
Cache-Aided Two-User Broadcast Channels
with State Information at Receivers

Hadi Reisizadeh
Department of ECE

University of Minnesota
Email: hadir@umn.edu

Mohammad Ali Maddah-Ali
Nokia Bell Labs

Holmdel, NJ
Email: mohammad.maddahali@nokia-bell-labs.com

Soheil Mohajer
Department of ECE

University of Minnesota
Email: soheil@umn.edu

Abstract—A two-user coded caching problem is studied in
a joint source-channel coding framework. A source generates
symbols at a certain rate for each file in the database, and a
fixed fraction of the symbols are cached at each user. The delivery
phase of coded caching takes place over a time-varying erasure
broadcast channel, where the channel state information is only
available at the receivers. The maximum source rate to keep up
with the ergodic rate of both users is characterized.

I. INTRODUCTION

Coded caching is a promising strategy to overcome the
rapidly growing traffic load of networks during their peak-
traffic time. A caching system operates in two phases: (1) a
placement phase, where each user has access to the database
of the server and stores some packets form the database, and
(2) a delivery phase, during which the server broadcasts a
signal to all the receivers, such that each user be able to
decode his desired file from his cache content and his received
signal. In [1], authors assumed a perfect channel model for
the delivery phase, and showed that a significant gain can
be achieved by sending coded packets and simultaneously
serving multiple users. The gain of caching is a function of
the size of the cache available at each user. The exact trade-off
between the memory and load of delivery is characterized [2],
under the assumption of uncoded placement. In practice, the
perfect channel assumption fails, and we are dealing with the
randomness of the channel. Coded caching is studied under
several wireless channel models, such as erasure and fading
channels [3]–[5].

In a cellular system, the channel is time-varying and sending
the channel state information (CSI) from the receivers to
the transmitter over a feedback link is costly. The ergodic
capacity region of such broadcast channels with no CSI at
the transmitter is studied in [6], for a two-user system and
an arbitrary fading distribution. In [6], the fading effect is
studied using the deterministic model [7], where depending
on the instantaneous channel strength, each receiver only gets
the most significant bits, and of the transmit signal. The main
challenge for the transmitter here is to allocate the transmit
bits/levels to the messages intended to each user, without
having the realization of the channels, which consists of the
number of bits delivered to each user.

The work is supported in part by the National Science Foundation under
Grant CCF-1749981.

In this work, we generalize the result of [6] by providing
each user with a cache, that can store a µ fraction of the entire
database. Hence, we are dealing with a joint source-channel
coding problem: a source keeps generating a number of files
at a certain rate. A fixed fraction of each file is available at
each receiver. Without having the channel state information,
the server is supposed to broadcast information such that each
user can decode his desired file. The question is to characterize
the maximum source rate for which the delivery rate of the
channels (in an ergodic sense) can keep up with the generation
of the source. We fully characterize the maximum achievable
source rate for different regimes of cache size, by providing an
explicit channel (level) allocation for each sub-message, and
proving a matching upper bound. While the broadcast channel
is not degraded in general, we use an approach similar to [6]
to prove the optimality of the scheme.

In the following, we formulate the problem in Section II,
and present the main result in Section III. The achievability
and converse proofs are provided in Sections IV and V, re-
spectively. The detailed proofs are postponed to the Appendix.
Notation: Throughout this paper, we denote the set of integers
{1, 2, . . . , N } by [N ]. For a binary vector of length q, i.e.,
X ∈ F q

2, and for a pair of integers a < b , we use the short
hand notation X(a : b) to denote [X(a), X(a+1), . . . , X(b)] T .

II. PROBLEM FORMULATION

A. Channel Model

We consider a deterministic version of a2-user time-varying
memoryless fading broadcast channel [7], modeled by

Yu,t = D q−L u [t] X t = X t (1 : L u [t]), u = 1, 2,

where X t , Y1,t , Y2,t ∈ Fq
2, and D is a q × q matrix, given by

D =










0 0 0 . . . 0
1 0 0 . . . 0
0 1 0 . . . 0
...

