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Abstract

Motivated by brain connectome datasets acquired using diffusion weighted mag-

netic resonance imaging (DWI), this article proposes a novel generalized Bayesian lin-

ear modeling framework with a symmetric tensor response and scalar predictors. The

symmetric tensor coefficients corresponding to the scalar predictors are embedded with

two features: low-rankness and group sparsity within the low-rank structure. Besides

offering computational efficiency and parsimony, these two features enable identifica-

tion of important “tensor nodes” and “tensor cells” significantly associated with the

predictors, with characterization of uncertainty. The proposed framework is empiri-

cally investigated under various simulation settings and with a real brain connectome

dataset. Theoretically, we establish that the posterior predictive density from the pro-

posed model is “close” to the true data generating density, the closeness being measured

by the Hellinger distance between these two densities, which scales at a rate very close

to the finite dimensional optimal rate of n−1/2, depending on how the number of tensor
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nodes grow with the sample size. The theoretical results with proofs are provided in

the supplementary material which is available online.

Key Words: Brain connectome, Binary network, Low rank decomposition, Posterior conver-

gence, Symmetric tensor, Spike and slab prior.

1 Introduction

In recent times, multidimensional arrays or tensors, which are higher order extensions

of two dimensional matrices, are being encountered in datasets emerging from different dis-

ciplines. Similar to the rows and columns of a matrix, the dimensions or axes of a tensor

are known as tensor modes. A tensor is known to be symmetric if interchanging the modes

results in the same tensor. Therefore, a symmetric matrix is a special case of a symmetric

tensor in two dimensions. The indices of any tensor mode in a symmetric tensor are often

referred to as tensor nodes. This article is motivated by a variety of brain related data

applications, where comprehensive maps of neural connections in the brain, also known as

brain connectomes, are available for multiple subjects. These brain connectomes are often

expressed in the form of symmetric tensors. Our focus is mainly on datasets in which a

sample of symmetric tensors is available from multiple subjects of interest, along with a few

subject specific observable attributes, often referred to as phenotypes. In these applications,

there is a symmetric tensor corresponding to every subject, and the tensor nodes are labeled

and shared across all subject specific tensors through a common map.

To provide a concrete example, we consider a dataset that contains brain network infor-

mation along with a measure of creativity (e.g., composite creativity index (CCI)), age and

sex for multiple subjects. Brain network information for each subject is encoded within a

symmetric matrix of dimension 68 × 68, with the (k, l)th cell consisting of the number of

neuron connections between the k-th and l-th regions of interest (ROI). Each mode of this

symmetric matrix (when viewed as a 2-D symmetric tensor) consists of 68 nodes, each corre-
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sponding to a specific ROI in the human brain. The goal of such scientific studies is two fold.

First, it is important to build a predictive model to assess changes in the symmetric tensor

(e.g., the brain network) as the phenotypic predictors vary. Second, it is of interest to iden-

tify nodes and cells in the symmetric tensor significantly impacted by CCI. In the context of

brain connectome applications, this goal boils down to making inference on brain regions of

interest (ROIs) and their inter-connections significantly associated with CCI. Although this

specific example involves a symmetric tensor response of order 2, there are other examples

from fields such as international trade, involving higher order symmetric tensor response on

vector regressions. We discuss one such example pertinent to our modeling framework in

Section 6.

In developing a modeling approach to our problem of interest, one can possibly proceed

to vectorize the symmetric tensor response and regress it on the predictors, leading to a

high dimensional vector regression problem. This approach can take advantage of the recent

developments in high dimensional multivariate reduced rank sparse regression literature, con-

sisting of both penalized optimization (Yuan et al., 2007; Rothman et al., 2010) and Bayesian

shrinkage (Goh et al., 2017). However, this approach treats the cells of the symmetric tensor

coefficients as if they were fully exchangeable, ignoring the fact that coefficients that involve

common tensor nodes can be expected to be correlated a priori. Ignoring this correlation

can lead to poor predictive performance and potentially impact model selection. Moreover,

this architecture does not allow identification of important tensor nodes.

Instead, we develop a generalized symmetric tensor response regression model with a

symmetric tensor response and scalar predictors that simultaneously embeds symmetric low-

rankness and tensor node-wise sparsity in the symmetric tensor coefficient corresponding to

each predictor. Both structures are introduced to achieve several inferential goals simulta-

neously. The low-rank structure is primarily assumed to capture the interactions between

different pairs of tensor nodes, while the node-wise sparsity offers inference on tensor nodes
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and cells significantly associated with a predictor. Both structures jointly accomplish parsi-

mony, as well as yield well-calibrated uncertainties for the model parameters. As the mode

of inference, a Bayesian framework is adopted, since there is a strong need for uncertainty

quantification on the inference related to identifying significant nodes and cells, especially in

presence of moderate sample size, with the number of tensor cells far exceeding the number

of observations.

The proposed framework shares some commonalities with, but is distinct from, the recent

developments in high dimensional regression with multidimensional arrays (tensors) and

other object oriented data. For example, recent literature that builds regression models with

a scalar response and tensor predictors (Zhou et al., 2013; Guhaniyogi et al., 2017) does

not incorporate the symmetry constraint in the tensor. There is more related work about

regression frameworks with a scalar response and undirected network predictors, expressed in

the form of symmetric matrices (Guha and Rodriguez, 2018; Durante et al., 2018). All these

articles treat the tensor as a predictor, whereas we treat it as a response. This difference in

the modeling approach leads to a different focus and interpretation. In a way, their difference

is analogous to that between multi-response regression and multi-predictor regression in the

classical vector-valued regression context.

There have been some recent efforts to build regression models with a tensor response,

mostly in the frequentist literature. For example, the formulation proposed in Rabusseau

and Kadri (2016) constructs a regression model with a tensor response exploiting a low-rank

structure, but does not embed sparsity to identify important tensor nodes and cells. Li

and Zhang (2017) propose an envelope-based tensor response model exploiting a generalized

sparsity principle, designed to identify linear combinations of the response irrelevant to the

regression. In the same vein, Guhaniyogi and Spencer (2018) formulate a Bayesian tensor

response regression approach that is built upon a multiway stick breaking shrinkage prior

on the tensor coefficients. Spencer et al. (2019) further extend the approach by Guhaniyogi
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and Spencer (2018) to jointly identify activated brain regions due to a task and connectiv-

ity between different brain regions. While Li and Zhang (2017), Guhaniyogi and Spencer

(2018) and Spencer et al. (2019) are able to identify important tensor cells, they do not

allow detection of tensor nodes influenced by a predictor. Moreover, these approaches have

not been extended to accommodate scenarios other than a tensor response with continuous

cell entries and do not directly incorporate the symmetry constraint in the tensor coefficient

corresponding to a predictor. More recently, Sun and Li (2017) have devised a new class

of models, referred to as STORE, that impose element-wise sparsity in tensor coefficients.

Instead of enforcing element wise sparsity, our proposal develops a tensor node-wise sparsity

structure that is in tandem with our inferential goal of detecting tensor nodes influenced

by a predictor. Additionally, uncertainty quantification may be somewhat challenging in a

frequentist high dimensional regression approach (such as STORE) because standard boot-

strap techniques are not consistent for Lasso-type methods (Kyung et al., 2010). Chatterjee

and Lahiri (2011) have proposed modifications of the bootstrap producing well-calibrated

confidence intervals in the context of standard Lasso regression, but it is not clear whether

they extend to the kind of penalties discussed in STORE. In contrast, our Bayesian for-

mulation naturally yields characterization of uncertainty in parameters. Our framework is

distinct from the recent Bayesian approach by Roy et al. (2017) for modeling brain structural

connectomes. While Roy et al. (2017) adopt B-splines to model the tensor coefficients, our

approach uses low-rank factorization with group sparsity that may offer computational ben-

efits in presence of larger tensors. Additionally, Roy et al. (2017) is not designed to identify

influential tensor nodes, which is one of the prime inferential objectives in this article.

An important contribution of this article is proving the near optimal contraction rate

for the predictive density of the generalized symmetric tensor response model. Theory of

posterior contraction for ordinary high dimensional regression models has lately gained trac-

tion, with several articles establishing posterior contraction properties, either for various
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point-mass priors in the many normal-means models (Castillo et al., 2012; Belitser and Nu-

rushev, 2015; Martin et al., 2017), or for classes of continuous shrinkage priors (Song and

Liang, 2017; Wei and Ghosal, 2017). In contrast, the study of posterior contraction prop-

erties for generalized linear models involving tensor objects in the Bayesian paradigm has

been given far less attention. This article lays down sufficient conditions on the number

of tensor nodes, ranks and magnitudes of the true tensor coefficients as a function of the

sample size to obtain a near optimal convergence rate for the posterior predictive density

of the proposed generalized symmetric tensor response model. Our theoretical exposition

offers novelty over a few recent articles (Guhaniyogi, 2017; Guhaniyogi and Spencer, 2018)

in a number of aspects. The theoretical results derived in these articles mainly pertain to

a variety of multiway shrinkage priors (Guhaniyogi et al., 2017; Guhaniyogi and Spencer,

2018) in the linear regression context. In contrast, our results are derived for a different class

of sparsity inducing priors in the context of a generalized linear model, and importantly, take

into account the symmetric nature of the tensor response. Although the existing literature

on regression, either with a tensor response or with tensor predictors, offers conditions for

posterior consistency, we derive stronger results on the rate of contraction for the posterior

predictive density of the proposed model. The details are presented in the supplementary

material.

The rest of the article evolves as follows. Section 2 proposes the regression framework

with scalar predictors and the symmetric tensor response, and introduces a novel prior

distribution on the predictor coefficients to enable identification of nodes and cells of the

tensor response related to predictors. Section 3 discusses posterior computation for the

proposed model. Empirical investigations with various simulation studies are presented in

Section 4, while Section 5 analyzes a real brain connectome dataset. We provide results on

significant regions of interest (ROI) and edges. Finally, Section 6 concludes the article with

an eye towards future work. Theoretical results on the convergence rate of the posterior
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predictive distribution of the proposed model are discussed in the supplementary material.

The supplementary material also includes simulation studies for our proposed framework

with a two-dimensional binary network response.

2 Model and Framework

This section develops the model and the prior structure for the parameters. We begin by

introducing a few notations.

