of users G, such that the subpacketi-
zation order ( ( ))exp GH. n  is kept to a reasonable value. 
For example, for G 100=  and .0 01n =  we have .F 100=  
Then, we divide the user population in G  groups of K/G 
users each (assume for simplicity’s sake that K/G is an inte-
ger). Users in the same group , ,g G1 f=  cache exactly 
the same packets, i.e., the gth cache configuration is repli-
cated across all K/G users in each group g. In the delivery 
phase, a delivery array of dimension /G K G#  is formed by 
arranging the requests of the users in the same group by 
rows. Hence, the system delivers the requests by serving 
sequentially the columns of the delivery array. Note that 
each column forms a MAN scheme with G  users because, 
by construction, the users in each column belong to dif-
ferent groups. It follows that all requests can be delivered 
with a load equal to the load of a G-user MAN scheme, 
given by /( )G G1 1n n- +^ h times the number of columns 
K/G. This yields

 
( )

.D
G
K

G
G
1

1
·

n

n
=

+
-

 (17)

By letting G  be a function of K, this scheme achieves a very 
desirable tradeoff between subpacketization order and DoF.

A decentralized version of the cache replication approach 
is proposed and analyzed in [39] (see also [40]). In this case, 
users simply choose one of the g  groups (and the corre-
sponding cache content) randomly and independently. We 
refer to the number of users in group g  as the gth occupancy 
number, denoted as .g,  The vector of occupancy numbers 
( , , )G1 f, ,  is random and follows a multinomial distribution 
over all possible G-way integer partitions ( , , )G1 fh h  of K. It 
follows that the delivery for this problem, for given occupan-
cy numbers, is identical to the shared caches network stud-
ied in [41], for which an optimal delivery under symmetric 
caching (as enforced by the cache replication construction) 
consists of sorting the occupancy numbers ( ) ( )G1 g, ,$ $  
in a nonincreasing order, such that ( )g,  denotes the size of 
the gth most populated group, and forms a delivery array of 
size .G ( )1# ,  Such an array has empty elements because, in 
general, groups have fewer than { }max( ) g1, ,=  users. Then, 
each column of the array is served by an improved MAN 
scheme that avoids sending XORs when they are not useful 
for at least one user (in fact, each column is served by the 
improved delivery scheme of [42]). The resulting load for 
{ }( )g,  is given by

 ( , , ) ,

G

D
G
G

G g

( )

( )

G g
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1

1
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n
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=

-
n

=
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c m
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/  (18)

Here, for simplicity’s sake, we assume that Gn  is an integer. If 
not, the usual memory-sharing argument holds and the convex 
envelope of the load/memory points for { , , , , }G G0 1 2 f!n  
is achievable.

It turns out that this load is information-theoretically opti-
mal for any given configuration of the occupancy numbers 
[41], in the case of distinct demands (which requires )N K$  
and uncoded placement.

As a rough upper bound for the average load, where the 
averaging is with respect to the occupancy numbers, we have 
(trivially)

 [ ( , , )] [ ]·
( )

.D
G

G
1

1
E E ( )G1 1f, , ,#

n

n

+
-

 (19)

By comparing (17) and (19), we note that the difference is gen-
erally small. In fact, [ ]E ( )1,  is the expectation of the maximum 
of G  multinomial variables. Because each occupancy num-
ber g,  is marginally binomially distributed with parameters 
/( , ),K G1  its expected value is /[ ] .K GE g, =  Now, although 

the ordered statistics of a jointly multinomial random vector 
are generally difficult to characterize, [ ]E ( )1,  behaves as K/G 
up to the logarithmic factors in G. Therefore, the average load 

[ ( , , )]DE G1 f, ,  of the decentralized scheme has essentially 
the same behavior as that of the centralized scheme in (17). A 
more refined analysis is given in [40].

Exploiting spatial multiplexing
In the previous section, we explained how cache replication 
provides a viable approach for achieving a competitive trad-
eoff between DoF and subpacketization order. However, the 
fact that the delivery array columns are served one by one 
in sequence prevents such schemes from reaching low sub-
packetization order with the same (ideal) DoF of the MAN 
scheme for the single shared-link network. Intuitively, if we 
can “parallelize” the different columns of the delivery ar-
ray using spatial multiplexing, we should be able to achieve 
both low subpacketization order and optimal DoF at the 
same time.

