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Abstract—Coded caching is a new approach to decrease the
communication load during the peak hours of the network. It
provides a significant gain, that is maximized in the centralized
setting, where the server controls the placement. In many
situations, each user fills its cache without any information about
the placement of other users. We show that subspace precoding
for placement improves the delivery load of a decentralized
caching system compared to uncoded placement. Surprisingly,
the proposed scheme achieves the delivery load of the centralized
placement for K = 3 users for the entire range of cache size.

I. INTRODUCTION

Caching is a promising solution to reduce the network load
during the peak traffic time. A caching system operates in
two phases: (i) placement phase (prefetching), where each
user has access to the dataset of server and duplicates some
packets of each file in its memory when the server is in its
off-peak traffic time, and (ii) delivery phase (fetching), where
each user requests one file from the dataset and the server
will broadcast a message so that each user can extract his
desired file from the received message and the cache content.
In centralized placement, the server has the privilege to place
any packets in cache of end users, in order to minimize the
load of the delivery phase. However, in practice, due to the
dynamic behavior of the network, centralized placement might
not be feasible. In this situation, a decentralized placement will
be implemented, where each user decides about the packets to
cache, independently from the other users.

In [1], it is shown that coded caching with centralized
placement can substantially reduce the network traffic. While
decentralized caching is proven to offer a significant gain,
in general, there is a gain loss due to the absence of the
centralized placement [2]. The exact trade-off between the
cache size and the delivery load is fully characterized in [3].

All of the above-mentioned works focus on uncoded place-
ment, where the placement performs on pure packets of the
files, without any pre-processing. Precoding and prefetching
of coded packets can improve the systems performance in
general. In particular, a coded placement strategy with coding
across files is presented in [4], for a system with small cache
size. Alternatively, a coded placement based on erasure coding
over individual files (such as Maximum Distance Separable
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(MDS) code) for decentralized coded caching is independently
reported in [5] and [6]. It is shown that erasure-coded
placement can improve the performance of the decentralized
placement compared to uncoded prefetching for very small
and very large cache sizes.

In this work, we introduces the notion of subspace coding
for decentralized placement, which is indeed a generalization
of erasure coding. We argue that by exploiting the vector
spaces describing the files and cache contents we have the
flexibility of serving a user in many different ways, among
which some can achieve/approach the performance of central-
ized placement. In particular, we show that the delivery load
achieved in [5] and [6] can be further improved. Specifically,
for system with K = 3 users the (optimum) centralized
delivery load is achievable for any cache size.

II. SYSTEM MODEL AND THE MAIN RESULT

We consider a single server that is connected to K users
through a shared and error-free link as shown in Fig. 1, i.e., the
server can simultaneously broadcast to all users. The server has
access to a dictionary of N files, namely W 1, . . . , WN such
that each file W n consists of F symbols from some finite field
Fq . Each user i is equipped with a cache (memory) Ci which
can store up to MF symbols/packets. The system operates
in two phases, namely, placement phase and delivery phase.
In a decentralized placement phase, each user stores a set of
µF , MF/N symbols from each file, selected randomly and
independently across files and users.

After the completion of the placement phase, each user
requests one of the N files, where all files are equally likely to
be requested. We denote the request of user i by di ∈ [N ], and
the sequence of all requests by d = (d 1, d2, . . . , dK ). Once
the requests are revealed to the server, it forms a broadcasting
message X = X d (W 1, W2, . . . , WN ) and sends it to all the
users over the common link during the delivery phase. The
broadcast message X should be such that each user i be able
to extract his desired file using the content of his cache Ci

and the broadcast message X , i.e., H(W d i |Ci , X) = 0 . The
delivery load of the system is defined as the normalized size of
the broadcasting message X , which is denoted by R . Hence,
we have that is R = H(X)/F . The goal is to design the two
main phases of caching to minimize the delivery load of the
system, R .
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Fig. 1. Erasure-coded placement for coded caching system.

A. Subspace Coding

The delivery load of a caching systems with decentralized
placement is in general larger than that of the centralized one
[2]. However, in this paper we will argue that this load can
be reduced by subspace coding. In particular, we show that
this load matches with that of the centralized placement for a
systems with K = 3 users, over the entire range of µ ∈ [0, 1].