2.1 Notations

A tensor B ∈ ⊗Dj=1Rpj , referred to as a D-way tensor, is a multidimensional array whose

(j1, ..., jD)th cell is denoted by B(j1,...,jD), 1 ≤ j1 ≤ p1,...,1 ≤ jD ≤ pD. When D = 2,

a tensor corresponds to a matrix. A tensor B is known to be a symmetric tensor with 0

diagonal entries if B(j1,...,jD) = B(g(j1),...,g(jD)), for any permutation g(·) of {j1, ..., jD}, and

B(j1,...,jD) = 0, if any two of the indices jl and jl′ are equal. The definition of symmetric

tensors ensures p1 = · · · = pD = p. The indices N = {1, 2, ..., p} for a symmetric tensor B

are referred to as tensor nodes, analogous to row and column indices for a symmetric matrix.

A D-way outer product between vectors bk = (bk,1, . . . , bk,pk), 1 ≤ k ≤ D, is a p1 × · · · × pD

tensor denoted by B = b1 ◦ b2 ◦ · · · ◦ bD, with the entry in the (j1, .., jD)th cell given by

B(j1,...,jD) =
∏D

k=1 bk,jk . This is also referred to as a rank-1 tensor. Rank-1 decomposition of

a symmetric tensor ensures b1 = · · · = bD. A rank-R tensor is a sum of R rank-1 tensors.

Finally, || · || and || · ||∞ are used to denote the L2 and L∞ norms, respectively, for both

vectors and higher order tensors.

2.2 Model and prior specification

For i = 1, ..., n, let Y i = ((yi,(j1,...,jD)))
p
j1,...,jD=1 ∈ Y ⊆ Rp×···×p denote the symmetric

tensor response with 0 diagonal entries, xi = (xi1, ..., xim)′ be m predictors of interest and

zi = (zi1, ..., zil)
′ be l auxiliary predictors corresponding to the ith individual. The 0 diagonal
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entries of the response tensor are motivated by the brain connectome application described

subsequently (Section 5), where a diagonal entry of the symmetric network adjacency matrix

corresponds to the number of neuron connections of an ROI with itself, which is customarily

taken to be 0. However, the modeling framework as well as the theoretical development can

be extended trivially if a ‘0’ in a diagonal entry has to be replaced by some other number

using another convention. We assume that the relationship between xi and the response

varies in every tensor cell. In contrast, an auxiliary predictor explains the response in every

tensor cell identically. In the context of brain connectome applications, the m predictors of

interest may correspond to different phenotypic variables (e.g., composite creativity index)

and the l auxiliary predictors consist of demographic variables, such as the age or sex of an

individual. Let J = {j = (j1, ..., jD) : 1 ≤ j1 < · · · < jD ≤ p} be a set of indices. Since

Y i is symmetric with dummy diagonal entries, it suffices to build a probabilistic generative

mechanism for yi,j (j ∈ J ), where yi,j can either be continuous, binary or categorical. We

propose to use a set of conditionally independent generalized linear models E(yi,j) = ωi,j ,

ωi,j = H−1 (β0 +B1,jxi1 + · · ·+Bm,jxim + β1zi1 + · · ·+ βlzil) , j ∈ J , (1)

where B1,j ,...,Bm,j are the j = (j1, ..., jD)th cells of the p × · · · × p symmetric coefficient

tensors B1, ...,Bm with 0 diagonal entries, respectively, and H(·) is an appropriate link

function for the outcome of interest. When yi,j corresponds to a normal linear model with

the identity link function, (1) becomes

ωi,j = β0 +B1,jxi1 + · · ·+Bm,jxim + β1zi1 + · · ·+ βlzil + εi,j . (2)

The idiosyncratic errors εi,j follow i.i.d N(0, σ2), and β0, β1, ..., βl ∈ R are the intercept and

coefficients corresponding to variables zi1, ..., zil, respectively. The model formulation implies

a similar effect of any of the auxiliary variables (zi1, ..., zil) on all cells of the response tensor.
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In contrast, Bh,j , h = 1, ...,m; j ∈ J corresponds to the coefficient determining the effect of

the hth predictor of interest on the j = (j1, ..., jD)th cell of the symmetric tensor response.

To account for associations of tensor nodes and cells with predictors x1, ..., xm, as well as

for efficient estimation of the high dimensional symmetric tensors B1, ..,Bm, we introduce

a low-rank structure of Bh as

Bh,j =
R∑
r=1

λh,ru
(r)
h,j1
· · ·u(r)h,jD , h = 1, ...,m; j ∈ J , (3)

where u
(r)
h = (u

(r)
h,1, ..., u

(r)
h,p)

T ∈ Rp are latent vectors of dimensions p × 1 and λh,r ∈ {0, 1}

is the binary inclusion variable determining if the rth summand in (3) is relevant in model

fitting. Equation (3) has been largely motivated by the symmetric low-rank parallel factor

or CP/PARAFAC decomposition of tensors, which are higher order analogues of the fac-

tor decomposition of matrices. In particular, define symmetric tensors Γh, h = 1, ...,m,

admitting a symmetric rank-R CP/PARAFAC decomposition (Kolda and Bader, 2009)

of the form, Γh =
∑R

r=1 λh,ru
(r)
h ◦ · · · ◦ u

(r)
h . Notably, (3) implies that Bh,j = Γh,j when

j ∈ J . By the symmetry constraint on B and Γ, Bh,j = Γh,j whenever two indices in

j are not equal. The assumed low-rank structure on B1, ...,Bm offers parsimony by re-

ducing the number of estimable parameters from mpD to mRp, typically with R � p.

When D = 2, the formulation assumes further simplification. To elaborate, denote ũh,1 =

(u
(1)
h,1, ..., u

(R)
h,1 )T ,...,ũh,p = (u

(1)
h,p, ..., u

(R)
h,p )T as R dimensional latent variables corresponding to

the tensor nodes and Λh = diag(λh,1, .., λh,R). The j = (j1, j2)th entry of Bh from (3) then

simplifies as Bh,j = ũTh,j1Λhũh,j2 , j ∈ J , which represents a bilinear interaction between the

latent variables ũh,j1 and ũh,j2 (i.e., corresponding to the j1th and j2th nodes, j1 < j2). This

kind of bilinear structure is commonly used to model social and biological networks because

of its ability to capture transitive effects discussed in the literature (Hoff, 2005, 2008).

With general tensor coefficients B1, ...,Bm, the hth predictor of interest is considered

to have no impact on the kth tensor node if ũh,k = 0, k ∈ N . The jth cell is considered
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unrelated to the hth predictor of interest if Bh,j = 0. Since Bh,j = 0 if ũh,js = 0 for some

js, the proposed formulation assumes that the contribution of the hth predictor to the jth

tensor cell is insignificant if the jsth node is unrelated to the hth predictor, for some js.

In order to directly infer on tensor nodes related to the hth predictor of interest, a spike-

and-slab (Ishwaran and Rao, 2005) mixture distribution prior is assigned on the latent factor

ũh,k as below

ũh,k ∼

 N(0,Mh), if ηh,k = 1

δ0, if ηh,k = 0
, ηh,k ∼ Ber(ξh), Mh ∼ IW (S, ν), ξh ∼ U(0, 1) (4)

where δ0 is the Dirac-delta function at 0 and Mh is a covariance matrix of order R × R.

IW (S, ν) denotes an Inverse-Wishart distribution with an R × R positive definite scale

matrix S and degrees of freedom ν. The parameter ξh corresponds to the probability of the

nonzero mixture component and ηh,k is a binary indicator set to 0 if ũh,k = δ0. Thus, the

posterior distributions of ηh,k’s serve as tools to identify nodes related to a predictor.

In order to learn λh,r from (3), we assign a hierarchical prior λh,r ∼ Ber(υh,r), υh,r ∼

Beta(1, rζ), ζ > 1, that imparts increasing shrinkage on λh,r as r grows, to avoid over-fitting.

R̂ =
∑R

r=1 λh,r estimates the dimensions of ũh,k needed for effective modeling, and is referred

to as the effective dimensionality of the latent variables. The coefficients β0, β1, ..., βl are a

priori assigned a N(aβ, bβ) distribution. For a tensor response with continuous cell entries,

the prior specification is completed by specifying an IG(aσ, bσ) prior on σ2.

3 Posterior Computation

Although summaries of the posterior distribution cannot be computed in closed form,

full conditional distributions for all the parameters are available and mostly correspond to

standard families (available in the supplementary material). Thus, posterior computation

can proceed through Gibbs sampling implementation. In what follows, we present various
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simulations to assess performance of model (1) with continuous and binary cell entries in Y i.

For computation with binary cell entries, we consider H(·) as the logit link, and invoke the

popular data augmentation technique of Polson et al. (2013). The posterior computation does

not involve inverting more than an R × R matrix in each iteration, and hence computation

turns out to be rapid. The MCMC sampler is run for 15000 iterations, with the first 5000

discarded as burn-in. All posterior inference is based on post burn-in samples with thinning

size 2. The next section reports the effective sample size for 5000 post burn-in iterations

averaged over all cells of B. All simulation scenarios show an average effective sample size

over 3000, indicating fairly uncorrelated post burn-in 5000 MCMC samples.

We have implemented our code in R (without using any C++, Fortran or Python inter-

face) on a cluster computing environment with three interactive analysis servers, 56 cores

each with the Dell PE R820: 4x Intel Xeon Sandy Bridge E5-4640 processor, 16GB RAM

and 1TB SATA hard drive. Different replications of the model are implemented under a

parallel architecture by making use of the packages doparallel and foreach within R. Due to

the parallel implementation of replications in different cores, computation time for multiple

replications does not increase compared to the computation time for one replication. The

computation times of running 15000 MCMC iterations with p = 30 and p = 60 tensor nodes

(in Section 4) are given by 162 minutes and 298 minutes, respectively.

S (suitably thinned) post burn-in MCMC samples η
(1)
h,k, ...., η

(S)
h,k of the binary indicator

ηh,k are used to empirically assess if the kth tensor node is significantly associated with

the hth predictor of interest. In particular, node k is recognized to be related to the hth

predictor if (1/S)
∑S

s=1 η
(s)
h,k > t, 0 < t < 1. The ensuing simulation section computes the

True Positive Rates (TPR) and False Positive Rates (FPR) for various choices of t. For the

real data section, we use t = 0.5 to decide which nodes are related to a specific predictor.

To assess the accuracy of identifying important cells of the response tensor related to the

hth predictor, we compute post burn-in MCMC samples of Bh,j following (3) for all j ∈ J .
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The proportion of post burn-in MCMC samples where Bh,j = 0 is computed, and the jth

cell is recognized to be related to the hth predictor if this is less than 0.5. The True Positive

Rates (TPR) and False Positive Rates (FPR) for different simulation settings are computed.

