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On the Fundamental Limits of Coded Data
Shuffling for Distributed Machine Learning

Adel Elmahdy and Soheil Mohajer

Abstract— We consider the data shuffling problem in a
distributed learning system, in which a master node is connected
to a set of worker nodes, via a shared link, in order to
communicate a set of files to the worker nodes. The master
node has access to a database of files. In every shuffling
iteration, each worker node processes a new subset of files,
and has excess storage to partially cache the remaining files,
assuming the cached files are uncoded. The caches of the worker
nodes are updated every iteration, and they should be designed
to satisfy any possible unknown permutation of the files in
subsequent iterations. For this problem, we characterize the exact
load-memory trade-off for worst-case shuffling by deriving the
minimum communication load for a given storage capacity per
worker node. As a byproduct, the exact load-memory trade-
off for any shuffling is characterized when the number of files
is equal to the number of worker nodes. We propose a novel
deterministic coded shuffling scheme, which improves the state
of the art, by exploiting the cache memories to create coded
functions that can be decoded by several worker nodes. Then,
we prove the optimality of our proposed scheme by deriving a
matching lower bound and showing that the placement phase of
the proposed coded shuffling scheme is optimal over all shuffles.

Index Terms— Data shuffling, coded caching, distributed
computing, distributed machine learning.

I. INTRODUCTION

W ITH the emergence of big data analytics, distributed
computing systems have attracted enormous attention

in recent years. The computational paradigm in the era of big
data has shifted towards distributed systems, as an alternative
to expensive supercomputers. Distributed computing systems
are networks that consist of a massive number of commod-
ity computational nodes connected through fast communica-
tion links. Examples of distributed computing applications
span distributed machine learning, massively multilayer online
games (MMOGs), wireless sensor networks, real-time process
control, etc. Prevalent distributed computing frameworks, such
as Apache Spark [2], and computational primitives, such as
MapReduce [3], Dryad [4], and CIEL [5], are key enablers to
process substantially large data-sets (in the order of terabytes),
and execute production-scale data-intensive tasks.
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Data Shuffling is one of the core components in distributed
learning algorithms. Broadly speaking, the data shuffling stage
is introduced to prepare data partitions with desirable proper-
ties for parallel processing in future stages. A prototypical
iterative data processing procedure is outlined as follows:
(i) randomly shuffle the training data-set, (ii) equally partition
the data-set into non-overlapping batches, and assign each
batch to a local worker1, (iii) each local worker performs a
local computational task to train a learning model, (iv) reshuf-
fle the training data-set to provide each worker with a new
batch of data points at each learning model and continue the
model training. Data shuffling is known to enhance the learn-
ing model quality and lead to significant statistical gains in
ubiquitous applications for machine learning and optimization.
One prominent example is stochastic gradient descend (SGD)
[7]–[14]. Recht and Ré [7] conjectured a non-commutative
arithmetic-geometric mean inequality, and showed that the
expected convergence rate of the random shuffling version
of SGD is faster than that of the usual with-replacement
version provided the inequality holds 2. In recent years, it has
been demonstrated that shuffling the data before running SGD
results in superior convergence performance [8]–[14]. For
instance, Meng et al. [13] have proposed an extensive analysis
on the desirable convergence properties of distributed SGD
with random shuffling, in both convex and non-convex cases.
In practice, however, the benefits of data shuffling come at
a price. In every shuffling iteration, the entire data-set is
communicated over the network of workers. Consequently, this
leads to performance bottlenecks due to the communication
overhead.

The idea of incorporating coding theory into the context of
distributed machine learning has been introduced in a recent
work by [15]. The authors posed an intriguing question as
to how to use coding techniques to ensure robust speedups in
distributed computing. To address this question, the work flow
of distributed computation is abstracted into three main phases;
a storage phase, a communication phase, and a computation
phase. Coding theory is utilized to alleviate the bottlenecks
in the computation and communication phases of distributed
learning algorithms. More specifically, the authors proposed
novel algorithms for coded computation to speed up the

1One may consider storing the entire training data-set in a massive shared
storage system and let the workers directly access the new batches every
learning epoch. Although this setting eliminates the communication overhead
of the shuffling mechanism, it suffers from network and disk I/O bottlenecks,
and hence, this approach is notoriously sluggish and cost-inefficient as
well [6].

2It is a long-standing problem in the theory of SGD to prove this statement,
and the correctness of the full conjecture is still an open problem.
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performance of linear operations, and coded data shuffling to
overcome the significant communication bottlenecks between
the master node and worker nodes during data shuffling.

A. Related Works

The data shuffling problem has been extensively studied
from various perspectives under different frameworks. In what
follows, we survey the literature and present the progress and
the current status of the problem.

1) Data Shuffling in Master-Worker Distributed Computing
Framework: In the master-worker distributed setup, the mas-
ter node has access to the entire data-set that is randomly
permuted and partitioned into batches at every iteration of
the distributed algorithm. The data shuffling phase aims at
communicating these batches to the worker nodes in order
to locally perform their distributed tasks in parallel. Then,
the master node aggregates the local results of the worker
nodes to complete the computation and give the final result.
Lee et al. [15] proposed the first coded shuffling algorithm,
based on random data placement, that leverages the excess
storage of the local caches of the worker nodes to slash
the communication bottlenecks. The coded shuffling algo-
rithm consists of three main strategies: a coded transmission
strategy designed by the master node, and decoding and
cache updating strategies executed by the worker nodes. It
is demonstrated, through extensive numerical experiments,
the significant improvement in the achievable communication
load3 and the average transmission time of coded shuffling
framework, compared to uncoded shuffling. The theoretical
guarantees of [15] hold only when the number of data points
approaches infinity. Moreover, the broadcast channel between
the master node and the worker nodes in [15] is assumed to
be perfect. In pursuance of a practical shuffling algorithm,
Chung et al. [6] have recently proposed a novel coded shuffling
algorithm, coined “UberShuffle”, to individually address the
practical considerations of the shuffling algorithm of [15].
However, it is not evident how far these coded shuffling
algorithms are from the fundamental limits of communication
load.

Attia and Tandon [16]–[18] investigated the coded data shuf-
fling problem in a distributed computing system, consisting
of a master node that communicates data points (or coded
functions of them) to worker nodes with limited storage capac-
ity. An information-theoretic formulation of the data shuffling
problem was proposed for data delivery and storage update
phases. Furthermore, the worst-cast communication load is
defined to be the maximum communication load from the
master node to the worker nodes over all possible consecutive
data shuffles for any achievable scheme characterized by the
encoding, decoding, and cache updating functions. Accord-
ingly, the authors characterized the optimal trade-off between
the storage capacity per worker node and the worst-case
communication load for certain cases of the number of files N ,
the number of worker nodes K , and the available storage per

3In the literature, the communication load is referred to as “communication
rate”, e.g. [15], [16]. However, the more accurate term should be communi-
cation (or delivery) load which we use throughout the manuscript.

worker node S . More specifically, the communication load was
characterized when the number of worker nodes is limited to
K  {∈ 2, 3} in [17]. Furthermore, the special case of no-excess
storage (arbitrary N and K , but S = N/K ) was addressed
in [18]. However, the proposed schemes in these works do
not generalize for arbitrary parameters. Recently, the authors
have proposed “aligned coded shuffling scheme” [16] that is
optimal for K < 5 , and suboptimal for K ≥ 5 with maximum
multiplicative gap of (K − 1

3 )/(K − 1) from the lower bound
on the load for the worst-case communication scenario. The
proposed placement strategy is similar to the one in coded
caching literature [19], and the achievable scheme hinges on
the concept of interference alignment [20]. On the other hand,
the proposed information-theoretic lower bound is based on a
similar bounding technique introduced in [21].

Under the same master-worker framework, Song et al. [22]
considered the data shuffling problem from the perspective of
index coding [23], where the new data assigned by the master
node at every iteration constitute the messages requested by
the worker nodes, and the data cached at the worker nodes
form the side information. Motivated by the NP-hardness
of the index coding problem [23], the authors proposed a
pliable version of the index coding problem to enhance the
communication efficiency for distributed data shuffling. It is
assumed that the worker nodes are pliable in such a way
that they are only required to obtain new messages, that are
randomly selected from original set of messages, at every
iteration. This degree of freedom enables the realization of
semi-random data shuffling that yields more efficient coding
and transmission schemes, as opposed to fully random data
shuffling.

Recently, Wan et al. [24] have considered a decentral-
ized communication paradigm for the data shuffling problem,
where worker nodes only communicate data points among
each other, and the master node does not participate in
the data communication, except for the initial placement.
The authors have proposed coded distributed data shuffling
schemes that are within a factor of 2 from the optimal
trade-off, under the constraint of uncoded cache placement.
Moreover, the exact trade-off is characterized for K ≤ 4 , and
S  {∈ 1, K − 2, K − 1} where S = S/(N/K) .

2) Data Shuffling in MapReduce Distributed Computing
Framework: MapReduce [3] is a programming paradigm that
allows for parallel processing of massive data-sets across large
clusters of computational nodes. More concretely, the overall
computation is decomposed into computing a set of “Map”
and “Reduce” functions in a distributed and parallel fashion.
Typically, a MapReduce job splits the input data-set into
blocks, each of which is locally processed by a computing
node that maps the input block into a set of intermediate
key/value pairs. Next, the intermediate pairs are transferred
to a set of processors that reduce the set of intermediate
values by merging those with the same intermediate key. The
process of inter-server communication between the mappers
and reducers is referred to as data shuffling. Li et al. [25]
introduced a variant implementation of MapReduce, named
“Coded MapReduce” that exploits coding to considerably
reduce the communication load of the data shuffling phase.

Authorized licensed use limited to: University of Minnesota. Downloaded on June 25,2020 at 04:55:13 UTC from IEEE Xplore.  Restrictions apply. 



3100 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 5, MAY 2020

The key idea is to create coded multicast opportunities in the
shuffling phase through an assignment strategy of repetitive
mappings of the same input data block across different servers.
The fundamental trade-off between computation load and com-
munication cost in Coded MapReduce is characterized in [26].
A unified coding framework for distributed computing in the
presence of straggling servers was proposed in [27], where the
trade-off between the computation latency and communication
load is formalized for linear computation tasks.

We would like to highlight the subtle distinction between the
coded caching problem and the coded shuffling problem. Both
problems share the property that the prefetching scheme is
designed to minimize the communication load for any possible
unknown demand (or permutation) of the data. However,
the coded shuffling algorithm is run over a number of iterations
to store the data batches and compute some task across all
worker nodes. In addition to that, the permutations of the data
in subsequent iterations are not revealed in advance. Therefore,
the caches of the worker nodes should be adequately updated
after every iteration to maintain the structure of the data
placement, guarantee the coded transmission opportunity, and
achieve the minimum communication load for any undisclosed
permutation of the data. Another subtle distinction that we
would like to emphasize is the difference between the concept
of data shuffling in the master-worker setup and that in the
MapReduce setup. In the master-worker setup, a master node
randomly shuffles data points among the computational worker
nodes for a number of iterations to enhance the statistical
efficiency of distributed computing systems. A coded data
shuffling algorithm enables coded transmission of batches of
the data-set through exploiting the excess storage at the worker
nodes. On the other hand, in the MapReduce setup, the whole
data-set is divided among the computational nodes, and a
data placement strategy is designed in order to create coding
opportunities that can be utilized by the shuffling scheme to
transfer locally computed results from the mappers to the
reducers. In other words, coded MapReduce enables coded
transmission of blocks of the data processed by the mappers
in the shuffling phase through introducing redundancy in the
computation of the Map stage.

Another distinction that should be highlighted is between
index coding problem and coded shuffling problem. As dis-
cussed in [16] (Attia and Tandon), the data shuffling prob-
lem can also be considered as an index coding problem,
in which the data cached at the worker nodes form the side
information, and the new data assignments are the messages
required by each worker node. It is worth noting that both
the side information and requested files in index coding
problem usually consist of one (of several) complete files,
without sub-packetization, and this concern make the two
problems different. Moreover, while the side information is
given in index coding problem, here we can partially select
the side information (the content of the excess storage) to
reduce the communication load. Perhaps the most related
work in the context of index coding to data shuffling is [22]
(Song et al.), where a pliable version of index coding is
adopted for data shuffling. In the pliable index coding it is
assumed that the worker nodes are only required to obtain

new messages (not previously cached in their storage). This
degree of freedom enables the realization of semi-random data
shuffling that yields more efficient coding and transmission
schemes, as opposed to fully random data shuffling. It was
demonstrated that a communication load of order O(log2(K))
can be achieved under this framework. However, it is worth
mentioning that the constraints of the pliable index coding
problem are very relaxed compared to the problem we study
in this paper. Under the data shuffling model we study in
this work, the worst case communication load is of order
of O( K−S

S ), where S is the normalized storage size of each
worker. Therefore, the communication cost is still O(K) when
S is small, but decreases to O(1) if S = Θ(K) .

B. Main Contributions

In this paper, we consider a data shuffling problem in a
master-worker distributed computing system, in which we
have a master node and K worker nodes. The master node
has access to the entire data-set of N files. Each worker node
has a limited cache memory that can store up to S files. In
each iteration of the distributed algorithm, the master node
randomly shuffles the data points among the worker nodes.
We summarize the main results of the paper as follows:

• We first study the data shuffling problem when N = K .
We propose a novel linear coded shuffling algorithm that is
based on interference alignment and elimination techniques.
It comprises the following phases: (i) file partitioning and
labeling, (ii) cache placement, (iii) encoding, (iv) decoding,
(v) cache updating and subfile relabeling. We show how
cache memories are leveraged in order to create coded
functions that can be decoded by several worker nodes that
process different files at every iteration of the distributed
algorithm. The proposed scheme is generalized for arbitrary
K and S .

• Next, we derive a matching information-theoretic lower
bound on the communication load for the data shuffling
problem when N = K , and we prove that among all pos-
sible placement and delivery strategies, our proposed coded
shuffling scheme is universally optimal over all shuffling
scenarios, and achieves the minimum communication load.
Therefore, the optimal load-memory trade-off when N = K
is characterized for any shuffling.

• Finally, we extend the results obtained for the canonical
setting of N = K to investigate the general setting of
the data shuffling problem when N ≥ K . Inspired by the
concept of perfect matching in bipartite graphs, we develop
a coded shuffling scheme by decomposing the file transition
graph into N/K subgraphs, each of which reduces to a
canonical data shuffling problem with K files, K worker
nodes, and storage capacity per worker node S/(N/K) .
Hence, we can apply our coded shuffling scheme forN = K
to each sub-problem and obtain a delivery scheme for the
original shuffling problem with arbitrary parameters N , K

and S . This leads to an achievable scheme whose delivery
load can provides us with an upper bound for the optimum
communication load of the general coded data shuffling
problem. Furthermore, we study an instance of the problem
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Fig. 1. Data shuffling in a distributed computing system.

(the worst-case scenario), and show that the upper bound
obtained by the achievable scheme is indeed tight to the
proposed instance of the problem. As a result, the opti-
mal load-memory trade-off is exactly characterized when
N ≥ K for the worst-case shuffling.

We emphasize on the fact that the proposed coded shuffling
algorithms works for any shuffling model. Note that, while
the proposed algorithm universally works for any shuffling,
its required communication load is a function of the desired
permutation. The worst-case shuffling is the one that requires
the maximum communication load to permute the data points.
In other words, the communication load of random shuffling
does not exceed that of the worst-case shuffling. Hence, we use
this load as a benchmark to evaluate the performance of the
proposed algorithm.

A brief report of the main results of this paper has been
given in [1]. This paper presents complete proofs of all
results, along with numerous illustrative examples to explain
the essential concepts.

C. Paper Outline

The remainder of the paper is organized as follows. We
first present the formal definition of data shuffling problem as
well as the main results of this work in Section II. The cache
placement scheme is proposed in Section III. For the canonical
setting of the shuffling problem, i.e. whenN = K , two achiev-
able coded shuffling schemes, along with illustrative examples,
are delineated in Section IV. Then, the optimality proof for our
proposed delivery scheme is presented in Section V. Next, for
the general and practical setting of the shuffling problem, i.e.
when N ≥ K , is studied in Section VI, where the achievable
delivery scheme, an illustrative example, and the optimality
of proposed delivery scheme for the worst-case shuffling are
presented. Finally, the paper is concluded and directions for
future research are discussed in Section VIII.

II. PROBLEM FORMULATION AND MAIN RESULTS

A. Formulation of Data Shuffling Problem

For an integer K , let [K] denote the set of integers
{1, 2, . . . , K}. Fig. 1 depicts a distributed computing system
with a master node, denoted by M , and a set of K worker
nodes, denoted by W = {W i : i ∈ [K]} . The master node
is assumed to have access to a data-set, including N files,
denoted by F = {F j : j ∈ [N ]} , where the size of each
file is normalized to 1 unit. In practice, the number of files
is remarkably larger than the number of worker nodes, and

hence we study the data shuffling problem under the practical
assumption of N ≥ K . At each iteration, each worker node
should perform a local computational task on a subset of N/K

files4. The assignment of files to worker nodes is done by the
master node, either randomly or according to some predefined
mechanism. Each worker node W i has a cache Z i that can
store up to S files, including those N/K under-processing
files. This imposes the constraint S ≥ N/K on the size of
the cache at each worker node. Once the computation at the
worker nodes is done, the result is sent back to the master
node. A new batch of N/K files will be assigned to each
worker node for iteration t + 1 , and the cache contents of the
worker nodes should be accordingly modified. The communi-
cation of files from the master node to the worker nodes occurs
over a shared link, i.e., any information sent by the master
node will be received by all of the worker nodes. Similar to
[15]–[18], the broadcast communication channel between the
master node and worker nodes is assumed to be perfect.

For a given iteration t , we denote by u(i) the set of indices
of the files to be processed by W i , and by P i the portion
of the cache of W i dedicated to the under-processing files:
P i = {F j : j ∈ u(i)} . The subsets {u(i) : i ∈ [K]} provide a
partitioning for the set of file indices, i.e., u(i) ∩ u(j) = ∅ for
i = j , and

K
i=1 u(i) = [N ] . Similarly, d(i) denotes the subset

of indices of N/K files to be processed by W i at iteration t+1 ,
where {d(i) : i ∈ [K]} also forms a partitioning for [N ]. When
S > N/K , each worker node has an excess storage to cache
(parts of) the other files in F , in addition to the N/K files in
P i . We denote by Ei = Z i \ P i the contents of the remaining
space of the cache of W i , which is called the excess storage.
Therefore, Z i = P i  ∪ Ei . Let P i (t) , Ei (t) and Z i (t) denote
the realizations of P i , Ei and Z i at iteration t , respectively.
For the sake of brevity, we may drop the iteration index t
whenever it is clear from the context.

Filling the excess part of the caches of worker nodes is
performed independently of the new assigned subsets {d(i) :
i ∈ [K]} . Between iterations t and t + 1 , the master node
should compute and broadcast a message (a function of all
files in F ), such that each worker node W i can retrieve all files
in d(i) from its cached data Z i and the broadcast message X .
The communication load R = R(K, N, S) is defined as the
size of the broadcast message X for the parameters introduced
above. We interchangeably refer to R as delivery load and
communication load of the underlying data-shuffling system.
The goal is to develop a cache placement strategy and design
a broadcast message X to minimize R for any {d(i) : i ∈

[K]} . For S ≥ N , we have R = 0 since each worker node
can store all the files in its cache and no communication is
needed between the master node and worker nodes for any
shuffling. Thus, we can focus on the regime of N/K ≤ S ≤
N . We define S = S/(N/K) to be the cache size normalized
by the size of data to be processed by each worker node.
Accordingly, we have 1 ≤ S ≤ K .

