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Abstract—Coded caching is a new approach to decrease the
communication load during the peak hours of  the network. It
provides a significant gain, that is maximized in the centralized
setting, where the server controls the placement. In many
situations, each user fills its cache without any information about
the placement of other users. We show that subspace precoding
for placement improves the delivery load of a decentralized
caching system compared to uncoded placement.  Surprisingly,
the proposed scheme achieves the delivery load of the centralized
placement for K = 3 users for the entire range of cache size.

1. INTRODUCTION

Caching is a promising solution to reduce the network load
during the peak traffic time. A caching system operates in
two phases: (i) placement phase (prefetching), where each
user has access to the dataset  of server and duplicates some
packets of each file in its memory when the server is in its
off-peak traffic time, and (ii) delivery phase (fetching), where
each user requests one file from the dataset  and the server
will broadcast a message so that each user can extract his
desired file from the received message and the cache content.
In centralized placement, the server has the privilege to place
any packets in cache of end users, in order to minimize the
load of the delivery phase. However, in practice, due to the
dynamic behavior of the network, centralized placement might
not be feasible. In this situation, a decentralized placement will
be implemented, where each user decides about the packets to
cache, independently from the other users.

In[1], it is shown that coded caching with centralized
placement can substantially reduce the network traffic. While
decentralized caching is proven to offer a significant gain,
in general, thereis a gainloss due to the absence of  the
centralized placement [2]. The exact trade-off between the
cache size and the delivery load is fully characterized in [3].

All of the above-mentioned works focus on uncoded place-
ment, where the placement performs on pure packets of the
files, without any pre-processing. Precoding and prefetching
of coded packets can improve the systems  performance in
general. In particular, a coded placement strategy with coding
across files is presented in [4], for a system with small cache
size. Alternatively, a coded placement based on erasure coding
over individual files (such as Maximum Distance Separable
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(MDS) code) for decentralized coded caching is independently
reported in ~ [5] and [6]. It is shown that erasure-coded
placement can improve the performance of the decentralized
placement compared to uncoded prefetching for  very small
and very large cache sizes.

In this work, we introduces the notion of subspace coding
for decentralized placement, which is indeed a generalization
of erasure coding. We argue that by exploiting the vector
spaces describing the files and cache contents we have the
flexibility of serving a user in many different ways, among
which some can achieve/approach the performance of central-
ized placement. In particular, we show that the delivery load
achieved in [5] and [6] can be further improved. Specifically,
for systemwith K=3  users the (optimum) centralized
delivery load is achievable for any cache size.

II. SYSTEM MODEL AND THE MAIN RESULT

We consider a single server that  is connected to K users
through a shared and error-free link as shown in Fig. 1, i.e., the
server can simultaneously broadcast to all users. The server has
access to a dictionary of N files, namely W4, ..., Wy such
that each file W, consists of F' symbols from some finite field
Fq. Each user I is equipped with a cache (memory) Ci which
canstoreupto MF symbols/packets. The system operates
in two phases, namely, placement phase and delivery phase.
In a decentralized placement phase, each user stores a set of
uF , MF/N symbols from each file, selected randomly and
independently across files and users.

After the completion of the placement phase, each user
requests one of the N files, where all files are equally likely to
be requested. We denote the request of user I by d; € [N ], and
the sequence of all requests by d=(d 1>dp--- ). Once
the requests are revealed to the server, it forms a broadcasting
message X=X da(Wq Wy, -, Wy) andsendsit toall the
users over the common link during the delivery phase. ~ The
broadcast message X should be such that each user [ be able
to extract his desired file using the content  of his cache Gi
and the broadcast message X , i.e., HW ¢,|Ci, X) =0 . The
delivery load of the system is defined as the normalized size of
the broadcasting message X , which is denoted by R. Hence,
we have thatis R = H(X)/F . The goal is to design the two
main phases of caching to minimize the delivery load of the
system, R.
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Fig. 1. Erasure-coded placement for coded caching system.

A. Subspace Coding

The delivery load of a caching systems with decentralized
placement is in general larger than that of the centralized one
[2]. However, in this paper we will —argue that this load can
be reduced by subspace coding. In particular, we show that
this load matches with that of the centralized placement for a
systems with K = 3 users, over the entire range of u € [0, 1]

To this end, we map each packet of each file into a vector.
More precisely, the M -th packet of file W, with value a € Fq
will be mapped to a vector  of length F, whichisall zero,
except its M -th position which is ®. With this mapping, the file
will be mapped to set of vectors. We denote by W, the vector
space spanned by the vectors of file Wn, which has dimension
F . Then, the cached part of the file will be a subspace of
W, of dimension MF for each user. The delivery phase using
subspace coding is equivalent to providing each user ~ with
enough vectors, that are linearly independent from the cached
ones (we refer to as innovative), so that the entire vector space
can be spanned by the union of cached and delivered vectors.
Hence, each user can be served by several different sets of
vectors, in contrast to the unique possibility of  sending the
missing packets in an uncoded scenario. =~ We will show that
this flexibility can significantly improve the load of delivery.