4 Simulation Studies

We consider two simulation examples to illustrate our approach of the symmetric gen-

eralized tensor model (SGTM) and compare with competing methods. The first simulation

example illustrates the proposed approach with the tensor response generated from (1) hav-

ing continuous cell entries (Section 4.1), whereas the second simulation example (in the

supplementary material) considers the tensor response with binary cell entries simulated

from (1), setting H(·) as the logit link function. For the sake of simplicity, we fix m = 1 and

l = 2 in both simulation examples, which also holds for the brain connectome application in

Section 5.

For simulations, the predictor of interest xi and the auxiliary covariates zi1 and zi2

are drawn iid from N(0, 1). The true intercept β∗0 , true coefficients β∗1 and β∗2 are set

as 0.2, 0.4 and −0.1, respectively, for data simulation. To simulate the true symmetric

tensor coefficient B∗, we begin by drawing p tensor node specific latent variables ũ∗k =

(u
∗(1)
k , ..., u

∗(R∗)
k )T , k = 1, ..., p, each of dimension R∗, from a mixture distribution given by

ũ∗k ∼ π∗1NR∗(0.81, 0.25I) + (1− π∗1)δ0. The probability of a tensor node being not related to

xi, referred to as the node sparsity parameter, is denoted by (1 − π∗1). In simulations, the

entries of B∗j , j ∈ J are constructed under two different scenarios.

Scenario 1: The first scenario constructs the cell coefficients as multi-linear interactions be-

tween the corresponding node specific latent variables, B∗j =
∑R∗

r=1 u
∗(r)
j1
· · ·u∗(r)jD

.

Scenario 2: The second scenario assumes mis-specification between the fitted and simulated

models and simulates B∗j from a mixture distribution B∗j ∼ π∗2N(0, 1) + (1 − π∗2)δ0 when

ũ∗j1 ,...,ũ
∗
jD

are all nonzero; B∗j = 0 otherwise. The quantity (1− π∗2) is referred to as the cell
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Cases R R∗ n p π∗1
1 4 2 70 30 0.4
2 3 2 70 60 0.6
3 5 2 100 30 0.5
4 5 3 100 60 0.7

Table 1: Simulation cases for Scenario 1. The node sparsity parameter is given by (1− π∗1).

Cases R R∗ n p π∗1 π∗2
1 4 2 70 30 0.4 0.5
2 3 2 70 60 0.6 0.5
3 5 2 100 30 0.5 0.5
4 5 3 100 60 0.7 0.5
5 4 2 70 30 0.4 0.7
6 4 2 70 30 0.6 0.5
7 4 2 70 30 0.6 0.7

Table 2: Simulation cases for Scenario 2. The node and cell sparsity parameters are (1−π∗1)
and (1− π∗2), respectively.

sparsity parameter.

In Scenario 1, we choose four (n, p,R∗, π∗1) combinations (shown in Table 1), whereas seven

different combinations of (n, p,R∗, π∗1, π
∗
2) are considered in Scenario 2 (shown in Table 2).

The tensor coefficient B∗ assumes a low-rank decomposition in Scenario 1 similar to the

fitted model, though Scenario 1 includes cases with a mismatch between the true and fitted

dimensions of node specific latent variables. Scenario 2 constructs a sparse true coeffi-

cient tensor B∗ that does not have a low-rank structure, allowing investigation with model

mis-specification. It also introduces the additional notion of cell sparsity and allows us to

investigate model performance with varying node and cell sparsity.

Choice of prior hyperparameters: Note that the choice of a U(0, 1) prior distribution

for ξ is to ensure a uniform distribution on the number of active nodes, and conditional on

the size of the model (i.e., the number of active nodes), a uniform distribution on all possible

models of that size. For model fitting, the hyper-parameters are fixed at S = IR×R, ν = 10,
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aσ = bσ = 1 and aβ = 0, bβ = 1. The choice of ν = 10 and S = IR×R ensure that the prior

distribution of M is concentrated around a scaled identity matrix. To provide a justification

for this choice when D = 2, notice that the cell coefficient for D = 2, given by Bj = ũTj1Λũj2 ,

is invariant to rotations of the latent positions ũks, and so we would like the prior on ũks to

also be invariant under rotations. This requires that we center M around a matrix that is

proportional to the identity matrix. Finally, aσ = bσ = 1 ensures an infinite prior mean of

σ2, implying somewhat less prior information on σ2. Upon perturbing the hyper-parameters

moderately, we find practically indistinguishable inference.

Performance metrics: To infer on the performance of SGTM in terms of identifying tensor

nodes significantly associated with xi, we present TPR and FPR values with different choices

of the cut-off t for all simulation cases. To assess the performance of SGTM in identifying

tensor cells significantly associated with xi, we present TPR and FPR values in all simulations

for a cut-off of 0.5, as discussed in Section 3. The accuracy of estimating B∗ is measured by

the scaled mean squared error (MSE) defined as ||B∗ − B̂||2/||B∗||2, where B̂ corresponds

to a suitable point estimate of B, for e.g., the posterior mean of B for SGTM. The length

and coverage of posterior 95% credible intervals for each Bj , j ∈ J are available empirically

from the post burn-in MCMC samples of B to assess the quantification of uncertainty by

the proposed approach. Finally, posterior distributions of the effective dimensionality R̂

under different simulation cases are also reported to infer on the dimension of the node

specific latent variables required for model fitting. All results presented are averaged over

50 simulation replicates.

Competitors: In Section 4.1, we compare our approach to ordinary least squares (LS),

which proposes a cell by cell regression of the response on the predictors. Although a

naive approach, LS is included due to its widespread use in neuro-imaging applications.

Additionally, we employ the envelope method (ENV) (Li and Zhang, 2017) and Higher-

Order Low-Rank Regression (HOLRR) (Rabusseau and Kadri, 2016) as competitors. While
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ENV proposes a regression framework with a general tensor response and scalar predictors,

HOLRR provides a framework for higher order regression with a tensor response and scalar

predictors. Comparing with these three methods will help assess possible gains in inference

in our method for taking into account the symmetry in the tensor response. Unfortunately,

HOLRR and ENV have not been designed for binary tensors yet, and hence are omitted as

competitors for binary symmetric tensor response regression presented in the supplementary

material, where we simply compare our approach with a cell by cell logistic regression model

and refer to it as LS with a slight abuse of notation. Since none of these competitors are

designed to identify influential tensor nodes, performance comparisons are mainly based

on MSE, coverage and length of 95% CIs. The 95% confidence intervals of frequentist

competitors are constructed using a bootstrap approximation. We are unable to compare our

approach with the most relevant competitor STORE (Sun and Li, 2017) due to unavailability

of open source codes.

4.1 2D Symmetric Continuous Tensor Response Example

We compute the effective sample size of thinned 5000 post burn-in iterates of B averaged

over all cells for each replication. This quantity is computed over all replications and their

average over all replications are reported. In particular, the values of the average effective

sample size of B, averaged over all replications, are given by 4822, 4915, 4986 and 4746 in

the four cases in Scenario 1, and 3337, 3618, 3677, 3246, 3898, 3512 and 3702 in the seven

cases in Scenario 2 respectively, indicating fairly uncorrelated samples to draw inference on.

Tables 3 and 4 present scaled MSE, coverage and length of 95% CI for all four competitors

under Scenarios 1 and 2, respectively. The four cases under Scenario 1 show much lower MSE

for SGTM than its competitors, ENV turning out to be the next best performer with a larger

p/n ratio. Notably, these two competitors (SGTM and ENV) account for the structure of the

tensor response, though ENV does not incorporate the symmetry constraint in the response

tensor. This is perhaps responsible for ENV performing marginally inferior to LS when the
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sample size is larger. All four competitors under Scenario 1 demonstrate over-coverage, with

SGTM producing substantially narrower credible intervals. The over-coverage in SGTM is

perhaps due to mild over-fitting which is observed frequently in high dimensional Bayesian

models in presence of small sample size, with data simulated from the true model (see for

e.g., Guhaniyogi et al., 2017). Moreover, increasing the number of nodes p for a fixed n

results in narrower credible intervals for all competitors.

The true coefficient B∗ does not assume any low-rank decomposition in Scenario 2.

Consequently, theoretical guarantee on optimal performance of SGTM is no longer valid (see

supplementary material). Nevertheless, SGTM appears to mildly outperform all competitors

in cases with smaller p and higher node sparsity (Cases 1 and 3), as seen in Table 4. Perhaps

the low-rank decomposition of B offered by SGTM is sufficient to estimate B∗ in presence

of a smaller p/n ratio and higher node sparsity. However, with a larger p, as in Cases 2 and

4, LS outperforms SGTM. Since ENV and HOLRR are constructed on variants of low-rank

and/or sparsity principles as well, they also generally lose edge over LS in terms of MSE

in these cases. Comparing MSE of SGTM between Cases 1 and 6, we find that decreasing

node sparsity has an adverse effect on MSE. Similarly, comparing Cases 1 and 5 reveals

a marginally adverse effect of decreasing cell sparsity on MSE of SGTM. It is generally

found that the effect of node sparsity is more profound than the effect of cell sparsity on the

performance. In terms of uncertainty characterization, under Cases 1 and 3, with smaller p

and higher sparsity, SGTM, ENV and HOLRR demonstrate close to nominal coverage, while

more challenging Cases 2 and 4 show under-coverage of all these three competitors. Again,

with decreasing node and edge sparsity, the coverage of SGTM, ENV and HOLRR are found

to drop around 80 − 85%, with SGTM having sufficiently narrower credible intervals than

ENV and HOLRR. LS offers over-coverage with much wider 95% credible intervals in all

cases.

Under both Scenarios 1 and 2, SGTM yields the posterior probability of a node being
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Competitors
Case SGTM LS HOLRR ENV

1
MSE×103 2.30.9 509.4 4814.2 3714.9

Avg. Cov 0.980.00 0.980.00 0.980.00 0.980.00

Avg. Length 0.080.00 1.810.00 1.650.00 1.590.00

2
MSE×103 0.70.8 184.9 114.2 8.73.1

Avg. Cov 0.990.00 0.990.00 0.990.00 0.990.00

Avg. Length 0.100.00 2.940.00 2.750.00 2.820.00

3
MSE×103 1.50.7 237.84 337.29 298.22

Avg. Cov 0.990.00 0.990.00 0.990.00 0.990.00

Avg. Length 0.100.01 2.490.00 2.410.00 2.360.00

4
MSE×103 0.30.2 4.41.3 7.32.56 6.252.28

Avg. Cov 0.990.00 1.000.00 0.990.00 1.000.00

Avg. Length 0.160.01 4.550.00 4.400.00 4.380.00

Table 3: Mean Squared Error (MSE), average coverage and average length of 95% credible
interval for SGTM, LS, HOLRR and ENV are presented for cases under simulation Scenario
1 for the continuous case. The lowest MSE in each case is boldfaced. Results are averaged
over 50 replications and the standard deviations over 50 replications are reported in the
subscript of every number.

related to the predictor of interest to be very close to 1 or 0 for all reasonable values of cut-off

t, depending on whether a tensor node is related or not to the predictor of interest in the

truth, respectively. As a consequence, TPR and FPR values (see Figure 1) turn out to be

close to 1 and 0, respectively, for all the simulation cases, indicating a close to perfect active

node detection. A close investigation of Figure 1 also reveals marginally better performance

in terms of node identification with decreasing node or edge sparsity in Scenario 2.