To this end, we map each packet of each file into a vector.
More precisely, the m -th packet of file W n with value α ∈ F q

will be mapped to a vector of length F , which is all zero,
except its m -th position which is α . With this mapping, the file
will be mapped to set of vectors. We denote by W n the vector
space spanned by the vectors of file W n , which has dimension
F . Then, the cached part of the file will be a subspace of
W n of dimension µF for each user. The delivery phase using
subspace coding is equivalent to providing each user with
enough vectors, that are linearly independent from the cached
ones (we refer to as innovative), so that the entire vector space
can be spanned by the union of cached and delivered vectors.
Hence, each user can be served by several different sets of
vectors, in contrast to the unique possibility of sending the
missing packets in an uncoded scenario. We will show that
this flexibility can significantly improve the load of delivery.

Theorem 1. Subspace coding over files reduces the delivery
load of a coded caching problem with N ≥ 3 files and K = 3
users and decentralized placement to that of the centralized
placement, given by 1

R =






3 − 6µ 0 ≤ µ < 1
3

,
5
3 − 2µ 1

3
≤ µ < 2

3
,

1 − µ 2
3 ≤ µ ≤ 1.

(1)

The proof of this theorem is presented in Section IV.

III. THE PRELIMINARIES

In the following, we define some notations that are used
frequently throughout the paper. We denote the set of integers
{1, 2, . . . , K} by [K] . We use capital letters (e.g. C ) to denote
a set of vectors, and script letters (e.g. C) to denote the vector
space spanned by the vectors in C . Moreover, with slightly
abuse of notation, we use | · | to denote the cardinality of sets
and the number of vectors in a vector space over a finite field.
In this paper, we consider an underlying finite field Fq , where
q is assumed to be very large. We have several statements that

1For all other (repeated) requests, we can show the centralized rate is
achievable. We skip the details due to the page limit.
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Fig. 2. Comparison of centralized, decentralized, erasure coding, and subspace
coding for decentralized caching rate for the caching problem with parameters
N = K = 3 .

hold with high probability (w.h.p.) as q → ∞ . Throughout the
mathematical derivations, we use “ u ” to denote an equality
which holds with high probability for large enough q.

Definition 1. For two subspaces V, U ⊆ F q , we define the
following relationships and operations:
(i) V is a subspace of U and denoted by V v U if for every
vector v  V∈ we have v  U∈ .
(ii) Intersection: U ∩ V = {u : u  U, u  V}∈ ∈ .
(iii) Summation: U + V = {u + v : u  U, v  V}∈ ∈ .
(iv) Dimension of U + V is given by

dim (U + V) = dim(U) + dim(V) − dim (U ∩ V) . (2)

(v) Size of U can be obtained from

|U | = qdim(U) . (3)

(vi) If V is a subspace of U, we define the quotient U/V as a
vector space satisfying the three following properties

• U/V v U,
• dim (U/V) = dim (U) − dim (V) ,
• U v U/V + V.

Note that a quotient of a subspace is not unique.

Let W be a vector space of dimension F over a finite field
Fq . For an expansion parameter τ ∈ (0, 1] , consider the set of
vectors B = {b 1, b2, . . . , bF/τ } , where each vector b`  ∈ W is
drawn randomly and uniformly from the subspace W for ` =
1, . . . , F /τ. The following lemma can be easily proved using
the facts that q → ∞ and vectors in B are drawn uniformly at
random. The formal proof is omitted for the sake of brevity.

Lemma 1. The set of vectors B drawn uniformly at random
from W satisfies the MDS property approaching 1, as q grows,
i.e., any subset of vectors in B  U⊆ of size at most F includes
linearly independent vectors. Hence, for U = span (U ) , the
subspace spanned by vectors in U , we have

dim (U ) u min (F, |U |) , (4)

with high probability as q → ∞ . In particular, for any subset
U  B⊆ with |U | = F , we have span (U) u W .

In the following proposition, we evaluate the size of inter-
section of two subspaces.
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Proposition 1. For subsets U,V B⊆ of size at most F, we have

|U ∩ V| = max q|U|+|V |−F , q|U∩V | . (5)

Proof. First note that U + V = span (U  V∪  ) . Consequently,
using (4) for U  V  B∪ ⊆ we can write

dim (U + V) = dim (span (U  V∪  )) = min (F, |U  V |∪ )
= min (F, |U | + |V | − |U ∩ V |) . (6)

From (2) we have

dim(U ∩ V) = dim (U) + dim (V) − dim (U + V)
= |U | + |V | − min (F, |U | + |V | − |U ∩ V |)
= max(|U | + |V | − F, |U ∩ V |). (7)

This, together with (3), implies the claim.

