
1

Distributed Non-Convex First-Order Optimization
and Information Processing: Lower Complexity

Bounds and Rate Optimal Algorithms
Haoran Sun and Mingyi Hong

Abstract—We consider a class of popular distributed non-
convex optimization problems, in which agents connected by a
network G collectively optimize a sum of smooth (possibly non-
convex) local objective functions. We address the following ques-
tion: if the agents can only access the gradients of local functions,
what are the fastest rates that any distributed algorithms can
achieve, and how to achieve those rates.

First, we show that there exist difficult problem instances, such
that it takes a class of distributed first-order methods at least
O(1/

√
ξ(G) × L̄/ε) communication rounds to achieve certain

ε-solution [where ξ(G) denotes the spectral gap of the graph
Laplacian matrix, and L̄ is some Lipschitz constant]. Second, we
propose (near) optimal methods whose rates match the developed
lower rate bound (up to a ploylog factor). The key in the
algorithm design is to properly embed the classical polynomial
filtering techniques into modern first-order algorithms. To the
best of our knowledge, this is the first time that lower rate bounds
and optimal methods have been developed for distributed non-
convex optimization problems.

I. INTRODUCTION

A. Problem and motivation
We consider the following distributed optimization problem

min
y∈RS

f̄(y) :=
1

M

M∑
i=1

fi(y), (1)

where fi(y) : RS → R is a smooth and possibly non-
convex function accessible to agent i. There is no central
controller, and the M agents are connected by a network
defined by an undirected and unweighted graph G = {V, E},
with |V| = M vertices and |E| = E edges. Each agent i can
only communicate with its immediate neighbors, and it can
access its local component function fi.

A common way to reformulate problem (1) in the dis-
tributed setting is given below. Introduce M local variables
x1, · · · , xM ∈ RS and a concatenation of M variables
x := [x1; · · · ;xM] ∈ RSM×1, then the following formulation
is equivalent to (1) whenever G is connected

min
x∈RSM

f(x) :=
1

M

M∑
i=1

fi(xi), s.t. xi = xj , ∀ (i, j) ∈ E . (2)

where f(x) : RSM → R. After the reformulation, the
objective function now becomes separable, and the linear
constraint encodes the network connectivity pattern.

H. Sun and M. Hong are with the Department of Electrical and Computer
Engineering (ECE), University of Minnesota, Minneapolis, MN 55414, USA.
Email: {sun00111,mhong}@umn.edu. They are supported by NSF grants
CMMI- 1727757, CCF-1526078, and by an AFOSR grant 15RT0767.

The conference version of this paper has been accepted by Asilomar
Conference on Signal, Systems and Computer, 2019 [1].

This paper has supplementary downloadable material available at
http://ieeexplore.ieee.org., provided by the author. The material includes
additional proofs of results in Sec. III.

B. Distributed non-convex optimization

Distributed non-convex optimization has gained consider-
able attention recently. For example, it finds applications in
training neural networks [2], clustering [3], and dictionary
learning [4], just to name a few.

The problem (1) and (2) have been studied extensively
in the literature when fi’s are all convex; see for example
[5]–[7]. Primal based methods such as distributed subgradient
(DSG) method [5], the EXTRA method [7], as well as primal-
dual based methods such as distributed augmented Lagrangian
method [8], Alternating Direction Method of Multipliers
(ADMM) [9], [10] have been proposed.

On the contrary, only recently there have been works
addressing the more challenging problems without assuming
convexity of fi; see [2], [4], [11]–[24]. The convergence be-
havior of the distributed consensus problem (1) has been stud-
ied in [4], [11], [12]. Reference [13] develops a non-convex
ADMM based methods for solving the distributed consensus
problem (1). However the network considered therein is a star
network in which the local nodes are all connected to a central
controller. References [15], [16] propose a primal-dual based
method for unconstrained problem over a connected network,
and derives a global convergence rate for this setting. In [14],
[18], [19], the authors utilize certain gradient tracking idea
to solve a constrained nonsmooth distributed problem over
possibly time-varying networks. The work [20] summarizes
a number of recent progress in extending the DSG-based
methods for non-convex problems. References [2], [17], [21]
develop methods for distributed stochastic zeroth and/or first-
order non-convex optimization. It is worth noting that the
distributed algorithms proposed in all these works converge to
first-order stationary solutions, which contain local maximum,
local minimum and saddle points.

Recently, the authors of [23], [25]–[27] have developed first-
order distributed algorithms that are capable of computing
second-order stationary solutions (which under suitable con-
ditions become local optimal solutions). Other second-order
distributed algorithms such as [28], [29] are design for convex
problems, and they utilize high-order Hessian information
about local problems.

C. Lower and upper rate bounds analysis

Despite the strong interests and many recent contributions
in this field, one major question remains open:

(Q) What is the best convergence rate achievable by any
distributed algorithms for the non-convex problem (1)?

Question (Q) seeks to find a best convergence rate, which is a
characterization of the smallest number of iterations required

2

to achieve certain high-quality solutions, among all distributed
algorithms. Clearly, understanding (Q) provides fundamental
insights to distributed optimization and information process-
ing. The answer to (Q) offers meaningful estimates on the
total amount of communication and computation efforts that
are required to achieve a given level of accuracy. Further,
the identified optimal strategies capable of attaining the best
convergence rates will also help guide the practical design of
distributed algorithms, convex and non-convex alike.

Convergence rate analysis (aka iteration complexity anal-
ysis) for convex problems dates back to early works by
Nesterov, Nemirovsky and Yudin [30], [31], in which lower
bounds and optimal first-order algorithms have been devel-
oped; also see [32]. In recent years, many accelerated first-
order algorithms achieving those lower bounds for different
kinds of convex problems have been derived, both for central-
ized [33], [34] and distributed settings [35]. In those works,
the problem is to optimize minx f(x) with convex f , and the
optimality measure used is f(x) − f(x∗). The lower bound
can be expressed as [32, Theorem 2.2.2]

f(xt)− f(x∗) ≤ ‖x
0 − x∗‖L
(t+ 2)2

, (3)

where L is the Lipschitz constant for ∇f ; x∗ (resp. x0) is
the global optimal solution (resp. the initial solution); t is
the iteration index. Therefore to achieve ε-optimal solution in

which f(xt) − f(x∗) ≤ ε, one needs
√
‖x∗−x0‖L

ε iterations.
Recently the above approach has been extended to distributed
strongly convex optimization in [36], where problem (1) is
considered, with each fi being strongly convex. The authors
provide lower and upper rate bounds for a class of algorithms
in which the local agents can utilize both ∇fi(x) and its
Fenchel conjugate ∇∗fi(x). We note that this result is not
directly related to the class of “first-order” method, since
computing the Fenchel conjugate∇∗fi(x) requires performing
certain exact minimization, which involves solving a strongly
convex optimization problem. Other related works in this
direction also include [37] and [38], both are for convex cases.
In particular, the work [38] is a non-smooth extension of
[36], where the lower complexity bound under the Lipschitz
continuity of the global and local objective function are dis-
cussed and the optimal algorithm is proposed. The work [37]
studies the optimal convergence rates for distributed convex
optimization problems, including both strongly convex and
convex, smooth and non-smooth cases.

When the problem becomes non-convex, the size of the
gradient function can be used as a measure of solution quality.
In particular, let h∗T := min0≤t≤T ‖∇f(xt)‖2, then it has been
shown that the classical (centralized) gradient descent (GD)
method achieves the following rate [32, page 28]

h∗T ≤
c0L(f(x0)− f(x∗))

T + 1
, where c0 > 0 is some constant.

It has been shown in [39], [40] that the above rate is optimal
for any first-order methods that only utilize the gradient in-
formation, when applied to problems with Lipschitz gradient.
However, no lower bound analysis has been developed for
distributed non-convex problem (1); there are even not many

algorithms that provide achievable upper rate bounds (except
for the recent works [13], [16], [41]), not to mention any
analysis on the tightness/sharpness of these upper bounds.

D. Contribution of this work

In this work, provide answers to (some specific versions of)
question (Q). Our main contributions are given below:
1) We develop the first lower complexity bound for a class
of distributed first-order methods to solve problem (1). We
show that, to achieve certain ε-optimality, it is necessary for
any such algorithm to perform O(1/

√
ξ(G)× L̄/ε) rounds of

communication among all the nodes, where ξ(G) is certain
spectral gap of the graph Laplacian matrix, and L̄ is the
averaged Lipschitz constant of the gradients of local functions.
On the other hand, it is necessary for any such algorithm to
perform O(L̄/ε) rounds of computation among all the nodes.
2) We design an optimal algorithm that is based on a novel
approximate filtering -then- predict and tracking (xFILTER)
strategy, which achieves our derived lower complexity bounds
(up to a ploylog factor).

In Table I, we specialize some key results developed in the
paper to a few popular graphs, and compare them with the
achievable rates of centralized GD.
Notations. For a symmetric matrix B, λmax(B), λmin(B)
and λmin(B) denote the maximum, the minimum and the
minimum nonzero eigenvalues; IP denotes an identity matrix
with size P , 1M denotes an all one vector of size M ,
and ⊗ denotes the Kronecker product. [M] denotes the set
{1, · · · ,M}. For a vector x, x[i] denotes its ith element;
We use Õ to denote O(log(M)) where M is the problem
dimension; use i ∼ j to denote two connected nodes i and j,
i.e., for a graph G := {V, E}, i ∼ j if i 6= j, and (i, j) ∈ E ;
use col(X) to denote the column space of a matrix X .

II. PRELIMINARIES

To properly address (Q), we need to specify the concrete
classes of problems, networks, algorithms, and the solution
measures under consideration.

A. The class P , N , A
Problem Class. A problem is in class PML if:
A1. The objective is an average of M functions; see (1).
A2. Each component function fi(x)’s has Lipschitz gradient:

‖∇fi(xi)−∇fi(zi)‖ ≤ Li‖xi − zi‖, ∀ xi, zi ∈ RS , ∀ i, (4)

where Li ≥ 0 is the smallest positive number such that
the above inequality holds true.
Define L̄ := 1

M

∑M
i=1 Li, Lmax := maxi Li, and Lmin

similarly. Define the matrix of Lipschitz constants as:

L := diag([L1, · · · , LM])⊗ IS ∈ RMS×MS . (5)

A3. The function f(x) is lower bounded over x ∈ RMS , i.e.,

f := inf
x
f(x) > −∞. (6)

These assumptions are rather mild. For example an fi satisfies
[A2-A3] is not required to be second-order differentiable.
Network Class. Let N denote a class of networks represented
by an undirected and unweighted graph G = {V, E}, with

3

Network Instances Problem Classes
Uniform Lipschitz U Non-uniform Lipschitz {Li} Rate Achieving Algorithm

Complete/Star O(U/ε) O(1/ε×
∑
i Li/M) xFILTER/Prox-GPDA

Random Geometric Õ(U
√
M/(
√

logMε)) Õ(
√
M/(

√
log(M)ε)×

∑
i Li/M) xFILTER

Path/Circle Õ(UM/ε) Õ(M/ε×
∑
i Li/M) xFILTER

Grid Õ(U
√
M/ε) Õ(

√
M/ε×

∑
i Li/M) xFILTER

Centralized O(U/ε) O(1/ε×
∑
i Li/M) Gradient Descent (GD)

TABLE I: The main results of the paper when specializing to a few popular graphs. The entries show the best rate bounds achieved by the proposed xFILTER algorithm for a
number of specific graphs and problem class; Li is the Lipschitz constant for ∇fi [see (4)]; for the uniform case U = L1, · · · , LM . For the uniform Lipschitz the lower rate
bounds derived for the particular graph matches the upper rate bounds (we only show the latter in the table). The last row shows the rate achieved by the centralized GD algorithm.
The notation Õ denotes big O with some polynomial in logarithms, i.e, use Õ to denote O(log(M)) where M is the problem dimension.

|V| = M vertices and |E| = E edges. In this paper the
term ‘network’ and ‘graph’ will be used interchangeably.
Also, we use NM

D to denote a class of network similarly as
above, but with M nodes and a diameter of D, defined below
[where dist(·) indicates the distance between two nodes]:
D := maxu,v∈V dist(u, v).

Following the convention in [42], we define a number of
graph related quantities below. First, define the degree of node
i as di, and define the averaged degree as:

d̄ :=
1

M

M∑
i=1

di (7)

Define the incidence matrix (IM) A ∈ RE×M as follows: if
e ∈ E and it connects vertex i and j with i > j, then Aev =
1/
√
dv if v = i, Aev = −1/

√
dv if v = j and Aev = 0

otherwise [42, Theorem 8.3]. The graph Laplacian matrix and
the degree matrix are defined as follows (see [42, Section 1.2]):

L := A>A ∈ RM×M , P := diag[d1, · · · , dM] ∈ RM×M . (8)

In particular, the elements of the Laplacian are given as:

[L]ij =


1 if i = j
− 1√

didj
if i ∼ j, i 6= j

0 otherwise.

We note that the graph Laplacian defined here is sometimes
known as the normalized graph Laplacian in the literature, but
throughout this paper we follow the convention used in the
classical work [42] and simply refer it as the graph Laplacian.
For convenience, we also define a scaled version of the IM:

F := AP 1/2 ∈ RE×M . (9)

It is known that the scaled IM satisfies the following:

F1M = AP 1/2
1M = 0. (10)

Define the second smallest eigenvalue of L, as λmin(L):

λmin(L) = inf
x:
∑M

i=1 xidi=0

x>Lx∑M
i=1 x

2
i di

. (11)

Then the spectral gap of the graph G can be defined below:

ξ(G) =
λmin(L)

λmax(L)
≤ 1. (12)

Algorithm Class. Define the neighbor set for node i ∈ E as

Ni := {i | i ∼ j, j 6= i}. (13)

We say that a distributed, first-order algorithm is in class A

if it satisfies the following conditions.
[B1.] At iteration 0, each node can obtain some network
related constants, such as M , D, eigenvalues of the graph
Laplacian L, etc.
[B2.] At iteration t + 1, each node i ∈ [M] first conducts
a communication step by broadcasting the local xti to all its
neighbors, through a function Qti(·) : RS → RS . Then each
node will generate the new iterate, by combining the received
message with its past gradients using a function W t

i (·):

vti = Qti(x
t
i)︸ ︷︷ ︸

communication step

, xt+1
i ∈W t

i

(
{{vkj }j∈Ni

,∇fi(xki), xki }tk=1

)︸ ︷︷ ︸
computation step

.

(14)

In this work, we will focus on the case where the Qti(·)’s and
W t
i (·)’s are linear operators.
Clearly A belongs to the class of first-order methods

because only local gradient information is used. It is also a
class of distributed algorithms because at each iteration the
nodes only communicate with their immediate neighbors.