. . .
. . .

. . .
...

0 . . . 0 1 0










.

Here L u [t] with 0 ≤ L u [t] ≤ q determines the number
of bits delivered to user u at time t (see Fig. 1). The
channel state at user u , i.e., {L u [t]|t = 1, . . . , n} , is an i.i.d.
random sequence generated according to some probability
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Fig. 1: A time-varying 2-user deterministic channel with
cache: q = 6, L 1[t] = 5, and L2[t] = 3.

mass function (PMF) PL u ()  P[L u = ]. We denote
the complementary cumulative distribution function of Lu by
F L u ()  P[L u ≥ ]. We assume that the channel state
information (CSI) is casually known at the receivers. However,
the transmitter only knows the channelstatistics PL 1 () and
PL 2 (), but not their instantaneous realizations.

B. Cache Model

We assume each useris equipped with a cache C u of
size M F bits. The server has accessto a database of N

independent files W1, . . . , WN each of size nf  F bits, i.e.,

W j  ∈ {1, 2, . . . , 2F }, j ∈ [N ].

The system operates in two phases:namely, the placement
phase and the delivery phase. In the placement phase,the
cache memory of each user is filled with uncoded bits of the
files in a central manner,that is,

Cu =
j∈[N]

Cu,j , u = 1, 2,

where Cu,j denotes the part of the cache of user u filled by bits
of file j. Therefore, we have H(Cu,j |W j ) = 0, I(C u, ; Wj ) =
0 for  = j, and j∈[N] H(C u,j ) ≤ M F for u = 1, 2.

After the completion of the placementphase,each user
requests one of the N files,where all files are equally likely
to be requested.We denote the requestof user u  {∈ 1, 2}
by d u ∈ [N ], and define d = (d 1, d2)1. Once the requests
are revealed to the server,it forms a broadcasting message
X = ψ d (W 1, . . . , WN ; C1, C2), where

ψ (n) : {1, 2, . . . , 2F }N → {1, 2, . . . , 2qn },

and transmits it over the broadcast channel during the delivery
phase.Upon receiving Yn

u = (Y u,1 , Yu,2 , . . . , Yu,n ), user u =
1, 2 should be able to decode its desired file using its cache
content Cu and the received message Yn

u , i.e.,

Ŵ du = φ (n)
u (Y n

u , Cu ) .

The overall decoding error probability is defined as

P (n)
e  P[ Ŵ d1 = W d1 ] + P[Ŵ d 2 = W d2 ].

1In this work, we consider the worst case scenario,i.e., d1 = d 2 .

Definition 1. A source rate f is called achievable if there
exists a sequence ofplacementstrategies and encoding and
decoding functions ψ(n) , φ(n)

1 , φ(n)
2 for a database of files

with F = nf bits such that P (n)
e → 0 as n grows.

Our goal is to characterize the maximum achievable source
rate f for a deterministic BC with channel statistics FL 1 and
F L 2 , i.e.,

f = max
f :achievable

f.

III. MAIN RESULTS

Before presenting the main result, we discuss the following
theorem,in which the achievable rate region of the determin-
istic BC with no CSIT (and without cache) is characterized.

Theorem 1. [6, Theorem 2] For an ω ≥ 0 we define CNC(ω)
as the set of (r 1, r2) satisfying

r1 ≤ R 1(ω) 
:g()≤ω

F L 1 (), (1)

r2 ≤ R 2(ω) 
:g()>ω

F L 2 (), (2)

where g() =
F L 2 ()
F L 1 ()

. Then the capacity region C NC of the q

bit layered erasure broadcast channel (with no cache) is the
convex hull of the union of C NC(ω) over all ω ≥ 0, that is,

CNC = conv
ω≥0

CNC(ω) .

The next theorem is the main result of this paper, in
which the maximum achievable source rate of the cache-aided
deterministic BC with no CSIT is characterized.