B. File Transition Graph

A file transition graph is defined as a directed graph
G(V, E) , where V , with |V | = K , denotes the set of vertices

4Unless otherwise stated, we assume that N/K and S/(N/K) are integers.
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Fig. 2. The file transition graphs for two instances of a data shuffling system with K = 6 worker nodes and N = 6 files. Assume u(i) = i for i ∈ [6] , and
consider two different assignment functions; d1 (·) and d2 (·) . The shown graphs are isomorphic. (a) d1 (1) = 2, d 1 (2) = 3, d 1 (3) = 1, d 1 (4) = 4, d 1 (5) = 6
and d1 (6) = 5 . (b) d2 (1) = 1, d 2 (2) = 6, d 2(3) = 5, d 2(4) = 2, d 2 (5) = 3 and d2 (6) = 4 .

each corresponding to a worker node, and E , with |E| = N ,
is the set of directed edges, each associated to one file (see
Fig. 2). An edge ej = (i, ) ∈ E with j ∈ [N ] and i,  ∈ [K]
indicates that j ∈ u(i)∩d() , i.e., file F j is being processed by
worker node W i at iteration t , and assigned to worker node
W to be processed at iteration t + 1 . Note that in general
G(V, E) is a multigraph, since there might be multiple files in
u(i) ∩ d() , and we include one edge from W i to W for each
of such files.

Without loss of generality, let us assume a fixed assignment
function u(·) at iteration t , for example, u(i) = {(i−1)N/K +

: ∈ [N/K]} for i ∈ [K] , otherwise we can relabel
the files. Hence, the problem and its file transition graph are
fully determined by the assignment function d(·) at iteration
t + 1 . Let DG be the set of assignment functions d(·) whose
corresponding file transition graphs are isomorphic to G. Fig. 2
captures two instances of a shuffling problem with isomorphic
file transition graphs. For a given graph G(V, E) , we define the
average delivery load over all assignment functions in DG as

R(G) =
1

|DG|
d D∈ G

R(N, K, S; d). (1)

Our ultimate goal in this paper is to characterize R(G) for
given parameter (N, K, S) and for all feasible file transition
graphs G.

C. Main Results

First, we present our main results to characterize the
exact load-memory trade-off for the canonical setting of data
shuffling problem, when N = K , for any shuffling. Since
N = K , then S = S , each worker node processes one file at
each iteration. Without loss of generality, we assume that W i

processes file F i at every iteration, i.e., u(i) = i , for i ∈ [K],
otherwise we can relabel the files. The following theorems
summarize our main results.

Theorem 1: For a data shuffling problem with a master
node, K worker nodes, each with a cache of size S files with
S ∈ [N ] , the communication load R = R(N = K, K, S)
required to shuffle N = K files among the worker nodes for
any file transition graph is upper bounded by 5

R ≤
K−1

S
K−1
S−1

. (2)

For non-integer values of S , where 1 ≤ S ≤ N , the lower
convex envelope of the N corner points, characterized by (2),
is achievable by memory-sharing.

5Note that
n
k = 0 when n < k .

An achievability argument consists of a cache placement
strategy and a delivery scheme. We propose a cache placement
in Section III which will be used for all achievable schemes
discussed in this paper. The delivery scheme, along with
the memory-sharing argument for non-integer values of S ,
is presented in Section IV-A. Illustrative examples are then
given in Section IV-B.

The next theorem provides an achievable delivery load
(depending on the file transition graph) by an opportunistic
coding scheme. We will show later that the underlying file
transition graph of any data shuffling problem, G(V, E) , com-
prises a number of directed cycles. We denote the number of
cycles in the file transition graph by γ , and denote the cycle
lengths by ( 1, 2, . . . , γ ) where

γ
i=1 i = K .

Theorem 2: For a data shuffling system with a master node
and K worker nodes, each with a cache of size S files, for
S ∈ [N ] , the shuffling of N = K files among the worker
nodes for a given file transition graph that comprises γ cycles
can be performed by broadcasting a message of size R , where

R ≤
K−1

S
− γ−1

S
K−1
S−1

. (3)

For non-integer values of S , where 1 ≤ S ≤ N , the lower
convex envelope of the N corner points, characterized by (3),
is achievable by memory-sharing.

The proposed delivery scheme and achievability proof for
Theorem 2 are presented in Section IV-C. The memory-
sharing argument for non-integer values of S follows a similar
reasoning as the one in Theorem 1. We provide an illustrative
example in Section IV-D.

Theorem 3: For the data shuffling system introduced in
Theorem 2, the communication load R required to shuffle
N = K files among the worker nodes for a given assignment
with a file transition graph that comprises γ cycles is lower
bounded by

R ≥
K−1

S
− γ−1

S
K−1
S−1

. (4)

The proof of optimality (converse) is presented in Section V,
where we also provide an illustrative example to describe the
proof technique.

Corollary 1: Theorems 2 and 3 prove the optimality of the
proposed coded shuffling scheme for an arbitrary number of
worker nodes K , storage capacity per worker node S , and
file transition graph with γ cycles, when N = K . Therefore,
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Fig. 3. The optimum trade-off curve between the delivery load R and the
storage capacity per worker node S , when N = K = 6 and γ = 3 .

the optimal delivery load R is characterized as

R (N = K, K, S) =
K−1

S
− γ−1

S
K−1
S−1

, S ∈ [N ]. (5)

For non-integer values of S , where 1 ≤ S ≤ N , the optimal
delivery load R is equal to the lower convex envelope of the
N corner points given in (5). Furthermore, when γ − 1 < S ,
the achievable delivery load of Theorem 2 is equal to that
of Theorem 1, and takes its maximum. This characterizes the
optimal worst-case delivery load R

worst-case which is given by

R
worst-case =

K−1
S

K−1
S−1

 . (6)

This indicates that the upper bound of Theorem 1 is the best
universal (assignment independent) bound that holds for all
instances of the data shuffling problem.

Remark 1: The essence of the information-theoretic lower
bound on the communication load for the worst-case shuffling
proposed in this paper for N = K is equivalent to that of
[16] (Attia and Tandon) for general N and K . However,
in more details, the proof of [16] involves solving a linear
program, while we use set theoretic arguments to obtain a
closed-form expression. Moreover, for general parameters N

and K , we provide a simple reduction argument to re-use the
bound proved for the canonical setting.

Fig. 3 captures the optimum trade-off curve between
R (K, K, S) as a function of S for N = K = 6 and a file
transition graph with γ = 3 cycles.

Next, based on the results obtained for the canonical setting
of data shuffling problem when N =K , we present our main
results in Theorem 4 to characterize an upper bound on the
load-memory trade-off for the general setting of data shuffling
problem when N ≥ K . This upper bound turns out to be
optimum for the worst-case shuffling, as stated in Theorem 5.

Theorem 4: For a data shuffling system that processes N

files, and consists of a master node and K worker nodes, each
with a normalized storage capacity of S = S/(N/K) files,
the achievable delivery load R = R(N, K, S) required to
shuffle N files among the worker nodes for any file transition

graph is upper bounded by

R ≤
N
K

K−1
S

K−1
S−1

, S ∈ [K]. (7)

For non-integer values of S , where 1 ≤ S ≤ K , the lower
convex envelope of the N corner points, characterized by (7)
is achievable by memory-sharing.

The delivery scheme and achievability proof are presented
in Section VI-A. Note that the proposed achievable scheme
is an extension to the one developed for the canonical setting
of N = K in Theorem 2. The memory-sharing argument for
non-integer values of S follows a similar reasoning as the
one in Theorem 1. We also present an illustrative example in
Section VI-C.

Theorem 5: For the data shuffling system introduced in
Theorem 4, the communication load R worst-case required to
shuffle N files among the worker nodes according to the worst-
case shuffling is given by

R worst-case =
N

K

K−1
S

K−1
S−1

. (8)

The proof of Theorem 5 is presented in Section VI-D.
Before we start discussing the results of the paper,

we present an example to explain the general idea of the
proposed coded shuffling scheme.

D. Illustrative Example

Example 1 (Single-Cycle File Transition Graph): Consider a
shuffling system with a master node and K = 4 worker nodes.
The size of the cache at each worker node is S = 2 files. There
are N = 4 files, denoted by {F 1, F 2, F 3, F 4} . For notational
simplicity, we rename the files as {A, B, C, D} . Without loss
of generality, we assume that worker nodes W 1, W 2, W 3
and W4 are processing files A , B , C , and D , respectively,
at iteration t , that is u(1) = A , u(2) = B , u(3) = C , and
u(4) = D . The file transition graph is d(1) = B , d(2) = C ,
d(3) = D and d(4) = A , as depicted by Fig. 4a. The proposed
placement strategy partitions each file into K−1

S−1 = 3 subfiles
of equal sizes. The subfiles are labeled with sets Γ ⊆ [4] ,
where |Γ| = S − 1 = S/(N/K) − 1 = 1 . For instance,
file A being processed by worker node W 1 is partitioned into
A 2, A 3, and A 4. Accordingly, the cache Z i of W i is divided
into two parts; P i that is dedicated to the under-processing
file F i , and Ei that is dedicated to store parts of other files.
Fig 4b captures the cache organization of worker nodes, along
with the missing subfiles (i.e., the ones in Q i , as defined
in (14)) that need to be processed at iteration t + 1 . The
broadcast message X transmitted from the master node to
the worker nodes is formed by the concatenation of 3 sub-
messages X = (X 12 , X 13, X 23), where

X 12 = A 2 ⊕ B 3 ⊕ B 4 ⊕ C1,

X 13 = A 3 ⊕ B 3 ⊕ C1 ⊕ D1,

X 23 = B 3 ⊕ C1 ⊕ C4 ⊕ D2.
(9)
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Fig. 4. Data Shuffling system with N = K = 4 , S = 2 and γ = 1 . (a) The file transition graph for a data shuffling system with N = K = 4 , S = 2 and
γ = 1 . Worker nodes W 1 , W 2 , W 3 and W 4 are processing files A , B , C , and D , respectively. (b) Cache organization of worker nodes at iteration t , along
with the set of subfiles which are not available in the caches at iteration t and need to be processed at iteration t + 1 . (c) Cache organization of worker nodes
at iteration t + 1 after updating the caches. Subfiles A 4 , B 1 , C2 and D 3 in E4 (t) , E1 (t) , E2 (t) and E3 (t) are moved to E1 (t + 1) , E2(t + 1) , E3 (t + 1)
and E4 (t + 1) , respectively. (d) Cache organization of worker nodes at iteration t + 1 after updating the caches and relabeling the subfiles of Fig. 4b. Subfiles
A 4 , B 1 , C2 and D 3 in E4(t) , E1 (t) , E2(t) and E3 (t) are moved to E1(t + 1) , E2 (t + 1) , E3(t + 1) and E4 (t + 1) and relabeled to D 1 , A 2 , B 3 and
C4 , respectively. (e) Received functions by worker nodes after removing the cached subfiles. The complete received functions at worker nodes are expressed
in (9).

We need to show that each worker node W i can decode all
the missing subfiles in Q i from the broadcast message. Fig. 4e
shows the received sub-messages by each worker node after
removing the subfiles that exist in its cache. For instance, W1
can decode B 3 from X 13 and B 4 from X 13⊕X 12, respectively.
These, together with B 1 that is already cached in Z 1 , enable
W1 to fully recover B , which is the file to be processed at
iteration t + 1 .

Decoding file A at W 4, which is the ignored worker node,
is more involved. Worker node W 4 can decode A 2 and
A 3 from X 12 ⊕ X 23 and X 13 ⊕ X 23, respectively, and A 4
already exists in its cache Z 4. Consequently, the proposed
scheme can achieve a delivery load of R coded = 1 , due to
sending 3 sub-messages, each of size 1/3 . On the other hand,
the delivery load achieved by the uncoded shuffling scheme,
under the same placement strategy, involves sending 8 sub-
messages, each of size 1/3 , resulting in R uncoded = 8/3 . Hence,

the proposed coded shuffling scheme can save around 62% of
the communication load, compared to the uncoded shuffling
scheme.

After the decoding phase, each worker node has access to (at
least) 8 subfiles, including 6 subfiles pre-stored in its cache Z i ,
and 2 subfiles in Q i . However, only 6 subfiles can be stored
in the cache, and the remaining ones should be discarded.
It remains to show that the caches of the worker nodes can
be updated using the broadcast message X to maintain a
similar arrangement in preparation for the next data shuffle
from iteration t+1 to t+2 . This is done in two phases, namely
cache updating and subfile relabeling. Fig. 4c depicts the cache
organization of the worker nodes after updating the caches,
while Fig. 4d captures the cache organization of the worker
nodes after updating the caches and relabeling the subfiles. For
example, as shown in Fig. 4c, W1 needs to keep a full copy
of B = {B 1, B2, B3} at iteration t + 1 because d(1) = B .
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Moreover, subfiles C1 and D 1 already exist in E1(t) , and
hence they will remain in E1(t + 1) . Among the remaining
subfiles {A 2 , A3, A4} , only one of them can be kept in the
cache. According to (20), the subfile to be kept is A Γ such that
d−1 (1) ∈ Γ , that is A 4. Finally, in order to maintain a cache
configuration consistent with the original one in (11), all the
subfiles in the excess storage of W i should have a subscript of
{i} , and W i should process Fi , for i ∈ [K] , at every iteration.
For example, subfiles B 1, B 3 and B 4, that are processed in
P 1(t + 1) by W 1, in Fig. 4c are relabeled to A 2, A 3 and A 4
in Fig. 4d, respectively. Similarly, subfiles C1 , D 1, A 4, that
are cached in E1(t + 1) by W 1, in Fig. 4c are relabeled to B 1,
C1 and D 1 in Fig. 4d, respectively.

III. CACHE PLACEMENT

In this section we introduce our proposed cache placement,
in which the contents of each worker node’s cache at iteration
t are known. Note that the cache placement does not depend
on the files to be processed by the worker nodes at iteration
t + 1 , i.e., it does not depend on {d(i) : i ∈ [K]} .

A. File Partitioning and Labeling

Throughout this work, we assume that N/K and S/(N/K)
are integer numbers, unless it is specified otherwise. Let S =
S/(N/K) . Let F j be a file being processed by worker node
W i at iteration t , i.e., j ∈ u(i) . We partition F j into K−1

S−1
equal-size subfiles, and label the subfiles with a subscript as

F j = {F
j
Γ : Γ ⊆ [K] \ {i}, |Γ| = S − 1},

∀i ∈ [K], j ∈ [N ], j ∈ u(i). (10)

Since the size of each file is normalized to 1, the size of each
subfile will be 1/ K−1

S−1 . For the sake of completeness, we also

define dummy subfiles F j
Γ = 0 (with size 0) for every Γ ⊆ [K]

with j ∈ Γ or |Γ| = S − 1 .

B. Cache Placement

The cache Z i of W i consists of two parts: (i) the under-
processing part P i , in which all subfiles of files to be processed
at iteration t are stored; (ii) the excess storage part Ei , which
is equally distributed among all other files. We denote by Ei

the portion of Ei dedicated to the file F , in which all subfiles
FΓ with i ∈ Γ are cached. Hence, we have

Z i = P i  ∪ Ei = P i ∪
∈[N ]\u(i)

Ei , ∀i ∈ [K], (11)

where

P i = F j
Γ : j ∈ u(i), Γ ⊆ [K] \ {i}, |Γ| = S − 1 , (12)

Ei = FΓ :  /∈ u(i), i ∈ Γ ⊆ [K], |Γ| = S − 1 . (13)

For any worker node W i , there are N/K complete files in P i .
Moreover, for each of the remaining N −N/K files, there are

K−2
S−2 subfiles, out of a total of K−1

S−1 subfiles, that are cached
in the excess storage part. Thus, we have

|Z i | = P i +
∈[N ]\u(i)

Ei =
N
K + N −

N
K

K−2
S−2
K−1
S−1

= S,

which satisfies the memory constraints.

Remark 2: The proposed cache placement is different from
the one in [14] (Lee et al.). The placement in [15] follows a
random sampling of the files independently across the users.
Moreover, file splitting is not allowed in [15], and a file
(data point) is either fully stored in the storage of a worker
node, or no bit of that is cached by the worker node. The pro-
posed placement strategy, however, is deterministic and fully
characterized at every shuffling iteration. On the other hand,
the so-called structural invariant placement strategy introduced
in [16] is deterministic, but different from the one proposed
in this paper. In particular, the structural invariant placement
method works for values of S satisfying S = 1 + i K−1

K

for some integer i = 0, 1, . . . , K , while we need S to be
some integer in [K] . Consequently, the communication load
achieved in [16] is sub-optimum for general K . A variation
of the structural invariant storage placement is proposed in
[16, Appendix D] only for S  {∈ 1, K − 2, K − 1} which
is identical the placement strategy proposed in our work for
any integer value of S . It is worth noting that in spite of
similarities between the placement strategies, the proposed
encoding and decoding methods in [16] (referred to as “aligned
coded shuffling”) are completely different from those proposed
in this paper.

Recall that the worker node W i should be able to recover
files {F :  ∈ d(i)} from its cache Z i and the broadcast
message X . Communicating files in d(i) from the master node
to a worker node W i can be limited to sending only the desired
subfiles that do not exist in the cache of W i . For a worker node
i ∈ [K] , let Q i denote the set of subfiles to be processed by W i

at iteration t + 1 , which are not available in its cache Z i at
iteration t , that is,

Q i = FΓ :  ∈ d(i),  /∈ u(i), i /∈ Γ, Γ ⊆ [K], |Γ| = S−1 .

(14)

It is evident that each worker node needs to decode at most
K−1
S−1

− K−2
S−2 = K−2

S−1 subfiles for each of the N/K files
in d(i) , in order to process them at iteration t + 1 .

The pseudocodes of the proposed file partitioning and
labeling, and cache placement are given in Algorithm 1 and
Algorithm 2, respectively, in Appendix H.

IV. CODED SHUFFLING FOR THE

CANONICAL SETTING (N = K)
We describe two delivery strategies in this section. The first

delivery scheme is universal, in the sense that it does not
exploit the properties of the underlying file transition graph.
By analyzing this scheme in Section IV-A, we show that the
delivery load in Theorem 1 is achievable. Two illustrative
examples are presented in Section IV-B to better describe the
coding and decoding strategies. We then demonstrate that the
size of the broadcast message can be reduced by exploiting
the cycles in the file transition graph. A graph-based delivery
strategy is proposed in Section IV-C. This new scheme can
achieve the reduced delivery load proposed in Theorem 2.
Finally, we conclude this section by presenting an illustrative
example for the graph-based delivery scheme in Section IV-D.
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A. A Universal Delivery Scheme for Any Shuffling:
Proof of Theorem 1

Recall that for N = K we have S = S/(N/K) = S .
In order to prove Theorem 1, we propose a coded shuffling
scheme to show that a delivery load of R = K−1

S
/ K−1

S−1 is
achievable for the canonical setting ( N = K ) for any integer
1 ≤ S ≤ N . We assume, without loss of generality, that W i

processes file F i at iteration t , i.e., u(i) = i for i ∈ [K] ,
otherwise we can relabel the files.