Table 5 presents TPR and FPR values for identifying cells significantly related to the

predictor of interest. While Scenario 1 yields excellent performance, the performance tends

to be moderate in Scenario 2 under model mis-specification. In particular, under Scenario

2, with decreasing node and/or edge sparsity, both TPR and FPR increase significantly. We

also observe significantly higher TPR and FPR upon increasing the number of tensor nodes

p.

Figure 2 presents posterior probabilities of the effective dimensionality R̂ in all simulation

cases under Scenarios 1 and 2. Under Scenario 1, R̂ yields the highest posterior probability
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Competitors
Case SGTM LS HOLRR ENV

1
MSE 0.130.04 0.230.06 0.290.08 0.220.04

Avg. Cov 0.970.01 0.970.01 0.910.02 0.930.01

Avg. Length 0.140.02 0.940.00 0.740.00 0.710.00

2
MSE 0.330.03 0.250.04 0.200.02 0.280.02

Avg. Cov 0.820.03 0.980.00 0.840.00 0.840.00

Avg. Length 0.100.01 1.480.00 0.850.00 0.820.00

3
MSE 0.120.02 0.170.04 0.280.05 0.200.03

Avg. Cov 0.950.01 0.980.00 0.930.01 0.910.01

Avg. Length 0.220.02 1.140.00 0.920.00 0.880.00

4
MSE 0.280.04 0.120.00 0.250.03 0.290.03

Avg. Cov 0.790.04 0.990.00 0.830.01 0.820.01

Avg. Length 0.180.02 1.700.00 1.000.00 0.920.00

5
MSE 0.150.02 0.210.04 0.310.08 0.200.04

Avg. Cov 0.960.00 0.980.01 0.920.01 0.920.01

Avg. Length 0.160.02 1.110.00 0.840.00 0.800.00

6
MSE 0.240.04 0.100.01 0.360.04 0.350.02

Avg. Cov 0.870.02 0.990.00 0.920.01 0.910.01

Avg. Length 0.230.01 1.460.00 1.090.00 1.070.00

7
MSE 0.260.03 0.120.01 0.360.03 0.410.03

Avg. Cov 0.850.01 0.990.00 0.900.01 0.900.01

Avg. Length 0.260.04 1.720.00 1.300.00 1.250.00

Table 4: Mean Squared Error (MSE), average coverage and average length of 95% credible
interval for SGTM, LS, HOLRR and ENV are presented for cases under simulation Scenario
2 for the continuous case. The lowest MSE in each case in boldfaced. Results are averaged
over 50 replications and standard deviations over 50 replications are reported in the subscript
of every number.

corresponding to the true dimension R∗ of the latent variables in all cases. We expect this

observation, since under Scenario 1, the true coefficient B∗ assumes a low-rank structure

with R∗ less than the fitted dimension R. The variable selection architecture on the λr’s

are able to recover the dimension of the true symmetric tensor. In contrast, B∗ is full rank

under Scenario 2. Hence, SGTM, with the tensor coefficient B having a low-rank structure,

while estimating B∗ by B, consumes all available ranks, resulting in the posterior mode of

R̂ being R in all simulations.
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Operating Characteristic
Scenario TPR FPR

1

Case 1 0.98 0.00
Case 2 0.99 0.00
Case 3 0.97 0.00
Case 4 1.00 0.00

2

Case 1 0.42 0.00
Case 2 0.65 0.13
Case 3 0.52 0.07
Case 4 0.78 0.23
Case 5 0.48 0.02
Case 6 0.68 0.12
Case 7 0.64 0.08

Table 5: True Positive Rates (TPR) and False Positive Rates (FPR) in identifying cells
which are significantly related to the predictor under all cases in Section 4.1.

5 Brain Connectome Application

This section illustrates the inferential ability of SGTM for symmetric tensor responses

with continuous-valued cell entries in the context of a diffusion tensor magnetic resonance

imaging (DTI) dataset. DTI is an imaging procedure that allows the measurement of re-

stricted diffusion of water in brain tissues to construct neural tract images. In the context

of DTI, the human brain is divided into 68 cortical regions of interest (ROIs), with 34 re-

gions each in the left and the right hemispheres, respectively, using the Desikan brain atlas

(Desikan et al., 2006). Using DTI, a brain network for each subject is constructed as a

symmetric matrix with row and column indices corresponding to different ROIs, and entries

corresponding to the estimated number of ‘fibers’ connecting pairs of brain regions. We

standardize each entry of the network response matrix by centering and scaling over all the

subjects. The centered and scaled network response matrices have cell entries in R which

allows us to assume normality of the error distributions. For each subject, the dataset also

has information on a measure of creativity, known as the Composite Creativity Index (CCI).

The CCI measure, proposed by Jung et al. (2010), is formulated by linking measures of di-

vergent thinking and creative achievement to cortical thickness of young (23.7 ± 4.2 years),

19



0.95

0.96

0.97

0.98

0.99

1.00

0.01 0.25 0.5 0.75 0.99
t

TP
R

Cases

Case 1

Case 2

Case 3

Case 4

(a) TPR: Scenario 1

0.75

0.80

0.85

0.90

0.95

1.00

0.01 0.25 0.5 0.75 0.99
t

TP
R

Cases

Case 1

Case 2

Case 3

Case 4

Case 5

Case 6

Case 7

(b) TPR: Scenario 2

0.0

0.1

0.2

0.3

0.4

0.5

0.01 0.25 0.5 0.75 0.99
t

FP
R

Cases

Case 1

Case 2

Case 3

Case 4

(c) FPR: Scenario 1

0.00

0.05

0.10

0.15

0.20

0.25

0.01 0.25 0.5 0.75 0.99
t

FP
R

Cases

Case 1

Case 2

Case 3

Case 4

Case 5

Case 6

Case 7

(d) FPR: Scenario 2

Figure 1: Figures in the first row show TPR values in detecting tensor nodes significantly
associated with the predictor of interest, under each scenario (Section 4.1). Figures in the
second row show FPR values in detecting tensor nodes significantly associated with the
predictor of interest, under each scenario (Section 4.1).

healthy subjects. Three independent judges grade the creative products of a subject from

which the CCI is derived. The DTI dataset we consider consists of brain network informa-

tion along with CCI for n = 79 individuals. As mentioned before, both the symmetric brain

network tensor and CCI values are standardized over individuals. Age (standardized) and

sex (binary) are also available as additional covariates.

Our primary scientific goal in this context is to comprehend the relationship between brain

connectivity patterns and creativity, as measured by the CCI. Principally, we would like to
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Figure 2: Posterior distribution of the effective dimensionality in various cases under Scenar-
ios 1 and 2 for SGTM in the continuous case. The first row shows the four cases in Scenario
1, while the second and third rows show the seven cases in Scenario 2.

identify nodes in the brain (or brain regions of interest - ROIs) significantly related to the

CCI, controlling for confounding covariates (age and gender). Thus model (2) with R = 5

is analyzed with a standardized brain network matrix as the symmetric tensor response,

CCI as the predictor of interest, and age and sex as auxiliary predictors. Identical prior

distributions are used as in the simulation studies.
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5.1 Findings from SGTM

Figure 3 shows the estimated posterior probability of each ROI being actively related to

CCI. The kth ROI is identified as active if P (ηk = 1|Data) exceeds 0.5. This criteria, when

applied to the real data discussed above, identifies 34 ROIs out of 68 as active, which are

mentioned in Table 6 . Of these 34 ROIs, 18 belong to the left portion of the brain (or the

left hemisphere) and 16 belong to the right hemisphere.

Figure 3: Left and right hemispheres of the human brain (lateral and medial views) with all
68 regions of interest (ROIs). The color and size of the ROIs vary according to the value of
the posterior probabilities of them being actively related to the composite creativity index
(CCI).

Among the active ROIs detected by our method, a sizable number is part of the frontal

(13) and temporal (6) regions in both hemispheres. The frontal cortex has been scientifically

linked with spontaneity, memory, language, initiation, divergent thinking, problem solving

ability, motor function, judgement, risk taking, impulse control and social behavior. De

novo artistic expression has also been found to be associated with the temporal and frontal

regions (Razumnikova, 2007, Miller and Milner, 1985).
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Left Hemisphere Lobes
Temporal Cingulate Frontal Occipital Parietal Insula
fusiform rostral-anteriorcingulate caudal-middlefrontal cuneus precuneus

middle frontal gyrus caudal-anteriorcingulate medial-orbitofrontal pericalcarine superior-parietal
parahippocampal posterior cingulate paracentral
temporal pole pars-triangularis

precentral
superior-frontal gyrus

pars-orbitalis
Right Hemisphere Lobes

Temporal Cingulate Frontal Occipital Parietal Insula
fusiform caudal-anteriorcingulate caudal-middlefrontal cuneus postcentral

superior-temporal isthmus-cingulate paracentral pericalcarine superior-parietal
rostal-anteriorcingulate pars-opercularis lingual

pars-orbitalis
pars-triangularis
superior-frontal

Table 6: Brain regions (ROIs) associated with the composite creativity index as detected
by SGTM. The significant ROIs have been listed according to their memberships in 12 lobes
(anatomical portions) of the brain.

SGTM LS HOLRR ENV
MSPE 0.72 0.79 0.78 0.76

Avg. Coverage 0.96 0.99 0.98 0.99
Avg. Length 3.47 4.96 4.53 4.04

Table 7: MSPE, coverage and length of 95% predictive intervals corresponding to all com-
petitors for the real data. Coverage and length of 95% predictive intervals are averaged over
all samples.