Following this idea, we revisit the MISO broadcast channel 
with caches at the receivers, previously discussed in the “Signal 
Processing Problem Formulation” section, and present a dif-
ferent scheme achieving the low subpacketization proposed in 
[43] and the same optimal DoF of the ZF precoding scheme in 
the “Signal Processing Problem Formulation” section. Consid-
er a MISO broadcast channel with K  users, a BS with L anten-
nas, a library of N  files of size F  where each user has cache 
memory MF bits, yielding fractional memory level / ,M Nn =  
such that Kn  is an integer. For the sake of simplicity, assume 
that L divides both K  and .Kn  We partition the users into 

/G K L=  groups of L users each and use the cache replication 
approach. The cache placement consists of cache replication 
as explained previously: create a MAN subpacketization with 
parameters ( , , ,  ),N M G Fand  and let all users in group g to 
cache the same content. Note that this subpacketization consists 
of G

G
n
c m subpackets. Because / ,G K L=  the subpacketization 

order of this scheme is /( ( )) ( ( )) ,exp expK L KH HL. n n=  
the Lth root of the subpacketization order of the “classical” 
scheme presented in the “System Model and Problem Formu-
lation” section. Referring to a previous example, for ,K 500=  
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. ,0 01n =  and L 8=  antennas, we find F 27.  in contrast to 
the case of L 1=  for which . .F 2 5 10· 11.

The delivery consists of simultaneously serving the L sec-
tions of the delivery array by combining a K/L-user MAN 
scheme with the L-fold spatial multiplexing obtained by ZF 
MIMO precoding. Figure 2 qualitatively shows the delivery 
array of dimension / ,K L L#  where each column is formed 
by users belonging to distinct caching groups. Therefore, each 
column can be served using a K/L-user MAN scheme; howev-
er, unlike for the single shared-link network, here, the inherent 
spatial multiplexing of the MIMO channel can be used to serve 
all the L slices simultaneously.

Due to space limitations, we omit the details of the com-
bined coded caching and MIMO precoding scheme, which 
can be found in [43]. The important point to notice here is that, 
although in the basic cache replication scheme for the single 
shared-link network we have to serve the sections of the delivery 
array in sequence [see (18)], in the MIMO case, by exploiting 
spatial precoding, we can serve up to L sections simultaneous-
ly. In general, each user receives interference from other users 
in the same section and from users in different sections. If the 
number of interfering sections is not larger than the number of 
antennas L, then this second type of interference (intergroup 
interference) can be zero forced by MIMO precoding, while the 
first type of interference (intragroup interference) is handled in 
the usual coded caching way: it can be canceled at the receiver 
because each user has all of the interfering packets in its cache, 
except the one it needs to decode.

Because the L sections of the delivery array are served 
simultaneously (by spatial multiplexing), the load is the same 
as that of a single MAN scheme ( , , ,  ).N M G Fand  Therefore, 
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Note that the achieved DoF of this scheme are given 
by / ,L K L KM Nn+ = +  as previously obtained in the “Per-
formance in the Homogeneous Case” section, which are 
known to be optimal under uncoded placement and distinct 
user demands.

Exploiting spatial reuse in extended (cellular) networks
In this section, we present a simple construction able to 
achieve the same DoF of the single BS MISO broadcast chan-
nel, in the case of an extended cellular network with spatial 
reuse. Consider a multicell system covering a certain geo-
graphic area of size A with B single-antenna BSs. A popula-
tion of users is initially distributed as a Poisson point process 
(PPP) of intensity .m  The number of users K  in the area A is 
a Poisson-distributed random variable with a mean of .Am  
The users move around the coverage area according to some 
random walk with independent increments. It is well known 
that, in this case, the marginal spatial distribution of the users 
at each point in time is also a PPP with intensity .m  We wish 
to design a scheme robust to mobility, i.e., the cache place-
ment is done a priori and independent of the user positions, 
with the system capable of delivering the user requests for 
any realization of the PPP.