Additionally, in practical distributed algorithms such as
DSG, ADMM or EXTRA, nodes are dictated to use a fixed
strategy to linearly combine all its neighbors’ information.
To model such a requirement, below we consider a slightly
restricted algorithm class A′, where we require each node
to use the same coefficients to combine its neighbors (note
that allowing the nodes to use a fixed but arbitrary linear
combination is also possible, but the resulting analysis will be
more involved). In particular, we say that a distributed, first-
order algorithm is in A′ if it satisfies [B1] and the following:
[B2’.] At iteration t+ 1, each node i ∈ [M] performs:

vti = Qti(x
t
i), x

t+1
i ∈W t

i

{∑
j∈Ni

vtj ,∇fi(xki), xki }tk=1

 . (15)

We remark that, in both algorithm classes, one round of
communication occurs at each iteration, where each node
broadcasts its local variable xti once. Therefore, the total
iteration number is the same as the total communication
rounds. However, the total times that the entire gradient
{∇fi(xi)}Mi=1 is evaluated could be smaller than the total
iteration number/communication rounds. This is because when
we compute xt+1

i , the operation W t
i (·) can set the coefficient

in front of ∇fi(xri) to be zero, effectively skipping the local
gradient computation.
B. Solution Quality Measure

Next we provide definitions for the quality of the solution.
Note that since we consider using first-order methods to solve

4

non-convex problems, it is expected that in the end some first-
order stationary solution with small ‖∇f‖ will be computed.

The measure we provided below is directly related to local
variables {xi ∈ RS}Mi=1. At a given iteration T , we say that
{xTi } is a local ε-solution if the following holds:

h∗T := min
t∈[T]

∥∥∥∥ M∑
i=1

∇fi(xti)
M

∥∥∥∥2

(16)

+
1

Mλmin(P 1/2LP 1/2)

∑
(i,j):i∼j

√
LiLj‖xti − xtj‖2 ≤ ε.

Clearly this definition takes into consideration both the
consensus error and the size of the local gradients. It is easy
to check that when h∗T goes to zero, a first-order stationary
solution for problem (1) is obtained. Note that the constant

1
Mλmin(P 1/2LP 1/2)

is needed to balance the two different terms.
The “ mint∈[T] ” operation is needed to track the best solution
obtained until iteration T , because the quantity inside this
operation may not be monotonically decreasing.

In our work we will focus on providing answers to the
following specific version of question (Q):

For any ε > 0, what is the minimum iteration T needed for
any algorithm in class A (or class A’) to solve instances in

classes (P,N), so to achieve h∗T ≤ ε?

C. Some Useful Facts and Definitions

Below we provide a few facts about the above classes.
On Lipschitz constants. Assume that each fi has Lipschitz
continuous gradient with constant Li in (4). Then we have:

‖∇f̄(y1)−∇f̄(y2)‖ ≤ L̄‖y1 − y2‖, ∀ y1, y2. (17)

We also have the following

‖∇f(x)−∇f(z)‖2 =
1

M2

M∑
i=1

‖∇fi(xi)−∇fi(zi)‖2, ∀ xi, zi

which implies

‖∇f(x)−∇f(z)‖ ≤ 1

M
‖L(x− z)‖, ∀ x, z (18)

where the matrix L is defined in (5).
On Quantities for Graph G. Let us present some usfeul
properties for graph G. Define the following matrices:

Σ := diag[σ1, · · · , σE] � 0, Υ := diag([β1, · · · , βM]) � 0.

For two diagonal matrices Υ2 and Σ2 of appropriate sizes,
the generalized Laplacian (GL) matrix is defined as:

LG = Υ−1F>Σ2FΥ−1, (19)

and its elements are given by:

[LG]ij =


∑

q:i∼q σ
2
iq

β2
i

if i = j

− σ2
ij

βi×βj
if (ij) ∈ E , i 6= j

0 otherwise

.

Define a diagonal matrix K ∈ RE×E as below:

[K]e,q =

{ √
LiLj if e = q, and e = (i, j)

0 otherwise
. (20)

Then when Υ = P 1/2L1/2 and Σ2 = K, GL becomes:

L̃ := L−1/2P−1/2F>KFP−1/2L−1/2. (21)

Note that if any diagonal element in the matrix L is zero, then
L−1 denotes the Moore - Penrose pseudoinverse. Similarly, if
Υ = L1/2 and Σ2 = K, then the GL matrix becomes:

L̂ := L−1/2F>KFL−1/2. (22)

These matrices will be used later in our derivations.
Below we list some useful results about the Laplacian [42]–

[44]. First, all eigenvalues of L lie in the interval [0, 2]. Also
because λmin(L) = λmin(P−1/2F>FP−1/2), we have

λmin(L) ≤ λmin(F>F). (23)

Also we have that [42, Lemma 1.9]

λmin(L) ≥ 1

D
∑
i di

. (24)

The spectral of L for some special graphs are given below:
1) Complete Graph: The eigenvalues are 0 and M/(M − 1)
(with multiplicity M − 1), so ξ(G) = 1;
2) Star Graph: The eigenvalues are 0 and 1 (with multiplicity
M − 2), and 2, so ξ(G) = 1/2;
3) Path Graph: The eigenvalues are 1 − cos(πm/(M − 1))
for m = 0, 1, · · · ,M − 1, and ξ(G) ≥ 1/M2.
4) Cycle Graph: The eigenvalues are 1 − cos(2πm/M) for
m = 0, 1, · · · ,M − 1, and ξ(G) ≥ 1/M2.
5) Grid Graph: The grid graph is obtained by placing the
nodes on a

√
M ×

√
M grid, and connecting nodes to their

nearest neighbors. We have ξ(G) ≥ 1/M .
6) Random Geometric Graph: Place the nodes uniformly in
[0, 1]2 and connect any two nodes separated by a distance less
than Ra ∈ (0, 1). Then if Ra satisfies [44]

Ra = Ω

(√
log1+ε(M)/M

)
, for any ε > 0, (25)

then with high probability ξ(G) = O
(

log(M)
M

)
.

III. COMPLEXITY LOWER BOUNDS

We begin to develop the complexity lower bounds for
algorithms in A to solve problems PML over network N .
We will mainly focus on the case where fi’s have uniform
Lipschitz constants Li = U ∈ (0, 1), ∀ i ∈ [M]. At the
end of this section, generalization to the non-uniform case
will be discussed. Our proof combines ideas from the classical
work of Nesterov [45], as well as two recent constructions [40]
(for centralized non-convex problems) and [36] (for strongly
convex distributed problems). Differently from [45] [36], in
our construction we can only use first-order differentiable, gra-
dient Lipschitz continuous, but not second-order differentiable
functions. Comparing with [40], we need to carefully construct
network structures so that it is challenging for algorithm in A
to achieve local-ε solutions.

5

-5 0 5

w

-1

-0.5

0

0.5

1

1.5

2

fu
n

c
ti
o

n
 v

a
lu

e

(w)

'(w)

''(w)

-5 0 5

w

-4

-2

0

2

4

6

8

10

12

fu
n

c
ti
o

n
 v

a
lu

e

(w)

'(w)

''(w)

Fig. 1: The functional value, and derivatives of Ψ and Ψ.

To begin with, we construct the following two functions:

h(x) :=
1

M

M∑
i=1

hi(xi), f(x) :=
1

M

M∑
i=1

fi(xi), (26)

as well as the corresponding versions that evaluate on a
“centralized” variable y

h̄(y) :=
1

M

M∑
i=1

hi(y), f̄(y) :=
1

M

M∑
i=1

fi(y). (27)

Here we have xi ∈ RT , for all i, y ∈ RT , and x :=
(x1, · · ·xM) ∈ RTM×1. In our subsequent constructions, we
will make h and h̄ easy to analyze, while make f and f̄ fall
in the desired class PMU .

A. Path Graph (D = M − 1)

First we consider the extreme case in which the nodes form
a path graph with M nodes and each node i has its own
local function hi. For notational simplicity assume that M is a
multiple of 3, that is, M = 3C for some integer C > 0. Also
assume that T is an odd number without loss of generality.

Define the component functions hi’s in (26) as follows.

hi(xi) =



Θ(xi, 1) + 3

bT/2c∑
j=1

Θ(xi, 2j), i ∈
[
1,
M

3

]
Θ(xi, 1), i ∈

[
M

3
+ 1,

2M

3

]
Θ(xi, 1) + 3

bT/2c∑
j=1

Θ(xi, 2j + 1), i ∈
[

2M

3
+ 1,M

]
(28)

where we have defined the following functions

Θ(xi, j) := Ψ(−xi[j − 1])Φ(−xi[j])−Ψ(xi[j − 1])Φ(xi[j]), ∀ j ≥ 2

Θ(xi, 1) := −Ψ(1)Φ(xi[1]). (29)

The component functions Ψ,Φ : R→ R are given as below

Ψ(w) :=

{
0 w ≤ 0

1− e−w2

w > 0,
and Φ(w) := 4 arctanw + 2π.

Suppose x1 = x2 = · · · = xM = y, then the average
function becomes:

h̄(y) :=
1

M

M∑
j=1

hi(y) = Θ(y, 1) +
T∑
i=2

Θ(y, i)

= −Ψ(1)Φ (y[1])

+
T∑
i=2

[Ψ (−y[i− 1]) Φ (−y[i])−Ψ (y[i− 1]) Φ (y[i])] .

Further for a given error constant ε > 0 and a given averaged
Lipschitz constant U ∈ (0, 1), let us define

fi(xi) :=
150πε

U
hi

(
xiU

75π
√

2ε

)
. (30)

Therefore we also have, if x1 = x2 = · · · = xM = y, then

f̄(y) :=
1

M

M∑
i=1

fi(y) =
150πε

U
h̄

(
yU

75π
√

2ε

)
. (31)

First we present properties of the component functions hi.
Lemma 3.1: The functions Ψ and Φ satisfy the following.
1) For all w ≤ 0, Ψ(w) = 0, Ψ′(w) = 0.
2) The following bounds hold for the functions and their

first and second-order derivatives:

0 ≤ Ψ(w) < 1, 0 ≤ Ψ′(w) ≤
√

2

e
,

− 4

e
3
2

≤ Ψ′′(w) ≤ 2, ∀w > 0

0 < Φ(w) < 4π, 0 < Φ′(w) ≤ 4,

− 3
√

3

2
≤ Φ′′(w) ≤ 3

√
3

2
, ∀w ∈ R

3) The following key property holds:

Ψ(w)Φ′(v) > 1, ∀ w ≥ 1, |v| < 1. (32)

4) The function h is lower bounded as follows:

hi(0)− inf
xi

hi(xi) ≤ 10πT , h(0)− inf
x
h(x) ≤ 10πT .

5) The first-order derivative of h̄ (resp. hj) is Lipschitz
continuous with constant ` = 75π (resp. `j = 75π, ∀ i).

The next lemma is a simple extension of the previous result.
Lemma 3.2: We have the following properties for the

functions f and f̄ defined in (31) and (30).

1) We have ∀ x ∈ RTM×1

f(0)− inf
x
f(x) +

1

MU
‖d0‖2 ≤

1650π2ε

U
T.

where we have defined

d0 := [∇f1(0), · · · ,∇fM (0)]. (33)

2) We have∥∥∇f̄(y)
∥∥ =
√

2ε

∥∥∥∥∇h̄(yU

75π
√

2ε

)∥∥∥∥ , ∀ y ∈ RT×1. (34)

3) The first-order derivatives of f̄ and that for each fj , j ∈
[M] are Lipschitz continuous, with the same constant
U > 0.

The next result analyzes the size of ∇h̄.
Lemma 3.3: If there exists k ∈ [T] such that |y[k]| < 1,

then the following holds∥∥∇h̄(y)
∥∥ =

∥∥∥∥∥ 1

M

M∑
i=1

∇hi(y)

∥∥∥∥∥ ≥
∣∣∣∣∣ 1

M

M∑
i=1

∂

∂y[k]
hi(y)

∣∣∣∣∣ > 1.

Lemma 3.4: Define x̄ := 1
M

∑M
i=1 xi, and assume that U ∈

6

(0, 1). Then we have∥∥∥∥ 1

M

M∑
i=1

∇fi(xi)
∥∥∥∥2

+
U

Mλmin(P 1/2LP 1/2)

∑
(i,j):i∼j

‖xi − xj‖2

≥ 1

2

∥∥∇f̄(x̄)
∥∥2
.

Lemma 3.5: Consider using an algorithm in class A or in
class A′ to solve the following problem:

min
x∈RTM×1

h(x) =
1

M

M∑
i=1

hi(xi), (35)

over a path graph. Assume the initial solution: xi = 0, ∀ i ∈
[M]. Let x̄ = 1

M

∑M
i=1 xi denote the average of the local

variables. Then the algorithm needs at least (M3 + 1)T
iterations to have xi[T] 6= 0, ∀ i and x̄[T] 6= 0.
Now we are ready to show our first main result.

Theorem 3.1: Let U ∈ (0, 1) and ε be positive. Then for
any distributed first-order algorithm in class A or A′, there
exists a problem in class PMU and a network in class N , such
that it requires at least the following number of iterations and
communication rounds

t ≥ 1

3
√
ξ(G)


(
f(0)− infx f(x) + ‖d0‖2

MU

)
U

1650π2
ε−1

 (36)

to achieve the following error h∗t ≤ ε.
To prove this result, the main idea is to construct a path

graph and a particular special problem in PMU such that to
reduce h∗t , it is necessary to traverse the entire graph once.

Next, for the problem class with non-uniform Lipschitz
constants, we can extend the previous result to any network
in class N (by properly assigning different values of Li’s
to different nodes). In this case the lower bound will be
dependent on the spectral property of L̂ as defined in (22).

Corollary 3.1: Let ε be positive. For any given network in
N , and for any algorithm in A, there exists a problem in PML
such that to achieve the accuracy h∗t < ε, it requires at least
the following number of iterations and communication rounds

t ≥ 1

3

√
ξ(L̂)

⌊(
f(0)− infx f(x) + ‖d0‖2L−1/M

)
L̄

1650π2
ε−1

⌋
. (37)

IV. THE PROPOSED ALGORITHMS

In this section, we introduce our proposed algorithm for
solving problem (2). The algorithm is near-optimal, and can
achieve the lower bounds derived in Section III except for a
multiplicative polylog factor in M . To simplify the notation,
we rewrite problem (2) in the following compact form:

min
x∈RSM

f(x) :=
1

M

M∑
i=1

fi(xi), s.t. (F ⊗ IS)x = 0. (38)

It can be verified that, by using the definition of F , the
constraint in this problem is equivalent to the ones given in
(2). For notational simplicity, in the following we will assume
that S = 1 (scalar variables). All the results presented in
subsequent sections extend easily to case with S > 1.

A. The xFILTER Algorithm

To motivate our algorithm design, observe that the com-
munication lower bound O(1/

√
ξ(G) × L̄/ε) in Section III

can be decomposed into the product two parts, O(1/
√
ξ(G))

and O(L̄/ε), corresponding roughly to the communication ef-
ficiency and the computational complexity, respectively. Such
a product form motivates us to separate the computation and
communication tasks, and design a double loop algorithm to
achieve the desired lower bound.

Our proposed algorithm is based on a novel approximate
filtering -then- predict and tracking (xFILTER) strategy, which
properly combines the modern first-order optimization meth-
ods and the classical polynomial filtering techniques. It is
a “double-loop” algorithm, where in the outer loop local
gradients are computed to extract information from local
functions, while in the inner loop some filtering techniques
are used to facilitate efficient information propagation. Please
see Algorithm 1 for the detailed description, from the system
perspective. It is important to note that the algorithm contains
an outer loop (S3)–(S4) and an inner loop (S2), indexed by r
and q, respectively. Further, the local gradient evaluation only
appears in the outer loop step (S3).