Figure 4 shows the estimated posterior densities of the sex and age covariates, where

sex appears to be significantly related to the brain connectome. Age appears not to be

significant, perhaps due to the fact that all subjects in the brain connectome data are within

a narrow age range of about 19−28 years. The posterior mean of the effective dimensionality

R̂ turns out to be 2.

The predictive performance of SGTM, LS, HOLRR and ENV are also compared and

presented in Table 7, which shows marginally superior performance by SGTM over its com-

petitors in terms of MSPE, with ENV being the second best performer. All competitors

show coverage more than nominal, though SGTM yields the narrowest predictive interval

among all competitors.

Sensitivity to the choice of R. Finally, to check sensitivity to the choice of R on the
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Figure 4: Figure on the left shows the posterior density of β1, the coefficient for the sex
covariate. The figure on the right shows the posterior density of β2, the coefficient for the
age covariate.

R = 5 R = 7 R = 9
MSPE 0.72 0.73 0.73

Mean effect. dimensionality 2.00 2.19 2.28

Table 8: MSPE and mean effective dimensionality of SGTM under different choices of R.

performance of SGTM, we moderately perturb R and run the data analysis for SGTM with

R = 7 and R = 9, and report the posterior mean of the effective dimensionality, along with

MSPE. Table 8 shows moderate increase in the mean effective dimensionality with choices of

larger R, though the shrinkage effect pulls the mean of R̂ close to 2 under different choices

of R. The perturbation of R has a negligible effect on MSPE, as observed in Table 8.

6 Conclusion and Future Work

This article proposes a Bayesian generalized linear modeling framework with a symmetric

tensor response and a vector covariate. Adopting a symmetric rank-R PARAFAC decom-

position for the tensor coefficients corresponding to the scalar components of the vector
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covariate, the proposed model is able to considerably reduce the number of free parameters

to model. We employ a novel hierarchical mixture prior to enable identification of tensor

nodes and cells significantly related to each predictor. A major contribution of this article

pertains to detailing out theoretical conditions to achieve a near optimal posterior conver-

gence rate for the predictive distribution of the proposed model. Simulation examples and

the brain connectome data application demonstrate superior empirical performance of the

proposed method with respect to the state-of-the-art competitors.

Although this article involves a symmetric tensor response of order two in the data

application, there are some interesting applications and scientific questions that may be

addressed using symmetric tensor regression with higher order tensors, for instance in the

field of international trade. Consider the following motivating example. Economists studying

international trade closely monitor multilateral trade (for e.g., trilateral trade agreements)

between countries, along with a number of country specific economic indicators, e.g., the sum

of the gross domestic products (GDP) and the sum of the total output of the manufacturing

sectors of these countries (Chan and Kuo, 2005; Li and Zhou, 2009). These economic datasets

often lead to multiple scientific questions relevant to world economic behavior. First, it is

important to understand how trilateral trade varies with the sum of GDP or the total output

of the manufacturing sectors of these countries over time. Another important question is to

identify countries which are significant economic engines of the world, from the perspective

of driving GDP growth and other important economic indicators. To formulate this problem

statistically, consider p countries at time i, and looking at triplets of countries, data on

trilateral trade between them can be thought of as a 3-D symmetric tensor, denoted by

yi = ((yi,j)), with the j = (j1, j2, j3)th entry yi,j recording the total trilateral trade between

countries j1, j2 and j3. The predictor variables of interest are xi1 = sum of the total GDP

of the p countries at time i, and xi2 = sum of total manufacturing output of the p countries

at time i. Monthly data on the symmetric tensor and the two variables of interest over the
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relevant time period can be modeled using the proposed symmetric tensor regression model.

Importantly, our model offers inference on the nodes of the symmetric tensor significantly

related to the predictors, i.e., the countries which are major drivers of the world economy. In

this context, it is generally believed that free trade agreements between countries can benefit

the overall economic health of the world. Notably, there have been important trilateral free

trade agreements between China-Japan-South Korea (Chiang, 2013), and U.S.A.-Canada-

Mexico (referred to as the North Atlantic Free Trade Agreement (NAFTA)) (Brown et al.,

1995). It is instructive to statistically analyze if the countries benefited from the trilateral

free trade agreements and which were the economic drivers of the world.

Our framework can be extended to address modeling questions mildly different from

ours. For example, if instead of having dummy entries in the diagonal, our interest also lies

in modeling nontrivial entries in the diagonal, we can simply model Bh =
∑R

r=1 λh,ru
(r)
h ◦· · ·◦

u
(r)
h , instead of modeling its upper triangular entries jointly. Moreover, there are motivating

applications in which a higher-order tensor response has symmetry across some modes, but

not others. We can extend our modeling framework in such cases by sharing components

of the CP/PARAFAC decomposition along modes having symmetry. For example, a brain

network can be inferred over multiple conditions, which would yield a three-way tensor for

each individual, ROIs × ROIs × Conditions, with symmetry in the first two modes but not

the third. In this case, we model Bh,j =
∑R

r=1 λh,ru
(r)
h,j1

u
(r)
h,j2

w
(r)
h,j3

, i.e., the component of the

CP factorization corresponding to the mode representing the conditions is modeled using a

different vector w
(r)
h = (w

(r)
h,1, ..., w

(r)
h,s)
′. Here s represents dimension of Bh along the mode

‘condition.’
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The supplementary material consists of four sections. Section 1 presents results on poste-

rior convergence for the proposed SGTM model. Section 2 presents proofs of the theoretical

results mentioned in Section 1. Section 3 presents simulation results for SGTM along with

its competitors when the response is a two dimensional binary symmetric tensor. The sim-

ulation results for the two dimensional continuous symmetric tensor response have been

presented in Section 4.1 of the main article. Section 4 discusses convergence diagnostics of

the posterior distribution for SGTM. Section 5 adds results for two simulation cases repre-

senting weak signal strength. Finally, Section 6 outlines the full conditional distributions of

the parameters in SGTM for implementing MCMC.

1 Convergence Rate for Predictive Densities

This section presents posterior convergence properties of the proposed symmetric gener-

alized tensor model (SGTM). We adopt the framework outlined in Jiang (2007), with some
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important differences. While Jiang (2007) studies the convergence rate of the posterior pre-

dictive distribution with a scalar response and vector predictors, we focus on a symmetric

tensor response and vector predictors. The novel model development and the prior structure

described in Section 2 of the main article present theoretical challenges which are unique

and very different from Jiang (2007).

Let f ∗(Y |x) be the true conditional density of Y given x and f(Y |x) be the random

predictive density for which we obtain a posterior. Define an integrated Hellinger distance

between f ∗ and f as DH(f, f ∗) =
√∫ ∫

(
√
f(Y |x)−

√
f ∗(Y |x))2νY (dY )νx(dx), where νx

is the unknown probability measure for x and νY is the dominating measure for f and f ∗.

We focus on showing Ef∗Π[DH(f, f ∗) > εn|{Y i,xi}ni=1] < κn, for large n, for some sequences

εn, κn converging to 0 as n→∞, where Π(A|{Y i,xi}ni=1) is the posterior probability of the

set A. The result implies that the posterior probability outside a shrinking neighborhood

around the true predictive density f ∗ converges to 0 as n → ∞. In particular, we seek to

establish a convergence rate εn of order close to the parametric optimal rate of n−1/2 upto a

log(n) factor.

1.1 Framework and Main Results

In what follows, we assume m = 1 predictor of interest (hence get rid of the subscript h

for all parameters) and no auxiliary predictor for simplifying calculations, though the results

assume straightforward extension to cases where m > 1 and l > 1. Without loss of generality,

the predictor x satisfies |xi| < 1 for all i. Let pn denote the number of nodes and Rn denote

the rank of CP/PARAFAC decomposition for B in presence of sample size n. We assume

that pn and Rn are both non-decreasing functions of n, with Rn < pn for all large n. Hence,

the number of elements in J , given by qn = pn(pn− 1)...(pn−D+ 1)/D!, naturally becomes

a function of n. This paradigm attempts to capture the fact that qn grows much faster than
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n, and a higher rank CP decomposition of B can be estimated more precisely in presence of

a larger sample size n. The true density and the predictive density of the fitted model are

assumed to lie in the class of generalized linear models given by

f(Y |x) =
∏
j∈J

fj(Yj|x), fj(Yj|x) = exp(a(αj)Yj + b(αj) + c(Yj)), αj = xBj

f ∗(Y |x) =
∏
j∈J

f ∗j (Yj |x), f ∗j (Yj|x) = exp(a(α∗j)Yj + b(α∗j) + c(Yj)), α
∗
j = xB∗j , (1)

where a(w) and b(w) are continuously differentiable functions, with a(w) having a nonzero

derivative. This parametrization includes some popular classes of densities, e.g., for the

binary logit or probit link and a continuous response with i.i.d. normal errors having known

variance. Similar to B, the true tensor coefficient B∗ (having the jth cell as B∗j , j ∈ J )

also assumes symmetric tensor decomposition with rank Rn, i.e., B∗j =
∑Rn

r=1 u
∗(r)
j1

...u
∗(r)
jD

, for

j ∈ J . Although this is a somewhat restrictive assumption, it has been frequently employed

in earlier theoretical literature on tensor regressions for simplifying calculations (Guhaniyogi

et al., 2017; Guhaniyogi and Spencer, 2018). Further, we assume M = I for simplifying

calculations and λr = 1 for all r, since no rank selection is required due to the assumption

of the true rank being equal to the fitted rank. Finally, for two sequences cn and dn, cn ≺ dn

signifies cn/dn → 0 as n → ∞. With these notations, we state the following theorem,

the proof of which can be found in the next section (i.e., Section 2 of this supplementary

material).

Theorem 1.1 Define G(∆) = 1 + ∆ sup
|w|≤∆

|a′(w)| sup
|w|≤∆

|b′(w)/a′(w)|, where a′(w) and b′(w)

are derivatives of functions a(w) and b(w), respectively. For a sequence εn satisfying 0 <

εn < 1 and nε2n →∞ and another sequence Cn, let the following conditions hold

(i) Rnpn log(pn) ≺ nε2n
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(ii) Rnpn log(1/ε2n) ≺ nε2n

(iii) Rnpn log(G(RnC
D
n )) ≺ nε2n,

(iv) (1− Φ(Cn)) ≤ e−4nε2n, for all large n

(v) limn→∞
∑pn

k=1 ||ũ
∗
k|| <∞, where ũ∗k = (u

∗(1)
k , ..., u

∗(Rn)
k )T .

Then, Ef∗Π{DH(f, f ∗) > 4εn|{Y i, xi}ni=1} < 4e−nε
2
n, for all large n.