As discussed previously, we partition the users into 
G  groups and use a MAN placement with parameters 
( , , ,  )N M G Fand  by replicating the cache content for all 
users in the same group , , .g G1 f=  Users select groups 
at random, such that each user group forms an indepen-
dent thinning of the original PPP so that each user group 
is distributed according to an independent PPP with inten-
sity / .Gm  Assuming a symmetrical layout where each cell 
has the same area, A/B, it follows that the number of users 
of a given group g  in each cell is an independent Pois-
son random variable with a mean of / ( ).A BGm  Let us 
focus on a given reference cell and denote by , , G1 f, ,  
the number of users in groups , ,g G1 f=  inside the cell. 
As mentioned previously, these occupancy numbers are 
independent and Poisson distributed with the same mean: 
/ ( ).A BGm  The delivery process at each cell works in 

the same way, as explained in the “Cache Replication” 
section. The BS forms a delivery array with occupancy 
numbers , , G1 f, ,  and serves each column of the deliv-
ery array in sequence, incurring a load given by (18). The 
average cell load can be trivially upper bounded by (19), 
where now [ ]E ( )1,  is the expected value of the maximum 
of G-independent Poisson random variables. Accordingly, 
it appears that [ ]E ( )1,  is similar to / ( )A BGm  (the mean of 
an individual occupancy number), up to the logarithmic 
terms in G.

For large area A, the number of users K  is very close to its 
mean, i.e., .K A. m  Using / ,K Am =  we find that the mean of 
the occupancy numbers is /( ).K BG  Thus, a sensible choice 
for G  is / ,G K B=  yielding that each cell contains, on aver-
age, one user per group. Using the simple upper bound (19) 
with this choice of G, we find the average load of each cell, 
that is,

G
K

L

L

L

μG 

FIGURE 2. A qualitative representation of the delivery array of the MISO 
broadcast channel scheme in [43], where coded caching operates “on the 
columns” and spatial multiplexing operates “on the rows.”
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Comparing (21) with (20), we see that the multicell system 
yields DoF equal to /( ) [ ],B K E ( )1,n+  where [ ]E ( )1,  is of the 
order of .log G  Neglecting this logarithmic term, the DoF 
of the multicell system take on the same form as the DoF 
of a single-cell, cache-aided MISO broadcast channel with 
L B=  antennas. Because the subpacketization is formed for 

/G K B=  groups, as long as the number of users per cell K/B 
is a constant that does not grow with K, this system achieves 
a fixed subpacketization order ( ( )),exp GH. n  while both 
the number of users K  and the number of cells B grows 
arbitrarily large as long as they grow with fixed-ratio G. 
Note that present cellular systems are designed to balance 
the number of users per cell such that each cell handles a 
constant number of users to avoid congestion; therefore, the 
operating conditions of / ( )K B O 1=  are realistic for a well-
designed cellular system.

Finally, we observe that the aforementioned simple analy-
sis is done with the assumption that all cells can operate simul-
taneously on the same frequency band (frequency reuse 1). If 
the intercell interference resulting from reuse 1 is too large, 

then a standard frequency reuse scheme with some reuse fac-
tor m can be employed. In this case, the load is increased by 
m, which is typically a small integer (e.g., for the classical 
hexagonal layout typical values of m are 3, 4, or 7). Figure 3 
shows the architecture of a multicell network based on these 
ideas. A more refined analysis of the achievable average load 
as well as a mixed-integer linear programming optimization 
problem for the case of reuse 1 and intercell interference mod-
eled by the so-called protocol model, which serves as a simple 
conceptual model for a collision-based all-or-nothing interfer-
ence channel (see the definition in [2]), is given in [44].

Coded caching: A broader picture
The basic MAN scheme was first introduced for the single 
shared-link network in [1]. Since then, several important 
 follow-up works have appeared in the literature and present 
different aspects of coded caching. For the sake of complete-
ness, in this section we briefly review some of the main chal-
lenges of coded caching addressed in these works.