A. Subspace Precoding for Cache Placement

Consider a subspace W of dimension F , and a set of vectors
B = {b 1, . . . , bF/τ } , drawn uniformly at random from W .
For each user i ∈ [K] , let Ci be a random subset of B of
expected size MF/N , wherein each vector b̀  ∈ B is included
in Ci with probability (MF/N)/(F/τ ) = Mτ/N = µτ ,
independently across vectors, subsets, and users, and define
Ci = span (C i ). In the following, we define direct and total
common spaces and derive their corresponding dimensions.

Definition 2. For any Γ ⊆ [K] the direct common space DΓ
and the total common space TΓ are defined as

DΓ , span (D Γ ) = span
\

i∈Γ
Ci , (8)

TΓ ,
\

i∈Γ
span (Ci ) =

\
i∈Γ

Ci , (9)

We denote the expected dimensions of these spaces by

δΓ = E [dim (D Γ )] , and θΓ = E [dim (TΓ )] .

Note that for Γ = {i} with |Γ| = 1 , we have DΓ = T Γ = C i ,
and hence δ{i} = θ {i} = µF . Moreover, from the definition
of the direct and total common spaces, it is easy to verify that
DΓ v T Γ for any Γ ⊆ [K] . In the proposed schemes in [5]
and [6], the server just exploits the direct common spaces in
the construction of the coded sub-messages. In the following
example, we show that in general DΓ 6= TΓ , i.e., DΓ is a
proper subspace of TΓ .

Example 1. Let W = span ({e 1, e2, e3}) v F 3 be vec-
tor space of dimension 3, and consider the set of vectors
B = {e 1, e1 + e 2, e1 + 2e 2 + e 3, e2 + e 3, e3} with |B| = 5 =
3/0.6 , which implies τ = 0.6 . Note that B satisfies the MDS
property. Let µ = 2

3 , and C1 = {e 1 + e 2, e1 + 2e 2 + e 3} and
C2 = {e 2 + e 3, e3} are drawn uniformly at random from B .
Then, for Γ = {1, 2} , the direct common space of Γ is given
by

D{1,2} = span (C1 ∩ C2) = span (∅) = {0},

implying δΓ = 0 . However, the total common space TΓ is

C1 ∩ C2 = span ({e1 +e 2, e1 + 2e2 +e 3}) ∩ span ({e2 +e 3, e3})
(a)= span ({e 2 + e 3}) .

The equality (a) follows from the fact that for u1 = e 1 +e 2 ∈
C1, and u2 = e 1 +2e 2 +e 3  ∈ C2, we have u1 +u 2 = e 2 +e 3 ∈
C2. This implies θ{1,2} = 1 .

It turns out that as q → ∞ , the values of δΓ and θΓ only
depend on |Γ| , but not the realization of Γ. Hence, we denote
them by δ|Γ| and θ|Γ| , respectively.

Proposition 2. For any Γ ⊆ [K] and µ ≤ 1 , we have

δ|Γ| u (µτ ) |Γ|
F
τ

, and |DΓ | u q (µτ ) |Γ| F
τ , (10)

with high probability as q → ∞ .

Proof. Let DΓ =
T

i∈Γ
Ci , and DΓ = span (DΓ ). Recall that

the probability that each vector b` belongs to Ci is µτ . Thus,

E [|DΓ |] = E
h \

i∈Γ
Ci

i
u

F/τX

`=1

P [b̀  ∈ Ci , i ∀ ∈ Γ]

=
F/τX

`=1

Y

i∈Γ

P [b̀  ∈ Ci ] = (µτ ) |Γ| F
τ

.

As q → ∞ , the vectors in D Γ are linear independent w.h.p.,
and random variable |D Γ | concentrates at its mean, i.e., we
have δ|Γ| = |D Γ | u (µτ ) |Γ| F

τ , and |DΓ | u q |D Γ | , w.h.p.

In the following lemma, we evaluate the dimension of total
common subspace for any number of users.