Theorem 1. Subspace coding over files reduces the delivery

load of a coded caching problem with N >3 files and K =3
users and decentralized placement to that of the centralized
placement, given byi

3-6u O<p< L
R= L 3—2}1 1S}'l< 3’ (1)
1-p f<pu<1i

The proof of this theorem is presented in Section I'V.

III. THE PRELIMINARIES

In the following, we define some notations that  are used
frequently throughout the paper. We denote the set of integers
{1,2,...,K} by [K] . We use capital letters (e.g. C) to denote
a set of vectors, and script letters (e.g. C) to denote the vector
space spanned by the vectorsin ~ C. Moreover, with slightly
abuse of notation, we use | * | to denote the cardinality of sets
and the number of vectors in a vector space over a finite field.
In this paper, we consider an underlying finite field Fq, where
q is assumed to be very large. We have several statements that

For all other (repeated) requests, we can show the centralized rate is
achievable. We skip the details due to the page limit.
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Fig. 2. Comparison of centralized, decentralized, erasure coding, and subspace
coding for decentralized caching rate for the caching problem with parameters
N=K=3

hold with high probability (w.h.p.) as 4 — © . Throughout the
mathematical derivations, we use “ U™ to denote an equality
which holds with high probability for large enough 4.

Definition 1. For two subspaces V, UC F 4, we define the
following relationships and operations:

(i) V is a subspace of U and denoted by VVvU if for every
vector VEV we have VE U,

(i) Intersection: Un V={u: UEU u€V}

(iii) Summation: U+ V={u+v: UEUVEV}

(iv) Dimension of U + V is given by

dim (U + V) =dim(U) + dim(V) - dim (Un V). 2
(v) Size of U can be obtained from
U |=q"mO . 3)

(vi) If V is a subspace of U, we define the quotient U/V asa
vector space satisfying the three following properties
uvvUu,
+ dim (U/V) = dim (U) — dim (V),
UvUV+V.
Note that a quotient of a subspace is not unique.

Let W be a vector space of dimension F over a finite field
Fq. For an expansion parameter t € (0, 1], consider the set of
vectors B={b 1, by, - -, By }, where each vector b €W s
drawn randomly and uniformly from the subspace W for * =
1, ..., F /1. The following lemma can be easily proved using
the facts that § — ® and vectors in B are drawn uniformly at
random. The formal proof is omitted for the sake of brevity.

Lemma 1. The set of vectors B drawn uniformly at random
from W satisfies the MDS property approaching 1, as q grows,
i.e., any subset of vectors in BE U of size at most F includes
linearly independent vectors. Hence, for U = span (U ), the
subspace spanned by vectors in U, we have

dim (U) umin (F, |U|), 4)

with high probability as 9 — % . In particular, for any subset
UCB with |U|=F, we have span (U)u W .

In the following proposition, we evaluate the size of inter-
section of two subspaces.

678

Authorized licensed use limited to: University of Minnesota. Downloaded on June 25,2020 at 07:06:54 UTC from IEEE Xplore. Restrictions apply.



Proposition 1. For subsets U,V EB of size at most F, we have

U V| =max qU*IVIEE , glunVl (5)
Proof. First note that U + V =span (U U V). Consequently,
using (4) for UUVE B we can write

dim (U + V) =dim (span (UU V)) =min (F, [UU V)

=min(F,|U|+|V|-|UnV]). (6)

From (2) we have

dim(U n V) =dim (U) + dim (V) — dim (U + V)
=U+V-min(F, [U[+ V|- |UnV])
=max(|U|+|V|-F,|[UnV]). @)

This, together with (3), implies the claim. O

A. Subspace Precoding for Cache Placement

Consider a subspace W of dimension F , and a set of vectors
B={b 1s--->bx }, drawn uniformly at random from W.
For eachuser i € [K] , let C;i be a random subset of B of
expected size MF/N | wherein each vector b* € B is included
in C;i with probability (MF/N)/F/t) = MvN = ut ,
independently across vectors, subsets, and users, and define
G =span (Ci). In the following, we define direct and total
common spaces and derive their corresponding dimensions.