Centralized versus decentralized caching
In many applications, the centralized placement of the MAN 
scheme is not practically feasible. For example, the set of us-
ers present in the network may change from the placement 
to the delivery phase because users join or leave the network 
in a dynamic manner. A decentralized caching scheme is 
proposed in [3] where the placement phase for each user is 

X

X
X

X

X X
X

FIGURE 3. A qualitative representation of a cache-aided multicell system, handling mobility and the small subpacketization order. 
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performed individually and independently from other users. 
More precisely, each user k  stores MF/N packets from each 
file, chosen uniformly at random, and independently across 
the files and users. Similar to a centralized scheme, the server 
tries to maximize the utility of a multicasting message by 
combining requested packets; however, in the absence of a 
centralized placement, a packet intended for user k  may be 
cached at a random number of other users, rather than at ex-
actly /KM Na =  users. Therefore, a wide range of utilities 
for multicasting packets is available, which results in an ex-
pected delivery time of

.T
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D F K
N
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KM
N

N
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R
F1 1 1· K

decentralized-caching = = - - -` c `j j m  
 

(22)

This leads to a loss compared to the delivery time of the cen-
tralized case [3].

Fundamental limits and optimality
The scheme proposed in [1] offers a significant global gain 
over an uncoded caching scheme that serves the users individu-
ally. However, a priori it is not clear whether it can be further 
improved using a more sophisticated placement and delivery 
scheme. Characterizing the optimum gain and the exact tradeoff 
between the cache size and the delivery load are not yet fully 
addressed. A cut-set-type argument was provided in [1], which 
proves that the basic MAN scheme is within a constant multi-
plicative gap from the optimum scheme. Several tighter outer 
bounds on the optimum tradeoff have been developed [45]–[50].

In particular, Wan et al. in [51] and [52] proved that the basic 
MAN scheme is optimal if all of the following conditions are 
fulfilled:
1) the cache contents are limited to being collections of segments 

of the files without any precoding (uncoded placement)
2) the cache contents are jointly and centrally optimized (cen-

tralized caching)
3) the user requests are all distinct (the worst demand profile).
This result was generalized in [42], where assumptions 2) and 
3) are relaxed. More precisely, the optimum exact tradeoff be-
tween the cache size and the delivery load under the assump-
tion of uncoded placement is characterized in [42]. It is shown 
that, when there is no overlap between the users’ requests, the 
schemes of [1] and [3] are optimum for centralized and decen-
tralized caching, respectively. Moreover, a novel caching strat-
egy is introduced in [42] to exploit commonality among user 
demands and improve upon the gain of the basic MAN scheme, 
which shows that the new scheme is information-theoretically 
optimum. This fully characterizes the optimum tradeoff for the 
uncoded placement and the single shared-link network.

Coded versus uncoded placement 
Even in the original work [1], it was observed that a coded 
placement [i.e., when the data placed in the caches are func-
tions (e.g., XORs) of the original files] can improve the overall 
system performance and further reduce the load of delivery. 
Characterizing the optimum tradeoff and developing cache de-

sign for coded placement under centralized setting is studied in 
[53]–[56]. The common feature in the proposed cache designs 
is interfile coding, which allows for the combining of packets 
from different files and caching the coded packets during the 
placement phase. Note that such coded prefetched packets will 
be useless if the interference cannot be canceled during the 
delivery phase. In contrast, intrafile coded placement is intro-
duced in [4] and [57], where it is demonstrated that individually 
encoding the files in the database using an erasure code can 
reduce the delivery load in the decentralized scheme. This is 
further improved upon using subspace coding in [58]. Finally, 
[59] develops an information-theoretic converse bound (infea-
sibility) that applies to any placement (coded or uncoded) and 
proves the optimality of the scheme in [60] within a factor of 
2, which means that any more-complicated coded placements 
can gain at most a factor of 2 in the load with respect to the 
conceptually simpler uncoded placement of [60].