Encoding

Given all cache contents {Z i : i ∈ [K]} , characterized
by (11), and {d(i) : i ∈ [K]} , the broadcast message X

sent from the master node to the worker nodes is obtained
by the concatenation of a number of sub-messages X Δ , each
specified for a group of worker nodes Δ , that is,

X = {X Δ : Δ ⊆ [K − 1], |Δ| = S}, (15)

where

X Δ
i∈Δ

⎛
⎝F i

Δ\{i}
⊕F d(i)

Δ\{d(i)}
⊕

j∈[K]\Δ

F d(i)
({j}∪Δ)\{i,d(i)}

⎞
⎠. (16)

The encoding design hinges on K − 1 worker nodes. Without
loss of generality, we consider W 1 , W2, . . . , WK−1 for whom
the broadcast sub-messages are designed, and designate W K

as the ignored worker node. We will later show how W K

is served for free using the sub-messages designed for other
worker nodes.

Remark 3: It is true that subfile F d(i)
Δ\{d(i)} does exist in the

cache of worker node W i , and is not needed to be broadcast,
and indeed the encoded sub-message does not include this

subfile. This is due to the fact that such a subfile F d(i)
Δ\{d(i)}

appears twice in X Δ , and hence will be canceled by the XOR
operation. Note that, this subfile is not dummy only if d(i) ∈
Δ . Therefore, one copy is attained in the second term of the

summand as F d(i)
Δ\{d(i)} , and the second copy is attained as the

first term in the summand as F j
Δ\{j} for j = d(i) ∈ Δ .

According to the proposed encoding scheme, there are a
total of K−1

S encoded sub-messages, each corresponds to

one subset Δ , and the size of each sub-message is 1/ K−1
S−1 .

Hence, the overall broadcast communication load is upper
bounded by

R ≤
K−1

S
K−1
S−1

 ,

as claimed in Theorem 1.

Decoding

The following lemmas demonstrate how each worker node
decodes the missing subfiles, that constitute the file to be
processed at iteration t + 1 , from the broadcast sub-messages
and its cache contents.

Lemma 1: For a worker node W , where ∈ [K − 1] ,

a missing subfile F d()
Γ  ∈ Q can be decoded

• from Z and the broadcast sub-message X {}∪Γ , if K /∈ Γ;
and

• from Z , the broadcast sub-message X (Γ\{K}) {∪ ,d()} , and
other subfiles previously decoded by W , if K ∈ Γ .

We refer to Appendix A for the proof of lemma 1.

Remark 4: Here, we provide an intuitive justification for
Lemma 1. Consider a worker node W i and a set of worker
nodes Δ of size S that includes i . One can show that every
subfile appearing in X Δ belongs to either Z i or Q i . Therefore,
worker node W i can recover a linear equation in the subfiles
in Q i by removing the subfiles in its cache Z i from X Δ .
It turns out that all such equations are linearly independent.
The number of such equations is K−2

S−1 (because Δ ⊆ [K −1]
and i ∈ Δ ). On the other hand, the number of subfiles in Q i

is (at most) K−1
S−1

− K−2
S−2 = K−2

S−1 , since out of a total of
K−1
S−1 subfiles of F d(i) , K−2

S−2 of them are cached in Ed(i)
i ,

characterized by (13). Therefore, the obtained set of linearly
independent equations suffices to recover all the subfiles in Q i .

Lemma 2: For the worker node W K , any missing

subfile F d(K)
Γ

 ∈ Q K can be decoded from the cache con-
tents Z K and the summation of the broadcast sub-messages

∈[K−1]\Γ

X {}∪Γ .

We refer to Appendix B for the proof of lemma 2.

Cache Updating and Subfile Relabeling

After worker nodes decode the missing subfiles, character-
ized by (14), the caches of worker nodes need to be updated
and the subfiles need to be relabeled before processing the
files at iteration t + 1. The goal of cache updating and subfile
relabeling is to maintain a similar cache configuration for the
worker nodes for shuffling iteration t + 2. First, the caches are
updated as follows:

• For i ∈ [K] , all the subfiles of F d(i) are placed in P i at
iteration t + 1 , i.e.,

P i (t + 1) = F d(i)
Γ : Γ ⊆ [K]\{d(i)}, |Γ| = S −1 . (17)

• For i ∈ [K] , the excess storage is updated by removing all
the subfiles of F d(i) , and replacing them by the subfiles of
F i that were cached at W d −1 (i) , i.e.,

Ei (t + 1) = (E i (t) \ S i )  A∪ i , (18)

where

S i = F d(i)
Γ : i ∈ Γ, Γ ⊆ [K]\{d(i)}, |Γ| = S −1 , (19)

A i = F i
Γ : d−1 (i) ∈ Γ, Γ ⊆ [K]\{i}, |Γ| = S −1 . (20)

Consequently, we have Z i (t + 1) = P i (t + 1)  E∪ i (t + 1)
by definition. Note that the cache updating procedure is
feasible, since the subfiles needed for Z i (t + 1) either exist
in Z i (t) or appear in the set of missing subfiles Q i (t) to be
decoded after the broadcast message delivery. In particular, all
the subfiles of F i already exist in P i (t) , and hence those in A i

will be simply moved from the under-processing part to the
excess storage part of the cache.
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Next, the subfiles are relabeled as follows:

1) For every subfile F i
Γ , where i ∈ [K] , d−1 (i) ∈ Γ , Γ ⊆

[K] \ {i} and |Γ| = S − 1 , relabel the subfile’s subscript
to F i

Λ , where Λ = Γ \ d−1 (i)  ∪ {i} .
2) For every subfile F i

Γ , where i ∈ [K] , Γ ⊆ [K] \ {i} and

|Γ| = S − 1 , relabel the subfile’s superscript to F d −1 (i)
Γ .

At the end of cache updating and subfile relabeling phase,
the cache configuration of each worker node at iteration t + 1
maintains a similar arrangement to that introduced initially
at iteration t and characterized by (11). More specifically,
the cache updating step ensures that the under-processing part
of the cache includes all subfiles of the file to be processed at
iteration t + 1 . It also guarantees that the excess storage part
of the cache stores an equal share of subfiles of all other files
that are not in the under-processing part. The subfile relabeling
step, however, ensures that two properties are satisfied at any
shuffling iteration; (i) the index of a worker node appears in
the new subscript of all subfiles in the excess storage part of its
cache, (ii) the name of the file to be processed by worker node
W i is changed to F i (from F d(i) ). Therefore, the proposed
scheme can be systematically applied at the following shuffling
iterations. This completes the proof of Theorem 1.

The pseudocodes of the proposed encoding at the master
node, decoding at the worker nodes, and cache updating and
subfile relabeling are given in Algorithm 3, Algorithm 4, and
Algorithm 5, respectively, in Appendix H.

Remark 5: Let S be a non-integer cache size with 1 ≤
S ≤ N . We can always write S = αS + (1 − α)  S ,
for some α ∈ (0, 1) . The data shuffling problem for non-
integer cache size S can be addressed by a memory-sharing
argument, similar to [17]. More precisely, we can show that the
pairs (S, R (S)) and ( S, R ( S)) are achievable, and
conclude that, for S = αS + (1 − α)  S , a communication
load of R (S) = αR (S) + (a − α)R ( S ) can be achieved.
Recall that the size of each file is normalized to 1 unit. For
the memory-sharing argument, each file will be partitioned
into two parts of sizes α and 1 − α. The cache of each worker
node is also divided into two parts of sizes αS and (1 − α)S .
Then, the files of size α will be cached and shuffled within
the parts of the caches of size αS . Similarly, the files of size
1 − α, together with the parts of the caches of size (1 − α)S ,
form another isolated instance of the problem. Summing the
delivery loads of the two instances, we get

R(αS + (1 − α)  S)
= αR(S) + (1 − α) R( S)

≤ α
K−1
S

− γ−1
S

K−1
S−1

+ (1 − α)
K−1
S

− γ−1
S

K−1
S−1

. (21)

This shows that the convex hull of the pairs {(S, R) : S ∈

[N ]} is achievable.

B. Illustrative Examples

Example 2 (Multiple-Cycle File Transition Graph): Con-
sider a shuffling problem with parameters K = 6,
S = 3, and N = 6 . For simplicity, we rename the files

Fig. 5. The file transition graph for a data shuffling system with N = K = 6
and γ = 3 . Worker nodes W 1 , W 2 , W 3 , W 4 , W 5 and W 6 process files A ,
B , C , D , E , and F at iteration t , respectively.

{F 1, F 2 , F 3, F 4, F5, F 5} to {A, B, C, D, E, F } . Assume
worker nodes W1 , W 2 , W3 , W 4 , W 5 and W6 are processing
files A , B , C , D , E , and F , respectively. The file transition
graph is depicted by Fig. 5. It comprises γ = 3 cycles,
with cycle lengths ( 1, 2, 3) = (3, 1, 2). That is, d(1) = B ,
d(2) = C , d(3) = A in the first cycle, d(4) = D in the second
cycle, and d(5) = F , d(6) = E in the third cycle. Fig. 6a
captures the cache organization of worker nodes, along with
the missing subfiles that need to be processed at the next
iteration. Note that P i and Ei , for i ∈ [K] , are designed
according to (12) and (13), respectively. We use (15) and
(16) to design the broadcast message X , which is constructed
by concatenating a number of X Δ , each intended for S = 3
worker nodes. For example, X 123 is expressed as

X 123 =
i {∈ 1,2,3}

⎛
⎝F i

{1,2,3}\{i}
⊕ F d(i)

{1,2,3}\{d(i)}
⊕

j∈[K]\{1,2,3}

F d(i)
({j} {∪ 1,2,3})\{i,d(i)}

⎞
⎠

= F 1
23⊕F 2

13⊕ F 2
34⊕F 2

35⊕F 2
36 ⊕ F 2

13⊕F 3
12

⊕ F 3
14⊕ F 3

15⊕F 3
16 ⊕ F 3

12⊕F 1
23⊕ F 1

24⊕F 1
25⊕F 1

26

= F 1
24⊕F 1

25⊕F 1
26⊕F 2

34⊕F 2
35⊕F 2

36⊕F 3
14⊕F 3

15⊕F 3
16

= A 24⊕A 25⊕A 26⊕B 34⊕B 35⊕B 36⊕C 14⊕C 15⊕C 16.

(22)

Similarly, the set of other broadcast sub-messages is
expressed as

X 124 = A 24⊕B 34⊕B 45⊕B 46⊕C 14,

X 125 = A 25⊕B 35⊕B 45⊕B 56⊕C 15⊕E 12⊕F12 ,

X 134 = A 24⊕A 45⊕A 46⊕B 34⊕C 14,

X 135 = A 25⊕A 45⊕A 56⊕B 35⊕C 15⊕E 13⊕F13 ,

X 145 = A 45⊕B 45⊕E 14⊕F14 ,

X 234 = A 24⊕B 34⊕C 14⊕C 45⊕C 46,

X 235 = A 25⊕B 35⊕C 15⊕C 45⊕C 56⊕E 23⊕F23 ,

X 245 = B 45⊕C 45⊕E 24⊕F24,

X 345 = A 45⊕C 45⊕E 34⊕F34 .

(23)

It should be noted that no subfiles of file D appears in any
of the sub-messages defined (23) since u(4) = d(4) = D ,
i.e., D is processed by W 4 at iterations t and t + 1, and hence
does not need to be transmitted by the master node for this
data shuffle. Moreover, note that index 6 does not appear in
the subscript of the broadcast sub-messages, since W6 is the
ignored worker node. However, the subfiles assigned to W 6
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Fig. 6. Data Shuffling system with N = K = 6 , S = 3 and γ = 3 . The file transition graph is depicted in Fig. 5. (a) Cache organization of worker nodes at
iteration t , along with the set of subfiles which are not available in the caches at iteration t and need to be processed at iteration t + 1 . (b) Cache organization
of worker nodes at iteration t + 1 after updating the caches. For instance, subfiles {B 13 , B 14 , B 15 , B 16 } in E1 (t) are moved to E2(t + 1) . (c) Received
functions by worker nodes after removing the cached subfiles. The complete received functions at worker nodes are expressed in (22) and (23).

can be recovered by linear combination of other transmitted
sub-messages.

For each worker node, Fig. 6c shows the received sub-
messages from the master node after removing the subfiles
that already exist in its cache. The decoding procedure of the
proposed coded shuffling scheme is analogous to interference

mitigation techniques in wireless communications. To present
this analogy, we focus on three different cases of the decoding
procedure.

(i) Decoding C14 from X 124 by W 2:
X 124 = C14

Desired subfile

⊕ A24⊕B 34⊕B 45⊕B 46

Cached subfiles in Z 2

.
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The decoding procedure is analogous to interference suppres-
sion technique. W 2 decodes C14 by canceling the interfering
subfiles using its cache contents Z 2.

(ii) Decoding C16 from X 123 by W 2:

X 123 = C16

Desired subfile

⊕ C14

Decoded subfile
from X 124

⊕ C15

Decoded subfile
from X 125

⊕ A24⊕A 25⊕A 26⊕B 34⊕B 35⊕B 36

Cached subfiles in Z 2

.

The decoding procedure is analogous to successive interfer-
ence cancellation (SIC) technique. W 2 decodes C16 by first
canceling the subfiles that exist in Z 2 . Next, it exploits the
subfiles decoded from X 124 and X 125 to successively cancel
the remaining interfering subfiles.

(iii) Decoding E 23 from X 235 by W 6:

X 235 = E 23

Desired subfile

⊕ (C56⊕F23)
Cached subfiles

in Z 6

⊕ (A25⊕B 35⊕C 15⊕C 45)
X 123 ⊕ X 234

.

The decoding procedure is analogous to aligned interference
suppression (interference alignment) technique. W6 decodes
E 23 by first canceling the subfiles cached in Z 6. Then,
the remaining interfering subfiles are the result of XORing
some other received sub-messages, i.e., X 123 ⊕ X 234 , and
hence, they can be canceled accordingly.

As a result, the achieved delivery load is R coded =
5
3

/ 5
2 = 1 . On the other hand, the delivery load achieved

by the uncoded shuffling scheme, under the same placement
strategy, is R uncoded = (5 × 6)/ 5

2 = 3 . That is, the proposed
coded shuffling scheme can save around 66% of the commu-
nication load, and thus, it speeds up the overall run-time of
the data shuffling process. When each worker node decodes
all missing subfiles at iteration t , Fig. 6b depicts the cache
organization of each worker node after updating the cache in
preparation for the following data shuffle at iteration t + 1 .
Note that the subfiles can be relabeled in a similar way as in
Example 1.

C. A Graph-Based Delivery Scheme for Any Shuffling:
Proof of Theorem 2

The coded shuffling scheme proposed in Section IV-A pro-
vides the worker nodes with the missing parts of their assigned
files, using the broadcast message and cached subfiles. How-
ever, depending on the file transition graph, the delivery load
obtained by that scheme may be sub-optimum. As an extreme
and hypothetical example, consider a file transition graph
where each worker node W i is assigned the same file to
process at iterations t and t + 1 , i.e., d(i) = u(i) . Clearly,
no communication between the master node and worker nodes
is needed in this case, and hence, R = 0 is achievable. This
implies the scheme in Section IV-A is sub-optimal for this
instance of the shuffling problem.

It turns out that the number of cycles in the file transition
graph is the main characteristic to determine the optimum
delivery scheme. More concretely, for a file transition graph
with γ cycles where γ − 1 ≥ S , we show that there
are precisely γ−1

S sub-messages in (15) that are linearly

dependent on the other sub-messages. Thus, by refraining
from broadcasting these sub-messages, we can reduce the
delivery load, and achieve the one given in (3). In the decod-
ing phase, worker nodes can first recover all the redundant
sub-messages that have not been transmitted by the master
node by computing linear combinations of appropriate sub-
messages that have been received. Then, each worker node
follows the same decoding rules, discussed in Section IV-A,
to decode the assigned file at iteration t + 1 . This results in
an opportunistic coded shuffling scheme based on the scheme
proposed in Section IV-A. We will later show in Section V that
this scheme is indeed optimum, and achieves the minimum
possible delivery load.

The following lemma characterizes the linearly dependent
sub-messages, and quantifies the reduced delivery load:

Lemma 3: Consider a data shuffling system with a master
node, K worker nodes with storage capacity per worker node
S , and N = K files, and a given file transition graph that
comprises γ cycles. Consider the placement strategy given in
Section III and the delivery scheme provided in Section IV-A.
Then, there are a total of γ−1

S redundant (linearly dependent)

sub-messages among the K−1
S broadcasting sub-messages.

We refer to Appendix C for the proof of lemma 3.
In fact, we can explicitly characterize the set of redundant

sub-messages that are not broadcast in the delivery phase.
To this end,

• consider the first γ − 1 cycles out of the total of γ cycles
formed by the file transition graph (generally, we have to
consider all cycles except the one that includes the ignored
worker node);

• from these γ − 1 cycles, consider all possible combinations
of sets of cycles that have S distinct cycles. There are γ−1

S

such sets;
• consider all sub-messages X Δ (defined in (16)) where Δ

has exactly one worker node from each of the chosen S

cycles.

In the proof of Lemma 3, we show that the sum of all such
sub-messages is zero. Thus, the master node can remove one
of the sub-messages from each group and transmit the rest of
them to the worker nodes. Therefore, the resulting broadcast
communication load R is upper bounded by

R ≤
K−1

S
− γ−1

S
K−1
S−1

.

In the decoding phase, each worker node first reconstructs
the missing, redundant sub-messages by adding the other sub-
messages in the group, and then follows the same decoding
scheme, and cache updating and subfile relabeling strategies
introduced in Section IV-A. This completes the proof of
Theorem 2. In the next example, we illustrate the concept
of redundancy within the the set of broadcast sub-messages.

D. Illustrative Example

Example 3 (Multiple-Cycle File Transition Graph with
Opportunistic Transmission): We consider the same system
parameters of Example 2 in Section IV-B with the same file
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Fig. 7. Cache organization of worker nodes at iteration t , along with the set
of subfiles which are not available in the caches at iteration t and need to be
processed at iteration t + 1 , for a data Shuffling system with N = K = 6 ,
S = 2 and γ = 3 . The file transition graph for this system is depicted
in Fig. 5.

transition graph given in Fig. 5, except that here the cache
size of each worker node is S = 2 files. Fig. 7 captures the
cache organization of worker nodes, along with the missing
subfiles that need to be processed at iteration t + 1. Following
the achievable scheme proposed in IV-A, the set of sub-
messages transmitted by the master node to the worker nodes
is expressed as

X 12 = A 2 ⊕ B 3 ⊕ B 4 ⊕ B 5 ⊕ B 6 ⊕ C1,

X 13 = A 2 ⊕ A 4 ⊕ A 5 ⊕ A 6 ⊕ B 3 ⊕ C1 ,

X 14 = A 4 ⊕ B 4,

X 15 = A 5 ⊕ B 5 ⊕ E1 ⊕ F1 ,

X 23 = A 2 ⊕ B 3 ⊕ C1 ⊕ C4 ⊕ C5 ⊕ C6,

X 24 = B 4 ⊕ C4 ,

X 25 = B 5 ⊕ C5 ⊕ E2 ⊕ F2,

X 34 = A 4 ⊕ C4,

X 35 = A 5 ⊕ C5 ⊕ E3 ⊕ F3,

X 45 = E 4 ⊕ F4.