As mentioned in Jiang (2007), G(∆) grows at most in the order of |∆|2 for regression involving

i.i.d. normal errors and for binary probit regression. Also G(∆) grows at most linearly with

|∆| for binary logistic regression. For our theoretical exposition, we will focus on continuous

and binary regression only. Theorem 1.1, together with the mentioned functional properties

of G(∆), leads to the following result on the convergence rate εn of the proposed model.

Corollary 1.2 Assume that the link function H(·) in equation (1) of the main article is

a logit link, or a probit link in a binary regression, or an identity link in a continuous

regression with i.i.d. normal errors having a known variance. Let, limn→∞
∑pn

k=1 ||ũ
∗
k|| <∞,

where ũ∗k = (u
∗(1)
k , ..., u

∗(Rn)
k )T . Further assume pn grows at a rate slower than nθ, θ < 1 (i.e.

pn ≤ C∗1n
θ) and the tensor rank Rn grows at a much slower rate of (log n)k1 for some k1

(i.e. Rn ≤ C∗2(log n)k1). Choose Cn such that nµ1 ≤ Cn ≤ nµ2, for some µ1, µ2 satisfying

θ/2 < µ1 < µ2. Then, the convergence rate εn can be taken as εn ∼ n−(1−θ)/2(log n)k1/2+1.

It is evident that the convergence rate is a function of how the number of tensor nodes and

the rank of the true tensor (same as the rank of the fitted tensor) grow with n. Intuitively, pn

should grow at a much faster rate than Rn, and both should be bounded by an appropriate

function of n to achieve a good convergence rate. Finally, it is worth noting that the condition

limn→∞
∑pn

k=1 ||ũ
∗
k|| <∞ includes as a special case the scenario where only a fixed and finite
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number of ||ũ∗k||’s are nonzero, while also allowing perhaps a setup with many small ||ũ∗k||’s,

none of which are exactly zero.

2 Proofs of Theoretical Results in Section 1 of the Sup-

plementary Material

Lemma 2.1 Let ũ∗k = (u
∗(1)
k , ..., u

∗(Rn)
k )T and γj,n, j ∈ J be the only positive root of the

equation

x
D∏
s=2

(x+ ||ũ∗js||) + ||ũ∗j1||x
D∏
s=3

(x+ ||ũ∗js||) + · · ·+ x
D−1∏
s=1

||ũ∗js|| = δn (2)

Assume γn = minj∈J γj,n. Then, Π(||B −B∗||∞ ≤ δn) ≥ Π(||ũk − ũ∗k|| ≤ γn, k = 1, .., pn).

Proof for j ∈ J ,

|Bj−B∗j | = |
Rn∑
r=1

u
(r)
j1
· · ·u(r)

jD
−

Rn∑
r=1

u
∗(r)
j1
· · ·u∗(r)jD

| = |
Rn∑
r=1

(u
(r)
j1
−u∗(r)j1

)
∏D

s=2 u
(r)
js
|+ · · ·+ |

Rn∑
r=1

(u
(r)
jD
−

u
∗(r)
jD

)
∏D−1

s=1 u
∗(r)
js
| ≤ ||ũj1 − ũ∗j1||

∏D
s=2 ||ũjs|| + · · · + ||ũjD − ũ∗jD ||

∏D−1
s=1 ||ũ

∗
js|| ≤ ||ũj1 −

ũ∗j1||
∏D

s=2(||ũjs − ũ∗js||+ ||ũ
∗
js||) + · · ·+ ||ũjD − ũ∗jD ||

∏D−1
s=1 ||ũ

∗
js||.

If ||ũk−ũ∗k|| ≤ γn, k = 1, .., pn, the above inequality implies that |Bj−B∗j | ≤ γn
∏D

s=2(γn+

||ũ∗js||) + · · ·+ γn
∏D−1

s=1 ||ũ
∗
js|| ≤ δn.

Thus Π(||B −B∗||∞ ≤ δn) ≥ Π(||ũk − ũ∗k|| ≤ γn, k = 1, .., pn).

Lemma 2.2 With γn and ũ∗k defined as in Lemma 2.1,

Π(||B −B∗||∞ ≤ δn) ≥ e−
∑pn
k=1 ||ũ

∗
k||2/2(1/

√
2π)Rnpn

Rnpn
Rnpn + 1

(2γn/Rn)Rnpn e−pnγ
2
n/Rn .
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Proof

Π(||B −B∗||∞ ≤ δn) ≥ Π(||ũk − ũ∗k|| ≤ γn, k = 1, .., pn) ≥ E [Π(||ũk − ũ∗k|| ≤ γn, k = 1, .., pn|ξ)]

≥ E

[
pn∏
k=1

{
e−||ũ

∗
k||2/2Π(||ũk|| ≤ γn|ξ)

}]
= e−

∑pn
k=1 ||ũ

∗
k||2/2E

[
pn∏
k=1

Π(||ũk|| ≤ γn|ξ)

]
, (3)

where the first inequality follows from Lemma 2.1 and the second inequality follows from

the Anderson’s Lemma. We will now make use of the fact that
∫ a
−a e

−x2/2dx ≥ e−a
2
2a to

conclude

Π(||ũk|| ≤ γn|ξ) ≥
Rn∏
r=1

Π(|u(r)
k | ≤

γn
Rn

|ξ) =
Rn∏
r=1

(
(1− ξ) +

(
ξ√
2π

)∫ γn/Rn

−γn/Rn
e−x

2/2

)

≥
Rn∏
r=1

(
(1− ξ) +

(
ξ√
2π

)
e−γ

2
n/R

2
n

2γn
Rn

)
≥
[
(1− ξ) +

ξ√
2π
e−γ

2
n/R

2
n

2γn
Rn

]Rn
.

pn∏
k=1

Π(||ũk|| ≤ γn) ≥ E

[
(1− ξ) +

ξ√
2π

exp

(
− γ

2
n

R2
n

)
2γn
Rn

]Rnpn
= E

[
Rnpn∑
h1=0

(
Rnpn
h1

)
(1− ξ)h1

(
ξ√
2π

)Rnpn−h1 (2γn
Rn

)Rnpn−h1
exp(−(Rnpn − h1)γ2

n

R2
n

)

]

≥
(

1√
2π

)Rnpn Rnpn∑
h1=0

(
Rnpn
h1

)
Beta(Rnpn − h1 + 1, h1 + 1)

(
2γn
Rn

)Rnpn−h1
exp

(
−(Rnpn − h1)γ2

n

R2
n

)

≥
(

1√
2π

)Rnpn Rnpn∑
h1=0

(Rnpn)!

h1!(Rnpn − h1)!

h1!(Rnpn − h1)!

(Rnpn + 1)!

(
2γn
Rn

)Rnpn−h1
exp

(
−(Rnpn − h1)γ2

n

R2
n

)

≥
(

1√
2π

)Rnpn Rnpn
Rnpn + 1

(
2γn
Rn

)Rnpn
exp

(
−pnγ

2
n

Rn

)
.

Thus, Π(||B −B∗||∞ ≤ δn) ≥ exp
(
−

∑pn
k=1 ||ũ

∗
k||2

2

)(
1√
2π

)Rnpn
Rnpn
Rnpn+1

(
2γn
Rn

)Rnpn
exp

(
−pnγ2n

Rn

)
Lemma 2.3 Let x∗ be a real positive root of the equation P (x) = xD + aD−1x

D−1 + · · · +

a1x− a0 = 0 with a0, a1, ..., aD−1 ≥ 0. Then 1
x∗
≤ 1 + a1

a0
.
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Proof Using a change of variable x1 = 1
x
, we have xD1 − a1

a0
xD−1

1 −· · ·− aD−1

a0
x− 1

a0
= 0. Since

this is a monic polynomial with 1
x∗

as one of its positive real roots, by Lagrange-Maclaurin

theorem 1
x∗
≤ 1 + a1

a0
.

Proof of Theorem 1.1

Proof Define,

D0(f, f ∗) =

∫ ∫
f ∗(Y |x) log(f ∗(Y |x)/f(Y |x))νY (dY )νx(dx),

Dt(f, f ∗) = (1/t)

{∫ ∫
f ∗(Y |x)(f ∗(Y |x)/f(Y |x))tνY (dY )νx(dx)

}
.

Let Pn be the sequence of sets of probability densities and Fn(εn,Pn) be the minimum num-

ber of Hellinger balls of radius εn needed to cover Pn. Invoking Proposition 1 in Jiang (2007),

it suffices to show that the following conditions hold for sufficiently large n to prove Theorem

1.1:

(a) logFn(εn,Pn) ≤ nε2n, (b) Π(Pcn) ≤ e−2nε2n , (c) Π[f : Dt(f, f ∗) ≤ ε2n/4] ≥ e−nε
2
n/4, with

t = 1.

Proof of condition (b): Define Pn as the set of all densities f s.t. |u(r)
k | ≤ Cn, for all

k ∈ N and r = 1, ..., Rn. Then for all large n,

Π(Pcn) = Π(∪pnk=1 ∪
Rn
r=1 {|u

(r)
k | > Cn}) ≤ RnpnΠ(|u(r)

k | > Cn) = 2Rnpn(1− Φ(Cn)) ≤ e−2nε2n ,

where the last inequality follows by assumptions (i) and (iv).

Proof of condition (a): Let us consider balls of the form (u
(r)
k − ρ, u

(r)
k + ρ)pn,Rnk,r=1 with

their centers |u(r)
k | ≤ Cn, i.e., the densities f defined through parameters u

(r)
k ’s belong to Pn.
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There are at most F (ρ) = (Cn/ρ + 1)Rnpn such balls needed to cover the parameter space

{u(r)
k : k = 1, .., pn; r = 1, .., Rn, |u(r)

k | ≤ Cn}.

Let f̃ be any density in Pn, with f̃(Y |x) =
∏

j∈J f̃j(Yj|x), f̃j(Yj |x) = exp(a(α̃j)Yj +

b(α̃j) + c(Yj)), α̃j = xB̃j , where B̃j =
∑Rn

r=1 v
(r)
j1
...v

(r)
jD

, with |v(r)
k | ≤ Cn for all k ∈ N ,

r = 1, .., Rn. There exists a density f ∈ Pn represented by parameters u
(r)
k ’s such that

v
(r)
k ∈ (u

(r)
k − ρ, u

(r)
k + ρ) for every r and k. Note that,

DH(f, f̃) ≤
{
D0(f, f̃)

}1/2

=

{∑
j∈J

D0(fj , f̃j)

}1/2

.