Network topologies
Beyond the single shared-link network considered in [1], sev-
eral other coded caching network topologies have been studied 
in the literature. Here we summarize the most popular ones, 
for which often exact optimality or order optimality (i.e., the 
minimum worst-case load optimality up to multiplicative fac-
tors) have been determined.

Tree networks
In [1], the single shared-link network is generalized to a tree 
network where the server is at the root and the users are at the 
leaves. Intermediate nodes simply route the XOR-ed packets 
from one tree layer to the next. It is shown that a combination 
of routing and the original MAN scheme is order optimal for 
the tree network. The routing algorithm is very simple: con-
sider an intermediate node in the tree at layer .,  Such a node 
receives XOR-ed packets, ,XS  from its parent at layer ,1, -  
and routes them to its ith child at layer 1, +  whenever at least 
one user k S!  is present in the subtree rooted at the ith child. 
That is, an XOR-ed packet is passed “down” to a node if it is 
useful for at least one (grand)child of that node.

Hierarchical two-level network 
In [5], a network formed by the server, a layer of relays, and a 
layer of end users is considered. The server communicates with 
the relays via a single shared-link network and each relay also 
communicates with a subset of users via a “local” single shared-
link network. Each user receives from only one relay. Caching 
memory is present at the relays and at the users. This network is 
called hierarchical coded caching because it is composed of a 
two-level hierarchy of single shared-link networks.

Shared caches network with arbitrary occupancy numbers 
In [41], a variant of the single shared-link network is considered, 
where a server communicates with a layer of intermediate nodes, 
each of which has cache M via a single shared-link  network. Each 
intermediate node serves a different number of possible users via 
ideal infinite capacity links. The number of users connected to a 
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given intermediate node is denoted as the occupancy number of 
that node. The model may be motivated by a network of small-
cell BSs with caches, which receive information from a control-
ling server or macro BS via a broadcast link (single shared-link 
between server and intermediate nodes), and serve their own us-
ers independently via a much faster local “access network,” in 
each small cell. This model is formally identical to the case of 
shared user caches where the group of users connected to the 
same intermediate node actually share the same cache. It is also 
isomorphic to the case of users with identical copies of the cache, 
as originated by cache replication discussed more extensively in 
the “Exploiting Spatial Reuse in Extended (Cellular) Networks” 
section. In fact, all of the users connected to the same intermedi-
ate node behave as if they had their own individual cache, but 
the placement scheme replicates the same cache content in each 
one of them. Furthermore, the model is also related to the case of 
multiple requests; in fact, we can identify each individual node as 
a user, but each user makes multiple requests (one for each of the 
actual users connected to the intermediate node).

Multiserver linear network
This topology, presented and studied in [8], considers L 1$  
servers, each of which has access to the full file library, serv-
ing K  users, each of which has a cache size of .M  The relation 
between the L  inputs and the K  outputs is given by ,y Hx=  
where ,y xF Fq

K
q
L! !  and H Fq

K L! #  are defined over a (typ-
ically large) finite field, .Fq  The rationale for this model is that 
the L  servers communicate to the K  users via some network 
for which end-to-end linear network coding is used instead of 
Internet Protocol routing. In this way, each user receives a lin-
ear combination of the information packets sent by the servers. 
The finite field size is chosen such that matrix H  has rank 

{ , }min L K  with high probability when the network coding 
combination coefficients are chosen randomly.

The results for the multiserver linear network apply imme-
diately to the case of a physical MISO downlink channel where 
the server is colocated with the BS and has L  antennas, and the 
K  users have a single antenna each. The Gaussian multiuser 
MISO version of the problem was studied in [25] and [43] and 
is examined in greater detail in the “Signal Processing Prob-
lem Formulation” section.

Gaussian interference channel
A generalization of the MISO downlink coded caching prob-
lem is a scenario in which the transmit antennas are separated 
transmitters, each of which has an individual cache of size MT  
not necessarily equal to M  (cache at the receivers). In this case, 
a necessary condition for the successful delivery of any user 
request is that the whole library can be stored in the network, 
i.e., .M L MK NT $+  A one-shot precoding solution for this 
network was provided in [32], while more elaborate schemes 
based on interference alignment with dimension expansion or 
signal-level expansion was presented in [61]. A recent exten-
sion of the one-shot precoding scheme to the case of nonfully 
connected interference channels arising from a cellular topol-
ogy is presented in [62].