(24)

Note that the file transition graph consists of γ = 3 cycles,
namely, {W 1 , W2, W3} , {W 4} , and {W 5 , W6} , where the
ignored worker node W6 appears in the third cycle. Ignoring
the third cycle, we have two remaining ones. The family
of all Δ ’s with exactly one entry from each of the first
and second cycle is given by {{1, 4}, {2, 4}, {3, 4}} . It is
evident that X 14 , X 24 and X 34 are linearly dependent, since
X 34 ⊕ X 14 ⊕ X 24 = 0 . Therefore, we can safely omit X 34
from the set of the transmitted sub-messages. For decoding
purposes, worker nodes can recover X 34 from X 14 and X 24 .
Therefore, each one of them is able to decode the assigned
file at iteration t + 1 by following the decoding procedure
presented in Section IV-A.

V. CONVERSE PROOF FOR DATA SHUFFLING WITH

CANONICAL SETTING (N = K)
We prove the optimality of the coded shuffling scheme

proposed in Section IV-C, as stated in Theorem 3. The instance
of the problem is fully determined by the indices of files to
be processed by the worker nodes at iterations t and t + 1 ,
i.e., u(·) and d(·) , respectively. Without loss of generality,
we may assume u(i) = i for every i ∈ [K] , otherwise we
can relabel the files. These assignment functions induce a
directed file transition graph G(V, E) , with node set V =
{W 1, W2, . . . , WK } , in which there is an edge from W i to
W j if and only if d(W j ) = F i .

Since the in-degrees and out-degrees of each vertex are
equal to 1, such a graph consists of a number of directed
cycles. Let γ denote the number of cycles in this graph with
cycle lengths given by { 1, 2, . . . , γ } . Then each node in
the graph can be represented by a pair (c, p), where c ∈

{1, 2, . . . , γ} denoted the cycle number, and p  {∈ 1, 2, . . . , c}

denotes the position within cycle c. With this notation6,
we have d(c, p) = u(c, p + 1) = (c, p + 1) , i.e., the worker
node at position (c, p) will process file F (c,p) and F (c,p+1) at
iterations t and t + 1 , respectively7. Note that the positional
label (c, p) essentially induces an order on the nodes and
edges of the graph. For two pairs (c , p ) and (c, p), we say
(c , p ) appears before (c, p) and denote it by (c , p ) ≺ (c, p)
if either (c , p ) appears in a cycle with smaller index ( c <
c) or in the same cycle but at an smaller position ( c = c
and p < p ). Similarly, (c , p )  (c, p) indicates that either
(c , p ) ≺ (c, p) or (c , p ) = (c, p) .

Consider an arbitrary uncoded placement of the files in
worker nodes’ cache, and denote by F i

j the bits of file F i

cached at W j . Note that we do not make any assumptions

on the size or symmetry of F i
j ’s. Then, the cache contents of

worker node W j is given by Z j = F j ∪
i =j

F i
j , which is

equivalent to

Z (c,p) = F (c,p) ∪

⎛
⎝

(c ,p ) =(c,p)

F (c ,p )
(c,p)

⎞
⎠, (25)

using the positional labeling, where j is the worker node in
the pth position of the cth cycle.

For a given file transition graph G(V, E) , we introduce a
virtual worker node W equipped with a cache Z , in which
we store

Z =

⎛
⎝

c∈[γ]

F (c,1)

⎞
⎠∪

⎛
⎜⎜⎝

c∈[γ]
p< c

⎛
⎜⎜⎝

(c ,p )(c,p)
p >1

F (c ,p )
(c,p)

⎞
⎟⎟⎠

⎞
⎟⎟⎠ (26)

=

⎛
⎝

c∈[γ]

F (c,1)

⎞
⎠∪

⎛
⎜⎜⎜⎝

c∈[γ]
p>1

⎛
⎜⎜⎜⎝

(c ,p )≺(c,p)
p < c

F (c,p)
(c ,p )

⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎠

, (27)

where

6The selection of the order of cycles, as well as the starting position within
each cycle, is arbitrary.

7We define (c, c + 1) = (c, 1) for the sake of consistency.

Authorized licensed use limited to: University of Minnesota. Downloaded on June 25,2020 at 04:55:13 UTC from IEEE Xplore.  Restrictions apply. 



ELMAHDY AND MOHAJER: ON THE FUNDAMENTAL LIMITS OF CODED DATA SHUFFLING FOR DISTRIBUTED MACHINE LEARNING 3111

Fig. 8. The file transition graph, along with the cache organization of worker nodes, for a data Shuffling system with N = K = 6 , and γ = 3 .

• in (26), the first equality reads as follows. the cache Z of
the virtual worker node W is the union of two sets. The
first set is the union of files being processed by the first
worker node in each cycle. The second set only consists the
sub-files of all other files, and only includes sub-files that
are stored at worker nodes that (i) whose rank is the circular
order is less that that of the processing worker, and (ii) do
not appear at the last position of their cycle.

• in (27), the second equality in (25) is just a re-arrangement
of the sub-files selected in (24). That will follows form
two steps applied simultaneously, i.e., (i) swapping the
labels used for the subscript and superscripts of F , and
(ii) changing the order of the unions.

In order to prove the optimality of the proposed coded
shuffling scheme, we first show that the broadcast message X

and the cache contents of the virtual worker node suffice to
decode all the files (Lemma 4). Then, we lower bound the
size of the broadcast message by upper bounding the size of
the data cached at the virtual worker node (Lemma 5 and
Lemma 6).

Lemma 4: For any file transition graph G, given the cache
contents Z of the virtual worker node W and the broadcast
message X , all files in the data shuffling system can be
decoded, that is

H {F i } K
i=1 |X , Z = 0. (28)

We refer to Appendix D for the proof of Lemma 4.
For a file F i and a subset of worker nodes J ⊆ [K] \ {i} ,

we define the size of a union of bits of F i that are cached at
worker nodes in J as μ i

J = j J∈ F i
j . For a given integer

α , let μ α denote the average (over files and worker nodes) size
of a set of union of bits that are cached in the excess storage

of α worker nodes, that is,

μ α =
1

K K−1
α i∈[K] J ⊆[K]\i

|J |=α

μ i
J

=
1

K K−1
α i∈[K] J ⊆[K]\i

|J |=α

j J∈
F i

j . (29)

Next, the communication load for an instance of the shuf-
fling problem, determined by a graph G(V, E) , can be lower
bounded in terms of μ i ’s as follows.

Lemma 5: For a data shuffling problem determined by a file
transition graph G(V, E) , the communication load R is lower
bounded by

R(G) ≥ K − γ −

K−γ

i=1

μ i . (30)

We refer to Appendix E for the proof of Lemma 5.
Before we continue with the formal proof, we present the

defined notation and the main steps of our argument through
an illustrative example.

Example 4: Consider a data shuffling system with
K = 6 worker nodes, and N = 6 files, namely

F 1, F2, F 3, F 4 , F 5, F 6 . We assume worker node i is
processing F i at time t . Moreover, the file assignments for
iteration t + 1 are given by d(1) = 2 , d(2) = 3 , d(3) = 1 ,
d(4) = 4 , d(5) = 6 , and d(6) = 5 . The file transition
graph of the problem is depicted by Fig. 8, that consists of
γ = 3 cycles, with cycle lengths ( 1, 2, 3) = (3, 1, 2). Hence,
the nodes are labeled using the (c, p) notation as follows:
1 ↔ (1, 1), 2 ↔ (1, 2), 3 ↔ (1, 3), 4 ↔ (2, 1) , 5 ↔ (3, 1) ,
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and 6 ↔ (3, 2). The cache contents of the virtual worker node
will be

Z = F (1,1) , F (2,1) , F (3,1)

∪ F (1,2)
(1,1)

, F (1,3)
(1,1)

, F (1,3)
(1,2)

, F (3,2)
(1,1)

, F (3,2)
(1,2)

, F (3,2)
(3,1)

,

Next, according to Lemma 4, we argue that givenZ and X ,
the virtual worker node is able to decode all files as follows:

• W has the entire files F (1,1) , F (2,1) , and F (3,1) ,

i.e., H F (1,1) , F (2,1) , F (3,1) Z = 0 .
• It also has the entire data cached at W 1, that is,

Z 1 = F (1,1) , F (1,2)
(1,1)

, F (1,3)
(1,1)

, F (2,1)
(1,1)

, F (3,1)
(1,1)

, F (3,2)
(1,1)

.

Hence, it can decode d(1) = F (1,2) from (Z 1 , X ), which

implies H F (1,2) Z , X = 0 .

• Then, having F (1,2) decoded, the virtual worker node has
the entire content of Z 2 which, together with X , suffices to
decode the file assigned to W 2 , which is d(2) = 3 ↔ (1, 3) .

That is, H F (1,3) Z , X , F(1,2) = 0 .

• Finally, since files F (1,1) , F (2,1) , F (3,1) and F (3,2)
(3,1) are in

Z , and files F (1,2) , F (1,3) are decoded, the virtual worker
node has the entire Z 5. Hence, the only remaining file F (3,2)

can be recovered from (Z 5 , X ) since d(5) = 6 ↔ (3, 2) .

This implies H F (3,2) Z , X , F(1,2) , F (1,3) = 0 .

This argument shows that

6 = H F 1, F 2, F 3, F 4, F 5, F6

≤ H(X , Z )

≤ H(X ) + H F 1 + H F 4 + H F 5 + H F 2
1

+H F 3
1 , F 3

2 + H F 6
1 , F 6

2 , F 6
5 ,

which implies

R = H(X )
≥ 6 − H F 1 + H F 4 + H F 5

− H F 2
1 + H F 3

1 , F 3
2 + H F 6

1 , F 6
2 , F 6

5

= 3 − H F 2
1 + H F 3

1 , F 3
2 + H F 6

1 , F 6
2 , F 6

5

≥ 3 − (μ 1 + μ 2 + μ 3) ,

where the last inequality follows from a similar argument on
several versions of the same problem with re-labeled files,
using set-theoretic operations. To avoid any repetition, we omit
these steps here, and refer to the proof of Lemma 5 in E.
Finally, we need to bound μ1, μ2, and μ3, which is elaborated
by lemma 6.

Finally, we seek an upper bound onμ i ’s using a set theoretic
argument, as stated in the following lemma:

Lemma 6: The variables μ i ’s introduced in (29) satisfy

μ i ≤ 1 −
K−i−1

S−1
K−1
S−1

 , (31)

for α  {∈ 0, 1, 2, . . . , K − 1}.

The proof of this lemma is presented in Appendix F. Having
the lemmas above, we are ready to prove the optimality of the
proposed coded shuffling scheme.

Proof of Theorem 3: We start with Lemma 5, and use
Lemma 6 to upper bound μ i ’s. We have

R(G) ≥ K − γ −

K−γ

i=1

μ i

≥ K − γ − K − γ −
K−γ

i=1

K−i−1
S−1
K−1
S−1

.

=
1

K−1
S−1

K−γ

i=1

K − i − 1
S − 1

=
1

K−1
S−1

K−2

j=γ−1

j

S − 1

=
1

K−1
S−1

⎡
⎣

K−2

j=0

j

S − 1
−

γ−2

j=0

j

S − 1

⎤
⎦

=
1

K−1
S−1

$
K − 1

S
− γ − 1

S

%
. (32)

This completes the proof of Theorem 3.

VI. CODED SHUFFLING SCHEME FOR

GENERAL SETTING (N ≥ K)
We shift our attention to the general and practical setting

of the data shuffling problem when N ≥ K . We assume
N/K , the number of files to be processed by each worker
node, is integer. Furthermore, unless otherwise mentioned,
we assume S/(N/K) is integer. It should be noted that the
proposed coded shuffling algorithm for the general setting of
N ≥ K is an extension to the one developed for the canonical
setting of N = K .

A. A Universal Delivery Scheme for General Setting:
Proof of Theorem 4

In the following, we extend the achievable scheme proposed
in Section IV-C for the canonical setting ( N = K ) in order
to develop an achievable scheme for the general setting of
the shuffling problem, that is, for any N ≥ K . To this end,
we follow the cache placement scheme proposed in Section III.
Then, for the delivery phase, we decompose the data shuffling
problem into N/K instances of sub-problems, where each sub-
problem consists of K worker nodes, K files, and cache size
of S = S/(N/K) per worker node. Therefore, the resulting
sub-problems lie in the class of the canonical setting discussed
earlier in Section IV.

We first present the following lemma that is essential for
the proof of Theorem 4:

Lemma 7: For any data shuffling problem with K worker
nodes and N files (where K divides N ), G(V, E) can be
decomposed into N/K subgraphs Gi (V, E i ) with |E i | = K ,
for i ∈ [N/K] , such that

• For each subgraph Gi (V, E i ), the in-degree and out-degree
of each vertex in V are 1.
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• The edge sets {E i : i ∈ [N/K]} provide a partitioning for
E , i.e., E i ∩ Ej = ∅ for any distinct pair of i, j ∈ [N/K] ,

and
N/K
i=1

E i = E .

The proof of this lemma is based on Hall’s theorem, and
presented in Appendix G.

Now, we prove Theorem 4 as follows. Recall from Section II
that the file transition graph is defined as a directed graph
G(V, E) , where an edge ej = (i, ) ∈ E with j ∈ [N ] indicates
that j ∈ u(i) ∩ d() , i.e., file F j is being processed by worker
node W i at iteration t , and will be processed by worker node
W at iteration t + 1. Since each worker node processes N/K

files at every iteration of the distributed algorithm, the directed
graph G(V, E) is regular since the in-degree and out-degree of
each vertex in V are N/K . The decomposition of the shuffling
problem is inspired by decomposing the file transition graph.
More precisely, we decompose G(V, E) into N/K subgraphs,
namely Gi (V, E i ) for i ∈ [N/K] , such that each subgraph
induces one canonical instance of the problem. The existence
of such a decomposition is guaranteed by Lemma 7.

Each resulting subgraph Gi (V, E i ) induces a data shuffling
system with K files (corresponding to the edges appear in
the subgraph), K worker nodes, and storage capacity per
worker node S = S/(N/K) . Then, we can apply the universal
coded shuffling scheme proposed in Section IV-C to achieve
a delivery load of K−1

S
/ K−1

S−1 for each sub-problem. As a
result, an overall delivery load of

R =
N
K

K−1
S

K−1
S−1

is achievable for any file transition graph. This completes the
proof of Theorem 4.

The scheme is proved to be optimal for the worst-case
shuffling scenario with K worker nodes and N files in
Section VI-D.

B. A Graph-Based Delivery Scheme for General Setting

The delivery scheme proposed in Section VI-A is based on
applying the universal delivery scheme on each subgraph of
the file transition graph after decomposing it. We discussed in
Section IV-C that the delivery load obtained by this scheme
can be sub-optimum, depending on the topology of the graph,
and then we proposed an opportunistic approach to slash
the delivery load. Consequently, we can apply the graph-
based delivery scheme of Section IV-C on each subgraph
Gi (V, E i ), for i ∈ [N/K] , of the file transition graph, to reduce
the delivery load. Let γ i be the number of cycles in the
subgraph Gi (V, E i ). Theorem 2 implies that the delivery load

of
(K−1

S )− (γ i −1
S )

(K−1
S−1 ) is achievable for the i-th subgraph. Therefore,

we have the following corollary:

Corollary 2: Consider a data shuffling system that
processes N files using K worker nodes, each equipped
with a cache of size S . Assume that the file transition graph
G(V, E) is decomposed into N/K subgraphs Gi (V, E i ),
for i ∈ [N/K] , and denote by γ i the number of cycles in

subgraph Gi . Then, a total delivery load of

R =
N/K

i=1

K−1
S

− γ i −1
S

K−1
S−1

=
1

K−1
S−1

⎛
⎝N

K
K − 1

S
−

N/K

i=1

γ i − 1
S

⎞
⎠ (33)

is achievable for the file assignments given by the file transi-
tion graph.

Next, we explain the details of the proposed shuffling
schemes through an illustrative example.

C. Illustrative Example

Example 5: We consider a data shuffling system with
K = 4 worker nodes with cache size of S = 4 files, and
N = 8 files, denoted by {F 1, F 2, F3, F 4, F 5, F 6, F 7, F 8} .
For notational simplicity, we rename the files as
{A, B, C, D, E, F, G, H} , respectively. Each worker node
stores N/K = 2 files to process at iteration t , and caches
S − N/K = 2 files in the excess storage part. Fig. 9a depicts
the underlying file transition graph G(V, E) . For instance,
worker node W 1 processes two files A and E at iteration t .
At iteration t+1, file A will be again processed by W 1,
while file E will be processed by W 4. Therefore, there are
two directed edges outgoing from W 1; one from W1 to W 1
(labeled by A ), and the other from W 1 to W 4 (labeled by E ).
Fig. 9b depicts the cache organization of worker nodes at
iteration t , along with the missing subfiles that need to be
processed at iteration t + 1. Note that cache placement for the
excess storage is symmetric across files and worker nodes,
and does not depend on the file transition graph.

After constructing of G(V, E) , we decompose it into N/K

subgraphs as discussed in Section VI-A. Fig. 10a shows a
decomposition of G(V, E) into N/K = 2 subgraphs, desig-
nated G1 and G2 . Each of such subgraphs induces an instance
of the coded shuffling problem with parameters N i = K = 4 ,
for i  {∈ 1, 2} , and S = 2 . The corresponding cache contents
and file assignments for the problems induced by G1 and
G2 are given in Fig. 11. It is clear from Theorem 1 that
a communication load of K−1

S
/ K−1

S−1 = 3
2

/ 3
1 = 1 is

achievable for each subgraph, and hence the total delivery load
is R = R 1 + R 2 = 2 .

The delivery load can be potentially reduced by exploiting
the cycles in the subgraphs of file transition graph, and refrain-
ing from broadcasting redundant sub-messages. However, for
subgraphs G1 and G2 with γ 1 = γ 2 = 2 cycles, there is no
communication load reduction due to a graph-based delivery
scheme, since, according to Theorem 2, we have

R 1 =
3
2

− 1
2

3
1

= 1, R 2 =
3
2

− 1
2

3
1

= 1,

and R = R 1 + R 2 = 2 .
It is worth noting that the graph decomposition proposed

here is not unique. In particular, another possible decomposi-
tion of G(V, E) is depicted in Fig. 10b. Here, G1 and G2 are
subgraphs obtained by decomposing G, and they consist of
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Fig. 9. Data Shuffling system with N = 8 , K = 4 and S = 4 . (a) The file transition graph G(V, E) . (b) Cache organization of worker nodes at iteration t ,
along with the set of subfiles which are not available in the caches at iteration t and need to be processed at iteration t + 1 .