Theorem 2. The maximum achievable source rate of a 2-
user time-varying deterministic broadcast channel with per-file

cache rate μ = M/N , for μ ≤ 1
2

is given by

f = min min
ω≥1

ωR1(ω) + R 2(ω)
1 − 2μ + ω(1 − μ)

, (3)

min
0≤ω≤1

R 1(ω) + 1
ω

R 2(ω)
(1 − 2μ) + 1

ω (1 − μ)
,

and for μ ≥ 1
2

is characterized by

f = min
q
=1

F L 1 ()
1 − μ

,
q
=1

F L 2 ()
1 − μ

. (4)

IV. THE ACHIEVABLE SCHEME

This section is dedicated to show the achievability of the
source rates defined in Theorem 2.

A. 0 ≤ μ ≤ 1
2

Without loss of generality,assume the minimum in (3) is
obtained in the first term,and by some ω ≥ 1. That is

f =
G(ω )

(1 − 2μ) + ω (1 − μ)
,

where we define G(ω)  ωR 1(ω) + R 2(ω).
In the placement phase we split each file Wj into three non-

overlapping subfiles Wj,1 , W j,2 , W j,∅ of sizes μF , μF , and



(1 − 2µ)F , respectively. Then, each user u  {∈ 1, 2} stores all
subfiles W j,u for j ∈ [N ] , i.e., Cu,j = W j,u , for j ∈ [N ] .

Upon receiving the request vector d = (d 1, d2), the server
needs to send (W d1 ,2 , Wd1 ,∅ ) to User 1, and (W d2 ,1 , Wd2 ,∅ )
to User 2. To this end, we can consider the private messages
W d1 ,∅ and W d2 ,∅ , intended for Users 1 and 2, respectively,
and the common message W d 1 ,2  ⊕ W d 2 ,1 intended for both
users. Note that the size of the private messages is (1−2µ)f ? n

bits, and the size of the common message is µf ?n .
Intuitively, the achievability proof of f ? is equivalent to

allocation of levels of the deterministic channel to the two
private messages and the common message, so that each user
can decode the intended messages. We start by sorting all

the q levels of the channel according to g(`) =
F L 2 (`)
F L 1 (`)

in an

increasing order, and labeling them by{` 1, . . . , q̀} . Therefore,
we have g(` 1) ≤ g(` 2) ≤ · · · ≤ g(` q). We also define ωi =
g(` i ) for i = 1, . . . , q, implying ω1 ≤ ω 2 ≤ · · · ≤ ω q . We first
have the following lemma, which is proved in Appendix A.

Lemma 1. If ω? is the minimizer of (3), then ω? ∈
{ω1, ω2, . . . , ωq} , and therefore, there exists k ∈ [q] such that

(1 − 2µ)f ? + ωk (1 − µ)f ? = G(ω k ). (5)

The next lemma (proved in Appendix A) shows the exis-
tence of two disjoint subsets of levels that can guarantee rates
of R p

1 = (1 − 2µ)f ? and R p
2 = (1 − 2µ)f ? for Users 1

and 2, respectively. Note that the lemma determines the levels
allocated to transmission of the private messages.

Lemma 2. There exist integers i, k  {∈ 1, . . . , q} with i ≤ k

(where k is defined in Lemma 1), and constants α, β ∈ [0, 1]
such that

X i−1

j=1
F L 1 (` j ) + βF L 1 (` i ) = R

p
1 = (1 − 2µ)f ? ,

αF L 2 (` k ) +
X q

j=k+1
F L 2 (` j ) = R

p
2 = (1 − 2µ)f ? .

The remaining levels will be used for multicasting the
common message. The rate supported for User u is given by

R c
u , β̄ · F L u (` i ) +

X k−1

j=i+1
F L u (` j ) + ᾱ · F L u (` k ), (6)

for u = 1, 2 , where ᾱ = 1 − α , and β̄ = 1 − β . It remains to
show that the common message can be reliably sent to both
users over these levels. This is formally stated in the following
lemma, which is proved in Appendix A.