To understand the algorithm, we note that one important
task of each agent is to update its local variable so that it is
close to the average 1

M

∑M
i=1 xi. Let us use di to denote a local

variable that approximates the above average. At the beginning
of the algorithm, di is just a rough estimate of the average, so
we have di = 1

M

∑
j xj+ei, where ei is the deviation from the

true average, and it can be viewed as some kind of “estimation
noise”. To gradually remove such a noise, in step S1) we resort
to the so-called graph based joint bilateral filtering used for
image denoising [46], [47], which can be formulated as the
following regularized least squares problem:

xr+1
∗ := arg min

x∈RM

1

2
‖x− dr‖2Υ2 +

1

2
x>F>Σ2Fx, (39)

where dr is the noisy signal, F is a penalty high pass
filter related to the graph structure (in our case, F is the
adjacency matrix), and Σ2 is a regularization parameter. Its
solution, denoted as xr+1

∗ as given below, will be close to the
“unfiltered” signal dr, while having reduced high frequency
components, or high fluctuations across the components:

Rxr+1
∗ = dr, with R := Υ−2F>Σ2F + IM . (40)

It is important to note that if xr+1
∗ indeed achieves consensus,

then by (10) we have F>Σ2Fxr+1
∗ = 0, implying xr+1

∗ = dr,
which says dr should “track” xr+1

∗ .
Unfortunately, the system (40) cannot be precisely solved

in a distributed manner, because inverting R destroys its
pattern about the network structure embedded in the product
F>Σ2F . More specifically, F>Σ2F is the weighted graph
Laplacian matrix whose (i, j)th entry is nonzero if and only
if node i, j are connected, but (Υ−2F>Σ2F + IM)−1 is
a dense matrix without such a property. Therefore in S2),
we use a degree-Q Chebyshev polynomial to approximate
xr+1
∗ . The output, denoted as xr+1, stays in a Krylov space
span{dr, Rdr, · · · , RQdr}. Specifically, at each iteration, the

7

only step that requires communication is the operation Ru,
which is given by

(Ruq−1)[i] = (Υ−2F>Σ2Fuq−1)[i] + dq−1[i] (41)

=
1

β2
i

∑
j:j∼i

σ2
ij(uq−1[j]− dr[i]) + uq−1[i], ∀ i,

so this step can be done distributedly, via one round of local
message exchange.

After completing Q > 0 such Chebyshev iterations (46)
(C-iteration for short), the obtained solution xr+1 will be an
approximate solution to the system 40, with a residual error
vector εr+1 as given below

Rxr+1 = dr +Rεr+1, with εr+1 := xr+1 − xr+1
∗ . (42)

Up to this point, the filtering technique we have discussed
aims at removing the “non-consensus” parts from a vector
d = [d1, · · · , dN]>. However, recall that the goal of distributed
optimization is not only to achieve consensus, but also to opti-
mize the objective function

∑
i fi(xi). Therefore, a prediction

step (S3) is performed to incorporate the most up-to-date local
gradient ∇fi(xi), followed by a tracking step (S4) to update
d. Ideally, one would like the new dr+1

i to have the following
three properties: 1) It is close to the previous dri ; 2) it takes
into consideration the new local gradient information offered
by the “predicted” x̃r+1

i ; 3) it is a “low frequency” signal,
meaning dr+1

i and dr+1
j are relatively close, for all i 6= j.

Taking a closer look at the “tracking” step, we can see that all
three components are included: It adds to the previous dr the
differences of the last two predictions, and it removes some
non-consensus components among the local variables.

To end this subsection, we emphasize that, the filtering step
(S2) is critical to ensure that the proposed algorithm achieve
performance lower bounds predicted in Section III. Intuitively,
it helps to accelerate information propagation across the net-
work. Indeed, as will be shown shortly, the number Q in (S2)
is directly related to properties of the underlying graph.

B. Discussion

Below we provide remarks about the proposed algorithm.
Remark 4.1: (xFILTER as a primal-dual strategy) First,

we provide an interesting interpretation of the xFILTER strat-
egy. Let us introduce an auxiliary (dual) variable λr ∈ RE ,
which is updated as follows:

λr+1 = λr + Σ2Fxr+1, with, λ−1 = 0. (43)

Then according to (47), (48) and the initialization x−1 = 0,
d−1 = −Υ−2∇f(0), we have the following relationship

d0 := −Υ−2∇f(x−1) + (x0 −Υ−2∇f(x0)

− (x−1 −Υ−2∇f(x−1)))−Υ−2F>λ0

= x0 −Υ−2∇f(x0)−Υ−2F>λ0.

By using the induction argument, we can show that for all
r ≥ 0, the following holds

dr := xr −Υ−2∇f(xr)−Υ−2F>λr. (44)

Combining (40) and (44), we obtain the following useful
alternative expressions of (40) and (42):

Υ−2
(
∇f(xr)+F>(λr + Σ2Fxr+1

∗)
)
+(xr+1

∗ − xr) = 0 (45a)

Υ−2
(
∇f(xr)+F>(λr + Σ2Fxr+1)

)
+(xr+1− xr) = Rεr+1.

(45b)

Algorithm 1. The xFILTER Algorithm (Global View)
(S1) [Initialization]. Assign each node i ∈ N with βi > 0;
Assign each edge (ij) ∈ E with σij > 0; Initialize x−1 = 0,
d−1 = −Υ−2∇f(x−1) and x̃−1 = x−1 − Υ−2∇f(x−1).
Compute R by (40);
(S2) [Filtering]. At iteration r+ 1, r ≥ −1: For a fixed con-
stant Q > 0, run the following C-iterations (with parameters
{αq, τ})

u0 = xr, u1 = (I − τR)u0 + τdr, (46)
uq = αq(I − τR)uq−1 + (1− αq)uq−2 + ταqd

r, q = 2, · · · , Q;

Set xr+1 = uQ;
(S3) [Prediction]. Compute x̃r+1 by:

x̃r+1 = xr+1 −Υ−2∇f(xr+1); (47)

(S4) [Tracking]. Compute dr+1 by:

dr+1 = dr + (x̃r+1 − x̃r)−Υ−2F>Σ2Fxr+1. (48)

Set r = r + 1, go to (S2).
Using (45a), it is clear that xr+1

∗ can be equivalently written
as the optimal solution of the following problem:

xr+1
∗ = argmin

x
〈∇f(xr) + F>λr, x− xr〉

+
1

2
‖ΣFx‖2 +

1

2
‖Υ(x− xr)‖2. (49)

It follows that, the iterates {xr+1} can be viewed as trying to
approximately optimize the primal variable of the following
augmented Lagrangian (AL),

AL(x, λ) = f(x) + 〈λ, Fx〉+
1

2
‖ΣFx‖2 (50)

while the update (43) updates the dual variable. For simplicity,
we will use ALr to denote AL(xr, λr).

Remark 4.2: (Implementation and Algorithm Classes)
First, to compute dr’s, note that d−1 = −Υ−2∇f(0). Then if
dr−1 is given, by combining (48) and (47), it is easy to show
that each dri can be updated as

dri = dr−1
i + (xri − xr−1

i)− 1

Mβ2
i

(∇fi(xri)−∇fi(xr−1
i))

+
∑
j:j∼i

σ2
ij

β2
i

(xri − xrj). (51)

Combining the above expression with (41) for computing
Ruq−1, it is clear that all the computation only involves local
communication and local gradient computation.

The above observation also suggests that for a general
choice of parameter matrix Σ2 � 0, xFILTER is in class A.
Further, if Σ2 is a multiple of identity matrix (i.e., there exists
σ2 > 0 such that Σ2 = σ2IE), then the computations in (51)
only involve the sum of neighboring iterates, therefore the
algorithm belongs to class A′ as well.

8

V. THE CONVERGENCE RATE ANALYSIS

In this section we provide the analysis of the convergence
rate of xFILTER. All the proofs can be found in the appendix.
For convenience, the algorithm will be analyzed based on the
primal-dual interpretation in Remark 4.1.
Step 1. We first analyze the dynamics of the dual variable.

Lemma 5.1: Suppose that f(x) is in class PML . Then, for
all r ≥ 0, the iterates of xFILTER satisfy

‖λr+1 − λr‖2Σ−2 ≤ κ̃
(

3

M2
‖Υ−1L(xr − xr−1)‖2

+ 3‖wr+1‖2Υ2 + 3‖ΥR(εr+1 − εr)‖2
)
. (52)

where we have defined the following

κ̃ :=
1

λmin(ΣFΥ−2F>Σ)
=

1

λmin(LG)
(53a)

wr+1 := (xr+1 − xr)− (xr − xr−1). (53b)

Step 2. In this step we analyze the dynamics of the AL (38).
Lemma 5.2: For all r ≥ 0, the iterates of xFILTER satisfy

ALr+1 − ALr ≤ −1

2
‖xr+1 − xr‖2Υ2R− L

M
(54)

+ 〈Υ2Rεr+1, xr+1 − xr〉+
3κ̃

M2
‖Υ−1L(xr − xr−1)‖2

+ 3κ̃‖wr+1‖2Υ2 + 3κ̃‖ΥR(εr+1 − εr)‖2.
Step 3. In this step, we analyze the error sequences {εr+1}
generated by the xFILTER. First we have the following well-
known result on the behavior of the Chebyshev iteration; see,
e.g., [48, Chapter 6] and [49, Theorem 1, Chapter 7].

Lemma 5.3: Consider using the Chebyshev iteration (46) to
solve Rx = dr. Define xr+1

∗ = R−1dr, with

R := Υ−2(F>Σ2F + Υ2). (55)

Define the following constants:

ξ(R) :=
λmin(R)

λmax(R)
≤ 1, ξ(Υ2) :=

λmin(Υ2)

λmax(Υ2)
≤ 1,

θ(R) := λmin(R) + λmax(R). (56)

Choose the following parameters:

τ =
2

θ(R)
, α1 = 2, αt+1 =

4

4− ρ2
0αt

, ρ0 =
1− ξ(R)

1 + ξ(R)
.

Then for any η ∈ (0, 1), achieving the following accuracy

‖uQ − xr+1
∗ ‖2Υ2 ≤ η‖u0 − xr+1

∗ ‖2Υ2 , (57)

requires the following number of iterations

Q ≥ −1

4
ln(η/4)

√
1/ξ(R).

Recall that in Algorithm 1 the initial and final solutions for the
Chebyshev iteration are assigned to xr and xr+1, respectively.
Define ε̃r := u0−xr+1

∗ = xr−xr+1
∗ , which is the error before

running the C-iteration. We have

Rxr = Ru0 = R(u0 − xr+1
∗) +Rxr+1

∗ := Rε̃r + dr, ∀ r ≥ −1.

Plugging in the definition of dr in (44), we obtain

Rε̃r = Rxr + Υ−2(∇f(xr) + F>λr −Υ2xr). (58)

Using the definition of εr+1 in (45b), and the fact that R is
invertible, we obtain the following key relationship

εr+1 − ε̃r = xr+1 − xr, ∀ r ≥ −1. (59)

Recall that εr+1 := xr+1 − xr+1
∗ , and xr+1 = uQ, xr = u0,

then (57) implies

‖εr+1‖2Υ2 ≤ η‖ε̃r‖2Υ2 . (60)

By combining Lemma 5.3, (59) and (60), the following
result provides some essential relationships between the error
sequences {εr+1} with the outer-loop iterates {xr+1}.

Lemma 5.4: Choose the inner iteration of xFILTER as

Q = −1

4
ln

(
θ2

16 + 128M max{λmax(Υ2R), 1}

)√
1/ξ(R). (61)

where θ := ξ(Υ2R)ξ(Υ2)×min{1, λmin(Υ2)}. Then we have
the following inequalities

‖Υ2Rεr+1‖2 ≤ 1

16M
‖xr+1 − xr‖2Υ2R, (62a)

‖εr+1‖2Υ2R ≤
1

16M
‖xr+1 − xr‖2Υ2R, (62b)

‖ΥRεr+1‖2 ≤ 1

16M
‖xr+1 − xr‖2Υ2R, (62c)

〈Υ2Rεr+1, xr+1− xr〉 ≤ 3

16
‖xr+1 − xr‖2Υ2R, (62d)

〈Υ2Rεr, xr+1− xr〉 ≤ 1

8
‖xr − xr−1‖2Υ2R +

1

16
‖xr+1 − xr‖2Υ2R.

(62e)

Clearly, using the Chebyshev iteration is one critical step
that ensures fast reduction of the error {εr+1}. In particular,
to achieve constant reduction of error, the total number of
required Chebyshev iteration is proportional to

√
1/ξ(R),

rather than 1/ξ(R) in conventional iterative scheme such as
the Richardson’s iteration [48]. Such a choice enables the final
bound to be dependent on

√
1/ξ(G), rather than 1/ξ(G).

Step 4. Let us construct the following potential functions
(parameterized by constants c̃ > 0)

P̃c̃(x
r+1, xr, λr+1) := ALr+1 +

3κ̃

M2
‖Υ−1L(xr+1 − xr)‖2 (63)

+
3κ̃

8
‖xr+1 − xr‖2Υ2R +

c̃

2
‖ΣFxr+1‖2 +

c̃

2
‖xr+1 − xr‖2

Υ2+ Υ2R
4

+ L
M

.

For notational simplicity we will denote it as P̃ r+1. Next we
show that when the algorithm parameters are chosen properly,
the potential functions will decrease along the iterations.

Lemma 5.5: Suppose that f(x) is in class PML , Q is chosen
according to (61), and the rest of the parameters of xFILTER
are chosen as below

c̃ = 8κ̃ =
8

λmin(ΣFΥ−2F>Σ)
, Υ2 � LΥ−2L

M2
, (64a)

(1/4− 3κ̃− c̃)Υ2R− (1 + 2c̃)L/M − 6κ̃

M2
LΥ−2L � 0. (64b)

Then for all r ≥ 0, we have

P̃ r − P̃ r+1 ≥ 1

8
‖xr+1 − xr‖2Υ2R + κ̃‖wr+1‖2Υ2 . (65)

Step 5. Next we show the boundedness of {P̃ r+1}.
Lemma 5.6: Suppose that f(x) is in class PML and the

parameters are chosen according to (64) and (61). Then the

9

sequence {P̃ r+1} generated by xFILTER satisfies

P̃ r+1 ≥ f, ∀ r > 0, P̃ 0 ≤ f(x0) +
5

M
d>0 L

−1d0. (66)

where f and d0 are defined in (6) and (33), respectively.
Step 6. We are ready to derive the final bounds for the
convergence rate of the proposed algorithm.