Fig. 10. (a) One possible decomposition of G(V, E) , depicted in Fig. 9, into N/K = 2 subgraphs; G1 and G2 . (b) Another possible decomposition of
G(V, E) into N/K = 2 subgraphs; G1 and G2 .

γ 1 = 3 and γ 2 = 1 cycles, respectively. Therefore, applying
the graph-based delivery scheme of Section IV-C, the delivery
loads of the subgraphs are given by

R 1 =
3
2

− 2
2

3
1

=
2
3

, R 2 =
3
2

− 0
2

3
1

= 1,

and R = R 1 + R 2 = 5/3 < R . As a result, the second
decomposition provides a lower communication load than the
first decomposition.

D. Optimality for the Worst Case Shuffling: Proof of
Theorem 5

In order to prove Theorem 5, we present one instance of the
shuffling problem, for which the delivery load of Theorem 4
is indeed required, and cannot be further reduced. This shows
that the upper bound on the delivery load given in Theorem 4
is optimum for such worst-case shuffling scenarios.

Let us consider a data shuffling problem P(N, K, S) with
N files, K worker nodes, and cache memory size of S files.
The size of each file is normalized to 1 unit. At each iteration,
each worker node processes N/K files out of the N files,
and hence |u(i)| = |d(i)| = N/K for i ∈ [K] . The shuffling
scenario we consider here is given by d(i) = u(i + 1) for
i ∈ [K −1] and d(K) = u(1) , i.e., all the files being processed
by one worker node at iteration t are assigned to another
worker node at iteration t + 1 . For each worker node W i ,
where i ∈ [K] , the expression for the cache contents Z i , that
comprises under-processing part P i and excess storage part Ei ,
at iteration t is defined by (11). Moreover, the set of subfiles
Q i to be processed by W i at iteration t + 1 is defined by (14).
Suppose, for contradiction, that there exists a shuffling scheme
that achieves a delivery load R where

R(P) <
N
K

K−1
S

K−1
S−1

. (34)
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Fig. 11. Cache organization of worker nodes at iteration t , along with the set of subfiles which are not available in the caches at iteration t and need to be
processed at iteration t + 1 , for the two subgraphs; G1 and G2 , of the first decomposition, captured by Fig. 10a, of G(V, E) .

Now, let us consider another data shuffling problem
P(N , K, S) with N = K files, K = K worker nodes,
and S = S/(N/K) = S files. We denote the files of this

instance of the problem by {F 1, F2, . . . , FK } . Each worker
node processes 1 file at each iteration, i.e., |u(i)| = |d(i)| =
N/ K = 1 for i ∈ [K] . Let us divide each file in P(N , K, S)
into N/K mini-files, each of which is of size 1/(N/K) . More
precisely, let F i (r) be the r th mini-file of file F i for i ∈ [K]
and r ∈ [N/K] . Consequently, for i ∈ [K] , the corresponding
expressions of Z i and Q i are given by

Z i = P i ∪Ei = P i ∪
∈[K]\i

Ei , (35)

where

P i = F i
Γ (r) : Γ ⊆ [K]\{i}, |Γ| = S −1, r ∈[N/K] , (36)

Ei = FΓ (r) :  = i, i ∈ Γ ⊆ [K], |Γ| = S −1, r ∈[N/K] ,(37)

and

Q i = FΓ (r) :  ∈ d(i),  = i, i /∈Γ, Γ ⊆ [K],

|Γ| = S −1, r ∈ [N/K] . (38)

Therefore, P can be viewed as a data shuffling problem with
N × (N/K) = N mini-files each of size 1/(N/K) , and
K = K worker nodes where each has a cache memory to
store S × (N/K) = S mini-files. Viewing the data shuffling
problem P(N , K, S) as a problem similar to P, we can apply
the delivery scheme of P (with mini-files of size 1/(N/K)
instead of 1) and achieve a delivery load of

R( P) =
1

N/K R(P)

< 1
N/K

N
K

K−1
S

K−1
S−1

=
K−1

S
K−1
S−1

=
K−1

S

K−1
S−1

, (39)

which contradicts Corollary 1.

E. On the Sub-Optimality of Decomposition-Based Delivery

The delivery load proposed in Corollary 2 depends on the
decomposition of the file transition graph G(V, E) . As dis-
cussed in Example 5, such decomposition is not unique.
Therefore, one can minimize the delivery load in (33) by
exhaustively searching over all possible decompositions of the
file transition graph G(V, E) . A natural question is whether
the delivery load obtained by such a best decomposition is
optimum.

In the following example, we show that the answer to this
question is “No”, and a decomposition-based delivery scheme
can be sub-optimum for a general file transition graph. Con-
sider a data shuffling system with K = 5 worker nodes, and
N = 10 files, denoted by {A, B, C, D, E, F, G, H, H, I, J} .
The cache available at each worker node is S = 2 , i.e., S =
S/(N/K) = 1 , which implies that there is no excess storage.
The file transition graph of this problem is depicted in Fig 12a.
It turns out that there is only one possible decomposition of
this graph, shown in Fig. 12b, that satisfies the conditions
given in Section VI-A. It is clear that each subgraph has only
one cycle, i.e., γ 1 = γ 2. Hence, from Corollary 2, the delivery
load is given by

R =
K−1

S
− γ 1 −1

S
K−1
S−1

+
K−1

S
− γ 2 −1

S
K−1
S−1

=
4
1

− 0
1

4
0

+
4
1

− 0
1

4
0

= 8.

Now, let us consider an alternative transmission strategy as
follows:

X = {A ⊕ D, B ⊕ I, C ⊕ F, E ⊕ H, G ⊕ J} .

It is easy to check that all the worker nodes can recover
their assigned files from their cache contents and X . Since
we transmit 5 sub-messages, each of which is of size 1, then
the corresponding delivery load is R = 5 , which is strictly
less than R = 8 , can be achieved. Indeed, this delivery
scheme is inspired by a different decomposition of the graph
G(V, E) , as depicted in Fig. 13. This decomposition consists
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Fig. 12. Data Shuffling system with N = 10 , K = 5 and S = 2 . (a) The file transition graph G(V, E) . (b) Decomposition of G(V, E) into N/K = 2
subgraphs; G1 and G2 .

Fig. 13. A different decomposition of the file transition graph G(V, E) ,
shown in Fig.12a.

of 5 subgraphs, and the corresponding data shuffling problems
do not lie in the class of canonical problems discussed in
Section VI-A. This example shows that the upper bound on
the delivery load, given in Corollary 2, is loose in general.

VII. SIMULATION RESULTS

Next, we present simulation results for the achieved com-
munication load when N > K for random shuffling. In the
below figures, we plot the communication load for different
values of N/K . We set the number of worker nodes to K = 6 ,
and evaluate the communication load as a function of N/K .
We also set the normalized storage size to S = 2 in Fig. 14,
and S = 3 in Fig. 15. The red box-plot in the left subplots
of the figures depict the range of the achieved communication
loads over 103 random shuffling scenarios. This shows that
the communication load can significantly vary depending on
the underlying random shuffling. The black curves, however,
are the achieved communication loads for the worst-case
shuffling scenario. On the other hand, the right subplots depict
the corresponding average communication loads over 103

random shuffling scenarios (red curves), in comparison with
the achieved communication loads for the worst-case shuffling
scenario (black curves).

Fig. 14. The trade-off between the communication load versus N/K for a
data shuffling problem with K = 6 and S = S/(N/K) = 2 . The left subplot
depicts range of achieved communication loads over 103 shuffling iterations,
while the right subplot shows the corresponding average communication loads.
The black curve is for the worst-case shuffling, while the red curve is for the
random shuffling.

It is clearly evident that the proposed algorithm achieves a
lower communication load compared to the one achieved for
worst-case scenario in all figures. Moreover, the performance
gap is more significant for smaller values of S . This is
consistent with our theoretical result in Corollary 2: The
saving in the communication load (compared to the worst-case
shuffling) is proportional to

N/K

i=1

γ i − 1
S

.

Therefore, each term in the summation gets smaller as S

increases. However, as N/K increases, we have a larger
number of terms contributing to the saving.

It should be noted that the algorithm used in our simu-
lations for N/K graph decompositions (or more specifically
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Fig. 15. The trade-off between the communication load versus N/K for a
data shuffling problem with K = 6 and S = S/(N/K) = 3 . The left subplot
depicts range of achieved communication loads over 103 shuffling iterations,
while the right subplot shows the corresponding average communication loads.
The black curve is for the worst-case shuffling, while the red curve is for the
random shuffling.

N/K perfect matchings) hinges on the Hungarian algorithm
[28], [29]. The pseudocode of the graph decomposition algo-
rithm is given in Algorithm 6, presented in Appendix H.
In Remark 6, given in Appendix G, we present a brief
discussion about the different algorithms for finding a perfect
matching, along with their time complexities.

VIII. CONCLUSION

In this paper, we proposed a novel deterministic coded
shuffling scheme which improves the state of the art by
achieving a lower communication load for any shuffling when
the number of files is equal to the number of worker nodes.
Furthermore, the optimality of the proposed coded shuffling
scheme was demonstrated through a matching converse proof.
We showed that the placement phase of the proposed scheme,
assuming uncoded prefetching, is optimal. Then, we exploited
this canonical setting as a building block, and proposed a
shuffling strategy for the general problem setting when the
number of files is greater than or equal to the number of worker
nodes. Moreover, we proved that the delivery load is optimum
for worst-case shuffling. The characterization of the optimum
trade-off for a given file transition graph is, however, still an
open problem.

Promising directions for future research include the follow-
ing. To complete our understanding of the problem, a topic
of future work is to characterize the exact load-memory
trade-off for any shuffling for the general setting of the
shuffling problem. Moreover, in this work, we optimized the
communication load of the data shuffling procedure for any
two consecutive iterations, i.e., one-round shuffling. A more
general framework consists of multiple consecutive shuffling
iterations, and the design of a shuffling mechanism in order

to achieve an enhanced overall delivery load would be of
practical interest.

APPENDIX A
PROOF OF LEMMA 1

We will prove that all the subfiles intended for W ,  ∈

[K − 1] , can be recovered from the family of broadcast sub-
messages X and cache contents Z . Recall that all such

subfiles are indexed by F d()
Γ for some Γ ⊆ [K] \ {, d()}

with |Γ| = S −1 , otherwise either the subfile is already cached
at the worker node (when  ∈ Γ ), or the subfile is zero (if
d() ∈ Γ ). We distinguish the following two cases:

A. K /∈ Γ
The condition K / ∈ Γ implies that {} ∪ Γ ⊆ [K − 1]

and |{} ∪ γ| = S . Hence, X {}∪Γ  ∈ X , as defined in
(15), i.e., X {}∪Γ is one of the sub-messages broadcast by the

master node. We can recover F d()
Γ from X {}∪Γ as follows:

X {}∪Γ =
i {∈ }∪Γ

⎛
⎜⎝F i

({}∪Γ)\{i}
⊕ F d(i)

({}∪Γ)\{d(i)}

⊕

⎛
⎝

j∈[K]\({}∪Γ)

F d(i)
({j,}∪Γ)\{i,d(i)}

⎞
⎠

⎞
⎟⎠

=
i {∈ }∪Γ

Yi , (40)

where we denote the summand for i by Yi .

• First note that if i = and d(i) = then we have  ∈ ({}∪
Γ)\{i} ,  ∈ ({}∪Γ)\{d(i)} , and  ∈ ({j, }∪Γ)\{i, d(i)} .
Hence, each term in

Yi = F i
({}∪Γ)\{i}

⊕ F d(i)
({}∪Γ)\{d(i)}

⊕

⎛
⎝

j∈[K]\({}∪Γ)

F d(i)
({j,}∪Γ)\{i,d(i)}

⎞
⎠ (41)

exists in the excess storage of worker node (see definition
of E in (13)) and hence Yi can be removed from X {}∪Γ
using the cache Z .

• Next, for i with i = but d(i) = we have  ∈ ({}∪Γ)\{i}
which implies F i

({}∪Γ)\{i}
 ∈ E  ⊂ Z . Moreover, from

d(i) = we have

Yi = F i
({}∪Γ)\{i}

⊕ F d(i)
({}∪Γ)\{d(i)}

⊕

⎛
⎝

j∈[K]\({}∪Γ)

F d(i)
({j,}∪Γ)\{i,d(i)}

⎞
⎠

= F i
({}∪Γ)\{i}

∈E

⊕ F Γ

∈P

⊕

⎛
⎜⎝

j∈[K]\({}∪Γ)

F({j}∪Γ)\{i}

∈P

⎞
⎟⎠,

which shows Yi can be fully removed using the cache
contents Z .
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• Finally, for i = with d(i) = , we have

Yi = F i
({}∪Γ)\{i}

⊕ F d(i)
({}∪Γ)\{d(i)}

⊕

⎛
⎝

j∈[K]\({}∪Γ)

F d(i)
({j,}∪Γ)\{i,d(i)}

⎞
⎠

= F Γ ⊕ F d()
({}∪Γ)\{d()}

⊕

j∈[K]\({}∪Γ)

F d()
({j}∪Γ)\{d()}

= F Γ ⊕

j∈[K]\Γ

F d()
({j}∪Γ)\{d()}

=0 if d() / ∈{j}∪Γ

= F Γ ⊕

j=d()

F d()
({j}∪Γ)\{d()} (42)

= F Γ ⊕ F d()
Γ

, (43)

where in (42) we have used the fact that F d()
({j}∪Γ)\{d()}

is non-zero only if d()  ∈ {j} ∪ Γ , because otherwise
|({j} ∪ Γ) \ {d()}| = S > S − 1 . On the other hand,
we know d() /∈ Γ . Therefore, the only non-zero term is
the one corresponding to j = d() . Also note that FΓ  ∈ P

exists in the cache of worker node .

Therefore, X {}∪Γ can be written as

X {}∪Γ = ζ 0 + F d()
Γ ,

where the interference term ζ0 can be completely removed

using the cache contents Z . This implies F d()
Γ can be

recovered from the received sub-message X {}∪Γ and cache
contents of W .

B. K ∈ Γ
When Γ is a set of indices that includes K , the desired

subfile cannot be directly recovered from one single transmit
sub-message, since the proposed broadcast strategy does not
send any sub-message X Δ with K ∈ Δ . However, we will

show that F d()
Γ can be still recovered from the summation of

subfiles from the cache contents and previously sub-messages
decoded by W . Define Γ = (Γ\{K}) {∪ d()} . Recall that we

assume d() = K , otherwise F d()
Γ = 0 is a dummy subfile.

This implies |{} ∪ Γ| = S . Then we have

X
{}∪ Γ =

i {∈ }∪ Γ

⎛
⎜⎝F i

({}∪ Γ)\{i}
⊕ F d(i)

({}∪ Γ)\{d(i)}

⊕

⎛
⎝

j∈[K]\({}∪ Γ)

F d(i)
({j,}∪ Γ)\{i,d(i)}

⎞
⎠

⎞
⎟⎠

=
i {∈ }∪ Γ

Yi , (44)

where Yi is the summand for the corresponding i in (44).
Similar to Appendix A-A, we can identify the following three
cases:

• If i is such that i = and d(i) = , then  ∈ ({} ∪ Γ) \ {i} ,
 ∈ ({} ∪ Γ) \ {d(i)} and  ∈ ({j, } ∪ Γ) \ {i, d(i)} , i.e., all
the subfiles added in Yi are indexed by a set that includes .

All such subfiles are cached in Z (see (11)), and hence
Yi can be reconstructed and removed from the summation
in (40).

• For i with d(i) = but i = , we have

Yi = F i

({}∪ Γ)\{i}

∈E

⊕ F
Γ

∈P

⊕

⎛
⎜⎜⎝

j∈[K]\({}∪ Γ)

F
({j,}∪ Γ)\{i,d(i)}

∈P

⎞
⎟⎟⎠,

which implies that the entire Yi can be reconstructed
from Z = E  ∪ P .

• Finally, for i = with d(i) = i , we can simplify Yi as

Yi =F Γ
⊕F d()

({}∪ Γ)\{d()}
⊕

⎛
⎝

j∈[K]\({}∪ Γ)

F d()
({j}∪ Γ)\{d()}

⎞
⎠

= F Γ
⊕

⎛
⎝

j∈[K]\ Γ

F d()
({j}∪ Γ)\{d()}

⎞
⎠ (45)

= F Γ ⊕

⎛
⎝

j∈[K−1]\ Γ

F d()
({j}∪ Γ)\{d()}

⎞
⎠

⊕

⎛
⎝

j=K

F d()
({j}∪ Γ)\{d()}

⎞
⎠ (46)

= F Γ ⊕

⎛
⎝

j∈[K−1]\ Γ

F d()
({j}∪ Γ)\{d()}

⎞
⎠⊕ F d()

Γ , (47)

where in (45) we have merged two summations over j = 
and j ∈ [K] \ ({} ∪ Γ) , and again split it to j ∈ [K − 1] \ Γ
and j = K in (46). In (47), we use the fact that

({K} ∪ Γ) \ {d()} = ({K, d()} ∪ Γ \ {K}) \ {d()} = Γ.

Also note that F
Γ

 ∈ P  ⊆ Z .

Therefore, we get

X
{}∪ Γ = ζ 1 +

⎛
⎝

j∈[K−1]\ Γ

F d()
({j}∪ Γ)\{d()}

⎞
⎠

already decoded

+F d()
Γ ,

where ζ1 is the sum of some subfiles that are cached in
Z . Note that all subfiles in the second term are indexed
by sets ({j} ∪ Γ) \ {d()} which do not include K , and
hence already decoded by W as explained in Appendix A-A.

Thus, the desired subfile F d()
Γ can be recovered from X

{}∪ Γ
by removing the interference using cached data (interference
suppression), as well as the previously decoded subfiles (suc-
cessive interference cancellation). This completes the proof of
Lemma 1.

APPENDIX B
PROOF OF LEMMA 2

We will show the decodability of subfiles assigned to the
ignored worker node W K by the master node at iteration t+1 .
More precisely, we need to show F d(K) can be recovered from
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(X , Z K ). First, note that if d(K) = K , then F d(K) = F K is
already cached at W K and the claim clearly holds. Next, note
that the subfiles of F d(K) indexed by Γ with K ∈ Γ are cached

in Ed(K)
K = {F d(K)

Γ : K ∈ Γ, Γ ⊆ [K] \ {d(K)}, |Γ| = S − 1} .
Therefore, we can assume d(K) = K and restrict our attention

to F d(K)
Γ with K / ∈ Γ . Worker node W K can add up the

received sub-messages X {}∪Γ over all  ∈ [K − 1] \ Γ . This
summation can be simplified as (50), shown at the bottom of
this page. Note that

• in (48), shown at the bottom of this page, the inner summa-
tion over i  {∈ } ∪ Γ is broken into i ∈ Γ and i = ;

• in (49), shown at the bottom of this page, the order of
summation over and i is reversed;

• and finally, the double sum in (49) is decomposed into
Term1 ⊕ Term2 ⊕ Term3, and the last summation in (49)
is decomposed into Term4 ⊕ Term5.