D2D coded caching
In [2], a D2D version of the coded caching problem is proposed 
and an order-optimal scheme is provided. The D2D network 
consists of a shared ideal channel where all the nodes can 
broadcast to all the other nodes, but only one node can talk at 
a time. This network may be motivated by a carrier sense mul-
tiple access D2D scheme (e.g., Wi-Fi Direct) or a token-ring 
medium access control protocol, where a collision avoidance 
mechanism permits only one node to be active at a time. How-
ever, when a node is active, all the other nodes can listen and 
decode its transmission. A necessary condition for the feasibil-
ity of the D2D coded caching network is that the whole library 
can be stored in the network, i.e., .KM N$

Combination network
The combination network consists of a server, a layer of L re-
lays, and a layer of users. For a certain degree of connectiv-
ity, r, there are exactly r

LK = ` j users, one for each distinct 
combination of r relays. All the links connecting the server 
to relays and relays to users are orthogonal, i.e., there are no 
broadcast or interference constraints. In particular, a user con-
nected to r relays can simultaneously receive the r-transmitted 
signals from these relays without interference. Coded caching 
for combination networks is studied in [63], where it is shown 
that a speed-up factor of /r1  in the delivery time with respect 
to the single shared-link network is possible for this network. 
Building on the combination network, in [64], a scheme for a 
multicell system with macrodiversity order r is proposed and 
analyzed in the case of MISO fading channels and distance-
dependent path loss. Variants of the combination network, in-
cluding the case of caches at the relays, have been analyzed in 
[65], while the improved strategies and information-theoretic 
optimality results are given in [66]–[69].

Challenges and open issues
The field of cache-aided communication is still in its infancy, 
and its challenges outnumber its achievements. Although re-
search has shown significant throughput gains in various sce-
narios, questions remain unanswered and many issues must be 
resolved to allow for practical implementation. In this section, 
we describe some of these challenges and open issues.

Physical layer
Even though it is easy to obtain an ideal DoF scheme, the best 
cache-aided communication scheme for the general case is 
not yet known. An optimality proof exists only for the single-
antenna homogenous case. For the multiple antenna case, even 
the linear optimal scheme is not yet known (all the results pre-
sented for this case are based on ZF). Research advances in 
this direction are needed to allow for a better understanding of 
the capabilities and to enable the efficient implementation of 
cache-aided communication schemes also at a low SNR.

More effort is also required to deal with physical-layer prac-
ticalities. For example, the effect of an imperfect channel state 
at the BS has been studied in only limited scenarios. In MIMO 
systems, such uncertainty will affect the ZF accuracy and may 
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be addressed by a variety of known signal processing techniques. 
More importantly, this will create a rate uncertainty at the BS, 
which can have significant effects on transmission scheduling.

A scheme that can handle channel variations during the 
transmission stage has a significant advantage because this 
scheme will enable cache-aided communication in a wide area 
of cellular networks where the channel rates vary relatively 
fast. A simpler variation can apply cache-aided  communication 
in networks where the rate changes over time but its average is 
known in advance.

Beyond linear precoding
For multiantenna BSs, we have discussed the use of linear pre-
coding only. Linear precoding for cache-aided communica-
tions still requires further study; thus far, only ZF precoding 
has been studied extensively. Other approaches beyond linear 
precoding require even more attention.

Nonlinear precoding was thus far considered through two 
opposite approaches: on one hand, transmitting a single message 
at a time, where this message is an XOR of multiple file seg-
ments that can be used by multiple users (where each user can 
use its cache to cancel out the unintended file segments). This 
message should be beamformed to a direction that is favorable 
to all users served and can obtain some amount of array gain 
[9]. On the other hand, to obtain a multiplexing gain, the same 
work suggests serving multiple groups of users simultaneously, 
where the transmission to different groups is separated using ZF 
precoding, and each user in a group can extract its own message 
by XORing with its cache content. Neither of these schemes is 
optimal and combining both approaches in a single system to 
optimize the balance for specific network conditions can pos-
sibly offer a better performance. Nevertheless, the best approach 
for combining XORing and linear precoding remains unknown.