Lemma 3. The channel rates defined in (6) satisfy

R c
2 ≥ R c

1 = µf ? . (7)

B. 1
2 < µ ≤ 1

In this regime, the placement phase consists of splitting each
file W j into three subfiles W j,1 , W j,2 and W j,{1,2} of sizes,
(1 − µ)f n , (1 − µ)f n , and (2µ − 1)f n bits, respectively. Then
user u  {∈ 1, 2} will store W j,u and W j,{1,2} for each file j ∈

[N ]. Upon receiving the vector d = (d 1, d2), the server needs
to only multicast a common message W d 1 ,2  ⊕ W d2 ,1 to both

users. The size of this common message is (1 − µ)f n . Hence,
the maximum achievable source rate is given the capacity of
the channel of the weak user, which is

f ? = min
P q

`=1
F L 1 (`)

1 − µ
,

P q
`=1

F L 2 (`)
1 − µ

.

V. PROOF OF THE OPTIMALITY

Next, we derive an upper bound on the achievable source
rate, stated following lemma, and proved in Appendix A.

Lemma 4. For any uncoded cache placement with cache
contents C1 and C2, the source rate of the physically degraded
memoryless BC described by PY 1 ,Y 2 |X is the union over all
pairs of (U, X) such that U ↔ X ↔ Y 2 ↔ Y1 satisfying

f ≤ f 1 ,
I(U ; Y1)

1 − µ
, f ≤ f 2 ,

I(X; Y 2|U )
1 − 2µ

.

Now, we are ready to prove the optimality of f ? in Theo-
rem 2. We start with the case of µ ≤ 1

2 . Note that for arbitrary
F L 1 and F L 2 , the broadcast channel is not degraded. In order
to apply Lemma 4, we first enhance the channel of User 2 by
replacing the fading distribution L 2 by L̃ 2, defined as,

F eL 2
(`) = min 1, max(FL 2 (`), ωF L 1 (`)) ,

for some ω ≥ 1 , and define eY2 = D q− eL 2 X = X(1 : eL 2).
Now, we have X ↔ eY2 ↔ Y 1. Moreover, note that in an
erasure channel, the receiver observation contains the channel
realization, i.e., (Y1, L1) and ( eY2, eL 2). Then, given the fact
that CSI is available at the receivers, the terms in Lemma 4
for the deterministic channel of interest will be simplified to

I(U ; Y1, L1) = I(U ; X(1 : L1), L 1)=
qX

i=1

PL 1 (i)I(U ; X(1 : i))

=
X q

i=1
PL 1 (i)

X i

`=1
I(U ; X(`)|X(1 : `−1))

=
X q

`=1
I(U ; X(`)|X(1 : `−1))

X `

i=1
PL 1 (i)

=
X q

`=1
F L 1 (`)I(U ; X(`)|X(1 : `−1))

=
qX

`=1

F L 1 (`)[H(X(`)|X(1: `−1))−H(X(`)|U, X(1: `−1))] .

Similarly, we have

I(X; eY2, eL 2|U ) =
qX

`=1

F eL 2
(`)H(X(`)|U, X(1 : `−1)).

Hence, we can upper bound the following weighted sum as

f(ω) = ω(1 − µ)f + (1 − 2µ)f
≤ ωI(U ; Y 1, L1) + I(X; eY2, eL 2|U )

=
qX

`=1

(g̃(`) − ω)F L 1 (`)H(X(`)|X(1 : ` − 1), U )

+ ω

qX

`=1

F L 1 (`)H(X(`)|X(1 : ` − 1)), (8)



where g̃(`) =
F eL 2

(`)
F L 1 (`)

. The terms in the second summation in

(8) will be maximized by an be i.i.d. Bernoulli random variable
choice for X 1, . . . , Xq . The terms in the first summation can
be maximized if

H(X(`)|X(1 : ` − 1), U ) =

(
1 g̃(`) > ω ,

0 g̃(`) ≤ ω ,
(9)

which can be satisfied by an optimum choice for U , given by

U = {X(`)|˜ g(`) ≤ ω} .