Next, we can rewrite Term2 in (50) as

Term2 =

⎛
⎝

i∈Γ ∈[K−1]\Γ

F d(i)
({}∪Γ)\{d(i)}

⎞
⎠

=

⎛
⎝

∈Γ j∈[K−1]\Γ

F d()
({j}∪Γ)\{d()}

⎞
⎠ (51)

=

⎛
⎝

j∈[K−1]\Γ ∈Γ

F d()
({j}∪Γ)\{d()}

⎞
⎠, (52)

where

• in (51), we change the name of variables i and to and j ,
respectively;

• and in (52), the order of summation over and j is reversed.

Moreover, Term5 in (50) can be expanded as

Term5 =

⎛
⎜⎜⎝

∈[K−1]\Γ

⎛
⎜⎝F d()

({}∪Γ)\{d()}

⊕

⎛
⎝

j∈[K]\({}∪Γ)

F d()
({j}∪Γ)\{d()}

⎞
⎠

⎞
⎟⎠

⎞
⎟⎟⎠

=

⎛
⎝

∈[K−1]\Γ

⎛
⎝

j∈[K]\Γ

F d()
({j}∪Γ)\{d()}

⎞
⎠
⎞
⎠ (53)

=

⎛
⎝

j∈[K]\Γ ∈[K−1]\Γ

F d()
({j}∪Γ)\{d()}

⎞
⎠ (54)

=

⎛
⎝

j∈[K−1]\Γ ∈[K−1]\Γ

F d()
({j}∪Γ)\{d()}

⎞
⎠

⊕

⎛
⎝

∈[K−1]\Γ

F d()
({K}∪Γ)\{d()}

⎞
⎠, (55)

where
• in (53), the inner summations over j = and j ∈ [K]\({}∪

Γ) are merged into a single summation over j ∈ [K] \ Γ ;

∈[K−1]\Γ

X {}∪Γ

=
∈[K−1]\Γ i {∈ }∪Γ

⎛
⎝F i

({}∪Γ)\{i}
⊕ F d(i)

({}∪Γ)\{d(i)}
⊕

j∈[K]\({}∪Γ)

F d(i)
({j} {∪ }∪Γ)\{i,d(i)}

⎞
⎠

=
∈[K−1]\Γ i∈Γ

⎛
⎝F i

({}∪Γ)\{i}
⊕ F d(i)

({}∪Γ)\{d(i)}
⊕

j∈[K]\({}∪Γ)

F d(i)
({j,}∪Γ)\{i,d(i)}

⎞
⎠

⊕

∈[K−1]\Γ i {∈ }

⎛
⎝F i

({}∪Γ)\{i}
⊕ F d(i)

({}∪Γ)\{d(i)}
⊕

j∈[K]\({}∪Γ)

F d(i)
({j,}∪Γ)\{i,d(i)}

⎞
⎠ (48)

=
i∈Γ ∈[K−1]\Γ

⎛
⎝F i

({}∪Γ)\{i}
⊕ F d(i)

({}∪Γ)\{d(i)}
⊕

j∈[K]\({}∪Γ)

F d(i)
({j,}∪Γ)\{i,d(i)}

⎞
⎠

⊕

∈[K−1]\Γ

⎛
⎝F({}∪Γ)\{}

⊕ F d()
({}∪Γ)\{d()}

⊕

j∈[K]\({}∪Γ)

F d()
({j,}∪Γ)\{,d()}

⎞
⎠ (49)

=

⎛
⎝

i∈Γ ∈[K−1]\Γ

F i
({}∪Γ)\{i}

⎞
⎠

Term1

⊕

⎛
⎝

i∈Γ ∈[K−1]\Γ

F d(i)
({}∪Γ)\{d(i)}

⎞
⎠

Term2

⊕

⎛
⎝

i∈Γ ∈[K−1]\Γ j∈[K]\({}∪Γ)

F d(i)
({j,}∪Γ)\{i,d(i)}

⎞
⎠

Term3

⊕

⎛
⎝

∈[K−1]\Γ

FΓ

⎞
⎠

Term4

⊕

⎛
⎝

∈[K−1]\Γ

⎛
⎝F d()

({}∪Γ)\{d()}
⊕

⎛
⎝

j∈[K]\({}∪Γ)

F d()
({j}∪Γ)\{d()}

⎞
⎠
⎞
⎠
⎞
⎠

Term5

(50)
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• in (54), the order of summation over and j is reversed;
• and finally in (55), the summation over j is broken into

j ∈ [K − 1] \ Γ and j = K .

Combining Term2 and Term5, we obtain (62), shown at the
bottom of this page. Note that

• in (56), shown at the bottom of this page, Term2 with
summation over  ∈ Γ and the first parentheses of Term5
with summation over  ∈ [K − 1] \ Γ are merged to a single
summation over  ∈ [K − 1] ;

• in (57), shown at the bottom of this page, the term

j∈[K−1]\Γ =K

F d()
({j}∪Γ)\{d()} is added and subtracted,

i.e., the term is XORed twice;
• in (58), shown at the bottom of this page, we use the fact

that d(·) is a bijective map over [K] , and hence replaced
summation over  ∈ [K] with another summation over u ∈

[K] where u = d() ;
• in (59), shown at the bottom of this page, we know that

|Γ| = S − 1 and j /∈ Γ. Hence, |({j} ∪ Γ) \ {u}| = S − 1 if
and only if u  {∈ j} ∪ Γ . Similarly, |({j} ∪ Γ) \ {d(K)}| =
S − 1 if and only if d(K)  {∈ j} ∪ Γ . Moreover, we know

that d(K) /∈ Γ , since we assume F d(K)
Γ is a non-trivial

subfile requested by W K at iteration t + 1. Hence, the only
valid choice for d(K) is d(K) = j . After all simplifications,
we get the expression in (59);

• in (60), shown at the bottom of this page, we break the
summation over u  {∈ j} ∪ Γ into two summations, one
over u ∈ Γ and the other over u = j ;

• and finally in (61), shown at the bottom of this page,
the order of the two summations of the first term is reversed

in order to identify expressions similar to Term1 and Term4
in (50).

It should be noted that every non-zero subfile that appears in
ζ2 in (62), shown at the bottom of this page, is either a subfile
of F K (for satisfying d() = K ) or a subfile indexed by
set ({K} ∪ Γ) \ {d()} that includes K . Both groups of such
subfiles are cached at worker node W K by definition of Z K

in (11). Therefore, ζ2 can be completely recovered from Z K .
Furthermore, for each i ∈ Γ , the inner term in Term3 can

be rewritten as

∈[K−1]\Γ j∈[K]\({}∪Γ)

F d(i)
({j,}∪Γ)\{i,d(i)}

=

⎛
⎝

∈[K−1]\Γ j∈[K−1]\({}∪Γ)

F d(i)
({j,}∪Γ)\{i,d(i)}

⎞
⎠

=0

⊕

⎛
⎝

∈[K−1]\Γ

F d(i)
({K,}∪Γ)\{i,d(i)}

⎞
⎠

ζ 3 (i)

, (63)

where the first term is zero since every subfile
F d(i)

({a,b}∪Γ)\{i,d(i)} appears exactly twice in the summation:

once for ( = a, j = b) and another time for ( = b, j = a) ,
where a = b . Hence, their contributions will be canceled
when they are XORed. Moreover, we can show that all the
subfiles appearing in ζ3(i) are already cached in Z K , and can
be recovered by W K . To see this, recall that i ∈ Γ and K /∈ Γ,
which imply i = K . Therefore, either d(i) = K , or subscript
({K, }∪Γ)\{i, d(i)} includes K . In the former case we have

Term2 ⊕ Term5 =

⎛
⎝

j∈[K−1]\Γ ∈[K−1]

F d()
({j}∪Γ)\{d()}

⎞
⎠⊕

⎛
⎝

∈[K−1]\Γ

F d()
({K}∪Γ)\{d()}

⎞
⎠

ζ 2

(56)

=

⎛
⎝

j∈[K−1]\Γ ∈[K]

F d()
({j}∪Γ)\{d()}

⎞
⎠⊕

⎛
⎝

j∈[K−1]\Γ

F d(K)
({j}∪Γ)\{d(K)}

⎞
⎠⊕ ζ2 (57)

=
j∈[K−1]\Γ

⎛
⎜⎜⎝

u∈[K]

F u
({j}∪Γ)\{u}

=0 if u /∈{j}∪Γ

⎞
⎟⎟⎠⊕

⎛
⎜⎜⎝

j∈[K−1]\Γ

F d(K)
({j}∪Γ)\{d(K)}

=0 if d(K) / ∈{j}∪Γ

⎞
⎟⎟⎠⊕ ζ2

(58)

=
j∈[K−1]\Γ

⎛
⎝

u {∈ j}∪Γ

F u
({j}∪Γ)\{u}

⎞
⎠⊕ F d(K)

Γ ⊕ ζ2 (59)

=
j∈[K−1]\Γ

&

u∈Γ

F u
({j}∪Γ)\{u}

'
⊕

⎛
⎝

j∈[K−1]\Γ

F j
Γ

⎞
⎠⊕ F d(K)

Γ
⊕ ζ2 (60)

=

⎛
⎝

u∈Γ j∈[K−1]\Γ

F u
({j}∪Γ)\{u}

⎞
⎠⊕

⎛
⎝

j∈[K−1]\Γ

F j
Γ

⎞
⎠⊕ F d(K)

Γ
⊕ ζ2 (61)

= Term1 ⊕ Term4 ⊕ F d(K)
Γ

⊕ ζ2 (62)
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F d(i)
({K,}∪Γ)\{i,d(i)} = F K

({K,}∪Γ)\{i,d(i)}
 ∈ P K  ⊆ Z K , while

in the latter case we have F d(i)
({K,}∪Γ)\{i,d(i)}

 ∈ EK  ⊂ Z K .
Plugging (62) and (63) into (50), we get

∈[K−1]\Γ

X {}∪Γ

= (Term2 ⊕ Term5) ⊕ (Term1 ⊕ Term4) ⊕ Term3

= Term1⊕Term4 ⊕ F d(K)
Γ ⊕ ζ2

⊕ (Term1 ⊕ Term4) ⊕
i∈Γ

ζ3(i)

=

&
ζ2 ⊕

i∈Γ

ζ3(i)

'
⊕ F d(K)

Γ ,

where ζ2 ⊕
(

i∈Γ
ζ3(i) can be reconstructed from Z K .

Consequently, the subfile F d(K)
Γ can be recovered from the

cache content Z K and
(

∈[K−1]\Γ
X {}∪Γ . This completes

the proof of Lemma 2.

APPENDIX C
PROOF OF LEMMA 3

We first define some notation. Without loss of generality,
we assume u(i) = i for i ∈ [K] . Let us partition W , the set
of K worker nodes, into γ disjoint subsets W i according to
the cycles of the file transition graph, where W i is the set
of worker nodes that belong to cycle i , for i ∈ [γ] . Hence,
we have

W =
γ

i=1

W i , (64)

where

W i ∩ W j = ∅, ∀i = j, i, j ∈ [γ]. (65)

In what follows, without loss of generality, let us consider the
first γ − 1 cycles, and designate the γ th cycle as the ignored
cycle. Moreover, assume that the ignored worker node W K

belongs to the ignored cycle γ . Let γ − 1 ≥ S , and consider
an arbitrary subset Ψ of S cycles, that is Ψ ⊆ [γ − 1] and
|Ψ| = S . We define W ⊗Ψ to be the Cartesian product of the
corresponding S sets of worker nodes, that is defined as

W ⊗Ψ =
)

i∈Ψ

W i = {Δ ⊆ [K] : Δ ∩ W i = 1, ∀i ∈ Ψ},

for every Ψ ⊆ [γ−1] with |Ψ| = S . Note that each element set
in W ⊗Ψ consists of a tuple of S worker nodes, each belongs
to a different cycle.

Recall that each sub-message X Δ , defined in (16),
is designed for a subset of S worker nodes, i.e., Δ ⊆ [K − 1]
and |Δ| = S . The sub-message X Δ is given by

X Δ =
i∈Δ

⎛
⎝F i

Δ\{i}
⊕F d(i)

Δ\{d(i)}
⊕

j∈[K]\Δ

F d(i)
({j}∪Δ)\{i,d(i)}

⎞
⎠. (66)

In the following, we consider someΔ  W∈ ⊗Ψ , and expand the
corresponding sub-message X Δ . Note that since Δ  W∈ ⊗Ψ ,
it has only one worker node from each cycle. hence, for any
i ∈ Δ , we have either d(i) /∈ Δ or d(i) = i (because otherwise

W i and W d(i) will be two distinct and consecutive worker
nodes that belong to the same cycle). This allows us to expand
X Δ as (71), given at the top of the next page. Note that
• in (67), shown at the top of the next page, the first summa-

tion over i ∈ Δ in (66) is split into (i ∈ Δ, d(i) /∈ Δ) and
(i ∈ Δ, d(i) = i) ;

• in (68), shown at the top of the next page, we have used the
fact that if i, d(i) ∈ Δ then i = d(i) in the forth and sixth
summations;

• in (69), shown at the top of the next page, we have canceled
out the identical quantities in the second and the forth
summations of (68). Moreover, in the third term of (68),
each subfile is indexed by Δ \ {d(i)} , while d(i) /∈ Δ . Note
that |Δ \ {d(i)}| = S = S − 1 , and thus such subfiles are
defined to be zero. This implies that the third summation
is zero. Similarly, the sixth summation in (68) is zero, due
the fact that |({j} ∪ Δ) \ {i}| = 1 + S − 1 = S > S − 1 ,
and hence all the subfiles in the sixth summation are zero.
Therefore, only the first and the fifth terms of (68) survive;

• in (70), shown at the top of the next page, the summation
over j is split into j ∈ [K] \ Δ, j = d(i) and j = d(i) ;

• and finally, the second term in (70) is set to zero in (71)
shown at the top of the next page. This is due to the fact
that for d(i) /∈ Δ and d(i) = j , we have |({j} ∪ Δ) \
{i, d(i)}| = |({j} ∪ Δ) \ {i}| = S > S − 1 , and hence,
F d(i)

({j}∪Δ)\{i,d(i)} = 0 .

Next, we prove that there exists one linearly dependent sub-
message in the set of sub-messages {X Δ : Δ  W∈ ⊗Ψ }

for each group of S cycles, determined by Ψ ⊆ [γ − 1] .
More precisely, we claim that

Δ W∈ ⊗Ψ

X Δ =
Δ W∈ ⊗Ψ

⎛
⎜⎜⎝

⎛
⎜⎜⎝

i∈Δ
d(i) =i

F i
Δ\{i}

⎞
⎟⎟⎠⊕

⎛
⎜⎜⎝

i∈Δ
d(i) /∈Δ

F d(i)
Δ\{i}

⎞
⎟⎟⎠

⎞
⎟⎟⎠

=
Γ W∈ ⊗Ψ

⎛
⎜⎜⎝

j∈Γ
d(j) =j

F j
Γ\{j}

⎞
⎟⎟⎠⊕

Δ W∈
⊗

Ψ

⎛
⎜⎜⎝

i∈Δ
d(i) /∈Δ

F d(i)
Δ\{i}

⎞
⎟⎟⎠

= 0. (72)

We prove (72) by showing that each subfile appears exactly
twice in the XOR equation which immediately yields that the
summation in (72) equals to zero. To this end, consider a pair
of (Δ, i) with Δ  W∈ ⊗Ψ , i ∈ Δ and d(i) = i . Therefore,

we have a subfile F d(i)
Δ\{i} that appears in the second summation

in (72). Now, define j = d(i) and Γ = (Δ  {∪ j}) \ {i} . It is
clear that i and d(i) belong to the same cycle, and hence
Γ  W∈ ⊗Ψ . On the other hand, since d(·) is a bijective map,
the fact that d(i) = i implies that d(d(i)) = d(i) , or d(j) = j .
Therefore, the pair (Γ, j) satisfies the three conditions in the
first summation, namely Γ  W∈ ⊗Ψ , j ∈ Γ , and d(j) = j .
Hence, the corresponding term F j

Γ\{j} appears in the second

summation. However, by plugging in j = d(i) and Γ = (Δ ∪
{j}) \ {i} , we get F j

Γ\{j} = F d(i)
Δ\{i} . This shows that the

terms F j
Γ\{j} in the first summation and F d(i)

Δ\{i} in the second
summation cancel out each other in the entire summation. This
applies to each term, and shows that (72) holds.
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X Δ =

⎛
⎜⎜⎝

i∈Δ
d(i) /∈Δ

F i
Δ\{i}

⎞
⎟⎟⎠⊕

⎛
⎜⎜⎝

i∈Δ
d(i)=i

F i
Δ\{i}

⎞
⎟⎟⎠⊕

⎛
⎜⎜⎝

i∈Δ
d(i) /∈Δ

F d(i)
Δ\{d(i)}

⎞
⎟⎟⎠⊕

⎛
⎜⎜⎝

i∈Δ
d(i)=i

F d(i)
Δ\{d(i)}

⎞
⎟⎟⎠

⊕

⎛
⎜⎜⎝

i∈Δ
d(i) /∈Δ

j∈[K]\Δ

F d(i)
({j}∪Δ)\{i,d(i)}

⎞
⎟⎟⎠⊕

⎛
⎜⎜⎝

i∈Δ
d(i)=i

j∈[K]\Δ

F d(i)
({j}∪Δ)\{i,d(i)}

⎞
⎟⎟⎠ (67)

=

⎛
⎜⎜⎝

i∈Δ
d(i) /∈Δ

F i
Δ\{i}

⎞
⎟⎟⎠⊕

⎛
⎜⎜⎝

i∈Δ
d(i)=i

F i
Δ\{i}

⎞
⎟⎟⎠⊕

⎛
⎜⎜⎝

i∈Δ
d(i) /∈Δ

F d(i)
Δ\{d(i)}

⎞
⎟⎟⎠⊕

⎛
⎜⎜⎝

i∈Δ
d(i)=i

F i
Δ\{i}

⎞
⎟⎟⎠

⊕

⎛
⎜⎜⎝

i∈Δ
d(i) /∈Δ

j∈[K]\Δ

F d(i)
({j}∪Δ)\{i,d(i)}

⎞
⎟⎟⎠⊕

⎛
⎜⎜⎝

i∈Δ
d(i)=i

j∈[K]\Δ

F i
({j}∪Δ)\{i}

⎞
⎟⎟⎠ (68)

=

⎛
⎜⎜⎝

i∈Δ
d(i) /∈Δ

F i
Δ\{i}

⎞
⎟⎟⎠⊕

⎛
⎜⎜⎝

i∈Δ
d(i) /∈Δ

j∈[K]\Δ

F d(i)
({j}∪Δ)\{i,d(i)}

⎞
⎟⎟⎠ (69)

=

⎛
⎜⎜⎝

i∈Δ
d(i) /∈Δ

F i
Δ\{i}

⎞
⎟⎟⎠⊕

⎛
⎜⎜⎝

i∈Δ
d(i) /∈Δ

j∈[K]\Δ
j =d(i)

F d(i)
({j}∪Δ)\{i,d(i)}

⎞
⎟⎟⎠⊕

⎛
⎜⎜⎝

i∈Δ
d(i) /∈Δ

j=d(i)

F d(i)
({j}∪Δ)\{i,d(i)}

⎞
⎟⎟⎠ (70)

=

⎛
⎜⎜⎝

i∈Δ
d(i) /∈Δ

F i
Δ\{i}

⎞
⎟⎟⎠⊕

⎛
⎜⎜⎝

i∈Δ
d(i) /∈Δ

F d(i)
Δ\{i}

⎞
⎟⎟⎠ (71)

As a result, there is (at least) one linearly dependent sub-
message in the set of sub-messages {X Δ : Δ  W∈

⊗
Ψ

} , and any
of these sub-messages can be reconstructed by summing the
others. Therefore, we can refrain from sending one of them
in the delivery phase. Moreover, the groups of sub-messages
{X Δ : Δ  W∈

⊗
Ψ

} are disjoint for different groups of cycles Ψ.
Since there are γ−1

S such groups of cycles, therefore one can

refrain from sending γ−1
S redundant sub-messages out of the

K−1
S sub-messages that the master node should broadcast to

the worker nodes (according to the proposed delivery scheme
in Section IV-A). Consequently, the delivery load given by (3)
is achievable. This completes the proof of Lemma 3.