Taking it one step further, there is still much room for 
improvement using sophisticated nonlinear precoding 
schemes. For example, dirty paper coding and vector perturba-
tion are more energy efficient than is linear ZF. Although not 
previously considered, the combinations of such schemes with 
multiantenna cache-aided communications may lead to sig-
nificant gains, particularly in the low-to-medium SNR regime, 
where the ZF may be inefficient.

Scheduling and resource allocation
As shown in the previous section, cache-aided communication is 
much simpler in a homogenous network (where all the user rates 
are identical and all files are of the same popularity). Even in this 
case, existing scheduling methods require a very thin subpack-
etization, which, in most cases becomes unpractical for a large 
number of users. Thus, the research for scheduling approaches 
that will require a smaller number of packets is ongoing.

In a nonhomogenous case, the situation is even more com-
plicated, and the only known solutions require solving a large 
optimization problem. Hence, a scheduling algorithm with an 
acceptable complexity that can handle network inhomogene-
ities is needed. In particular, if the user rates are not identical, 
each file segment is encoded to a different number of symbols 

that depend on the rate of the requesting user. Accordingly, 
the transmission scheduling must allocate more transmissions 
to users with a low rate, while still trying to serve a maximal 
number of users simultaneously at any given time.

Furthermore, in nonhomogenous networks, resource allo-
cation is also a major challenge for cache-aided communica-
tions. Existing approaches are either highly inefficient or very 
complicated to implement. As a result, there is an acute need 
for low-complexity resource-allocation schemes (optimal or 
suboptimal) that enable the benefits of cache-aided communi-
cation in practical systems.

Additionally, further performance analysis and closed-form 
performance expressions of cache-aided communications in 
nonhomogeneous networks are needed. Such expressions are 
required to better predict the performance in various networks 
and for network planning. Performance expressions are also 
needed for network optimization, e.g., for power allocation, 
parameter selection, and so on.

Higher layers
Another major difficulty in cache-aided communications 
is the necessity of dividing the data into many subpackets. 
As discussed previously, this problem can be made simpler 
when using multiple antennas at the BS. Yet, this approach 
requires additional research, particularly for the nonhomog-
enous case.

Another high-layer issue that is crucial for practical imple-
mentation is the handling of network and content  dynamics. 
Users’ disconnection or movement from one BS (cell) to 
another causes changes in the network connectivity. Similarly, 
content dynamics can occur, for example, as a result of varia-
tions in the popularity of files. A practical network will likely 
meet all types of dynamics and must be robust to such changes. 
These aspects have hardly been addressed thus far and still 
require much research, e.g., How can the cache content be 
updated at minimal overhead? Are there schemes that allow 
for such a cache adaptation at low complexity? What are the 
performance costs of such a scheme?

As for network dynamics, schemes are needed for the 
adaptation of the transmission scheduling following a network 
change. Such schemes can consider intermediate planning (i.e., 
adapting to changes that happen between the cache placement 
and transmission stages) and online planning (i.e., adapting to 
changes that occur during the transmission phase). The devel-
opment of such schemes is likely to be the final catalyst for 
the practical implementation of cache-aided communications.

Conclusions
Cache-aided communications have shown significant poten-
tial for throughput increase in wideband communication net-
works. The possibility of using the data stored at one user, 
even if they are only requested by another user, allows for 
combining the small size memories employed at different 
users and using them as an effectively large cache. Because 
the network performance depends on the total memory size 
of all the users, the network throughput scales linearly with 
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the number of users. Thus, cache-aided communication is ex-
pected to take a significant role in large networks.

Yet, many challenges must be overcome prior to practical 
implementation. These challenges are mostly in the field of sig-
nal processing, and include low-complexity optimization, practi-
cal system design, and the handling of network imperfections. 
This article aimed at presenting this promising technology in a 
tractable manner that reflects its potential and open challenges.
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