Theorem 5.1: Suppose that f(x) is in class PML and the
parameters are chosen according to (64) and and (61). Let Tr
denote the outer iteration index in which xFILTER satisfies

e(Tr) := min
r∈[Tr]

∥∥∥∥1/M
M∑
i=1

∇fi(xri)
∥∥∥∥2

+ ‖ΣFxr‖2 ≤ ε. (67)

Then we have the following bound for the error:

ε ≤ C̃1 ×
C̃2

Tr
, (68)

with the following constants

C̃1 := f(x0)− f +
5

M
d>0 L

−1d0 (69a)

C̃2 := 128

(
M∑
i=1

β2
i + 3 +

1

32κ̃

)
. (69b)

VI. RATE BOUNDS AND TIGHTNESS

In this section we provide explicit choices of various pa-
rameters, and discuss the tightness of the resulting bounds.
A. Parameter Selection and Rate Bounds for xFILTER

First, recall that the matrices L̃ and L̂ are defined in (21)-
(22). Below we will provide two choices of parameters.
Choice I. We focus on a class of graphs such that there exists
an absolute constant k > 0 such that the following holds :

kP � d̄IM (70)

where d̄ is the averaged degree (7). Condition (70) says that the
degrees of the nodes are not very different from their average.
For example the following graphs satisfy (70): Complete graph
(k = 1), star graph (k = 2), grid graph (k = 2), cubic graph
(k = 1), path graph (k = 2), and any regular graph (k = 1).

For the class of graphs satisfies (70), let us pick the
parameters for xFILTER as follows:

Σ2 =
48× 96k∑
i diλmin(L̃)

K, Υ2 =
96k∑
i di

P 1/2LP 1/2. (71)

Using the above choice, we have

β2
i =

96Lidik∑
i di

=
96Lidik

Md̄
(72)

and that the matrix Υ satisfies the following

Υ2 =
96k∑
i di

P 1/2LP 1/2 � 96

M
L. (73)

Plugging these choices to LG in (19) we obtain

LG = Υ−1F>Σ2FΥ−1 (74)

=
48

λmin(L̃)
L−1/2P−1/2F>KFP−1/2L−1/2

=
48

λmin(L̃)
L̃.

Therefore by (53a) we have

κ̃ =
λmin(L̃)

48λmin(L̃)
=

1

48
. (75)

Also in this case we have

R = Υ−2F>Σ2F + I

=
48

λmin(L̃)
P−1/2L−1P−1/2F>KF + I.

By noting that the matrix P−1/2L−1P−1/2F>KF and L̃
share the same set of eigenvalues, we obtain

λmax(R) ≤

(
48λmax(L̃)

λmin(L̃)
+ 1

)
≤ 50

ξ(L̃)
, λmin(R) = 1, (76a)

ξ(R) ≥ 1/

(
48λmax(L̃)

λmin(L̃)
+ 1

)
≥ ξ(L̃)

50
. (76b)

Choice II. For general graphs not necessarily satisfying (70),
let us pick the parameters for xFILTER as follows

Σ2 =
48× 96

Mλmin(L̂)
K, Υ2 =

96

M
L. (77)

Using the above choice, we have

β2
i =

96Li
M

. (78)

We have that

LG =
48

λmin(L̂)
L−1/2F>KFL−1/2 =

48

λmin(L̂)
L̂. (79)

Therefore by (53a) we have

κ̃ =
λmin(L̂)

48λmin(L̂)
=

1

48
. (80)

Also in this case we have

R = Υ−2F>Σ2F + I =
48

λmin(L̂)
L−1F>KF + I.

By noting that the matrix L−1F>KF and L̂ share the same
set of eigenvalues, we obtain

λmax(R) ≤

(
48λmax(L̂)

λmin(L̂)
+ 1

)
≤ 50

ξ(L̂)
, λmin(R) = 1, (81a)

ξ(R) ≥ 1/

(
48λmax(L̂)

λmin(L̂)
+ 1

)
≥ ξ(L̂)

50
. (81b)

Remark 6.1: (Choices of Parameters) The above two
choices of parameters differ on whether Υ2 is scaled with the
degree matrix or not. The resulting bounds are also dependent
on the spectral gap for L̃ and L̂, one inversely scaled with the
degree matrix, and the other does not. Note that the spectral
gap of L̃ and L̂ may not be the same. For example for a star
graph with Li = Lj , ξ(L̂) = O(1/M) but ξ(L̃) = O(1).
Therefore one has to be careful in choosing these parameters
so that ξ(R) is made as large as possible.

Additionally, since we are mainly interested in choosing the
parameters so that the resulting rate bounds will be optimal

10

in their dependency on problem parameters, the absolute con-
stants in the above parameter choices have not been optimized.

The following result is a consequence of Theorem 5.1.
Theorem 6.1: Consider using xFILTER to solve problems

in class (PML ,N), then the following holds.
Case I. Further restricting NM

D to a subclass satisfying (70).
If parameters in (71) is used, then the condition (64b) will
be satisfied. Further, to achieve e(T) ≤ ε, it requires at most
the following number of iterations (where T denotes the total
iterations of the xFILTER algorithm)

T ≤ 1

ε

(
f(x0)− f +

5

M
‖d0‖2L−1

)
× C̃2 (82)

× 1

4
ln

(
(MLmax/Lmin)4 × (16 + 6400M)

ξ3(L̃)

)√
50/ξ(L̃)

where C̃2 is given by

C̃2 ≤ 128

(
96k∑M
i=1 di

M∑
i=1

diLi + 19

)
. (83)

Case II. Suppose parameters in (77) are used. Then the
condition (64b) will be satisfied. Further, to achieve e(T) ≤ ε,
it requires at most the following number of iterations

T ≤ 1

ε

(
f(x0)− f +

5

M
‖d0‖2L−1

)
× C̃2 (84)

× 1

4
ln

(
(MLmax/Lmin)4 × (16 + 6400M)

ξ3(L̂)

)√
50/ξ(L̂)

where C̃2 is given by

C̃2 ≤ 128

(
96

M

M∑
i=1

Li + 19

)
. (85)

We note that compared with (68) in Theorem 5.1, the addi-
tional multiplicative term in (82) accounts for the Chebyshev
iterations that are needed for every outer iteration r.

B. Tightness of the Upper Rate Bounds

We present some tightness results of the upper rate bounds
for xFILTER. In particular, we compare the expressions de-
rived in Theorem 6.1, and the lower bounds derived in Section
III, over different kinds of graphs and for different problems.
We will mainly focus on the case with uniform Lipschitz
constants, i.e., Li = U, ∀ i. We will briefly discuss the case
of non-uniform Lipschitz constants at the end of this section.

First, consider the class PMU with the following properties:

L1 = L2 = · · ·LM =
1

M

M∑
i=1

Li := U, L = UIM . (86)

It follows that in this case L̃ = L, and L̂ = P 1/2LP 1/2. Let
us first make some useful observations.

Remark 6.2: Let us specialize the parameter choices for
xFILTER algorithm in (71) and derive the bounds for C̃2 ×
1/

√
ξ(L̃) in (83) for the following special graphs.

Complete graph. Complete graphs satisfy (70) with k = 1.
It also satisfies λmin(L̃) = M/(M − 1) ≥ 1. Therefore using

the expression (83) we obtain the following:

C̃comp
2 × 1√

ξ(L̃)
≤ 12500U + 2560. (87)

Grid graph. Grid graphs satisfy (70) with k = 2. It also
satisfies λmin(L̃) ≥ 1/M . Therefore using the expression (83)
we obtain the following:

C̃grid
2 × 1√

ξ(L̃)
≤ (12500U + 2560)×

√
M. (88)

Star graph. Star graphs satisfy (70) with k = 2. It also has
ξ(L̃) = 1/2. Therefore using the expression (83) we obtain
the following:

C̃star
2 × 1√

ξ(L̃)
≤ (12500U + 2560)×

√
2. (89)

Random Geometric graph. If the radius Ra satisfies (25),
then with high probability ξ(L̃) = O

(
log(M)
M

)
. Further, from

the proof of [50, Lemma 10], for any ε and c > 0, if

Ra = Ω

(√
log1+ε(M)/(Mπ)

)
(90)

then with probability at least 1−2/M c−1, the following holds

log1+εM −
√

2c logM ≤ di ≤ log1+εM +
√

2c logM, ∀ i.

This means that (70) is satisfied (with k = O(1)) with high
probability (also see discussion at the end of [44, Section V]).
Therefore using the expression (83) we obtain the following:

C̃geometric
2 × 1√

ξ(L̃)
≤ (12500U + 2560)×O

(√
M√

log(M)

)
.

Cycle/Path graph. Cycle/path graphs satisfy (70) with k = 2.
We also have λmin(L̃) ≥ 1/M2. Therefore using the expres-
sion (83) we obtain the following:

C̃cycle
2 × 1√

ξ(L̃)
≤ (12500U + 2560)×M. (91)

We also note that for the xFILTER algorithm, the fact that
Li = U, ∀ i implies that the matrix Σ2 given in (71) is a
multiple of identity matrix. Therefore by Remark 4.2, we can
conclude that in this case xFILTER belongs to both A and A′.

Now we are ready to present our tightness analysis.

Theorem 6.2: Consider the problem class PMU , and a sub-
class of N satisfying (70). Then the convergence rate in (82)
is tight (up to a polylog factor).

Proof. When Li = Lj , ∀ i 6= j, and when (70) is satisfied, it
is easy to verify that the following holds

h∗T ≤ e(T), and L̃ = L. (92)

To bound the total number of iteration required to achieve
h∗T ≤ ε, note that when (70) is satisfied, we can apply the

11

bound (82) in Theorem 6.1 and obtain

T ≤ 1

ε

(
f(x0)− f +

5

MU
‖d0‖2

)
× 128 (96kU + 19)

× 1

4
ln

(
M4 × (16 + 6400M)

ξ3(G)

)√
50/ξ(G). (93)

Comparing with the lower bound in Theorem 3.1, it is clear
that except for the multiplicative ln(·) term, the remaining
bound is in the same order as the lower bound (36). Q.E.D.

Remark 6.3: (Optimal Number of Gradient Evaluations)
It is important to note that the “outer” iteration of the xFILTER
required to achieve ε-local solution scales with O(U/ε), which
is independent of the network size. Because local gradients are
only evaluated in the outer iterations, the above fact suggests
that the total number of gradients ∇f(xr) required is also in
O(U/ε). This is an optimal order because it is the same as
what is needed for the centralized gradient descent.

Remark 6.4: (Performance Gap Compared with Existing
Methods) An existing algorithm called distributed gradient
primal-dual algorithm (D-GPDA) has also been developed
recently, which has explicit characterization of various conver-
gence rates [51]. In particular, this algorithm is not optimal,
in the sense that at each iteration, O(1) local communication
and gradient computation are to be carried out, and the total
number of iterations scale with O

(
1
ε ×

1

ξ(G)

)
. Obviously the

D-GPDA algorithm costs a lot more compared with xFILTER,
for example for path/star graph, it requires O(M2) times
more gradient computation effort, and O(M) times more
communication effort than what is required by the xFILTER.

Remark 6.5: (Non-uniform Lipschitz Constants) We com-
ment that for the general case Li 6= Lj , ∀ i, j, we can use
similar steps to verify that the bound (84) derived in Theorem
6.1 is optimal, in the sense that they achieve the lower bound
(37) predicted in Corollary 3.1.

VII. NUMERICAL RESULTS

This section presents numerical examples to show the effec-
tiveness of the proposed algorithms. Two kinds of problems
are considered, distributed binary classification and distributed
neural networks training. We use the former one to demon-
strate the behavior and scalability of our algorithm and use
the latter one to show the practical performance.

A. Simulation Setup

In our simulations, all algorithms are implemented in MAT-
LAB R2017a for binary classification problem and imple-
mented in Python 3.6 for training neural networks, running on
a computer node with two 12-core Intel Haswell processors
and 128 GB of memory (unless otherwise specified). Both
synthetic and real data are used for performance comparison.
For synthetic data, the feature vector is randomly generated
with standard normal distribution with zero mean and unit
variance. The label vector is randomly generated with uni-
formly distributed pseudorandom integers taking the values
{−1, 1}. For real data, we use the breast cancer dataset 1 for

1https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)

binary classification and MNIST2 for training neural network.
The breast cancer dataset contains a total of 569 samples each
with 30 real positive features. The MNIST dataset contains a
total of 60,000 handwritten digits, each with a 28 × 28 gray
scale image and a label from ten categories.

B. Distributed Binary Classification

We consider a non-convex distributed binary classification
problem [52], where each component function fi is given by

fi(xi) =
1

B

B∑
j=1

log
(
1 + exp(−yijx>i vij)

)
+

S∑
s=1

λαx2
i,s

1 + αx2
i,s

.

Here vij ∈ RS denotes the feature vector with dimension S,
yij ∈ {1,−1} denotes the label for the jth date point in
ith agent, and there are total B data points for each agent.
Unless otherwise noted, the graph E used in our simulation
is generated using the random geometric graph and the graph
parameter Ra is set to 0.5. The regularization parameter is set
to λ = 0.001, α = 1.

To compare the convergence performance of the proposed
algorithms, we randomly generated MB data points with
dimension K and distribute them into M nodes, i.e. each node
contains B data points with K features. Then we compare
xFILTER with the D-GPDA [51], the distributed subgradient
(DSG) method [53], the Push-sum algorithm [54], and the
NEXT algorithm [14]. The parameters for NEXT are chosen
as τ = 1, α[0] = 0.1 and µ = 0.01 as suggested by [14], while
the parameters for xFILTER are chosen based on (71).

Simulation results on synthetic data for different M,B,K
averaged over 30 realizations are investigated and shown in
Fig. 2 to Fig. 3, where the x-axis denotes the total rounds of
communications required, and the y-axis denotes the quality
measure (16). Note that the curves xFILTER (outer) included
in these figures show the number of communication rounds
required for xFILTER to perform the “outer” iterations (which
is equivalent to r in Algorithm 1, since in each outer iteration
only one round of communication is required in Step S3). The
performance evaluated on real data is also characterized in Fig.
4, in which we choose M = 10, B = 56, and K = 30. These
results show that the proposed algorithms perform well in all
parameter settings compared with existing methods.

We further note that these figures also show (rough) com-
parison about computation efficiency of different algorithms.
Specifically, for GPDA, DSG and Push Sum (resp. NEXT),
the total rounds of communication is the same as (resp. twice
as) the total number of gradient evaluations per node. In
contrast, the total rounds of communication in the outer loop
of xFILTER is the same as the local gradient evaluations.
Therefore, the comparison between xFILTER (outer) and other
algorithms in Fig. 2 to Fig. 3 shows the relative computational
efficiency of these algorithms. Clearly, xFILTER has a signif-
icant advantage over the rest of the algorithms.

Further, we compare the scalability performance of the
proposed algorithms with increased network dimension M .
In particular, in Fig. 5 we compare the total communication
rounds required for NEXT and the xFILTER for reaching

2http://yann.lecun.com/exdb/mnist/

https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
http://yann.lecun.com/exdb/mnist/

12

0 2000 4000 6000 8000 10000

10-30

10-20

10-10

100

O
p

ti
m

a
lit

y
 G

a
p
 h

*

xFILTER (outer)

xFILTER (total)

GPDA

NEXT

DSG

Push-sum

Fig. 2: M = 20, B = 200, K = 10

0 2000 4000 6000 8000 10000

10-30

10-20

10-10

100

O
p

ti
m

a
lit

y
 G

a
p
 h

*

xFILTER (outer)

xFILTER (total)

GPDA

NEXT

DSG

Push-sum

Fig. 3: M = 50, B = 2000, K = 10

0 2000 4000 6000 8000 10000

10-30

10-20

10-10

100

O
p

ti
m

a
lit

y
 G

a
p
 h

*

xFILTER (outer)

xFILTER (total)

Prox-PDA

NEXT

DSG

Push-sum

Fig. 4: M = 10, B = 56, K = 30

h∗T ≤ 10−10 and h∗T ≤ 10−15, over path graphs with
increasing number of nodes. Overall, we see that the xFIL-
TER performs reasonably fast and exhibits the desired linear
scaling.