APPENDIX D
PROOF OF LEMMA 4

We want to prove that the broadcast message X and the
cache contents of the virtual worker node Z enable us to
perfectly recover all the files of the shuffling system. First, note
that according to the one-to-one positional labeling, we have

{F i : i  {∈ 1, 2, . . . , K}}
≡ {F (c,p) : c  {∈ 1, 2, . . . , γ}, p  {∈ 1, 2, . . . , c}}.

Hence, in order to prove the lemma, it suffices to show that

H {{F (c,p) } c

p=1 } γ
c=1 X , Z = 0.

To this end, we consider two cases: p = 1 and p > 1 .
For p = 1 , from (27) we simply have F (c,1)  ⊆ Z for

each c ∈ [γ] , which implies H {F (c,1) } γ
c=1 |X , Z ≤

H {F (c,1) } γ
c=1 |Z = 0 . Therefore, we have

H {{F (c,p) } c
p=1 } γ

c=1 X , Z

= H {{F (c,p) } c

p=2 } γ
c=1 {F (x,1) } γ

x=1 , X , Z

=
γ

c=1

c −1

p=1

H F (c,p+1) {F (c ,p ) } (c ,p )(c,p) ,

{F (x,1) } γ
x=1 , X , Z , (73)

where we have used the chain rule in the last equation. Recall
from (25) that for any pair (c, p) with p < c , we have

Z (c,p) = F (c,p) ∪

⎛
⎝

(c ,p ) =(c,p)

F (c ,p )
(c,p)

⎞
⎠

= F (c,p) ∪

⎛
⎝

(c ,p )≺(c,p)

F (c ,p )
(c,p)

⎞
⎠

⊆
(c ,p )(c,p)

F (c ,p )

∪

⎛
⎝

c ∈[γ]

F (c ,1)
(c,p)

⎞
⎠∪

⎛
⎜⎜⎝

(c ,p )(c,p)
p >1

F (c ,p )
(c,p)

⎞
⎟⎟⎠

⊆Z

. (74)
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Therefore, each term in (73) can be bounded by

H F (c,p+1) {F (c ,p ) } (c ,p )(c,p) , X , Z

≤ H F (c,p+1) , Z (c,p) {F (c ,p ) } (c ,p )(c,p) , X , Z

≤ H Z (c,p) {F (c ,p ) } (c ,p )(c,p) , Z

+ H F (c,p+1) Z (c,p) , X = 0, (75)

where the first term in (75) is zero due to (74), and the second
term is zero due to the fact that the worker node at position
(c, p) should be able to recover its assigned file F (c,p+1) from
its cache Z (c,p) and the broadcast message X . Plugging (75)
into (73), we conclude the claim of Lemma 4.

APPENDIX E
PROOF OF LEMMA 5

The next step in the converse proof is to provide a lower
bound on the communication load for a given instance of the
shuffling problem as follows.

Consider a directed file transition graph G(V, E) , that char-
acterizes one instance of the problem. We can start with

K = H {F i } K
i=1

≤ H {F i } K
i=1 , X , Z

= H(X , Z ) + H {F i }K
i=1 |X , Z

= H(X , Z ) (76)

= H

⎛
⎜⎜⎜⎝

X ,

c∈[γ]

F (c,1) ,

c∈[γ],p>1

⎛
⎜⎜⎜⎝

(c ,p )≺(c,p)
p < c

F (c,p)
(c ,p )

⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎠ (77)

≤ H(X) +
γ

c=1

H(F (c,1) ) +
γ

c=1

c

p=2

H

⎛
⎜⎜⎜⎝

(c ,p )≺(c,p)
p < c

F (c,p)
(c ,p )

⎞
⎟⎟⎟⎠

= R(d) + γ +
γ

c=1

c

p=2

μ (c,p)
Φ(c,p)

, (78)

where Φ(c, p) = {(c , p ) : (c , p ) ≺ (c, p), p < c } . Note
that (76) holds due to Lemma 4, and in (77) we use the
definition of Z in (27). This implies a lower bound on the
communication load R that is given by

R(d) ≥ K − γ −

γ

c=1

c

p=2

μ (c,p)
Φ(c,p)

. (79)

A similar argument holds for any instance of the problem,
characterized by an assignment function d(·) whose file tran-
sition graph is isomorphic to G(V, E) . Let V = {(c, p) :
c ∈ [γ], p ∈ [ c ]} be the set of vertices of the graph, and
Π : V → V be the set of all possible permutations on the
vertices of the graph. For each π ∈ Π , we have an instance of
the shuffling problem characterized by the same file transition
graph G(V, E) , in which node W i which was at position (c, p)

in the original problem, is now positioned at π(c, p) . For the
new instance of the problem, we have

Z π(c,p) = F π(c,p) ∪

⎛
⎝

(c ,p ) =(c,p)

F π(c ,p )
π(c,p)

⎞
⎠.

Hence, following an argument similar to that of (79),
we obtain

R(G) =
1

|DG|
d D∈ G

R(d)

≥ K − γ −
γ

c=1

c

p=2

μ π(c,p)
π(Φ(c,p))

, (80)

where π(Φ(c, p)) = {π(c , p ) : (c, p ) ∈ Φ(c, p)} . Next,
by averaging (80) over all π ∈ Π , we get

R(G) ≥ K − γ −
1

K!
π∈Π

γ

c=1

c

p=2

μπ(c,p)
π(Φ(c,p))

, (81)

where

1
K!

π∈Π

γ

c=1

c

p=2

μ π(c,p)
π(Φ(c,p))

=
1

K!

γ

c=1

c

p=2 k∈V A:A⊆V \{k}
|A|=|Φ(c,p)|

π∈Π:π(c,p)=k
π(Φ(c,p))=A

μ k
A

=
1

K!

γ

c=1

c

p=2 k∈[K] A:A⊆V \{k}
|A|=|Φ(c,p)|

1!|A|!(K − |A| − 1)!μ k
A

(82)

=
1

K K−1
|A|

γ

c=1

c

p=2 k∈[K] A:A⊆V \{k}
|A|=|Φ(c,p)|

μ k
A

=
γ

c=1

c

p=2

μ |Φ(c,p)| , (83)

where in (82) the innermost summation is evaluated by count-
ing the number of permutations π that satisfy π(c, p) = k and
π(Φ(c, p)) = A . More precisely, there are |A|! ways to map
entries of Φ(c, p) to A , and there is only one way to map (c, p)
to k . There are a total of K −|A|−1 remaining entries, which
can be mapped in (K − |A| − 1)! ways. Moreover, in (83)
we have used the definition of μ η in (29). Recall from the

definition of Φ(c, p) that |Φ(c, p)| = c−1
t=1 t − 1 +(p−1) .

It is easy to see that |Φ(c, p)| = |Φ(c , p )| for any distinct pair
of (c, p) and (c , p ). Moreover, |Φ(c, p)| ≥ 1 (for p ≥ 1 ) and
|Φ(c, p)| ≤ K − γ . These together imply that {|Φ(c, p)| :
c  {∈ 1, 2, . . . , γ}, p  {∈ 2, 3, . . . , c}} = {1, 2, . . . , K − γ} .
In other words, for each integer i , there exists exactly one pair
of (c, p) such that |Φ(c, p)| = i . Hence, the RHS of (83) can

be simplified to
K−γ
i=1 μ i . Plugging this into (81), we obtain

R(G) ≥ K − γ −

K−γ

i=1

μ i . (84)

This completes the proof of Lemma 5.

Authorized licensed use limited to: University of Minnesota. Downloaded on June 25,2020 at 04:55:13 UTC from IEEE Xplore.  Restrictions apply. 



3124 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 5, MAY 2020

APPENDIX F
PROOF OF LEMMA 6

This appendix is dedicated to prove an upper bound on μα ’s
in order to obtain a lower bound on R(G) . Note that variables
{μ α }K−1

α=0 defined in (29) can be generalized to any arbitrary
family of sets.

Consider an arbitrary family of sets {A 1, A2, . . . , AK−1 } ,
and define

θα =
1

K−1
α J ⊆[K−1]

|J |=α

|A J |,

where A J = j J∈ A j .
We need to derive some preliminary results in order to prove

the lemma. The proofs of these claims are presented at the end
of this appendix. The first lemma below establishes a core
inequality on linear combinations of θα ’s.

Lemma 8: For any family of sets {A 1, A2, . . . , AK−1 } , and
an integer T  {∈ 0, 1, 2, . . . , K − 2}, we have

K−1

j=T

(−1) j−T K − 1 − T
j − T

θj ≤ 0. (85)

The following propositions will be used later in the proof
of Lemma 6:

Proposition 1: For given integers 0 ≤ q ≤ p and any
sequence of real numbers (θ0 , θ2, . . . , θp ), we have

p

x=0

p

y=0
(−1) x−y p − q

x − y, p − x, y − q
θx = θ q . (86)

Proposition 2: For given T, α, β ∈ Z + , we have

(α − 1)
T
α

− β T − 1
α − 1

≥ −
β
α

. (87)

For α  {∈ 1, 2, . . . , K − 1} and β  {∈ 0, 1, . . . , K − 1} ,
we define Vα,β as

Vα,β
K−α−1
K−β−1

+
K−α−1

S−1
K−1

K−β−1
K−1
S−1

(α−1)−
αβ

K−S
.

(88)

The following proposition shows that Vα,β is non-negative for
any choice of α and β :

Proposition 3: For α ∈ {1, 2, . . . , K − 1} and β ∈

{0, 1, . . . , K − 1}, we have Vα,β ≥ 0 .
Now, we are ready to prove Lemma 6.

Proof of Lemma 6: We start from Lemma 8, and write

K−1

i=β

(−1) i−β K − β − 1
i − β

θi ≤ 0, β  {∈ 0, 1, . . . , K − 2}.

Now, fix some α  {∈ 1, 2, . . . , K − 1} and recall from
Proposition 3 that Vα,β ≥ 0 . Multiplying both sides of this

inequality by non-negative coefficientsVα,β and summing over
all values of β to obtain

K−2

β=0

Vα,β

K−1

i=β

(−1) i−β K−β−1
i−β

θi ≤
K−2

β=0

Vα,β × 0 = 0.

(89)

Moreover, when β = K − 1 , we have

Vα,K−1

K−1

i=K−1

(−1) i−(K−1) 0
i−(K −1)

θi = V α,K−1 θK−1 .

(90)

Summing (89) and (90), we get (93), given at the top of the
next page. Note that (91), shown at the top of the next page,
holds because the binomial term is zero for i < β ; and in
(92), shown at the top of the next page, we used the definition
of Vα,β given by (88). Each term in (93) can be simplified
as follows. First, we can use Proposition 1 for (p, q, x, y) =
(K − 1, α, i, β) to get

Term1 =
K−1

i=0

K−1

β=0

(−1) i−β K−1−α
i−β, K −1−i, β−α

θi = θ α .

(94)

Similarly, setting (p, q, x, y) = (K−1, 0, i, β) in Proposition 1,
we obtain

Term2 =
K−1

i=0

K−1

β=0

(−1) i−β K−1
i−β, K −1−i, β

θi = θ 0 = 0.

(95)

Lastly, for Term3, we have

Term3 =
K−1

i=0

K−1

β=0

(−1) i−β K−β−1
i−β

K−1
β

βθ i

=
K−1

i=0

K−1

β=0

(−1) i−β K−β−1
i−β

K−2
β−1

K−1
β

βθ i

= (K −1)
K−1

i=0

K−1

β=0

(−1) i−β K−2
i−β, K −1−i, β−1

θi

= (K −1)θ 1, (96)

where (96) follows from Proposition 1 by setting (p, q, x, y) =
(K − 1, 1, i, β) . Plugging (94), (95) and (96) into (93),
we obtain

θα −
α

K − S

K−α−1
S−1
K−1
S−1

(K − 1)θ 1 ≤ V α,K−1 θK−1 ,
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Vα,K−1 θK−1

≥
K−1

β=0

Vα,β

K−1

i=0

(−1) i−β K − β − 1
i − β

θi (91)

=
K−1

i=0

K−1

β=0

(−1) i−β K − β − 1
i − β

Vα,β θi

=
K−1

i=0

K−1

β=0

(−1) i−β K − β − 1
i − β

K − α − 1
K − β − 1

θi + (α − 1)
K−α−1

S−1
K−1
S−1

K−1

i=0

K−1

β=0

(−1) i−β K − β − 1
i − β

K − 1
K − β − 1

θi

−
α

K − S

K−α−1
S−1
K−1
S−1

K−1

i=0

K−1

β=0

(−1) i−β K − β − 1
i − β

K − 1
K − β − 1

βθ i (92)

=
K−1

i=0

K−1

β=0

(−1) i−β K − 1 − α
i − β, K − 1 − i, β − α

θi

Term1

+ (α − 1)
K−α−1

S−1
K−1
S−1

K−1

i=0

K−1

β=0

(−1) i−β K − 1
i − β, K − 1 − i, β

θi

Term2

−
α

K − S

K−α−1
S−1
K−1
S−1

K−1

i=0

K−1

β=0

(−1) i−β K − β − 1
i − β

K − 1
β

βθ i

Term3

(93)

or equivalently,

1
K−1

α J ⊆[K−1]
|J |=α

j J∈

A j

≤ α(K − 1)
K − S

K−α−1
S−1
K−1
S−1

1
K−1

1 j∈[K−1]

|A j |

+ V α,K−1
1

K−1
K−1 j∈[K−1]

A j . (97)

It should be noted that (97) holds for any choice of
{A 1, A2, . . . , AK } . In particular, applying (97) to the family

of sets F i
j : j ∈ [K] \ {i} for a fixed i , we get

1
K−1

α J ⊆[K]\{i}
|J |=α

j J∈

F i
j

≤ α(K − 1)
K − S

K−α−1
S−1
K−1
S−1

1
K−1

1 j∈[K]\{i}

F i
j

+ V α,K−1
1

K−1
K−1

j∈[K]\{i}
F i

j , (98)

for i  {∈ 1, 2, . . . , K}. Averaging (98) over i  {∈ 1, 2, . . . , K},
we obtain

1
K K−1

α i∈[K] J ⊆[K]\{i}
|J |=α

j J∈

F i
j

≤ α(K − 1)
K − S

K−α−1
S−1
K−1
S−1

1
K K−1

1 i∈[K] j∈[K]\{i}

F i
j

+ V α,K−1
1

K K−1
K−1 i∈[K] j∈[K]\{i}

F i
j ,

or equivalently,

μ α ≤ α(K − 1)
K − S

K−α−1
S−1
K−1
S−1

μ1 + V α,K−1 μ K−1 . (99)

Hence, it remains to upper bound μ1 and μ K−1 . Recall from
definition of μ i ’s in (29) that

μ1 =
1

K(K − 1)
i∈[K] j∈[K]\{i}

F i
j

=
1

K(K − 1)
j∈[K] i∈[K]\{j}

F i
j

=
1

K(K − 1)
j∈[K]

Z j \ P j

≤ 1
K(K − 1)

j∈[K]

(S − 1) =
S − 1
K − 1

, (100)

and

μ K−1 =
1
K

i∈[K]
j∈[K]\{i}

F i
j

≤ 1
K

i∈[K]

min

⎧
⎨
⎩

j∈[K]\{i}

|F i
j |, |F i |

⎫
⎬
⎭

=
1
K min

⎧
⎨
⎩

1
K

j∈[K] i∈[K]\{j}

|F i
j |, 1

K
i∈[K]

1

⎫
⎬
⎭

= min{S − 1, 1}. (101)
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Plugging (101) and (101) into (99), we get

μ α ≤ α(K − 1)
K − S

K−α−1
S−1
K−1
S−1

S − 1
K − 1

+ V α,K−1 · 1

=
K−α−1

S−1
K−1
S−1

S − 1
K − S

α

+

&

1 +
K−α−1

S−1
K−1
S−1

(α − 1) −
α(K − 1)

K − S

'

= 1 +
K−α−1

S−1
K−1
S−1

S − 1
K − S

α − K − 1
K − S α + α − 1

= 1 −
K−α−1

S−1
K−1
S−1

. (102)

This completes the proof of Lemma 6.
It remains to prove Lemma 8 and Propositions 1, 2, and 3,

whose proofs are presented as follows.
Proof of Lemma 8: Fix aT ⊆ [K−1] be a set of indices of

size |T | = T . Define X  A T = t∈T A t . Clearly, we have
X ∩

0
∈T A ⊆

0
∈T A , which implies

X ∩
1

∈T

A −
1

∈T

A ≤ 0. (103)

Each term in the LHS of (103) can be expanded using the
inclusion-exclusion principle as follows:

1

∈T

A =
U T⊂
|U|=1

|A U | −

U T⊂
|U|=2

|A U | +
U T⊂
|U|=3

|A U | − · · ·

+(−1) |T |−1

U T⊂

|U|=|T |

|A U |. (104)

In a similar way, we have (105) as shown at the bottom of
this page.

Substituting (104) and (105) in (103), we get

0 ≥ X ∩
1

∈T

A −
1

∈T

A

= |X | −
U T⊂
|U|=1

|X ∪ A U | +
U T⊂
|U|=2

|X ∪ A U | − · · ·

+(−1) |T |

U T⊂
|U|=|T

c |

|X ∪ A U |

= |A T | −

U T⊂
|U|=1

|A T ∪ AU | +
U T⊂
|U|=2

|A T ∪ AU | − · · ·

+(−1) |T |

U T⊂
|U|=|T

c |

|A T ∪ AU |. (106)

Note that (106) holds for any subset of indices T of size
|T | = T . Averaging this inequality over all choices of T ⊆

[K − 1] with |T | = T , we obtain the chain of equations
in (109), shown at the top of the next page. Note that in
(107), shown at the top of the next page, we have replaced
A T ∪ A U by A V = A T U∪ ; in (108), shown at the top
of the next page, equality holds since

x
y

y
z = x

z
x−z
y−z

for any triple of integers (x, y, z) ; and in (109) we have
|T | = K − 1 − T . Hence, (85) readily follows for all
values of T  {∈ 0, 1, . . . , K − 2} . This completes the proof
of Lemma 8.