Definition 2. Forany ' C [K] the direct common space Dr
and the total common space I are defined as

\
Dr ,span(Dr)=span  GC;i ,
\

ier

®)

T (©))

\
re ier span (G) = ier G
We denote the expected dimensions of these spaces by

8- = E [dim (Dr)], and - = E [dim (Tr)].

Note that for [ = {i} with |[[|=1,wehave Dr =T =Ci,
and hence O =0 = uF . Moreover, from the definition
of the direct and total common spaces, it is easy to verify that
Dr vT | forany ' C[K] . In the proposed schemes in [5]
and [6], the server just exploits the direct common spaces in
the construction of the coded sub-messages. In the following
example, we show that in general Dr 6=Tr, ie., Dr isa
proper subspace of T .

Example 1. Let W=span ({fe 1>€»€3}) vF 3 bevec-
tor space of dimension 3, and consider the set of vectors
B={e 1,€4 +ey € +2€2+63:€2+e3,€3} with |B| =5 =

3/0.6, which implies 7 = 0.6 . Note that B satisfies the MDS
property. Let p = 2 and Cy={e 1+egp € + 2, +esl and
Cy={e,+tes 33? are drawn uniformly at random from B.
Then, for [ ={1, 2}, the direct common space of [ is given

by

Dy, =span (Cy N C;) = span (@) = {0},

implying 6 = 0. However, the total common space It is
G NG =span ({g+e 2> €+ 2ex+e 3}) n span ({e+e 3: €3})
@span (fez +es)).

The equality (a) follows from the fact that for Uy =eq+e , €
Ci,and Uy =e +2e ,+e 3 €6, wehave Uj+u g =eg+e 3 €
G,. This implies 0,15, =1.

It turns out that as 9 — ® | the values of S and O only
depend on |I'], but not the realization of I'. Hence, we denote
them by 5‘” and 9|r| , respectively.

Proposition 2. Forany M C[K] and p <1, we have

F " E
S u(ur) M = IDrjugq®) " =,

with high probability as q — © .

Proof. Let Dr =~ Ci, and Dr = span (Dr). Recall that
the probability that each vector b belongs to Ci is HT. Thus,

and

(10)

hy i X
E[Dr|]]=E - Ci u Pb EC,ViETN
=1
T Y . F
= Plb €C= )"
=1 el

As @ - ®© | the vectors in Dr are linear independent w.h.p.,
and random variable |D| concentrates at its mean, i.e., we

have 8| =D r|u (ut) ME and IDrjugPr!, whp. O

In the following lemma, we evaluate the dimension of total
common subspace for any number of users.

Lemma 2. For large enough field size g, aset [ C[K] with
=", and pE€[K]\T , with high probability we have

Ot =00y =0rup umax(@ +61 - F.8.y). (11)

Proof. First note that D, VT . Therefore, for each vector
VET  anda given quotient space Ir/D r,; , there exist
vectors V4 €D oy and Vo €ET/D iy, suchthat v =
V4 +v,. Hence, we have " 4

X

E ITrypy | =ENTr NGlI=E 1[vE G

X X K
=" Ppeg]=

vET v,€D rutp)

X
@ Pv; €G]

V4EDy,  V,ETL/D

Plvi+v, €G]

Vo€T/D

rUip}

1+

06=v, €T /D
(ORS HE
u Pryg 1+ F

=D rugp Plv, €G]

ruip}

Te/D rygy — 1

5. q'*
=q "+ qTx(q

=q°" +q

o - g )

0-+9 {-F _q6~+1 +0 1-F ,
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where (a) holds since V4 €D,y v Cp, (b) follows from
the fact that vectors in Tr/D ry,; and those in G are drawn
identically and independently from each other which implies

P [v € Gp] is the same for every (non-zero) Vo, € Tr/D iy .
We alsoused the facts that subspace |G| =q * Fand
[W|=gq F When q = ® | the size of the total common space
converges to its expectation, and hence the dimension of this
subspace can be found from

QI'U{p} =dimT rufp} = ||q|1']oo |qu |Tr n q'

. Siq 0-+9,-F _ 6, +9,°F
(! + 1 q +1 1
= |y| |09q q

=max(f-+60, ~F,6,,).
This completes the proof. O

Remark 1. It is worth noting that all the above claims only
hold with high probability, as 9 — © , but they are not
necessarily true for every deterministic set B of vectors that
satisfy the MDS property.  In the following, we present a
counter-example that shows the statements above may fail for
carefully chosen subsets of B.