We do want to point out that although the proposed al-
gorithms compare relatively favorably with NEXT in our
numerical tests, NEXT can in fact handle a larger class of
problems because it is designed for nonsmooth and constrained
nonconvex problems. Further, for all the algorithms we have
used, we did not tune the parameters: For xFILTER and
D-GPDA, we use the theoretical upper bound suggested in
Theorem 5.1, and for NEXT we use the parameters suggested
in the paper [14]. It could be possible to fine-tune the stepsizes
to make them faster, but since this paper is mostly on the
theoretical properties of rate optimal algorithms, we choose
not to go down that path.

0 50 100 150

number of nodes

0

0.5

1

1.5

2

2.5

3
10

5

xFILTER

NEXT

(a) B = 10,K = 10, ε = 10−10

10 20 30 40 50

number of nodes

0

1

2

3

4

5

6

7
10

4

xFILTER

NEXT

(b) B = 200,K = 10, ε = 10−15

Fig. 5: Comparison of NEXT and xFILTER over path graphs with increasing number
of nodes (M ∈ [10, 150] in (a) and M ∈ [5, 50] in (b)). Each point in the figure
represents the total number of communication needed to reach h∗T ≤ ε.

0 1000 2000 3000 4000 5000

Iteration Number

0

5

10

15

20

25

C
a

te
g

o
ri
c
a

l
C

ro
s
s
-E

n
tr

o
p

y
 L

o
s
s xFILTER (outer)

xFILTER (total)

DSG

(a) Training Loss

0 1000 2000 3000 4000 5000

Iteration Number

0

0.2

0.4

0.6

0.8

1

T
ra

in
in

g
 A

c
c
u

ra
c
y

xFILTER (outer)

xFILTER (total)

DSG

(b) Training Accuracy

Fig. 6: Comparison of DSG and xFILTER over path graphs on distributed training neural
networks; Plot (a) shows the dynamic of the categorical cross-entropy loss, and plot (b)
shows the training classification accuracy. The parameters are chosen based on their best
practical performance through grid search. The curves xFILTER (outer) and xFILTER
(total) again represent the number of outer iteration, and the total number of iterations
required for xFILTER.

C. Distributed Neural Network Training

In our second experiment, we present some numerical
results under a more realistic setting. We consider training
a neural network model for fitting the MNIST data set. The
dataset is first randomly partitioned into 10 subsets, and then
gets distributed over 10 machines. A fully connected neural
network with one hidden layer is used in the experiment. The
number of neurons for the hidden layer and the output layer
are set as 128 and 10, respectively. The initial weights for the
neural network are drawn from a truncated normal distribution
centered at zero with variance scaled with the number of
input units. The algorithms are written in Python, and the
communication protocol is implemented using the Message
Passing Interface (MPI). The empirical performance of the
xFILTER is evaluated and compared with the DSG algorithm
[53]. Fig. 6 shows that, compared with DSG, the proposed
algorithm achieves better communication and computation
efficiency, and has improved classification accuracy.

Note that despite the fact that some global parameters (such
as the Lipschitz constants) are unknown, the rules provided in
(71) or (77) still can help us roughly estimate a set of good
parameters. For example, we choose the following parameters

Σ2 =
σ∑

i diλmin(L̃)
, Υ2 =

βP∑
i di

, (94)

and tune the parameter β and σ by search from the sets
{0.1, 0.2, 0.5, 1, 2, 5, · · · , 100, 200, 500}. Based on the best
practical performance over 10 runs, we choose β = 100 and
σ = 20 for xFILTER and α = 0.1 for DSG.

13

VIII. CONCLUSION AND FUTURE WORKS

This paper represents the first work that investigates the
performance of optimal first-order algorithms for non-convex
distributed optimization problems. We provide a lower com-
plexity bound that characterizes the worst case performance for
any algorithm in class A, and propose an algorithm capable
of (nearly) achieving the lower bound in various settings. In
Fig. 7, we illustrate various bounds discussed in this work by
using a path graph.

To the best of our knowledge, the proposed algorithm is the
first and the only available distributed non-convex algorithm in
class A that can achieve the (near) optimal rate performance
for problem/network classes (P,N). However, they still re-
quire some global information to initialize the parameters, so it
will be of interest to design global information free algorithms
that only require local structures to set parameters (just like
in the convex case, see discussions in [55]). It will also be
desirable to consider the problem where only the average
function f̄ has Lipschitz gradient, but not the local fi’s.

M
2

ǫ

1

ǫ

M

ǫ

M

ǫ
logM M

2

ǫ

D-GPDA

xFILTER

lower bound

computation

communication

centralized GD

0

(# of gradient evaluation)

(# of message exchange)

Fig. 7: Graphical comparison of various bounds analyzed in this work, illustrated
over a path graph with M nodes.

IX. APPENDIX

A. Proof of Lemma 5.1

Proof. For simplicity we will denote gr := ∇f(xr). First note
that ∀ r ≥ −1 the following holds according to (45b),

gr+ F>(λr + Σ2Fxr+1)+Υ2(xr+1 − xr) = Υ2Rεr+1. (95)

Second, by using (95) and the update (43), we obtain

F>λr+1 = −gr −Υ2(xr+1 − xr) + Υ2Rεr+1. (96)

Then subtracting the previous iteration leads to

F>(λr+1 − λr) = −(gr − gr−1)−Υ2wr+1

+ Υ2R(εr+1 − εr), ∀ r ≥ 0.

Note that the matrix Υ2 � 0, Σ2 � 0, then we have

Υ−1(ΣF)>Σ−1(λr+1 − λr) = −Υ−1(gr − gr−1)

−Υwr+1 + ΥR(εr+1 − εr). (97)

Then using the fact that

Σ−1(λr+1 − λr) = ΣFxr+1 ∈ col(ΣF),

we can square both sides and obtain the following

λmin(ΣFΥ−2F>Σ)‖Σ−1(λr+1 − λr)‖2

≤ 3‖gr − gr−1‖2Υ−2 + 3‖wr+1‖2Υ2 + 3‖ΥR(εr+1 − εr)‖2
(18)
≤ 3

M2
‖Υ−1L(xr − xr−1)‖2

+ 3‖wr+1‖2Υ2 + 3‖ΥR(εr+1 − εr)‖2, ∀ r ≥ 0. (98)

This concludes the proof. Q.E.D.

B. Proof of Lemma 5.2
Proof. Consider (50), using the Lipschitz gradient assumption
(18), we have

AL(xr+1, λr)− AL(xr, λr)

≤ 〈∇f(xr) + F>λr + F>Σ2Fxr, xr+1 − xr〉

+
1

2M
‖xr+1 − xr‖2L +

1

2
‖ΣF (xr+1 − xr)‖2

= 〈∇f(xr) + F>λr + F>Σ2Fxr+1, xr+1 − xr〉

+ 〈Υ2(xr+1 − xr), xr+1 − xr〉+
1

2M
‖xr+1 − xr‖2L

+
1

2
‖ΣF (xr+1 − xr)‖2 − ‖xr+1 − xr‖2Υ2+F>Σ2F

(95)
≤ −(xr+1 − xr)>

(
Υ2R

2
− L

2M

)
(xr+1 − xr)

+ 〈Υ2Rεr+1, xr+1 − xr〉. (99)

Using the update rule of the dual variable, and combine the
above inequality, we obtain

ALr+1 − ALr ≤ −1

2
‖xr+1 − xr‖2Υ2R− L

M

+ 〈Υ2Rεr+1, xr+1 − xr〉+ 〈λr+1 − λr, Fxr+1〉

= −1

2
‖xr+1 − xr‖2Υ2R− L

M

+ 〈Υ2Rεr+1, xr+1 − xr〉+ ‖Σ−1(λr+1 − λr)‖2.

Combined with Lemma 5.1 we complete the proof. Q.E.D.

C. Proof of Lemma 5.4

Proof. Let us choose

η = θ2/(4 + 32M max{λmax(Υ2R), 1}). (100)

Then from Lemma 5.3, it is clear that if Q satisfies (61), then

‖εr+1‖2Υ2 ≤ η‖ε̃r‖2Υ2 . (101)

Note that Υ2R = F>Σ2F + Υ2 � 0, then it follows that

‖Υ2Rεr+1‖2 ≤ λmax(RΥ2Υ2R)

λmin(Υ2)
‖εr+1‖2Υ2

(60)
≤ ηλmax(RΥ2Υ2R)

λmin(Υ2)
‖ε̃r‖2Υ2 ≤

ηλmax(RΥ2Υ2R)λmax(Υ2)

λmin(Υ2)
‖ε̃r‖2

≤ ηλmax(RΥ2Υ2R)λmax(Υ2)

λmin(RΥ2Υ2R)λmin(Υ2)
‖Υ2Rε̃r‖2 ≤ ηθ−2‖Υ2Rε̃r‖2.

Using the above relation, we can then obtain the following

‖Υ2Rεr+1‖2 ≤ 2ηθ
−2

(‖Υ2Rεr+1‖2 + ‖Υ2R(εr+1 − ε̃r)‖2)
(59)
≤ 2ηθ−2(‖Υ2Rεr+1‖2 + ‖Υ2R(xr+1 − xr)‖2).

Therefore, we obtain

‖Υ2Rεr+1‖2 ≤ 2ηθ−2/(1− 2ηθ−2)‖Υ2R(xr+1 − xr)‖2.

14

Plugging the definition of η in (100), we have

‖Υ2Rεr+1‖2 ≤ λmax(Υ2R)2ηθ−2/(1− 2ηθ−2)‖xr+1 − xr‖2Υ2R

(100)
≤ 1/(16M)‖xr+1 − xr‖2Υ2R, ∀ r ≥ −1.

To obtain the second inequality, notice that

‖εr+1‖2Υ2R ≤ θ−1η‖ε̃r‖2Υ2R ≤ θ−2η‖ε̃r‖2Υ2R (102)

where the last inequality is due to the fact that θ ≤ 1. Then
repeating the above derivation we can obtain the desired result.
The third inequality in (62) can be derived in a similar way,
and the last two in (62) can be obtained by using Cauchy-
Swartz inequality. Q.E.D.

D. Proof of Lemma 5.5

Proof. Notice that the following identities hold true

〈a− b, c− d〉 ≤ 1

2
‖a− b‖2 +

1

2
‖c− d‖2 (103)

〈a− b, Bb〉 =
1

2
‖a‖2B −

1

2
‖b‖2B +

1

2
‖a− b‖2B , with B � 0.

(104)

Using the optimality condition from (96) we have

〈F>λr+1 +∇f(xr) + Υ2(xr+1 − xr)−Υ2Rεr+1, xr+1 − xr〉 = 0

〈F>λr +∇f(xr−1) + Υ2(xr − xr−1)−Υ2Rεr, xr − xr−1〉 = 0,

Subtract the above two equations, use (103) – (104), and
apply the bounds (62d)(62e), we obtain

1

2
‖ΣFxr+1‖2 +

1

2
‖xr+1 − xr‖2Υ2 (105)

≤ 1

2
‖ΣFxr‖2 +

1

2
‖xr − xr−1‖2Υ2 −

1

2
‖wr+1‖2Υ2

+ 1/(2M)‖xr+1 − xr‖2L + 1/(2M)‖xr − xr−1‖2L
+ 1/4‖xr+1 − xr‖2Υ2R + 1/4‖xr − xr−1‖2Υ2R, ∀ r ≥ 0.

By using the potential function defined in (63), we have

P̃ r+1 − P̃ r = ALr+1 − ALr +
3κ̃

M2
‖Υ−1L(xr+1 − xr)‖2

− 3κ̃

M2
‖Υ−1L(xr − xr−1)‖2

+
3κ̃

8
(‖xr+1 − xr‖2Υ2R − ‖x

r − xr−1‖2Υ2R)

+
c̃

2

(
‖ΣFxr+1‖2 + ‖xr+1 − xr‖2

Υ2+ Υ2R
4

+ L
M

)
− c̃

2

(
‖ΣFxr‖2 + ‖xr − xr−1‖2

Υ2+ Υ2R
4

+ L
M

)
.

Multiplying (105) with c̃, then adding to (54), and use the
estimate of the size of ε in (62c) and (62d), we can obtain

P̃ r+1 − P̃ r ≤ −1

2
(xr+1 − xr)>V (xr+1 − xr)−

(
c̃

2
− 3κ̃

)
‖wr+1‖2Υ2 .

with the matrix V defined as follows

V :=

(
Υ2R− (1 + 2c̃)

L

M
− 6κ̃

M2
LΥ−2L− Υ2R(24κ̃+ 6 + 16c̃)

16

)
.

Therefore in order to make the potential function decrease,
we need to follow (64). Q.E.D.

E. Proof of Lemma 5.6

Proof. We can express the AL as (for all r ≥ 0)

ALr+1 − f(xr+1) = 〈λr+1,Σ−2(λr+1 − λr)〉+
1

2
‖ΣFxr+1‖2

=
1

2

(
‖Σ−1λr+1‖2−‖Σ−1λr‖2+ ‖Σ−1(λr+1 − λr)‖2 + ‖ΣFxr+1‖2

)
.

Since infx f(x) = f is lower bounded, let us define

ÂL
r+1
:= ALr+1 − f, f̂(x) := f(x)− f ≥ 0, P̂ r+1:= P̃ r+1 − f.

Therefore, summing over r = −1 · · · , T , we obtain
T∑

r=−1

ÂL
r+1

=
1

2

(
‖Σ−1λT+1‖2 − ‖Σ−1λ−1‖2

)
+

T∑
r=−1

(
f̂(xr+1) +

1

2
‖ΣFxr+1‖2 +

1

2
‖Σ−1(λr+1 − λr)‖2

)
.

Using the initialization λ−1 = 0, then the above sum is lower
bounded by zero. This fact implies that the sum of P̂ r+1 is
also lower bounded by zero (since besides ÂL, the remaining
terms in P̂ are all nonnegative)

T∑
r=0

P̂ r+1 ≥ 0, ∀ T > 0,

Note that if the parameters of the system are chosen according
to (64), then P̃ r+1 is nonincreasing, which implies that its
shifted version P̂ r+1 is also nonincreasing. Combined with
the nonnegativity of the sum of the shifted potential function,
we can conclude that

P̂ r+1 ≥ 0, and P̃ r+1 ≥ inf f(x), ∀ r ≥ 0. (106)

Next we compute P̃ 0. By letting r = −1, and use x−1 = 0
and λ−1 = 0, we obtain

AL0 − f(x0) =
1

2

(
2‖Σ−1λ0‖2 + ‖ΣFx0‖2

)
=

3

2
‖Σ−1λ0‖2.