One can apply Taylor expansion onD0(fj , f̃j) to show thatD0(fj , f̃j) ≤ Ex(a
′(ᾱj)(−b′(αj)/a

′(αj))+

b′(ᾱj))(αj − α̃j), where ᾱj is an intermediate point between αj and α̃j . Now note that,

|αj − α̃j| ≤ |Bj − B̃j | = |
Rn∑
r=1

u
(r)
j1
...u

(r)
jD
−

Rn∑
r=1

v
(r)
j1
...v

(r)
jD
|

≤
Rn∑
r=1

{
|u(r)
j1
− v(r)

j1
|
D∏
l=2

|u(r)
jl
|+ |v(r)

j1
||u(r)

j2
− v(r)

j2
|
D∏
l=3

|u(r)
jl
|+ · · ·+

D−1∏
l=1

|v(r)
jl
||u(r)

j2
− v(r)

j2
|
}

≤ RnρC
D−1
n .

Similar calculations lead to |αj |, |α̃j| (and therefore |ᾱj|) being bounded by RnC
D
n . Hence,

DH(f, f̃) ≤

{∑
j∈J

D0(fj , f̃j)

}1/2

≤ {2qn sup
|w|≤RnCDn

|a′(w)| sup
|w|≤RnCDn

|b′(w)/a′(w)|ρRnC
D−1
n }1/2.

Choosing ρ = ε2n/(2qn sup
|w|≤RnCDn

|a′(w)| sup
|w|≤RnCDn

|b′(w)/a′(w)|RnC
D−1
n ), one gets DH(f, f̃) ≤
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εn. Hence

logFn(εn,Pn) ≤ logF (ρ) ≤ Rnpn log

(
1 + 2qn sup

|w|≤RnCDn
|a′(w)| sup

|w|≤RnCDn
|b′(w)/a′(w)|RnC

D
n /ε

2
n

)

≤ Rnpn log(2qn/ε
2
n) +Rnpn log(G(RnC

D
n ))

≤ DRnpn log(2pn) +Rnpn log(1/ε2n) +Rnpn log(G(RnC
D
n ))

≤ nε2n, for large n, by assumptions (i)-(iii).

Proof of Condition (c): Take t = 1. By mean value theorem, ∃ κ s.t. Dt(f, f ∗) =

Ex
{
g(κ)T (α−α∗)

}
, where g represents the continuous derivative function of f in the

neighborhood of f ∗. Let δn = ε2n/qn. If for each j ∈ J , Bj ∈ (B∗j − δn, B
∗
j + δn), then

||α − α∗|| ≤
∑

j∈J |αj − α∗j| ≤
∑

j∈J |Bj − B∗j | ≤ qnδn ≤ ε2n, for large n. Again, ||κ|| ≤

||α − α∗|| + ||α∗|| ≤ qnδn + mn = ε2n + mn, where mn = ||B∗|| ≤
∑

j∈J ||ũ
∗
j1
|| · · · ||ũ∗jD || ≤

(
∑pn

k=1 ||ũ
∗
k||)D, which is bounded by assumption (v), for sufficiently large n. Hence ||g(κ)||

is bounded for sufficiently large n. Thus, Dt(f, f ∗) = Ex
{
g(κ)T (α−α∗)

}
≤ ∆2qnδn ≤ ε2n/4

for large n, for some constant ∆2.

This implies that Π({f : Dt(f, f ∗) ≤ ε2n/4}) ≥ Π({B : Bj ∈ (B∗j − δn, B∗j + δn),∀ j ∈

J }). By Lemma 2.2, − log Π({B : Bj ∈ (B∗j − δn, B
∗
j + δn),∀ j ∈ J }) = − log Π(||B −

B∗||∞ ≤ δn) ≤
∑pn

k=1 ||ũ
∗
k||2/2 + (Rnpn/2) log(2π) + log(1 + (1/(Rnpn))) + Rnpn log(Rn) +

Rnpn log(1/γn) + pnγ
2
n/Rn.

Since ||ũ∗k|| ≥ 0,
∑pn

k=1 ||ũ
∗
k||2 ≤ (

∑pn
k=1 ||ũ

∗
k||)2 is bounded for large n, by assump-

tion (v). By assumption (i), Rnpn log(Rn) ≺ nε2n (hence Rnpn ≺ nε2n). Using Lagrange-

Maclaurin bound on the positive root of a monic polynomial of degree D, we have γn ≤

1 + δ
1/D
n , implying pnγ

2
n/Rn ≺ nε2n, for all large n, by assumption (i). Using Lemma 2.1

and 2.3, 1/γn ≤ (
∑pn

k=1 ||ũ
∗
k||)D/δn + 1. If m0 = limn→∞

∑pn
k=1 ||ũ

∗
k||, then Rnpn log(1/γn) ≤

Rnpn log(mD
0 /δn) = DRnpn log(m0) + Rnpn log(qn) + Rnpn log(1/ε2n) ≤ DRnpn log(m0) +

9



DRnpn log(pn) +Rnpn log(1/ε2n) ≺ nε2n, by assumptions (i) and (ii).

All the aforementioned calculations yield − log Π(||B − B∗||∞ ≤ δn) ≤ nε2n/4, for all

large n, which implies Π({f : Dt(f, f ∗) ≤ ε2n/4}) ≥ e−nε
2
n/4 for all large n. This concludes

the proof.

3 2D Symmetric Binary Tensor Response Example

This section presents a special case in which the response is an undirected network with

p nodes, expressed in the form of a symmetric p×p matrix having entries 0 or 1. A value of 1

in the (j1, j2)th entry signifies an edge between the j1th and the j2th nodes. We run SGTM

along with LS in the four cases under Simulation 1 and 7 cases under Simulation 2 described

in the main article. Referring to Table 1, SGTM yields a vastly superior performance to LS

in terms of point estimation and uncertainties under Scenario 1, where theoretical guarantee

exists for SGTM. However, the difference in performance becomes less stark under Scenario 2.

Under Cases 1 and 3 with a smaller p and higher node and cell sparsities, SGTM outperforms

LS in terms of point estimation. Under Cases 2 and 4 with a higher p/n ratio and lower

node sparsity, SGTM has a marginal edge over LS. When the p/n ratio is small, SGTM

continues to enjoy superior point estimation ofB over LS, even after decreasing node sparsity

(comparing Cases 1 & 6) or cell sparsity (comparing Cases 1 & 5). However, the gap between

the performances of SGTM and LS narrows when either node or cell sparsity decreases. In

fact, in presence of both low node sparsity and low cell sparsity (Case 7), LS becomes

competitive with SGTM.

The uncertainty quantified by SGTM is more precise than LS, with SGTM delivering

much narrower credible intervals with a similar coverage in Scenario 1. In Cases 2 & 4 under

Scenario 2, both competitors suffer from under-coverage, perhaps due to the larger p/n ratio.

In all other cases, SGTM yields either nominal or close to the nominal coverage. LS yields
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Scenario 1
MSE Avg. Coverage of 95% CI Avg. length of 95% CI

Cases SGTM LS SGTM LS SGTM LS
1 0.020.01 0.440.18 0.980.00 0.980.00 0.150.01 2.570.00

2 0.010.00 0.240.07 0.990.00 0.990.00 0.180.02 3.370.00

3 0.010.00 0.180.10 0.970.01 0.990.00 0.180.02 3.160.00

4 0.010.00 0.140.05 0.990.00 1.000.00 0.230.02 3.280.00

Scenario 2
MSE Avg. Coverage of 95% CI Avg. length of 95% CI

Cases SGTM LS SGTM LS SGTM LS
1 0.400.10 1.160.56 0.960.00 0.970.01 0.150.02 1.470.00

2 0.270.06 0.330.08 0.680.02 0.730.03 0.820.01 1.090.00

3 0.340.06 0.520.07 0.940.01 0.970.00 0.200.03 1.540.00

4 0.260.03 0.280.03 0.670.01 0.700.02 0.790.02 1.180.00

5 0.360.09 0.900.26 0.950.00 0.970.00 0.150.02 1.700.00

6 0.440.07 0.620.08 0.900.00 0.980.02 0.280.03 1.900.00

7 0.450.08 0.480.08 0.880.01 0.980.00 0.280.04 2.100.00

Table 1: Mean Squared Error (MSE), average coverage and average length of 95% credible
intervals for SGTM and LS are presented for various simulation scenarios for the binary
regression case. The lowest MSE in each case in boldfaced. All results are averaged over 50
replications.

over coverage with considerably wider 95% CIs compared to SGTM.

In terms of identifying nodes significantly associated with the predictor of interest, we

observe TPR values close to 1 and FPR values close to 0 for all reasonable cut-offs under

Scenario 1 (see Figure 1). As expected, TPR deteriorates mildly for all cases under Scenario

2, whereas FPR values are close to 0 for all reasonable cut-offs under Scenario 2. We observe

higher TPR with decreasing node and/or cell sparsity. In terms of detecting cells (edges in the

context of network response in this section) significantly related to the predictor of interest,

SGTM performs very well under all cases in Scenario 1, as observed in Table 2. Under

Scenario 2, both TPR and FPR increase with an increase in the p/n ratio. Decreasing node

and/or cell sparsity also result in higher TPR for SGTM in terms of identifying significant

cells.

As shown in Figure 2, the posterior mode of effective dimensionality R̂ turns out to be
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(c) FPR: Scenario 1
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(d) FPR: Scenario 2

Figure 1: Figures in the first row show TPR in detecting tensor nodes significantly associated
with the predictor of interest, under each scenario. Figures in the second row show FPR
in detecting tensor nodes significantly associated with the predictor of interest, under each
scenario.

R∗ in all cases under Scenario 1. As explained in Section 4.1 of the main article, B∗ is a

full-rank matrix in all cases under Scenario 2. Thus, to estimate B∗, all available ranks of

B are consumed by SGTM. This explains the posterior mode being R in all cases under

Scenario 2.
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(k) Case 7, Scenario 2:
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Figure 2: Posterior distribution of the effective dimensionality in various cases under Sce-
narios 1 and 2 for SGTM in the binary case. The first row shows the four cases in Scenario
1, while the second and third rows show the seven cases in Scenario 2.
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Operating Characteristics
Scenario TPR FPR

1

Case 1 0.94 0.00
Case 2 0.96 0.00
Case 3 1.00 0.00
Case 4 0.98 0.00

2

Case 1 0.52 0.00
Case 2 0.62 0.01
Case 3 0.74 0.03
Case 4 0.84 0.14
Case 5 0.53 0.00
Case 6 0.66 0.06
Case 7 0.62 0.04

Table 2: True Positive Rates (TPR) and False Positive Rates (FPR) in identifying edges
(cells) which are significantly related to the predictor under all cases.