Lemma 2. For large enough field size q, a set Γ ⊆ [K] with
|Γ| = ` , and p ∈ [K] \ Γ , with high probability we have

θ`+1 = θ |Γ {p}|∪ = θ Γ {p}∪ u max(θ ` + θ 1 − F, δ `+1 ). (11)

Proof. First note that DΓ {p}∪
v T Γ . Therefore, for each vector

v  T∈ Γ and a given quotient space TΓ /D Γ {p}∪ , there exist
vectors v1  ∈ D Γ {p}∪ and v2  ∈ T Γ /D Γ {p}∪ such that v =
v1 + v 2. Hence, we have

E |TΓ {p}∪
| = E [|TΓ ∩ Cp |] = E

"
X

v T∈ Γ

1 [v  C∈ p ]

#

=
X

v T∈ Γ

P [v  C∈ p ] =
X

v 1∈D Γ {p}∪

X

v 2∈T Γ /D Γ {p}∪

P [v1 + v 2  ∈ Cp ]

(a)=
X

v 1∈D Γ {p}∪

X

v 2∈T Γ /D Γ {p}∪

P [v2  ∈ Cp ]

= |D Γ {p}∪ 1 +
X

06=v2∈T Γ /D Γ {p}∪

P [v2  ∈ Cp ]

(b)
u DΓ {p}∪ 1 +

qµF

qF
TΓ /D Γ {p}∪ − 1

= q δ`+1 +
qµF

qF × (qθ` − qδ`+1 )

= q δ`+1 + q θ` +θ 1 −F − qδ`+1 +θ 1 −F ,
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where (a) holds since v1  ∈ D Γ {p}∪
v C p , (b) follows from

the fact that vectors in TΓ /D Γ {p}∪ and those in Cp are drawn
identically and independently from each other which implies
P [v  C∈ p ] is the same for every (non-zero) v2  ∈ TΓ /D Γ {p}∪ .
We also used the facts that subspace |Cp | = q µF and
|W| = q F . When q → ∞ , the size of the total common space
converges to its expectation, and hence the dimension of this
subspace can be found from

θΓ {p}∪ = dim T Γ {p}∪ = lim
q→∞

logq |TΓ ∩ Cp |

= lim
q→∞

logq qδ`+1 + q θ` +θ 1 −F − qδ`+1 +θ 1 −F

= max(θ ` + θ 1 − F, δ `+1 ).

This completes the proof.

Remark 1. It is worth noting that all the above claims only
hold with high probability, as q → ∞ , but they are not
necessarily true for every deterministic set B of vectors that
satisfy the MDS property. In the following, we present a
counter-example that shows the statements above may fail for
carefully chosen subsets of B .

Example 2. Let F = 3 and W = span (e 1, e2, e3). For τ =
0.5, we can select the set of F/τ = 6 vectors given by

B = {e 1 + e 2 + e 3, e1 + e 2 + 2e 3, 2e1 + e 2 + 3e 3,

2e1 + e 2 + 4e 3, 3e1 + e 2 + 17e3, 3e1 + e 2 + 25e3}.

It is easy to verify that the MDS property is satisfied by B , i.e.,
any collection of up to 3 vectors in B are linearly independent.
For µ = 2

3 , we can pick th following subsets of B :

C1 = {e 1 + e 2 + e 3, e1 + e 2 + 2e 3},

C2 = {2e 1 + e 2 + 3e 3, 2e1 + e 2 + 4e 3},

C3 = {3e 1 + e 2 + 17e3, 3e1 + e 2 + 25e3}.

First note that no vector from B is directly cached in more
than one cache, which implies δ{1,2} = δ {1,2,3} = 0 . Let Ci

denote the span of vectors in Ci , for i = 1, 2, 3, i.e,

C1 = span (C1) = span ({e1 + e 2, e3}) (12)
C2 = span (C2) = span ({2e1 + e 2, e3}) (13)
C3 = span (C3) = span ({3e1 + e 2, e3}) (14)

It is easy to verify that vector e3 is the only common vector
in all three subspaces. This implies θ{1,2} = θ {1,2,3} = 1 .
Then for Γ = {1, 2} and p = 3 , we have θ{3} = µF = 2 ,
and thus, θ{1,2} + θ {3} − F = 1 + 2 − 3 = 0 , δ{1,2,3} = 0 ,
θ{1,2,3} = 1 , which is in contradiction with Lemma 2. This
shows that the claim of the lemma does not necessarily hold
for every collection of vectors from B , and only holds true
with high probability, as mentioned earlier.