Therefore, we have

f(ω) ≤ ω
X

`: g̃(`)≤ω
F L 1 (`) +

X
`: g̃(`)>ω

g̃(`)F L 1 (`)

(a)= ω
X

`:g(`)≤ω
F L 1 (`) +

X
`:g(`)>ω

F eL 2
(`)

(b)= ω
X

`:g(`)≤ω
F L 1 (`) +

X
`:g(`)>ω

F L 2 (`)

= ωR 1(ω) + R 2(w), (10)

where R 1(ω) and R 2(ω) are defined in (1) and (2) and
(a) holds since g̃(`)F L 1 (`) = F eL 2

(`) and {`| g̃(`) > ω} =
{`|g(`) > ω} , (b) follows the fact that F eL 2

(`) = F L 1 (`)
whenever g(`) > ω . Therefore, (10) proves the first mini-
mization in Theorem 2.

For 0 ≤ ω ≤ 1 , we can repeat the steps in (8) through (10)
by swapping the labels of the users and replacing ω by 1

ω .
Under this reversed labels, we now enhance the channel of
User 1, and get the second minimization in Theorem 2. The
details of the proof are omitted due to the page limit.

Finally, for µ > 1
2 , we explore the cut-set bound, i.e.,

(1 − µ)f ≤ I(U ; Y 1, L1)=
qX

`=1

F L 1 (`)I(U ; X(`)|X(1 : ` − 1))

≤
qX

`=1

F L 1 (`)H(X(`)|X(1 : ` − 1)) ≤
qX

`=1

F L 1 (`).

Similarly, for the other user, we get (1−µ)f ≤
P q

`=1
F L 2 (`) .

This completes the proof.
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APPENDIX A
PROOF OF THE LEMMAS

Proof of Lemma 1. Assume otherwise holds, and we have 2

ωs < ω ? < ωs+1 for some s . Pick a pair (ω− , ω+ ) such that
ωs < ω − < ω ? < ω + < ω s+1 . Note that functions R 1(ω)
and R 2(ω) remain constant over the interval (ωs , ωs+1 ), and
we thus can denote such constants by A and B , respectively.
Similarly, we can define C = 1−µ and D = 1−2µ . Then for
any ω ∈ (ωs , ωs+1 ) we define h(ω) = (Aω + B)/(Cω + D)
which is a monotonic function, and hence we either have
h(ω− ) < h(ω ? ) or h(ω+ ) < h(ω ? ), which is in contradiction
with optimality of w? .

Proof of Lemma 2. It is easy to verify that

G(ωj+1 ) − G(ω j ) = ω j+1 F L 1 (` j+1 ) + (ω j+1 − ωj )R 1(ωj )
− F L 2 (` j+1 ) = (ω j+1 − ωj )R 1(ωj ),

for every i. Moreover, optimality of f ? implies (1 − 2µ)f ? +
ωk+1 (1 − µ)f ? ≤ G(ω k+1 ), which together with (5) implies

(ωk+1 − ωk )(1 − µ)f ? ≤ G(ω k+1 ) − G(ω k )
= (ω k+1 − ωk )R 1(ωk ). (11)

Similarly, from (1 − 2µ)f ? + ωk−1 (1 − µ)f ? ≤ G(ω k−1 ) and
(5) we get

(ωk − ωk−1 )(1 − µ)f ? ≥ G(ω k ) − G(ω k−1 )
= (ω k − ωk−1 )R 1(ωk−1 ). (12)

From (11) and (12) we conclude R 1(ωk−1 ) ≤ (1 − µ)f ? ≤
R 1(ωk ), which implies

(1 − µ)f ? = R 1(ωk ) − αF L 1 (` k )

=
X k−1

j=1
F L 1 (` j ) + ᾱ · F L 1 (` k ) (13)

for some α ∈ [0, 1]. Then, from (1 − 2µ)f ? ≤ (1 − µ)f ? , we
can conclude existence of some i ≤ k and β ∈ [0, 1] such that

(1 − 2µ)f ? =
X i−1

j=1
F L 1 (` j ) + βF L 1 (` i ). (14)

Moreover, plugging (13) into (5) we get

(1 − 2µ)f ? = G(ω k ) − ωR 1(ωk ) + ω k αF L 1 (` k )
= R 2(ωk ) + ωk αF L 1 (` k ) = R 2(ωk ) + αF L 2 (` k ),

which is the claim of the lemma.