(107)

Then we have

P̃ 0 = AL0 +
3κ̃

M2
‖Υ−1Lx0‖2 +

3

8
κ̃‖x0‖2Υ2R

+
c̃

2

(
‖ΣFx0‖2 + ‖x0‖2Υ2+Υ2R/4+L/M

)
, (108a)

AL0 ≤ f(x0) + 2‖ΣFx0‖2, x−1 = 0, λ−1 = 0, (108b)

x0 (45b)
= R−1Υ−2∇f(0)− ε0, ε̃−1 (58)

= R−1Υ−2∇f(0). (108c)

Use the above relation, we have

P̃ 0 ≤ f(x0) + (x0)>Z̃x0, with Z defined as

Z̃ =
3κ̃

M2
LΥ−2L+

(
3

8
κ̃+ c̃

)
Υ2R+

c̃L

2M
+ 2FΣ2F � 3Υ2R

where the last inequality follows from our choice of param-
eters in (64b). Therefore we have

(x0)>Z̃x0 ≤ 3(x0)>Υ2Rx0

≤ 3(∇f(0)−Υ2Rε0)>R−1Υ−2(∇f(0)−Υ2Rε0)

(i)

≤ 6(∇f(0))>R−1Υ−2∇f(0) + 6(ε0)>Υ2Rε0

≤ 3M(∇f(0))>L−1∇f(0) +
3

8M
‖x0‖2Υ2R

15

where in (i) we have used the Cauchy-Swartz inequality;
the last inequality uses (62), the choice of the parameters
(64b) (which implies Υ2R ≥ 4L/M). The above series of
inequalities imply that

2‖x0‖2Υ2R ≤
(

3− 3

8M

)
‖x0‖2Υ2R ≤ 3M(∇f(0))>L−1∇f(0).

Therefore overall we have

(x0)>Z̃x0 ≤ 3(x0)>Υ2Rx0 ≤ 5M(∇f(0))>L−1∇f(0).

By observing 1
M2 d

>
0 d0 = ‖∇f(0)‖2, the desired result is

obtained. Q.E.D.

F. Proof of Theorem 5.1

To show the result, we consider the optimality condition
(95), and multiply both sides of it by the all one vector, and
use the fact that F1 = 0 to obtain

1
>∇f(xr) + 1

>Υ2(xr+1 − xr) = 1
>Υ2Rεr+1.

Squaring both sides and rearranging terms we have∥∥∥∥ 1

M

M∑
i=1

∇fi(xri)

∥∥∥∥2

≤ 2(xr+1 − xr)>Υ2
11
>Υ2(xr+1 − xr)

+ 2(εr+1)>Υ2R11>Υ2Rεr+1

(62)
≤ 2(xr+1 − xr)>Υ2(xr+1 − xr)× 1

>Υ2
1

+M/(4M)‖xr+1 − xr‖2Υ2R

(i)

≤ ‖xr+1 − xr‖2Υ2R × 2

(
1 +

M∑
i=1

β2
i

)
,

(65)
≤ 64(P̃ r − P̃ r+1)× 2

(
1 +

M∑
i=1

β2
i

)
, ∀ r ≥ 0.

where in (i) we used Υ2R = Υ2 + F>Σ2F � Υ2.
To bound the consensus error, we first use (62) and obtain

‖Υ2R(εr+1 − εr)‖2 ≤ 1

4M
‖xr+1 − xr‖2Υ2R +

1

4M
‖xr − xr−1‖2Υ2R.

Then we apply Lemma 5.1 to obtain

‖ΣFxr+1‖2 (109)

≤ 3κ̃

(
‖xr+1 − xr‖2Υ2R

4M

+ ‖wr+1‖2Υ2 + ‖xr − xr−1‖2Υ2R
4M

+ LΥ−2L
M2

)
(i)

≤ 2‖xr+1 − xr‖2Υ2R + 3κ̃‖wr+1‖2Υ2 + 2‖xr − xr−1‖2Υ2R, ∀ r ≥ 0

where (i) is a consequence of (64b), which implies

2Υ2R � 3κ̃

(
LΥ−2L

M2
+ Υ2R

)
. (110)

By combining (109) and the following inequality

‖ΣFxr‖2 ≤ 2‖ΣF (xr+1 − xr)‖2 + 2‖ΣFxr+1‖2,

we have

‖ΣFxr‖2 ≤ 4‖xr+1 − xr‖2Υ2R+F>Σ2F + 6κ̃‖wr+1‖2Υ2

+ 4‖xr − xr−1‖2Υ2R

(65)
≤ 64(P̃ r − P̃ r+1) + 64(P̃ r−1 − P̃ r), ∀ r ≥ 1

‖ΣFx0‖2 ≤ 64(P̃ 0 − P̃ 1) + 4‖x0‖2Υ2R.

So overall we have that
Tr∑
r=0

(∥∥∥∥ 1

M

M∑
i=1

∇fi(xri)

∥∥∥∥2

+ ‖ΣFxr‖2
)

≤ 64

(
1 +

M∑
i=1

β2
i + 1

)
Tr∑
r=1

((P̃ r − P̃ r+1) + (P̃ r−1 − P̃ r))

+ 64(P̃ 0 − P̃ 1) + 4‖x0‖2Υ2R

≤ 128

(
1 +

M∑
i=1

β2
i + 2

)
(P̃ 0 − f) + 4‖x0‖2Υ2R. (111)

where the last inequality utilizes the descent property of P̃ r

in Lemma 5.5, and the boundedness property in Lemma 5.6.
Note that from (107), (108a) and use c̃ = 8κ̃ in (64a), we
obtain

P̃ 0 ≥ f(x0) + κ̃‖x0‖2Υ2R. (112)

Therefore From (66) and Lemma 5.6 we have that

4‖x0‖2Υ2R ≤
4
(
P̃ 0 − f(x0)

)
κ̃

(66)
≤

4
(
f(x0) + 5

M
d>0 L

−1d0 − f
)

κ̃
:=

4C̃1

κ̃
.

Combining the above two relations leads to

1

Tr

Tr∑
r=0

(∥∥∑M
i=1∇fi(x

r
i)

M

∥∥2
+ ‖ΣFxr‖2

)

≤ 128

(
M∑
i=1

β2
i + 3 +

1

32κ̃

)
C̃1/Tr.

This completes the proof. Q.E.D.

REFERENCES

[1] H. Sun and M. Hong, “Distributed non-convex first-order optimization
and information processing: Lower complexity bounds and rate optimal
algorithms,” in Proceedings of the 52nd Asilomar Conference on Signals,
Systems, and Computers, 2018.

[2] X. Lian, C. Zhang, H. Zhang, C.-J. Hsieh, W. Zhang, and J. Liu, “Can
decentralized algorithms outperform centralized algorithms? a case study
for decentralized parallel stochastic gradient descent,” in Advances in
Neural Information Processing Systems, 2017.

[3] P. A. Forero, A. Cano, and G. B. Giannakis, “Distributed clustering using
wireless sensor networks,” IEEE Journal of Selected Topics in Signal
Processing, vol. 5, no. 4, pp. 707–724, Aug 2011.

[4] T.-H. C. H.-T. Wai and A. Scaglione, “A consensus-based decentralized
algorithm for non-convex optimization with application to dictionary
learning,” in the Proceedings of IEEE International Conference on
Acoustics, Speech and Signal Processing, 2015.

[5] A. Nedić and A. Ozdaglar, “Distributed subgradient methods for multi-
agent optimization,” IEEE Transactions on Automatic Control, vol. 54,
no. 1, pp. 48–61, 2009.

[6] A. Nedic and A. Olshevsky, “Distributed optimization over time-varying
directed graphs,” IEEE Transactions on Automatic Control, vol. 60,
no. 3, pp. 601–615, 2015.

[7] W. Shi, Q. Ling, G. Wu, and W. Yin, “Extra: An exact first-order
algorithm for decentralized consensus optimization,” SIAM Journal on
Optimization, vol. 25, no. 2, pp. 944–966, 2014.

[8] D. Jakovetić, J. M. Moura, and J. Xavier, “Linear convergence rate of
a class of distributed augmented lagrangian algorithms,” IEEE Transac-
tions on Automatic Control, vol. 60, no. 4, pp. 922–936, 2015.

[9] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternating direction method
of multipliers,” Foundations and Trends in Machine Learning, vol. 3,
no. 1, pp. 1–122, 2011.

[10] I. Schizas, G. Mateos, and G. Giannakis, “Distributed LMS for
consensus-based in-network adaptive processing,,” IEEE Transactions
on Signal Processing, vol. 57, no. 6, pp. 2365 – 2382, 2009.

16

[11] P. Bianchi and J. Jakubowicz, “Convergence of a multi-agent projected
stochastic gradient algorithm for non-convex optimization,” IEEE Trans-
actions on Automatic Control, vol. 58, no. 2, pp. 391–405, 2013.

[12] M. Zhu and S. Martı́nez, “An approximate dual subgradient algorithm
for distributed non-convex constrained optimization,” IEEE Transactions
on Automatic Control, vol. 58, no. 6, pp. 1534–1539, June 2013.

[13] M. Hong, Z.-Q. Luo, and M. Razaviyayn, “Convergence analysis of
alternating direction method of multipliers for a family of nonconvex
problems,” SIAM Journal On Optimization, vol. 26, no. 1, pp. 337–364,
2016.

[14] P. Di Lorenzo and G. Scutari, “Next: In-network nonconvex optimiza-
tion,” IEEE Transactions on Signal and Information Processing over
Networks, vol. 2, no. 2, pp. 120–136, 2016.

[15] D. Hajinezhad and M. Hong, “Perturbed proximal primal dual algorithm
for nonconvex nonsmooth optimization,” Mathematical Programming,
vol. 176, no. 1-2, pp. 207–245, July 2019.

[16] M. Hong, D. Hajinezhad, and M.-M. Zhao, “Prox-PDA: The proximal
primal-dual algorithm for fast distributed nonconvex optimization and
learning over networks,” in the Proceedings of the 34th International
Conference on Machine Learning (ICML), 2017.

[17] D. Hajinezhad, M. Hong, and A. Garcia, “Zone: Zeroth order nonconvex
multi-agent optimization over networks,” IEEE Transactions on Auto-
matic Control, 2019.

[18] A. Daneshmand, G. Scutari, and F. Facchinei, “Distributed dictionary
learning,” in Proceedings of the Asilomar Conference on Signals, Sys-
tems, and Computers, Nov. 6–9, 2016.

[19] A. Daneshmand, Y. Sun, G. Scutari, and F. Facchinei, “Distributed
dictionary learning over networks,” in Proceedings of the IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing, March
5-9 2017.

[20] J. Zeng and W. Yin, “On nonconvex decentralized gradient descent,”
IEEE Transactions on Signal Processing, vol. 66, no. 11, pp. 2834–
2848, June 2018.

[21] Z. Jiang, A. Balu, C. Hegde, and S. Sarkar, “Collaborative deep
learning in fixed topology networks,” in Advances in Neural Information
Processing Systems, 2017.

[22] S. Vlaski and A. H. Sayed, “Distributed learning in non-convex
environments–part i: Agreement at a linear rate,” arXiv preprint
arXiv:1907.01848, 2019.

[23] ——, “Distributed learning in non-convex environments–part ii: Poly-
nomial escape from saddle-points,” arXiv preprint arXiv:1907.01849,
2019.

[24] B. Swenson, S. Kar, H. V. Poor, and J. Moura, “Annealing for distributed
global optimization,” arXiv preprint arXiv:1903.07258, 2019.

[25] M. Hong, J. D. Lee, and M. Razaviyayn, “Gradient primal-dual al-
gorithm converges to second-order stationary solutions for nonconvex
distributed optimization,” in the Proceedings of the 35th International
Conference on Machine Learning (ICML), 2018.

[26] A. Daneshmand, G. Scutari, and V. Kungurtsev, “Second-order guar-
antees of gradient algorithms over networks,” in Proceedings of the
56th Annual Allerton Conference on Communication, Control, and
Computing (Allerton), 2018.

[27] B. Swenson, R. Murray, H. V. Poor, and S. Kar, “Distributed gradi-
ent descent: Nonconvergence to saddle points and the stable-manifold
theorem,” arXiv preprint arXiv:1908.02747, 2019.

[28] C. Duenner, A. Lucchi, M. Gargiani, A. Bian, T. Hofmann, and M. Jaggi,
“A distributed second-order algorithm you can trust,” in Proceedings of
the International Conference on Machine Learning (ICML), 2018.

[29] C.-H. Fang, S. B. Kylasa, F. Roosta-Khorasani, M. W. Mahoney,
and A. Grama, “Distributed second-order convex optimization,” arXiv
preprint arXiv:1807.07132, 2018.

[30] Y. Nesterov, “A method of solving a convex programming problem with
convergence rate o(1/k2),” Soviet Mathematics Doklady, vol. 27, pp.
372–376, 1983.

[31] A. Nemirovsky and D. Yudin, “Problem complexity and method effi-
ciency in optimization,” in Interscience Series in Discrete Mathematics.
Wiley, 1983.

[32] Y. Nesterov, Introductory lectures on convex optimization: A basic
course. Springer, 2004.

[33] A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding
algorithm for linear inverse problems,” SIAM Journal on Imgaging
Science, vol. 2, no. 1, pp. 183 – 202, 2009.

[34] P. Tseng, “On accelerated proximal gradient methods for convex-
concave optimization,” 2008, preprint.

[35] D. Jakovetic, J. Xavier, and J. M. F. Moura, “Fast distributed gradient
methods,” IEEE Transactions on Automatic Control, vol. 59, no. 5, pp.
1131–1146, May 2014.

[36] K. Scaman, F. Bach, S. Bubeck, Y. Lee, and L. Massoulié, “Optimal
algorithms for smooth and strongly convex distributed optimization in
networks,” arXiv preprint arXiv:1702.08704, 2017.

[37] C. Uribe, S. Lee, A. Gasnikov, and A. Nedić, “Optimal algorithms for
distributed optimization,” arXiv preprint arXiv:1712.00232, 2017.

[38] K. Scaman, F. Bach, S. Bubeck, L. Massoulié, and Y. T. Lee, “Optimal
algorithms for non-smooth distributed optimization in networks,” in
Advances in Neural Information Processing Systems, 2018, pp. 2740–
2749.

[39] C. Cartis, N. Gould, and P. Toint, “On the complexity of steepest descent,
newton’s and regularized newton’s methods for nonconvex unconstrained
optimization problems,” SIAM journal on optimization, vol. 20, no. 6,
pp. 2833–2852, 2010.

[40] Y. Carmon, J. C. Duchi, O. Hinder, and A. Sidford, “Lower bounds for
finding stationary points i,” Mathematical Programming, Jun 2019.

[41] A. Daneshmand, Y. Sun, and G. Scutari, “Convergence rate of distributed
convex and nonconvex optimization methods with gradient tracking,”
2018, purdue University, Tech. Rep.

[42] F. R. K. Chung, Spectral Graph Theory. The American Mathematical
Society, 1997.

[43] S. Butler, Algebraic aspects of the normalized Laplacian. Cham:
Springer International Publishing, 2016, pp. 295–315.