IV. PROOF OF THEOREM 1

Before going through the details of the proof, we define the
concept of utility which is helpful in our analysis.

Definition 3. For a given placement scheme, a coded transmit
vector/packet has utility m (for m = 1, . . . , K ), if it can

provide innovative information for m users. Such a packet
intended for users in M with |M| = m will be generated by
a linear combination of m file packets, each intended for one
user i  M∈ , and cached by every user in M \ {i} .

Let us denote by Ci,n the part of the cache of user i filled
by random vectors of the vector space W n , for i ∈ [K]
and n ∈ [N ] . Hence, the cache of User i is given by
Ci =

S
n∈[N]

Ci,n . We assume that Users 1, 2, and 3, request
distinct files W d 1 , W d 2 , and W d3 , respectively. Each User i

has µF = θ 1 linearly independent vectors (w.h.p.) from his
desired vector space W d i , and can reconstruct the file if he
collects a total of F linearly independent vectors. Denoting by
Uj the number of coded packets of utility j sent by the server
which are useful for each user, the decodability condition can
be written as

θ1 + U 1 + U2 + U3 = F. (15)

Since packets of utility j serve j users simultaneously, the
total load of delivery can be obtained as

R=
1
F

 
K
1
1

U1 +
K
2
2

U2 +
K
3
3

U3

!

=
3U1 + 3U2/2 + U 3

F
.

(16)

From (15) and (16) it is clear that the central server
should intend to transmit packets with higher utilities in order
to minimizing the delivery load. The following proposition
determines the number of packets of utility 1 needed to be
sent for each user.

Proposition 3. The number of packets/vectors of utility 1 the
server sends to each user is given by

U1 u F − min(F, 3(θ 1 − δ2) + δ 3). (17)

Proof. A vector of file W n intended for user i has utility 1
when it cannot be combined with any other packet, i.e., such
packet is not cached at any user in the network. The number of
packets/vectors of file n cached across all users can be found
as follows. As q → ∞ , with high probability we have

|C1,n ∪C2,n ∪C3,n | = |C1,n | + |C2,n | + |C3,n | − |C1,n ∩C 2,n |

− |C 1,n ∩ C3,n | − |C 2,n ∩ C3,n | + |C 1,n ∩ C2,n ∩ C3,n |

u 3µF − 3δ 2 + δ 3 = 3θ 1 − 3δ2 + δ 3.

Therefore, from (4) we have

dim (C1,n + C2,n + C3,n ) = dim (span (C1,n  ∪ C2,n  ∪ C3,n ))
= min (F, |C 1,n  ∪ C2,n  ∪ C3,n |) u min(F, 3(θ1 − δ2)+δ 3).

Consequently, the number of vectors of utility 1 is given by
U1 = F − dim (C 1,n + C2,n + C3,n ), which reduces to (17).

Proposition 4. For large enough q, the number of packets of
utility 3 to simultaneously serve all users, is given by (w.h.p)

U3 u θ 2 − θ3. (18)
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Proof. A coded packet of utility 3 is of the form of

vj = b
d 1
j + b

d2
j + b

d3
j , j = 1, . . . , U3,

where bd i
j is a vector from B d i (describing W d i ), such that

bd1
j  ∈ C2,d 1

∩ C3,d 1
, bd 1

j /  ∈ C1,d 1
,

bd2
j  ∈ C1,d 2

∩ C3,d 2
, bd 2

j /  ∈ C2,d 2
,

bd3
j  ∈ C1,d 3

∩ C2,d 3
, bd 3

j /  ∈ C3,d 3
.

(19)

In order for all such bd1
j to be informative, they should be

linearly independent from each other. Let us count the number
of bd 1

j satisfying (19). Let {u 1, . . . , uθ3
} be a basis for the

subspace C1,d 1
∩ C2,d 1

∩ C3,d 1 . Since C1,d 1
∩ C2,d 1

∩ C3,d 1
v

C2,d 1
∩ C3,d 1 , we can extend it to form a basis for C2,d 1

∩
C3,d 1 , given by {u 1, . . . , uθ3

, uθ3 +1 , . . . , uθ2
} . Therefore, the

subset {u θ3 +1 , . . . , uθ2
} contains θ2 − θ3 linearly independent

vectors that only belong to C2,d 1 and C3,d 1 , but not to C1,d 1 .
By symmetry, a similar argument holds for vectors bd2

j and
bd3

j , which proves the claim of the proposition.