Proof of Lemma 3. Subtracting (14) from (13) we immedi-
ately get R c

1 = µf ? . Next, note that

G(w i ) = ω i




i−1X

j=1

F L 1 (` j ) + βF L 1 (` i )



 + ω i β̄ · F L 1 (` i )

+




k−1X

j=i+1

F L 2 (` j )+ ᾱF L 2 (` k )



 +



 αF L 2 (` k )+
qX

j=k+1

F L 2 (` j )





(a)= ω i R
p
1 + R c

2 + R
p
2 = (1 + ω i )(1 − 2µ)f ? + R c

2,

2We define ω0 = 1 and ωq+1 = +∞ for completeness.



where (a) follows the fact that ωi F L 1 (` i ) = F L 2 (` i ). Then
recall that f ? is the minimum value obtained by (3). We can
distinguish the following two cases.
(i) ωi ≥ 1 : In this case from (3) we can write

f ? ≤
ωi R 1(ωi ) + R 2(ωi )

(1 − 2µ) + ω i (1 − µ)
=

(1 + ωi )(1 − 2µ)f ? + R c
2

(1 − 2µ) + ω i (1 − µ)
,

which implies R c
2 ≥ ω i µf ? ≥ µf ? .

(ii) ωi ≤ 1 : Alternatively, from (3) we have

f ? ≤
R 1(ωi ) + 1

ωi
R 2(ωi )

(1 − 2µ) + 1
ωi

(1 − µ)
=

ωi R 1(ωi ) + R 2(ωi )
ωi (1 − 2µ) + (1 − µ)

=
(1 + ωi )(1 − 2µ)f ? + R c

2
ωi (1 − 2µ) + (1 − µ)

,

which implies R c
2 ≥ µf ? .

Proof of Lemma 4. We follow an approach similar to that
of [3]. By Fano’s inequality, we have

H(W d1
|Y n

1 , C1) ≤ n n , H(W d2
|Y n

2 , C2) ≤ n n ,

for some n → 0 as n → ∞ . For given caches C1 and C2
and the sequence of requests d = (d 1, d2), we have

nf − n n ≤ H(W d1 ) − n n ≤ I(W d1 ; Y n
1 , C1)

= I(W d1 ; Y n
1 |C1) + I(W d1 ; C1)

=
nX

i=1

I(W d 1 ; Y1,i |Y i−1
1 , C1) + I(W d1 ; C1)

≤
nX

i=1

I(W d 1
, Y i−1

1 ; Y1,i |C1) + I(W d1 ; C1)

= nI(W d1
, Y Q−1

1 ; Y1,Q |C1, Q) + I(W d1 ; C1)
≤ nI(W d1

, C1, Y Q−1
1 , Q; Y1,Q ) + I(W d1 ; C1)

= nI(U ; Y 1,Q ) + I(W d1 ; C1)
= nI(U ; Y 1) + I(W d1 ; C1), (15)

where Q is a random variable uniformly distributed over [n]
and independent of (W d1

, Wd2
, X n , Y n

1 , Y n
2 , C1, C2) and U =

(W d1
, C1, Y Q−1

1 , Q). Similarly, we have

nf − n n = H(W d2 ) − n n ≤ I(W d2 ; Y n
2 , C2)

= I(W d 2 ; Y n
2 |C2) + I(W d2 ; C2)