[44] J. C. Duchi, A. Agarwal, and M. J. Wainwright, “Dual averaging for
distributed optimization: Convergence analysis and network scaling,”
IEEE Transactions on Automatic Control, vol. 57, no. 3, pp. 592–606,
March 2012.

[45] Y. Nesterov, “Smooth minimization of nonsmooth functions,” Mathe-
matical Programming, vol. 103, pp. 127–152, 2005.

[46] D. Tian, H. Mansour, A. Knyazev, and A. Vetro, “Chebyshev and
conjugate gradient filters for graph image denoising,” in Proceedings of
the IEEE International Conference on Multimedia and Expo Workshops
(ICMEW), 2014.

[47] A. Gadde, S. K. Narang, and A. Ortega, “Bilateral filter: Graph spectral
interpretation and extensions,” in Proceedings of the IEEE International
Conference on Image Processing.

[48] V. S. Ryaben’kii and S. V. Tsynkov, A Theoretical Introduction to
Numerical Analysis. CRC Press, 2007.

[49] A. A. Samarskij and E. S. Nikolaev, Numerical Methods for Grid
Equations Volume II Iterative Methods. Springer, 1989.

[50] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, “Randomized gossip
algorithms,” IEEE Transactions on Information Theory, vol. 52, no. 6,
pp. 2508–2530, 2006.

[51] H. Sun and M. Hong, “Distributed non-convex first-order optimization
and information processing: Lower complexity bounds and rate optimal
algorithms (online version),” IEEE Transactions on Signal processing,
July 2019, accepted for publication.

[52] A. Antoniadis, I. Gijbels, and M. Nikolova, “Penalized likelihood
regression for generalized linear models with non-quadratic penalties,”
Annals of the Institute of Statistical Mathematics, vol. 63, no. 3, pp.
585–615, 2011.

[53] A. Nedić, A. Olshevsky, A. Ozdaglar, and J. N. Tsitsiklis, “On dis-
tributed averaging algorithms and quantization effects,” IEEE Transac-
tions on Automatic Control, vol. 54, no. 11, pp. 2506–2517, 2009.

[54] T. Tatarenko and B. Touri, “Non-convex distributed optimization,” IEEE
Transactions on Automatic Control, vol. 62, no. 8, pp. 3744–3757, 2017.

[55] T.-H. Chang, M. Hong, and X. Wang, “Multi-agent distributed opti-
mization via inexact consensus ADMM,” IEEE Transactions on Signal
Processing, vol. 63, no. 2, pp. 482–497, Jan 2015.

Haoran Sun received the B.S. degree in Auto-
matic Control from Beijing Institute of Technology,
Beijing, China, in 2015, and the M.S. degree in
Industrial Engineering from Iowa State University,
Ames, IA, USA, in 2017. He is currently work-
ing toward the Ph.D. degree in the Department of
Electrical and Computer Engineering, University of
Minnesota, Minneapolis, MN, USA. His research
interests include optimization, machine learning, and
its applications in signal processing and wireless
communications. He won the third place in the

Student Paper Contest at the 52nd Asilomar Conference on Signals, Systems,
and Computers.

17

Mingyi Hong received his Ph.D. degree from Uni-
versity of Virginia in 2011. Since August 2017, he
has been an Assistant Professor in the Department
of Electrical and Computer Engineering, University
of Minnesota. From 2014-2017 he has been As-
sistant Professor with the Department of Industrial
and Manufacturing Systems Engineering, Iowa State
University. He is serving on the IEEE Signal Pro-
cessing for Communications and Networking (SP-
COM), and Machine Learning for Signal Processing
(MLSP) Technical Committees. His research inter-

ests are primarily in the fields of optimization theory and applications in signal
processing and machine learning.

18

X. SUPPLEMENTAL MATERIAL: THE COMPLEXITY ANALYSIS

A. Proof of Lemma 3.1

Proof. Property 1) is obviously true.
To prove Property 2), note that following holds for w > 0:

Ψ(w) = 1− e−w
2

, Ψ′(w) = 2e−w
2

w, Ψ′′(w) = 2e−w
2

− 4e−w
2

w2, ∀ w > 0. (113)

Obviously, Ψ(w) is an increasing function over w > 0, therefore the lower and upper bounds are Ψ(0) = 0,Ψ(∞) = 1;
Ψ′(w) is increasing on [0, 1√

2
] and decreasing on [1√

2
,∞], where Ψ′′(1√

2
) = 0, therefore the lower and upper bounds are

Ψ′(0) = Ψ′(∞) = 0,Ψ′(1√
2
) =

√
2
e ; Ψ′′(w) is decreasing on (0,

√
3
2] and increasing on [

√
3
2 ,∞) [this can be verified by

checking the signs of Ψ′′′(w) = 4e−w
2

w(2w2 − 3) in these intervals]. Therefore the lower and upper bounds are Ψ′′(
√

3
2) =

− 4

e
3
2
,Ψ′′(0+) = 2, i.e.,

0 ≤ Ψ(w) < 1, 0 ≤ Ψ′(w) ≤
√

2

e
, − 4

e
3
2

≤ Ψ′′(w) ≤ 2, ∀w > 0.

Further, for all w ∈ R, the following holds:

Φ(w) = 4 arctanw + 2π, Φ′(w) =
4

w2 + 1
, Φ′′(w) = − 8w

(w2 + 1)2
. (114)

Similarly, as above, we can obtain the following bounds:

0 < Φ(w) < 4π, 0 < Φ′(w) ≤ 4, − 3
√

3

2
≤ Φ′′(w) ≤ 3

√
3

2
, ∀w ∈ R.

We refer the readers to Fig. 1 for illustrations of these functions.
To show Property 3), note that for all w ≥ 1 and |v| < 1,

Ψ(w)Φ′(v) > Ψ(1)Φ′(1) = 2(1− e−1) > 1

where the first inequality is true because Ψ(w) is strictly increasing and Φ′(v) is strictly decreasing for all w > 0, and that
Φ′(v) = Φ′(|v|).

Next we show Property 4). Note that 0 ≤ Ψ(w) < 1 and 0 < Φ(w) < 4π. Therefore we have h(0) = −Ψ(1)Φ(0) < 0 and
using the construction in (28)

inf
xi

hi(xi) ≥ −Ψ(1)Φ(xi[1])− 3

bT/2c∑
j=1

Ψ(w)Φ(v) ≥ −4π − 6πT ≥ −10πT (115)

where the first inequality follows Ψ(w)Φ(v) > 0 and second follows Ψ(w)Φ(v) < 4π, we reach the conclusion.

0
5

20

5

(w
)

(v
) 40

v

0

w

60

0

-5 -5

Fig. 8: The functional value for Θ(w, v) = Ψ(w)Φ(v).

19

Finally we show Property 5), using the fact that a function is Lipschitz if it is piecewise smooth with bounded derivative.
From construction (28), the first-order partial derivative of hq(y) can be expressed below.
Case I) If i is even, we have

∂hq
∂y[i]

=


3 (−Ψ (−y[i− 1]) Φ′ (−y[i])−Ψ (y[i− 1]) Φ′ (y[i])) , q ∈ [1, M3]
0, q ∈ [M3 + 1, 2M

3]
3 (−Ψ′ (−y[i]) Φ (−y[i+ 1])−Ψ′ (y[i]) Φ (y[i+ 1])) , q ∈ [2M

3 + 1,M]
. (116)

Case II) If i is odd but not 1, we have

∂hq
∂y[i]

=


3 (−Ψ′ (−y[i]) Φ (−y[i+ 1])−Ψ′ (y[i]) Φ (y[i+ 1])) , q ∈ [1, M3]
0, q ∈ [M3 + 1, 2M

3]
3 (−Ψ (−y[i− 1]) Φ′ (−y[i])−Ψ (y[i− 1]) Φ′ (y[i])) , q ∈ [2M

3 + 1,M]
. (117)

Case III) If i = 1, we have

∂hq
∂y[1]

=

{
−Ψ(1)Φ′(y[1]) + 3 (−Ψ′ (−y[1]) Φ (−y[2])−Ψ′ (y[1]) Φ (y[2])) , q ∈ [1, M3]
−Ψ(1)Φ′(y[1]), q ∈ [M3 + 1,M]

. (118)

Obviously, ∂hq

∂y[i] is a piecewise smooth function for any i, q, and it either equals zero or is separated at the non-differentiable
point y[i] = 0 because of the function Ψ.

Further, fix a point y ∈ RT and a unit vector v ∈ RT where
∑T
i=1 v[i]2 = 1. Define

gq(θ; y, v) := hq(y + θv)

to be the directional projection of hq on to the direction v at point y. We will show that there exists ` > 0 such that
|gq ′′(0; y, v)| ≤ ` for all y 6= 0 (where the second-order derivative is taken with respect to θ).

First we can compute gq ′′(0; y, v) as follows:

g
′′

q (0; y, v) =
T∑

i1,i2=1

∂2

∂y[i1]∂y[i2]
hq (y) v[i1]v[i2] =

∑
δ∈{0,1,−1}

T∑
i=1

∂2

∂y[i]∂y[i+ δ]
hq (y) v[i]v[i+ δ],

where we take v[0] := 0 and v[T + 1] := 0.
The second-order partial derivative of hq(y) (∀y 6= 0) is given as follows when i is even:

∂2hq
∂y[i]∂y[i]

=


3 (Ψ (−y[i− 1]) Φ′′ (−y[i])−Ψ (y[i− 1]) Φ′′ (y[i])) , q ∈ [1, M3]
0, q ∈ [M3 + 1, 2M

3]
3 (Ψ′′ (−y[i]) Φ (−y[i+ 1])−Ψ′′ (y[i]) Φ (y[i+ 1])) , q ∈ [2M

3 + 1,M]
(119)

∂2hq
∂y[i]∂y[i+ 1]

=

{
0, q ∈ [1, 2M

3]
3 (Ψ′ (−y[i]) Φ′ (−y[i+ 1])−Ψ′ (y[i]) Φ′ (y[i+ 1])) , q ∈ [2M

3 + 1,M]
(120)

∂2hq
∂y[i]∂y[i− 1]

=

{
3 (Ψ′ (−y[i− 1]) Φ′ (−y[i])−Ψ′ (y[i− 1]) Φ′ (y[i])) , q ∈ [1, M3]
0, q ∈ [M3 + 1,M]

. (121)

By applying Lemma 3.1 – i) [i.e., Ψ(w) = Ψ′(w) = Ψ′′(w) = 0 for ∀ w ≤ 0], we immediately obtain that at least one of the
terms Ψ (−y[i− 1]) Φ′′ (−y[i]) or −Ψ (y[i− 1]) Φ′′ (y[i]) is zero. It follows that

Ψ (−y[i− 1]) Φ′′ (−y[i])−Ψ (y[i− 1]) Φ′′ (y[i]) ≤ sup
w
|Ψ(w)| sup

v
|Φ′′(v)|.

Similarly,
Ψ′′ (−y[i]) Φ (−y[i+ 1])−Ψ′′ (y[i]) Φ (y[i+ 1]) ≤ sup

w
|Ψ′′(w)| sup

v
|Φ(v)|

Ψ′ (−y[i]) Φ′ (−y[i+ 1])−Ψ′ (y[i]) Φ′ (y[i+ 1]) ≤ sup
w
|Ψ′(w)| sup

v
|Φ′(v)|.

Therefore, take the maximum over equations (119) to (121) and plug in the above inequalities, we obtain∣∣∣∣ ∂2hq
∂y[i1]∂y[i2]

∣∣∣∣ ≤ 3 max{sup
w
|Ψ′′(w)| sup

v
|Φ(v)|, sup

w
|Ψ(w)| sup

v
|Φ′′(v)|, sup

w
|Ψ′(w)| sup

v
|Φ′(v)|}

= 3 max

{
8π,

3
√

3

2
, 4

√
2

e

}
< 25π, ∀ i1 being even, ∀ i2

where the equality comes from Lemma 3.1 – ii).
We can also verify that the above bound for i being odd but not 1 is exactly the same.

20

When i = 1 we have following:

∂2hq
∂y[1]∂y[1]

=

{
−Ψ(1)Φ′′(y[1]) + 3 (−Ψ′′ (−y[1]) Φ (−y[2])−Ψ′′ (y[1]) Φ (y[2])) , q ∈ [1, M3]
−Ψ(1)Φ′′(y[1]), q ∈ [M3 + 1,M]

∂2hq
∂y[1]∂y[2]

=

{
3 (−Ψ′ (−y[1]) Φ′ (−y[2])−Ψ′ (y[1]) Φ′ (y[2])) , q ∈ [1, M3]
0, q ∈ [M3 + 1,M]

Again by applying Lemma 3.1 – i) and ii),∣∣∣∣ ∂2hq
∂y[1]∂y[i2]

∣∣∣∣ ≤ max{sup
w
|Ψ(1)Φ′′(w)|+ 3 sup

w
|Ψ′′(w)| sup

v
|Φ(v)|, 3 sup

w
|Ψ′(w)| sup

v
|Φ′(v)|}

= max

{
3
√

3

2
(1− e−1) + 24π, 12

√
2

e

}
< 25π, ∀ i2.

Summarizing the above results, we obtain:

∣∣g′′q (0; y, v)
∣∣ =

∣∣∣∣∣∣
∑

δ∈{0,1,−1}

T∑
i=1

∂2

∂y[i]∂y[i+ δ]
hq (y) v[i]v[i+ δ]

∣∣∣∣∣∣
≤ 25π

∑
δ∈{0,1,−1}

∣∣∣∣∣
T∑
i=1

v[i]v[i+ δ]

∣∣∣∣∣
= 25π

(∣∣∣∣∣
T∑
i=1

v[i]2

∣∣∣∣∣+ 2

∣∣∣∣∣
T∑
i=1

v[i]v[i+ 1]

∣∣∣∣∣
)

≤ 75π
T∑
i=1

∣∣v[i]2
∣∣ = 75π.

Overall, the first-order derivatives of hq are Lipschitz continuous for any q with constant ` = 75π.
To show the same result for the function h̄, we can apply (17). This completes the proof. Q.E.D.

B. Proof of Lemma 3.2

Proof. To show that property 1) is true, note that from the definition of fi(xi) we have

∇fi(xi) =
√

2ε×∇hi
(

xiU

75π
√

2ε

)
.

Therefore the following holds:

1

M
‖d0‖2 =

2ε

M

M∑
i=1

‖∇hi(0)‖2 =
2ε

M

M∑
i=1

|Ψ(1)Φ′(0)|2 = 32ε(1− exp(−1))2. (122)

Therefore we have the following:

f(0)− inf
x
f(x) +

‖d0‖2

MU
=

150πε

U

(
h(0)− inf

x
h(x) +

16(1− exp(−1))2

75π

)
.

Then by applying Lemma 3.1 we have that for any T ≥ 1, the following holds

f(0)− inf
x
f(x) +

‖d0‖2

MU
≤ 150πε

U
× (10πT + 0.03) ≤ 150πε

U
× 11πT.

Property 2) is true due to the definition of f̄ .
Property 3) is true because the following

‖∇f̄(z)−∇f̄(y)‖ =
√

2ε

∥∥∥∥∇h̄(zU

75π
√

2ε

)
−∇h̄

(
yU

75π
√

2ε

)∥∥∥∥ ≤ U‖z − y‖
where the last inequality comes from Lemma 3.1 – (5). This completes the proof. Q.E.D.