Proof of Proposition 1:

p

x=0

p

y=0

(−1) x−y p − q
x − y, p − x, y − q

θx

=
p

x=0

x

y=q

(−1) x−y p − q

p − x

x − q

x − y
θx (110)

=
p

x=0

x−q

z=0

(−1) z x − q

z

p − q

p − x
θx (111)

=
p

x=0

(1 − 1)x−q p − q
p − x

θx (112)

=
p − q
p − q

θq = θ q , (113)

where in (110) we have used the fact that the multinomial
term is zero whenever y < q or y > x ; in (111) we substitute
x − y by z that takes values in {0, 1, . . . , x − q}; and (113)
holds since (1−1) x−q is zero except for x = q . This complete
the proof of Proposition 1.

Proof of Proposition 2: Let us define

f (T ) = (α − 1)
T
α

− β T − 1
α − 1

,

for fixed α and β . We prove that f(T ) ≥ −
β
α by a two-sided

induction on T , i.e., for T ≥ β and T ≤ β . First, note that

X ∩
1

∈T

A =

⎡
⎢⎢⎣|X | +

U T⊂
|U|=1

|A U |

⎤
⎥⎥⎦−

⎡
⎢⎢⎣

U T⊂
|U|=1

|X ∪ A U | +
U T⊂
|U|=2

|A U |

⎤
⎥⎥⎦+

⎡
⎢⎢⎣

U T⊂
|U|=2

|X ∪ A U | +
U T⊂
|U|=3

|A U |

⎤
⎥⎥⎦

− · · · + (−1) |T |−1

⎡
⎢⎢⎢⎣

U T⊂

|U|=|T |−1

|X ∪ A U | +
U T⊂

|U|=|T |

|A U |

⎤
⎥⎥⎥⎦+ (−1) |T |

U T⊂

|U|=|T |

|X ∪A U | (105)
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0 ≥
1

K−1
T T ⊆[K−1]

|T |=T

⎡
⎢⎢⎣|A T | −

U T⊂
|U|=1

|A T ∪ AU | +
U T⊂
|U|=2

|A T ∪ AU | − · · · + (−1) |T |

U T⊂
|U|=|T

c |

|A T ∪ AU |

⎤
⎥⎥⎦

=
1

K−1
T T ⊆[K−1]

|T |=T

|A T | − 1
K−1

T T ⊆[K−1]
|T |=T

U T⊂
|U|=1

|A T ∪ AU | +
1

K−1
T T ⊆[K−1]

|T |=T
U T⊂
|U|=2

|A T ∪ AU | − · · ·

+ (−1) |T | 1
K−1

T T ⊆[K−1]
|T |=T

U T⊂

|U|=|T |

|A T ∪ AU |

=
1

K−1
T V⊆[K−1]

|V|=T

|A V | −
T +1

T
K−1

T V⊆[K−1]
|V|=T +1

|A V | +
T +2

T
K−1

T V⊆[K−1]
|V|=T +2

|A V | − · · · + (−1) |T |
T +|T |

T
K−1

T V⊆[K−1]
|V|=T +|T |

|A V | (107)

=
1

K−1
T V⊆[K−1]

|V|=T

|A V | −
K−1−T

1
K−1
T +1 V⊆[K−1]

|V|=T +1

|A V | +
K−1−T

2
K−1
T +2 V⊆[K−1]

|V|=T +2

|A V | − · · · + (−1) |T |
K−1−T

|T |

K−1
T +|T | V⊆[K−1]

|V|=T +|T |

|A V |

(108)

= θ T − K − 1 − T
1

θT +1 +
K − 1 − T

2
θT +2 − · · · + (−1) |T | K − 1 − T

|T |
θ

T +|T |

=
K−1

j=T

(−1) j−T K − 1 − T
j − T

θj (109)

for T = β , we have

f (β) = (α − 1)
β
α

− β β − 1
α − 1

= (α − 1)
β
α

− α
β
α = −

β
α

, (114)

which shows the inequality in (87) holds with equality. Let
(114) be the base case for induction. Next, we consider two
individual cases for T ≥ β and T ≤ β .

a) T ≥ β : Assume that (87) holds for T = t ≥ β , i.e,
f (t) ≥ −

β
α . In what follows, we prove that (87) holds for

T = t + 1 :

f (t+1)

= (α−1)
t+1

α
− β

t

α−1

= (α−1)
$

t
α +

t

α−1

%
− β

$
t−1
α−1

+
t−1
α−2

%

=
$
(α−1)

t

α
−β t−1

α−1

%

+
$
(α−1)

t

α−1
−β t−1

α −2

%

=
$
(α−1)

t
α

−β t−1
α−1

%
+

$
t t−1

α−2
−β t−1

α−2

%

= f (t) + (t−β)
t−2
α−2

≥ −
β
α

, (115)

where the inequality in (115) holds due to f (t) ≥ −
β
α by

the induction hypothesis, and the fact that t ≥ β .

b) T ≤ β : Similar to the previous case, assume that (87)
holds for T = t ≤ β , i.e., f (t) ≥ −

β
α . For T = t−1 , we can

write

f (t−1)

= (α−1)
t−1

α
− β t−2

α−1

= (α−1)
$ t

α
− t−1

α−1

%
− β

$
t−1
α−1

− t−2
α−2

%

=
$
(α−1)

t
α

−β t−1
α−1

%

+
$
β t−2

α−2
−(α−1)

t−1
α−1

%

=
$
(α−1)

t
α

−β t−1
α−1

%

+
$

β t−2
α−2

−(t−1)
t−2
α−2

%

= f (t) + (β −(t−1))
t−2
α−2

≥ −
β
α

, (116)

where the inequality in (116) holds since f (t) ≥ −
β
α by the

induction hypothesis, and β ≥ t − 1 . This completes the proof
of Proposition 2 for any arbitrary T .
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Proof of Proposition 3: In order to prove the inequality,
we can rewrite Vα,β defined in (88) as

Vα,β

=
K−α−1
K−β−1

+
K−α−1

S−1
K−1

K−β−1
K−1
S−1

(α−1)−
αβ

K−S

=
K−α−1
K−β−1

+
(K −α−1)! (K −S)!

(K −α−S)! (K −β−1)! β!

· α! (β −α)!
α! (β −α)!

(α−1)−
αβ

K−S

=
K−α−1
K−β−1

+
K−α−1
K−β−1

K−S
α

β
α

(α−1)−
αβ

K−S

=
K−α−1
K−β−1

&

1 +
K−S

α
β
α

(α−1)−
αβ

K−S

'

=
K−α−1
K−β−1

β
α

β
α + (α−1)

K−S
α

−
αβ

K−S
K−S

α

=
K−α−1
K−β−1

β
α

β
α + (α−1)

K−S
α

− β K−S−1
α−1

≥ 0, (117)

where the inequality in (117) holds due to the claim of
Proposition 2 for T = K − S , that is

f (T −S) = (α−1)
K−S

α
− β K−S−1

α−1
≥ −

β
α

.

This completes the proof of Proposition 3.

APPENDIX G
DECOMPOSITION OF FILE TRANSITION GRAPH :

PROOF OF LEMMA 7

Given a file transition graph G(V, E) , let us construct
an undirected bipartite graph H(V , E ) (or more accurately
bipartite multigraph, since there might be multiple edges
between two nodes) by distinguishing worker nodes at iter-
ations t and t + 1 . More precisely, the vertex set V is

partitioned into two disjoint subsets W (t) = W (t)
i : i ∈ [K]

and W (t+1) = W (t+1)
i : i ∈ [K] . For every file F j

with j ∈ u(i) ∩ d() , we include one edge ej between
W (t)

i and W (t+1)
. Note that if there is more than one file

processed by W i at iteration t and assigned to W at iteration
t + 1 , then there are multiple edges between the two vertices
W (t)

i and W (t+1)
in the graph, one for each file. From the

aforementioned description of H(V , E ), it is evident that
H(V , E ) is an N/K -regular graph bipartite multigraph. It is
easy to see that the original file transition graph G(V, E)
can be recovered from H(V , E ) by collapsing nodes W (t)

i

and W (t+1)
i for each i ∈ [K] . More precisely, each edge

between W (t)
i and W (t+1)

in H(V , E ) is corresponding to a
directed edge from W i to W in G(V, E) . This shows a one-
to-one mapping between the directed graph G(V, E) and the
undirected bipartite graph H(V , E ).

Our proposed decomposition for the graph G(V, E) is based
on the decomposition of the bipartite graph H(V , E ) into

perfect matchings. Assume H(V , E ) can be decomposed into
N/K perfect matchings between W (t) and W (t+1) , namely
H j (V , E j ), where j ∈ [N/K] and |E j | = K , and the degree
of each node in H j (V , E j ) is exactly one. Then, by collapsing

nodes W (t)
i and W (t+1)

i , for i ∈ [K] , in H j (V , E j ), we get a
directed graph Gj (V, E j ) over V = {W 1, W2, . . . , WK } where
the in-degree and out-degree of each node W i in Gj (V, E j )
are equal to those of W (t)

i and W (t+1)
i in H j (V , E j ),

respectively, which are both equal to 1.
The fact that the bipartite graph H(V , E ) can be decom-

posed into N/K perfect matchings follows from a recursive
application of Hall’s theorem. We use Hall’s theorem to find
perfect matchings in H(V , E ) as follows.

Theorem 6 (Theorem 1 in [30]): A bipartite graph
H(V , E ), with vertex set V = W (t)  ∪ W (t+1) , contains
a complete matching from W (t) to W (t+1) if and only if

|N (T )| ≥ |T |, (118)

for every non-empty subset T  W⊆ (t) .

In order to apply Hall’s theorem to H(V , E ), we need
to test the necessary and sufficient condition. Let T be an
arbitrary set of vertices in W (t) , i.e., T  W⊂ (t) , and N (T )
denote the set of neighbors of T in W (t+1) . Recall that the
degree of each vertex in T is N/K . Hence, there are a total
of |T |N/K edges exit T to reach nodes in N (T ). However,
note that the total number of edges incoming to N (T ) cannot
exceed |N (T )|N/K , because each node in N (T ) has degree
N/K . The set of edges outgoing T is a subset of edges incom-
ing to N (T ). Therefore, we have |T |N/K ≤ |N (T )|N/K ,
which implies |T | ≤ |N (T )| . Thus, the condition of Hall’s
theorem holds and there exists one perfect matching between
the nodes in W (t) and W (t+1) . Including the set of edges that
constitute such a perfect matching in the set E N/K , we obtain

the subgraph H N/K (V , EN/K ).

Next, one can remove the edges in E N/K from E . This
reduces the degree of each node by 1, resulting in a new
regular bipartite graph, with degree N/K − 1 . Repeating
the same argument on each residual graph, we can find a
perfect matching, and then we remove its edges from the
bipartite graph H(V , E ) until no edge is left. This provides
us with N/K perfect matchings in H(V , E ), and each perfect
matching corresponds to a subgraph of the file transition graph
G(V, E) . This completes the proof of Lemma 7.

Remark 6: The problem of finding a perfect matching in
an N/K -regular bipartite graph H(V , E ), with |V | = 2K
vertices and |E | = K × N/K = N edges, is well-studied
in the graph theory literature. For regular bipartite graphs,
a perfect matching is known to be computable in O(N) time
[31]. Recently, the authors in [32] have proposed a random-
ized algorithm that finds a perfect matching in an N/K -
regular bipartite graph. The resulting runtime is O(K log K)
(both in expectation and with high probability). We refer
the interested reader to the aforementioned references for
further details.

Example 6 (Example 5 Continued): Let us revisit the data
shuffling system studied in Example 5, with K = 4 worker
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Fig. 16. (a) The file transition graph G(V, E) for the data shuffling system of Example 5. (b) The corresponding bipartite graph H(V , E ) .

Fig. 17. (a) One decomposition of H(V , E ) , shown in Fig. 12b, into N/K = 2 perfect matchings, designated by solid and dashed lines, and the
corresponding decomposition of G(V, E) , shown in Fig. Fig. 12a, into two canonical subgraphs. (b) Another decomposition of H(V , E ) into N/K = 2
perfect matchings, and the corresponding decomposition of G(V, E) into canonical subgraphs.

nodes, and N = 8 files, denoted by {A, B, C, D, E, F, G, H} .
Fig. 16a captures the file transition graph G(V, E) , and
Fig. 16b depicts the corresponding bipartite graph H(V , E ).
For example, the directed edge, labeled by E , from W1
to W4 in G(V, E) indicates that file E is processed by
worker nodes W 1 and W 4 at iterations t and t + 1 , respec-
tively. Accordingly, there is an edge, labeled by E , between
W (t)

1 and W (t+1)
4 that shows an assignment of file E to

worker node W1 at iteration t , and to worker node W4 at
iteration t + 1 .

After constructing H(V , E ), we decompose it into
N/K = 2 perfect matchings between W (t) and W (t+1) ,
designated by solid and dashed lines in Fig. 17a. The cor-
responding canonical subgraphs of G(V, E) are also shown in
the figure. Another possible decomposition of H(V , E ) is
depicted by Fig. 17b, along with the corresponding decom-
position of G(V, E) . The existence of the decomposition of
H(V , E ) is guaranteed by Hall’s theorem, which results in
the feasibility of the decomposition of G(V, E) . However, the
graph decomposition is not unique, and there may be more
than one decomposition for one instance of the data shuffling
problem.

APPENDIX H
PSEUDOCODES

Algorithm 1 describes the file partitioning and labeling,
while Algorithm 2 presents the cache placement. Next, Algo-
rithms 3, 4, and 5 describe the encoding, decoding, and
cache updating and subfile relabeling, respectively. Finally,
Algorithm 6 presents the graph decomposition that is based
on the Hungarian algorithm [28], [29].

Algorithm 1 partitionFiles

1: Input: N, K, S, F j : j ∈ [N ]
2: Output: F j

Γ : j ∈ [N ], i ∈ [K], j ∈ u(i), Γ ⊆ [K] \ {i},

|Γ| = S/(N/K) − 1
3: S ← S/(N/K)
4: for i ← 1 to K do
5: for all j ∈ u(i) do
6: Worker node W i partitions F j into K−1

S−1 subfiles of

equal sizes: F j
Γ : Γ ⊆ [K] \ {i}, |Γ| = S − 1

7: end for
8: end for
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Algorithm 2 placeCache

1: Input: N, K, S, t, F j
Γ : j ∈ [N ], i ∈ [K], j ∈ u(i),

Γ ⊆ [K] \ {i}, |Γ| = S/(N/K) − 1
2: Output: {Z i (t) : i ∈ [K]}
3: S ← S/(N/K)
4: for i ← 1 to K do
5: P i (t) ← F j

Γ : j ∈ u(i), Γ ⊆ [K] \ {i}, |Γ| = S −1
i.e., P i (t) ← F j : j ∈ u(i)

6: for all  ∈ [N ] \ u(i) do

7: Ei ← FΓ : i ∈ Γ ⊆ [K], |Γ| = S − 1
8: end for
9: Ei (t) ← ∈[N ]\u(i)

Ei

10: Z i (t) ← P i (t)  E∪ i (t)
11: end for

Algorithm 3 encodeSubmessages

1: Input: K, S, F i
Γ : i ∈ [K], Γ ⊆ [K]\{i}, |Γ| = S −1 ,

{d(i) : i ∈ [K]}
2: Output: {X Δ : Δ ∈ D _SET }

3: for all Δ ⊆ [K − 1] and |Δ| = S do

4: X Δ ←
i∈Δ

⎛
⎝F i

Δ\{i}
⊕F d(i)

Δ\{d(i)}
⊕

j∈[K]\Δ

F d(i)
({j}∪Δ)\{i,d(i)}

⎞
⎠

5: end for
6: X ← {X Δ : Δ ⊆ [K −1], |Δ| = S}
7: The master node broadcasts the message X to the worker

nodes

Algorithm 4 decodeSubfiles

1: Input: K, S, t, {d(i) : i ∈ [K]} , {Z i (t) : i ∈ [K]} ,
{X Δ : Δ ⊆ [K −1], |Δ| = S}

2: Output: {Q i (t) : i ∈ [K]}
3: for i ← 1 to K do
4: if i < K then
5: for all Γ ⊆ [K − 1] and F d(i)

Γ
 ∈ Q i do

6: Worker node W i decodes subfile F d(i)
Γ from the

sub-message X {i}∪Γ using its cache contents
Z i

7: end for
8: for all Γ ⊆ [K] and K ∈ Γ and F d(i)

Γ
 ∈ Q i do

9: Worker node W i decodes subfile F d(i)
Γ from the

sub-message X (Γ\{K}) {∪ i,d(i)} using its cache
contents Z i and other subfiles already decoded
by W i

10: end for
11: else
12: for all Γ ⊆ [K − 1] and F d(K)

Γ  ∈ QK do

13: Worker node W K decodes subfile F d(K)
Γ from

the sub-messages
(

j∈[K−1]\Γ
X {j}∪Γ using its

cache contents Z K

14: end for
15: end if
16: Q i (t)← F d(i)

Γ :Γ ⊆ [K]\{d(i)}, |Γ| = S − 1 \ Z i (t)
17: end for

Algorithm 5 updateCaches

1: Input: K, S, t, {d(i) : i ∈ [K]} , {Z i (t) : i ∈ [K]} ,
{Q i (t) : i ∈ [K]}

2: Output: {Z i (t + 1) : i ∈ [K]}
3: for i ← 1 to K do Updating caches of worker nodes

before iteration t + 1
4: j ← d −1 (i)
5: A ← F i

Γ : j ∈ Γ, Γ ⊆ [K]\{i}, |Γ| = S −1 .

6: S ← F d(i)
Γ : i ∈ Γ, Γ ⊆ [K]\{d(i)}, |Γ| = S −1

7: P i (t + 1) ← F d(i)
Γ : Γ ⊆ [K]\{d(i)}, |Γ| = S −1

8: Ei (t + 1) ← (E i (t) \ S)  A∪
9: Z i (t + 1) ← P i (t + 1)  E∪ i (t + 1)

10: end for
11: for i ← 1 to K do Relabeling subscripts of a set of

subfiles of each worker node
12: j ← d −1 (i)
13: for all F i

Γ : j ∈ Γ, Γ ⊆ [K]\{i}, |Γ| = S −1 do
14: Λ ← (Γ \ {j})  {∪ i}
15: Replace Γ in F i

Γ by Λ
16: end for
17: end for
18: for i ← 1 to K do Relabeling superscripts of all

subfiles of each worker node
19: j ← d −1 (i)
20: for all F i

Γ : Γ ⊆ [K]\{i}, |Γ| = S −1 do
21: Replace i in F i

Γ by j

22: end for
23: end for

Algorithm 6 decomposeGraph

1: Input: N, K, S, {u(i), i ∈ [K]}, {d(i), i ∈ [K]}
2: Output: N/K perfect matchings
3: Construct a file transition graph matrix G that has size K×

K , where G(i, j) is the number of files where u(i) =
d(j) , otherwise, G(i, j) = ∞ , for i, j ∈ [K] .

4: H ← G .
5: for p ← 1 to N/K do
6: [v, cost] = Hungarian(H) .

v denotes the matching vector of size K × 1 , where
W i is matched with W v(i) for i ∈ [K] .

7: for q ← 1 to K do
8: if H(q, v(q)) = 1 then
9: H(q, v(q)) ← ∞

10: else if H(q, v(q)) > 1 then
11: H(q, v(q)) ← H(q, v(q)) − 1
12: end if
13: end for
14: end for
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