≤ I(W d 2 ; Y n
2 , Wd1

, C1|C2) + I(W d2 ; C2)
= I(W d 2 ; Y n

2 |W d1
, C1, C2) + I(W d2 ; Wd1

|C1, C2)
+ I(W d2 ; C1|C2) + I(W d2 ; C2)

(a)= I(W d2 ; Y n
2 |W d1

, C1, C2) + I(W d2 ; C1, C2)

=
nX

i=1

I(W d2 ; Y2,i |W d1
, C1, C2, Y i−1

2 ) + I(W d2 ; C1, C2)

≤
nX

i=1

I(W d2 ; Y2,i , Y i−1
1 |W d 1

,C1,C2,Y i−1
2 )+I(W d2 ; C1, C2)

(b)=
nX

i=1

I(W d2 ; Y2,i |W d1
,C1,C2,Y i−1

1 Y i−1
2 )+I(W d2 ; C1, C2)

≤
nX

i=1

I(W d2
,C2, Y i−1

2 ;Y2,i |W d1
,C1,Y i−1

1 )+I(W d2 ; C1,C2)

= nI(W d2
,C2,Y Q−1

2 ;Y2,Q |W d1
,C1,Y Q−1

1 ,Q)+I(W d2; C1,C2)
≤ nI(X Q , Wd2

, C2, Y Q−1
2 ; Y2,Q |U)+I(W d2 ; C1, C2)

(c)= nI(X Q ; Y2,Q |U)+I(W d2 ; C1, C2)
= nI(X; Y 2|U)+I(W d2 ; C1, C2). (16)

In the above chain of inequalities, (a) holds since for an
uncoded cache placement and independent files we have

I(W d2 ; Wd1
|C1, C2)=H(W d2

|C1, C2)−H(W d2
|W d1

, C1, C2)
=H (W d2

|C1,d 1
, C2,d 1 )−H(W d2

|C1,d 1
, C2,d 1 ) = 0.

Moreover, (b) follows the degradedness of the channel,
(W d1

, Wd2
, C1, C2) ↔ X i ↔ Y2,i ↔ Y1,i , which implies

I(W d2 ; Y i−1
1 |W d1

, C1, C2, Y i−1
2 )

= H(Y i−1
1 |W d1

, C1, C2, Y i−1
2 )

− H(Y i−1
1 |W d1

, Wd2
, C1, C2, Y i−1

2 )
= H(Y i−1

1 |Y i−1
2 )−H(Y i−1

1 |Y i−1
2 ) = 0.

Finally, (c) holds since condition on X Q , the received signal
Y2,Q is independent of all other variables, i.e.,

I(W d2
,C2, Y Q−1

2 ; Y2,Q |X Q , U )
= H(Y 2,Q |X Q , U) − H(Y 2,Q |X Q , U, Wd2

, C2, Y Q−1
2 )

= H(Y 2,Q |X Q ) − H(Y 2,Q |X Q ) = 0.

Since each file is equally likely to be requested, taking average
of (15) and (16) over all distinct requests d1 and d2, i.e.,
D = {(d 1, d2) : d1 6= d2, d1, d2 ∈ [N ]} provides an upper
bound for any achievable rate f , i.e.,

nf − n n ≤ nI(U ; Y 1) +
1

|D|

X

d D∈

I(W d 1 ; C1), (17)

nf − n n ≤ nI(X; Y 2|U ) +
1

|D|

X

d D∈

I(W d2 ; C1, C2). (18)

For the last terms in inequalities, we have

1
|D|

X

d D∈

I(W d1 ; C1) =
1
N

NX

j=1

I(W j ; C1)

=
1
N

NX

j=1

H(C 1,j ) =
1
N H(C 1) ≤

1
N MF = µf.

(19)

and

1
|D|

X

d D∈

I(W d1 ; C1, C2) =
1
N

NX

j=1

I(W j ; C1, C2)

=
1
N

NX

j=1

H(C 1,j ,C 2,j )=
1
N H(C 1,C 2)≤

2MF
N = 2µf.

(20)

Plugging (19) and (20) into (17) and (18), respectively, we get
the desired bounds.
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