C. Proof of Lemma 3.3

Proof. The first inequality holds for all k ∈ [T], since 1
M

∑M
i=1

∂
∂y[k]hi(y) is one element of 1

M

∑M
i=1∇hi(y).

We divide the proof for second inequality into two cases.

21

Case 1. Suppose |y[j − 1]| < 1 for all 2 ≤ j ≤ k. Therefore, we have |y[1]| < 1. Using (118), we have the following
inequalities:

∂

∂y[1]
hi(y)

(i)

≤ −Ψ(1)Φ′(y[1])
(ii)
< −1, ∀i (123)

where (i) is true because Ψ′(w),Φ(w) are all non-negative from Lemma 3.1 -(2); (ii) is true due to Lemma 3.1 – (3). Therefore,
we have the following ∥∥∇h̄(y)

∥∥ =

∥∥∥∥∥ 1

M

M∑
i=1

∇hi(y)

∥∥∥∥∥ ≥
∣∣∣∣∣ 1

M

M∑
i=1

∂

∂y[1]
hi(y)

∣∣∣∣∣ > 1.

Case 2) Suppose there exists 2 ≤ j ≤ k such that |y[j − 1]| ≥ 1.
We choose j so that |y[j − 1]| ≥ 1 and |y[j]| < 1. Therefore, depending on the choices of (i, j) we have three cases

∂hi(y)

∂y[j]
=


−3 (Ψ (−y[i− 1]) Φ′ (−y[j]) + Ψ (y[i− 1]) Φ′ (y[j])) , q ∈ [1, M3]
0, q ∈ [M3 + 1, 2M

3]
−3 (Ψ′ (−y[j]) Φ (−y[i+ 1]) + Ψ′ (y[j]) Φ (y[i+ 1])) , q ∈ [2M

3 + 1,M]
.

If q ∈ [1, M3], because |y[j − 1]| ≥ 1 and |y[j]| < 1, using Lemma 3.1 – (3), and the fact that the negative part is zero for
Ψ, and Φ′ is even function, the expression further equals to

−3 ·Ψ(|y[j − 1]|)Φ′ (|y[j]|)]
(32)
< −3, (124)

If q ∈ [2M
3 + 1,M] the expression is obviously non-positive because both Ψ′ and Φ are nonnegative. Overall, we have∣∣∣∣∣ 1

M

M∑
i=1

∂hi(y)

∂y[j]

∣∣∣∣∣ >
∣∣∣∣∣∣ 1

M

M/3∑
i=1

3

∣∣∣∣∣∣ = 1.

This completes the proof. Q.E.D.

D. Proof of Lemma 3.4

Proof. First let us derive a useful property. Define d := [d1; d2; · · · ; dM] where di is the degree for node i; further define

x̄ :=
1

M

M∑
i=1

xi, x̃i := xi − x̄, x̃ := [x̃1; x̃2; · · · ; x̃M].

It is easy to observe that :
x̃>1 = 0, and x̃ /∈ Null(F>F).

Then the following holds:

x>F>Fx =
∑

(i,j):i∼j

‖xi − xj‖2 =
∑

(i,j):i∼j

‖x̃i − x̃j‖2 = x̃>F>Fx̃ ≥ λmin(F>F)‖x̃‖2. (125)

Therefore the following holds:
M∑
i=1

‖x̄− xi‖2 ≤
1

λmin(F>F)

∑
(i,j):i∼j

‖xi − xj‖2 =
1

λmin(P 1/2LP 1/2)

∑
(i,j):i∼j

‖xi − xj‖2. (126)

Based on the above property, we have the following series of inequalities

∥∥∇f̄(x̄)
∥∥2 ≤ 2

∥∥∥∥ 1

M

M∑
i=1

(∇fi(x̄)−∇fi(xi))
∥∥∥∥2

+ 2

∥∥∥∥ 1

M

M∑
i=1

∇fi(xi)
∥∥∥∥2

(i)

≤ 2

M

M∑
i=1

∥∥∥∥∇fi(1

M

M∑
j=1

xj)−∇fi(xi)
∥∥∥∥2

+ 2

∥∥∥∥ 1

M

M∑
i=1

∇fi(xi)
∥∥∥∥2

(ii)

≤ 2

M

M∑
i=1

U2

∥∥∥∥ 1

M

M∑
j=1

xj − xi
∥∥∥∥2

+ 2

∥∥∥∥ 1

M

M∑
i=1

∇fi(xi)
∥∥∥∥2

(iii)

≤ 2U

Mλmin(P 1/2LP 1/2)

∑
(i,j):i∼j

‖xj − xi‖2 + 2

∥∥∥∥ 1

M

M∑
i=1

∇fi(xi)
∥∥∥∥2

22

where in (i) and (iii) we have used the convexity of the function ‖ · ‖2; in (ii) we used Lemma 3.2 – (3); in (iii) we have
also used the assumption that U ∈ (0, 1) and (126). Overall we have∥∥∥∥ 1

M

M∑
i=1

∇fi(xi)
∥∥∥∥2

+
U

Mλmin(P 1/2LP 1/2)

∑
(i,j):i∼j

‖xi − xj‖2 ≥
1

2
‖∇f(x̄)‖2 .

This completes the proof. Q.E.D.

E. Proof of Lemma 3.5

Proof. For a given k ≥ 2, suppose that xi[k], xi[k+ 1], ..., xi[T] = 0, ∀i, that is, support{xi} ⊆ {1, 2, 3, ..., k− 1} for all i.
Then Ψ′ (xi[k]) = Ψ′ (−xi[k]) = 0 for all i, and hi has the following partial derivative when k is even:

∂hi(xi)

∂xi[k]
=

{
−3 (Ψ (−xi[k − 1]) Φ′ (−xi[k])) + 3 (Ψ (xi[k − 1]) Φ′ (xi[k])) , i ∈ [1, M3]
0, i ∈ [M3 + 1,M]

(127)

and the following partial derivative when k is odd and k ≥ 3:

∂hi(xi)

∂xi[k]
=

{
0, i ∈ [1, 2M

3]
−3 (Ψ (−xi[k − 1]) Φ′ (−xi[k])) + 3 (Ψ (xi[k − 1]) Φ′ (xi[k])) , i ∈ [2M

3 + 1,M]
. (128)

Recall that for any algorithm in class A or A′, each agent is only able to compute linear combination of historical gradient
and neighboring iterates [cf. (14) and (15)]. Therefore, for a given node i, as long as the kth element of the gradient as well
as that of its neighbors have never been updated once, xi[k] remains to be zero. Combining this observation with the above
two expressions for ∂hi(xi)

∂xi[k] , we can conclude that when support{xi} ⊆ {1, 2, 3, ..., k − 1} for all i, then in the next iteration
xi[k] will be possibly non-zero on the node i ∈ [1, M3] for even k and i ∈ [2M

3 + 1,M] for odd k, and all other nodes still
have xj [k] = 0, ∀ j 6= i.

Now suppose that the initial solution is xi[k] = 0 for all (i, k). Then at the first iteration only ∂hi(xi)
∂xi[1] is non-zero for all

i, due to the fact that ∂hi(xi)
∂xi[1] = Ψ(1)Φ′(0) = 4(1 − e−1) for all i from (118). If follows that even if every node is able to

compute its local gradient, and can communicate with their neighbors, it is only possible to have xi[1] 6= 0, ∀i. At the second
iteration, we can use (127) to conclude that it is only possible to have ∂hr(xr)

∂xr[k] 6= 0 for some r ∈ [1, M/3], therefore when
using an algorithm in class A, we can conclude that xi[2] = 0 for all i /∈ [1, M/3].

Then following our construction (28), we know the nodes in the set [1, M3] and the set [2M
3 + 1,M] have minimum distance

M/3. It follows that using an algorithm in A or A′, it takes at least M/3 iterations for the non-zero xr[2] and the corresponding
gradient vector to propagate to at least one node in set [2M/3+1,M]. Once we have xj [2] 6= 0 for some j ∈ [2M/3+1, M],
then according to (128), it is possible to have ∂hj(xj)

∂xj [3] 6= 0, and once this gradient becomes non-zero, the corresponding variable
xj [3], j ∈ [2M/3 + 1, M] can become nonzero.

Following the above procedure, it is clear that we need at least MT
3 iterates and T computations to make xi[T] possibly

non-zero. Q.E.D.

F. Proof of Theorem 3.1

Now we are ready to prove our first main result.
Proof of Theorem 3.1. By Lemma 3.5 we have x̄[T] = 0 for all t < M+3

3 T . Then by applying Lemma 3.2 – (2) and
Lemma 3.3, we can conclude that the following holds∥∥∇f̄(x̄[T])

∥∥ =
√

2ε

∥∥∥∥∇h̄(x̄[T]U

75π
√

2ε

)∥∥∥∥ > √2ε, (129)

where the second inequality follows that there exists k ∈ [T] such that | x̄[k]U

75π
√

2ε
| = 0 < 1, then we can directly apply Lemma 3.3.

Then by applying Lemma 3.4 gives h∗(M+3)T/3 > ε, where h∗T is defined in (16).
The third part of Lemma 3.2 ensures that fi’s are U -Lipschitz continuous gradient, and the first part shows

f(0)− inf
x
f(x) +

‖d0‖2

MU
≤ 1650π2ε

U
T,

Therefore we obtain

T ≥


(
f(0)− infx f(x) + ‖d0‖2

MU

)
U

1650π2
ε−1

 . (130)

23

1 D-1

M

3
nodes

B

M

3
nodes

A C

M

3
nodes

D−1

3
nodes

D−1

3
+ 1 distance

Fig. 9: The path-star graph used in our construction.

Summarizing the above argument, we have

t ≥ M + 3

3
T ≥ M + 3

3


(
f(0)− infx f(x) + ‖d0‖2

MU

)
U

1650π2
ε−1

 .
By noting that for path graph ξ(G) ≥ 1/M2, this completes the proof. Q.E.D.

G. Generalization

1) Uniform Li, Fixed D and M : In this subsection, we would like to generalize Theorem 3.1 to a slightly wider class of
networks (beyond the path graph used in our construction). Towards this end, consider a path-star graph shown in Fig. 9.
The graph contains a path graph with D − 1 nodes, and the remaining nodes are divided into D − 1 groups, each with either
bM/(D− 1)− 1c or bM/(D− 1)− 1c+ 1 nodes, and each group is connected to the nodes in the path graph by using a star
topology. We have the following corollary to Theorem 3.1.

Corollary 10.1: Let U ∈ (0, 1) and ε be positive, and fix any D and M such that D ≤ M − 1. For any algorithm in class
A or A′, there exists a problem in class PMU and a network in class NM

D , so that to achieve accuracy h∗t < ε, it requires at
least the following number iterations

t ≥ D

3


(
f(0)− infx f(x) + ‖d0‖2

MU

)
U

1650π2
ε−1

 .
Alternatively, the above bound can be expressed as the following

t ≥
√
D/(3M)

3
√
ξ(G)


(
f(0)− infx f(x) + ‖d0‖2

MU

)
U

1650π2
ε−1

 .
Proof. Fix any D and M such that D ≤M − 1, we can construct a path-star graph as described in Fig.9, whose diameter

is D.
To show the lower bounds for such a graph, we split all M nodes into three sets A,B, C based on the main path, each with

M
3 nodes (assume M is a multiple of 3), where A and C has minimum D+2

3 distance (assume D− 1 is a multiple of 3). Then
we construct the component functions hi’s as follows.

hi(xi) =



Θ(xi, 1) + 3

bT/2c∑
j=1

Θ(xi, 2j), i ∈ A

Θ(xi, 1), i ∈ B

Θ(xi, 1) + 3

bT/2c∑
j=1

Θ(xi, 2j + 1), i ∈ C

(131)

Since the graph has diameter D in the above construction, and the distance between any two elements in A and C is at least
D+2

3 (assume D − 1 is a multiple of 3), by a similar step in Lemma 3.5 we can conclude that we need at least (D+2
3 + 1)T

iterations to achieve xi[T] 6= 0. By applying (130), we can obtain the desired result.

24

To show the second result, note that from (24) we have∑
i

diD ≥
1

λmin(L)
(132)

For the path-star graph under consideration, we have∑
i

di = 2(D − 1)− 2 +M ≤ 3M

so the following holds:

D2 ≥ D/3M

λmin(L)
.

The desired result is then immediate. Q.E.D.

Finally, for the problem class with non-uniform Lipschitz constants, we can extend the previous result to any network in
class N (by properly assigning different values of Li’s to different nodes). In this case the lower bound will be dependent on
the spectral property of L̂ as defined in (22) (expressed below for easy reference)

L̂ := L−1/2F>KFL−1/2. (133)

H. Sketch of Proof for Corollary 3.1

To prove this result, we select the values of the coefficient set {Li}Mi=1, so that the “effective” network topology becomes
a path. In particular, for any given network in N , we can construct local functions as follows: First, along the longest path
of size D, we distributed the functions into three sets A,B, C, where A and C denotes the first and last D

3 nodes on the path
respectively, and B denotes the rest nodes on the path. Second, for the rest of the functions not on the path, denoted as set D,
set their local functions to zero (or equivalently, set the corresponding Li’s to zero). Then, the local function belongs to each
set can be expressed as:

hi(xi) =



M

D
Θ(xi, 1) +

3M

D

bT/2c∑
j=1

Θ(xi, 2j), i ∈ A

M

D
Θ(xi, 1), i ∈ B

M

D
Θ(xi, 1) +

3M

D

bT/2c∑
j=1

Θ(xi, 2j + 1), i ∈ C

0, i ∈ D

(134)

This way the network reduces to a path graph. Note that the Lipschitz constant for the gradient of h(y) = 1
M

∑M
i=1 hi(y) is

still 1, and we can use the similar constructions and proof steps leading to Theorem 3.1 to prove the claim.

	Introduction
	Problem and motivation
	Distributed non-convex optimization
	Lower and upper rate bounds analysis
	Contribution of this work

	Preliminaries
	The class P, N, A
	Solution Quality Measure
	Some Useful Facts and Definitions

	Complexity Lower Bounds
	Path Graph (D = M-1)

	The Proposed Algorithms
	The xFILTER Algorithm
	Discussion

	The Convergence Rate Analysis
	Rate Bounds and Tightness
	Parameter Selection and Rate Bounds for xFILTER
	Tightness of the Upper Rate Bounds

	Numerical Results
	Simulation Setup
	Distributed Binary Classification
	Distributed Neural Network Training

	Conclusion and Future Works
	Appendix
	Proof of Lemma 5.1
	Proof of Lemma 5.2
	Proof of Lemma 5.4
	Proof of Lemma 5.5
	Proof of Lemma 5.6
	Proof of Theorem 5.1

	References
	Biographies
	Haoran Sun
	Mingyi Hong

	Supplemental Material: The Complexity Analysis
	Proof of Lemma 3.1
	Proof of Lemma 3.2
	Proof of Lemma 3.3
	Proof of Lemma 3.4
	Proof of Lemma 3.5
	Proof of Theorem 3.1
	Generalization
	Uniform Li, Fixed D and M

	Sketch of Proof for Corollary 3.1