4 Checking Convergence of the MCMC Chain for the

Posterior Distribution

Although the proposed model is a high dimensional Bayesian model, the mixing is quite

good for our proposed model and convergence happens rapidly. In fact, a lot of the earlier

literature on Bayesian tensor regression models (Guhaniyogi et al., 2017; Spencer et al.,

2019) show rapid convergence as a feature. Some of these earlier work have even reported

posterior inference with only a few hundred burn-ins (Guhaniyogi et al., 2017). In order

to provide evidence for the same with regard to our proposed approach, the article uses a

burn-in of 5000 iterations, with an additional 10000 MCMC samples drawn for inference

using a thinning of size 2 (please see the first paragraph of Section 3, page 11, in the article

for details). We report the average effective sample size for all the coefficients in B for the

5000 post burn-in samples in the main article. They confirm fairly uncorrelated post burn-in

samples in all simulation cases. Please see the first paragraph, Section 4.1 on page 15 of the

main article, where they are all reported.
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We also provide the trace plots of the negative log-posterior densities for the simulated

examples (please refer to Figure 3 in this document) starting from the 500-th iteration. All

plots indicate negative log-likelihood stabilizing within a range after a few iterations.

5 Simulation Studies with Weak Signal Strength

Note that the True Positive Rate (TPR) and False Positive Rate (FPR) associated with

identifying the truly influential nodes are quite high in all simulation cases in the main article.

To assess the effect of signal strength on the identification of influential nodes, we pursue

two more simulation cases under Scenario 1 with considerably weak signal strength. To be

more precise, we consider Case 1 under Scenario 1 (described in Section 4 of the main draft)

in simulation study and simulate node specific latent variables ũ∗k under the two scenarios

described below:

(a) π∗1NR∗(0.31, 0.01I) + (1− π∗1)δ0,

(b) π∗1NR∗(0.11, 0.01I) + (1− π∗1)δ0

In both cases (a) and (b), the signal strength is substantially low. In fact, case (b) shows

much weaker signal strength than case (a). Figure 4 presents the ROC curves related to

identifying influential tensor nodes for cases (a) and (b). As expected, with a much reduced

signal strength the node identification suffers considerably compared to the cases presented

in the main paper. The MSE of estimating B∗ in these two cases are given by 0.05 and 0.89

which are also substantially larger than the corresponding number in Case 1 under Scenario

1 in the main paper.
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(k) Simulation 2: case 4

Figure 3: Figures show negative log-likelihood of the posterior for the proposed model.
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Figure 4: Figures show ROC curves in identifying the influential tensor nodes.

6 Posterior Full Conditionals

6.1 Full conditionals for symmetric continuous tensor response

In this section, we report the posterior full conditionals of the parameters in the model

with a symmetric D-way tensor response (of dimension p×· · ·×p) with continuous cell entries

and m predictors of interest (xi1, ..., xim), along with l auxiliary predictors (zi1, · · · , zil)

corresponding to the ith individual. Let yi = (yi,j : j ∈ J )T , and W h = (Bh,j : j ∈ J )T ,

h = 1, ...,m. Further assume Jk = {j ∈ J : js = k, for some s}. The full conditionals are in

closed form and hence allow a Gibbs sampling procedure to sample posteriors. They can be

listed as

• β0|− ∼ N

[∑n
i=1 1T (yi−

∑m
h=1 W hxih+1

∑l
h2=1 βh2zih2 )/σ2

(nq)/σ2+1
, 1

(nq)/σ2+1

]

• βh1|− ∼ N

(∑n
i=1 z

2
ih1

1T (yi−
∑m
h=1 W hxih+1

∑l
h2=1,h2 6=h1

βh2zih2 )/σ2+aβ/bβ

q
∑n
i=1 z

2
ih1

/σ2+1/bβ
, 1
q
∑n
i=1 z

2
ih1

/σ2+1/bβ

)
, h1 =

1, ..., l.

• σ2|− ∼ IG(aσ + (nq)/2, bσ +
∑n

i=1 ||yi −
∑m

h=1W hxih + 1
∑l

h2=1 βh2zih2||2/2)

• Mh|− ∼ IW
[
(S +

∑
k:ũh,k 6=0 ũh,kũ

T
h,k), (ν + {#k : ũh,k 6= 0})

]
• υh,r|− ∼ Beta[(1 + λh,r), (r

ζ + 1− λh,r)]

17



• λh,r|− ∼ Ber(ph,r), where ph,r =
υh,rJ(Λh)(λh,r=1)

υh,rJ(Λh)(λh,r=1)+(1−υh,r)J(Λh)(λh,r=0)

and J(Λh) =
∏n

i=1 N(yi|β01 +
∑m

h=1W hxih + 1
∑l

h2=1 βh2zih2 , σ
2I). J(Λh)(λh,r=1) de-

notes J(Λh) evaluated at λh,r = 1.

• ũh,k|− ∼ wuh,k δ0(ũh,k)+(1−wuh,k)N(ũh,k|muh,k ,Σuh,k), where Uh,Jk = [UT
1,h,Jk : · · · :

UT
n,h,Jk ]

T , UT
i,h,Jk has rows (xihλh,1

∏D
s=1,js 6=k u

(1)
h,js
, ..., xihλh,R

∏D
s=1,js 6=k u

(R)
h,js

). Further

assume ỹhi,j = yi,j − β0 −
∑l

h1=1 βh1zih1 −
∑m

h2=1,h2 6=hBh2,jxih2 , ỹ
h
i,Jk is a vector of

collections of ỹhi,j over j ∈ Jk and ỹhJk is a vector consisting of ỹhi,Jk over i = 1, ..., n.

Also,

Σuk =
(
UT
h,JkUh,Jk/σ

2 +M−1
)−1

, muk = ΣukU
T
h,Jk ỹ

h
Jk/σ

2

wuk =
(1− ξh)N(ỹhJk |0, σ

2I)

(1− ξh)N(ỹhJk |0, σ2I) + πN(ỹhJk |0, σ2I +Uh,JkMUT
h,Jk)

• ηh,k|− ∼ Ber(1− wuh,k)

• ξh|− ∼ Beta(
∑p

k=1 ηh,k + 1,
∑p

k=1(1− ηh,k) + 1).

6.2 Full conditionals for symmetric binary tensor response

In this section, we report the posterior full conditionals of the parameters in the model

with a binary symmetric D-way tensor response (of dimension p× · · · × p) and m predictors

of interest (xi1, ..., xim), along with l auxiliary predictors (zi1, · · · , zil) corresponding to the

ith individual. In this case, the model can be written as

p(yi,j = 1) = eβ0+
∑m
h=1Bh,jxih+

∑l
h2=1 βh2zih2/(1 + eβ0+

∑m
h=1Bh,jxih+

∑l
h2=1 βh2zih2 ); i = 1, ..., n; j ∈ J .
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Let ψi,j = β0 +
∑m

h=1 Bh,jxih +
∑l

h2=1 βh2zih2 . Then

p(yi,j) = eψi,jyi,j/(1 + eψi,j); i = 1, ..., n; j ∈ J . (4)

Using the result in Polson et al., 2013, the data augmented representation of the distribution

of yi,j given in (4) follows as below

p(yi,j|νi,j) =
1

2
exp((yi,j − 0.5)ψi,j) exp(−νi,jψ2

i,j/2); νi,j ∼ Polya - Gamma(1, 0),

which implies

p(yi,j) =

∫ ∞
0

1

2
exp((yi,j − 0.5)ψi,j) exp(−νi,jψ2

i,j/2)p(νi,j)dνi,j

Also, let ci =
(
yi,j−0.5

νi,j
: j ∈ J

)T
, Ωi = diag(νi,j : j ∈ J ) and Wh = (Bh,j : j ∈ J )T ,

h = 1, ...,m.

The full conditionals are in closed form and hence allow a Gibbs sampling procedure to

sample posteriors. They can be listed as

• β0|− ∼ N

[∑n
i=1 1TΩi(ci−

∑m
h=1Whxih−1

∑l
h2=1 βh2zih2 )∑n

i=1 1TΩi1+1
, 1∑n

i=1 1TΩi1+1

]

• βh1 |− ∼ N

(∑n
i=1 z

2
ih1

1TΩi(ci−
∑m
h=1Whxih−1

∑l
h2=1,h2 6=h1

βh2zih2 )+aβ/bβ∑n
i=1 z

2
ih1

1TΩi1+1/bβ
, 1∑n

i=1 z
2
ih1

1TΩi1+1/bβ

)
, h1 =

1, ..., l.

• νi,j|− ∼ Polya - Gamma(1, β0 +
∑m

h=1 Bh,jxih +
∑l

h2=1 βh2zih2)

• Mh|− ∼ IW
[
(S +

∑
k:ũh,k 6=0 ũh,kũ

′
h,k), (ν + {#k : ũh,k 6= 0})

]
• υh,r|− ∼ Beta[(1 + λh,r), (r

ζ + 1− λh,r)]
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• ũh,k|− ∼ wuh,k δ0(ũh,k) + (1 − wuh,k) N(ũh,k|muh,k ,Σuh,k), where Uh,Jk = [UT
i,h,Jk : · · · :

UT
i,h,Jk ]

T , UT
i,h,Jk has rows (xihλh,1

∏D
s=1,js 6=k u

(1)
h,js
, ..., xihλh,R

∏D
s=1,js 6=k u

(R)
h,js

). Further as-

sume c̃hi,j = ci,j − β0 −
∑l

h1=1 βh1zih1 −
∑m

h2=1,h2 6=hBh2xih2 , c̃
h
i,Jk is a vector of col-

lections of c̃hi,j over j ∈ Jk and c̃hJk is a vector consisting of c̃hi,Jk over i = 1, ..., n.

ΩJk = diag(Ω1,Jk , ...,Ωn,Jk). Also,

Σuk =

(
n∑
i=1

UT
i,h,JkΩi,JkUi,h,Jk +M−1

)−1

, muk = Σuk

n∑
i=1

UT
i,h,JkΩi,Jk c̃

h
i,Jk

wuk =
(1− ξh)N(c̃hJk |0,ΩJk)

(1− ξh)N(c̃hJk |0,ΩJk) + πN(c̃hJk |0,ΩJk + Uh,JkMUT
h,Jk)

• ηh,k|− ∼ Ber(1− wuh,k)

• ξh|− ∼ Beta(
∑p

k=1 ηh,k + 1,
∑p

k=1(1− ηh,k) + 1).
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