Example 2. Let F=3 and W =span (e 1> €, €3). For 1=
0.5, we can select the set of F/1=6 vectors given by
B={e +ey+e3 € +eos+2e3,2¢e1+eo+ ez
2e1teytdes,3eg+teost+17e3,3e1 teo + 2563}-
It is easy to verify that the MDS property is satisfied by B, i.e.,
any collection of up to 3 vectors in B are linearly independent.
For y = %, we can pick th following subsets of B:
Ci={ei+es+ez € +ey+2e3h
C2 ={2e 1+ey+3e3,2e1teyt+ 463},
C3 ={3eq4+es+17e3,3¢; +eo + 2563}-
First note that no vector from B is directly cached in more

than one cache, which implies 5{1,2} =6123 =0. Let G
denote the span of vectorsin Ci, fori=1, 2, 3, i.e,

C; = span (Cy) = span (feq + e2: &) (12)
G =span (G,) =span ({2e1 + e €))  (13)
G =span (Gs) =span ({3es + e €))  (14)

It is easy to verify that vector €3 is the only common vector
inall three subspaces. This implies 045, =0 (123 =1.
Then for '={1,2} and p=3, we have 9{3} =uF=2 ,
andthus, 9{1’2} +9{3} -F=1+2-3=0 ,6{1,2)3} =O,
6,123, =1, which is in contradiction with Lemma 2.  This
shows that the claim of the lemma does not necessarily hold
for every collection of vectors from B and only holds true
with high probability, as mentioned earlier.

IV. PROOF OF THEOREM 1

Before going through the details of the proof, we define the
concept of utility which is helpful in our analysis.

Definition 3. For a given placement scheme, a coded transmit
vector/packet has utility M (for m=1,...,K ), if it can

provide innovative information for ™M users. Such a packet
intended for users in M with |[M| =m  will be generated by
a linear combination of ™M file packets, each intended for one
user {€EM | and cached by every userin M\ {i} .

Let us denote by Cjn the part of the cache of user I filled
by random vectors  of the vector space Wn, for I € [K]
and S [N] . Hence, the cache of User i is given by

I Cin . We assume that Users 1, 2, and 3, request
distinct files Wa,, Wa,, and Wa,, respectively. Each User I
has pF =6 1 linearly independent vectors (w.h.p.) from his
desired vector space  Wa,, and can reconstruct the file if he
collects a total of F linearly independent vectors. Denoting by
U;j the number of coded packets of utility J sent by the server
which are useful for each user, the decodability condition can
be written as

91+U1+U2+U3=F. (15)

Since packets of utility j serve J users simultaneously, the
total load of delivery can be obtained'as

K K K
1 3Us +3Ux2+ U3
R= — 1 Ui+ 2 Up+ -2 Uy = .
F 1 1 2 2 3 3 F
(16)
From (15) and (16) it is clear that the central server

should intend to transmit packets with higher utilities in order
to minimizing the delivery load. ~ The following proposition
determines the number of packets of utility 1 needed to be
sent for each user.

Proposition 3. The number of packets/vectors of utility 1 the
server sends to each user is given by

UjuF - min(F, 3(9 1 52) + 53). (17)

Proof. A vector of file W, intended for user i has utility 1

when it cannot be combined with any other packet, 1i.e., such

packet is not cached at any user in the network. The number of

packets/vectors of file 1 cached across all users can be found

as follows. As 4 — % | with high probability we have

€10 UCs, UCs, | = [Cip |+ [Cop | + [Can | ~ Gy, NCoy |
“NCn NGy = 1€, N Cap [ +[Cry NGy NGy,

U3uUF — 38 2+63=3601 362+ 63
Therefore, from (4) we have

dim (Cl,n + C2,n + C3,n ) =dim (Span (G,n U C2,n U C3,n ))
=min (F, |C 1, Y Cz,n U Cg,,1 [) u min(F, 3(61 — 62)+5 3).
Consequently, the number of vectors of utility 1 is given by

Uy =F -dim (C 1, + Cg, *+ C3, ), which reduces to (17).
O

Proposition 4. For large enough 4, the number of packets of
utility 3 to simultaneously serve all users, is given by (w.h.p)