Finally, the number of packets of utility 2 can be obtained
from plugging (17) and (18) into (15). That is,

U2 = F − θ 1 − U1 − U3 (20)

Therefore, the delivery load in (16) can be evaluated as

RF = 3U 1 +
3
2

U2 + U3 (21)

= 3F −
3
2

θ1 − 3
2

min(3(θ 1 − δ2) + δ 3, F )−
1
2

(θ2 − θ3).

A. Corner Points

Next, we simplify the delivery load in (21) for the four
corner points associated with µ  {∈ 0, 1

3
, 2

3 , 1}. To this end,
we choose τ → 0 . Note that since τ is vanishing, the size of
B is growing unboundedly, and hence the probability that a
vector is directly cached at more than one user is negligible.
This is indicated by (10), where δj = 0 for j > 1 .

(i) µ0 = 0 : In this case no vector in cached, and hence δj =
θj = 0 for j = 1, 2, 3 . Hence, the delivery load in (21)
can be evaluated as RF = 3F , which implies R(0) = 3 .

(ii) µ1 = 1/3 : From Lemma 2, we have

θ2 = max(2θ 1 − F, δ2) = max(−F/3, 0) = 0
θ3 = max(θ 2 + θ 1 − F, δ3) = 0.

Plugging these into (21) we get

RF =3F −
3
2

θ1 − 3
2

min(3θ1, F )=3F −
3
2

1
3

F − 3
2

F =F,

and therefore, R( 1
3 ) = 1 .

(iii) µ 2 = 2/3 : We have θ1 = 2F/3 , and Lemma 2 implies

θ2 = max(2θ 1 − F, δ2) = F/3
θ3 = max(θ 2 + θ 1 − F, δ3) = 0.

Therefore from (21) we get RF = F/3 , which implies
R( 2

3 ) = 1
3 .

(iv) µ3 = 1 : Finally, for θ1 = µF = F , all users have
cached the entire vector space. It is easy to verify that
θ2 = θ 3 = F . This implies R(1) = 0 .

Note that the memory-load trade-off obtained for µ ∈

{0, 1
3

, 2
3 , 1} matches with that of the centralized coded caching

derived in [1].

B. Non-Corner Points

We use memory sharing to achieve the memory-load trade-
off of centralized caching for the middle values of µ. This
consist of splitting the files and caches into two sub-files and
two sub-caches, and treating each sub-file and the correspond-
ing sub-cache as a separate system. For µ = λµ ` +(1−λ)µ `+1 ,
where `  {∈ 0, 1, 2} , and λ ∈ [0, 1] , we divide each file W n

into two parts W n = W (1)
n , W (2)

n , with sizes F1 = λF and
F2 = (1−λ)F . Furthermore, we divide the cache of each user

i ∈ [K] into Ci = C(1)
i , C(2)

i , where

|C(1)
i | =

`λ

` + 1 − λ
MF, |C(2)

i | =
(` + 1)(1 − λ)

` + 1 − λ
MF.

Then we apply the proposed coding scheme for each collection
of sub-files, with τ1, τ2 → 0. It is easy to verify that this leads
to a delivery load given by R = λR(µ ` ) + (1 − λ)R(µ `+1 ).
The details of derivation are skipped due to the page limit.

Remark 2. The partitioning of files and caches with the
properly chosen sizes is critical to achieve the performance of
the centralized placement, otherwise (as shown in the example
below) the subspace coding without file partitioning does not
offer the performance of centralized placement.

Example 3. Let us consider a caching problem with K = 3
users and µ = 0.5 , i.e., MF = NF/2 . Without file parti-
tioning, for τ → 0 , we have θ1 = F/2 , and θ2 = θ 3 = 0 ,
leading to no packet of utility 3. However, using file par-
titioning, we have F1 = F 2 = F/2 , |C(1)

i | = NF/6 , and
|C(1)

i | = NF/3 . Now, it is easy to see that for the system
with (F2, |C(2)

i |) = (F/2, N F/3) we have θ(2)
2 = F/6 and

θ(2)
3 = 0 , implying that θ(2)

2 − θ (2)
3 = F/6 of the packets will

be sent at utility 3. This reduces the delivery load compared to
a non-partitioned system, to that of the centralized placement.
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