Usuf,~ 05 (18)
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Proof. A coded packet of utility 3 is of the form of
vj:bj‘-j1+b]‘72+bf3, ji=1,...,Us
where bjd " is a vector from By, (describing Wa,), such that

d

bj1eg,d1 n(%,(h’ bjd1EC1,d1’
d

bj2 eC1,dz n C\’t,dz’ b;jz ECZ,dz’
d d
bfsec‘],ds qus’ bjaeg,ds'

In order for all such bf ' to be informative, they should be

linearly independent from each other. Let us count the number
of bf1 satisfying (19). Let {Uy,..., U, } be abasis for the
subspace Ci g, N G4, NGy, . Since Gy, NGy, NGy, Vv

Ga, NGy, wecanextendit to form abasis for G4, N
Ga,, givenby Uy, ..., Up g, .., U, } Therefore, the
subset {Ug, .q>-- -, contains 0, ~ 05 linearly independent
vectors that only belongto G4, and G, , but not to G 4,.
By symmetry, asimilar argument holds for vectors 0;? and

(19)

;% , which proves the claim of the proposition. O

Finally, the number of packets of utility 2 can be obtained

from plugging (17) and (18) into (15). That is,
U=F-04-U;-U; (20)
Therefore, the delivery load in (16) can be evaluated as
RF=3U1+gU2+U3 21
=3F - §91 - §min(3(61 = 83)+683,F)- 1(92 —0;).
2 2 2

A. Corner Points

Next, we simplify the delivery load in (21) for the four
corner points associated with u € {0, %’ %, 1}. To this end,
we choose 7 — 0. Note that since T is vanishing, the size of
B is growing unboundedly, and hence the probability that a
vector is directly cached at more than one user is negligible.
This is indicated by (10), where 6 =0 forj> 1.

(i) o = 0: In this case no vector in cached, and hence §; =
8 =0 for j=1,2,3. Hence, the delivery load in (21)
can be evaluated as RF = 3F , which implies R(0) =3 .

(i) M4 = 1/3 : From Lemma 2, we have

92 = max(291 —F, 62) = max(—F/3, 0) =0
93=max(92+91 _F;63)=0.

Plugging these into (21) we get
31 3

~_F-ZF=F,

3 3
= — ,9 - _ i = _
RF =3F = 50;= Zmin(301, F)=3F - 5 2F = 3

and therefore, R( %) =1.
(iii) M2 = 2/3 : We have 04 = 2F/3 , and Lemma 2 implies
0, =max(204 ~ F, 8,) =F/3
0 =max(@,+6, ~F,83)=0.

Therefore from (21) we get RF =F/3

R(%)= 1.

, which implies

(iv) M3 = 1: Finally, for 6; =pyF=F | all users have
cached the entire vector space. It is easy to verify that
0, =03 =F . This implies R(1) =0 .
Note that the memory-load trade-off obtained for H €
{0, %, %, 1} matches with that of the centralized coded caching
derived in [1].

B. Non-Corner Points

We use memory sharing to achieve the memory-load trade-
off of centralized caching for the middle values of H. This
consist of splitting the files and caches into two sub-files and
two sub-caches, and treating each sub-file and the correspond-
ing sub-cache as a separate system. For y = Ap ~+(1-A)p 41,
where “€{0, 1, 2}, and A € [0, 1], we divide each file W,
into two parts Wn = W, W@ ithsizes F4 =AF and
F, = (1-A)F . Furthermore, we divide the cache of each user
i€[K] into G = C,m, dz) , where

C+n -4
+1-A 1 -2
Then we apply the proposed coding scheme for each collection
of sub-files, with T4, T, — 0. It is easy to verify that this leads
to a delivery load givenby R =AR(u )+ (1 —AR(u +1).
The details of derivation are skipped due to the page limit.

MF, MF.

1 2
a1 c 1=

Remark 2. The partitioning of files and caches with the
properly chosen sizes is critical to achieve the performance of
the centralized placement, otherwise (as shown in the example
below) the subspace coding without file partitioning does not
offer the performance of centralized placement.

Example 3. Let us consider a caching problem with K =3

usersand p =0.5 , ie., MF = NF/2 . Without file parti-
tioning, for T —» 0 , we have 0, =FR ,and 9, =65 =0,
leading to no packet  of utility 3. However, using file par-

titioning, we have Fy =F , =F2 , |G| =NE6 , and
|C,(1) | =NF/3 . Now, it is easy to see that  for the system
with (F2, |d2) |)=(F/2, NF/3) we have %2) =F/6 and
9&2) = 0, implying that 922) - 9(32) = F/6 of the packets will
be sent at utility 3. This reduces the delivery load compared to
a non-partitioned system, to that of the centralized placement.
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