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Abstract—We consider the problem of reconstructing an image
from its noisy measurements using a prior specified only with
an image denoiser. Recent work on plug-and-play priors (PnP)
and regularization by denoising (RED) has shown the state-of-
the-art performance of image reconstruction algorithms under
such priors in a range of imaging problems. In this work, we
develop a new block coordinate RED algorithm that decomposes
a large-scale estimation problem into a sequence of updates over
a small subset of the unknown variables. We theoretically analyze
the convergence of the algorithm and discuss its relationship to
the traditional proximal optimization. Our analysis complements
and extends recent theoretical results for RED-based estimation
methods. We numerically validate our method using several
denoising priors, including those based on deep neural nets.

Index Terms—Regularized image reconstruction, plug-and-
play priors, regularization by denoising, proximal optimization

I. INTRODUCTION

The problem of reconstructing an unknown image x € R"
from a set of noisy measurements y € R” is common in
computational imaging. Consider the scenario, where an image
T ~ pg is acquired via an imaging system characterized by
its likelihood function py, to produce the measurements y.
When the inverse problem is ill-posed, it becomes essential to
include the prior p, in the reconstruction process. However, in
high-dimensional settings, it is difficult to directly obtain the
true prior p, for natural images and one is restricted to various
indirect sources of prior information. This paper considers the
cases where the prior on x is specified only through an image
denoiser, D : R™ — R", designed for the removal of additive
white Gaussian noise (AWGN).

There has been considerable recent interest in leveraging
denoisers as priors for image recovery. One popular strategy,
known as plug-and-play priors (PnP) [1], extends traditional
proximal optimization [2] by replacing the proximal operator
with a general off-the-shelf denoiser. It has been shown that the
combination of proximal algorithms with advanced denoisers,
such as BM3D [3] or DnCNN [4], leads to the state-of-the-art
performance for various imaging problems [5]-[15]. A similar
strategy has also been adopted in the context of a related class of
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algorithms known as approximate message passing (AMP) [16]-
[20]. Regularization-by-denoising (RED) [21], and the closely
related deep mean-shift priors [22], represent an alternative,
where the denoiser specifies an explicit regularizer that has
a simple gradient. Recent work has clarified the existence
of explicit RED regularizers [23], demonstrated its excellent
performance on phase retrieval [24], and further boosted its
performance in combination with a deep image prior [25]. In
short, the use of advanced denoisers has proven to be essential
for achieving the state-of-the-art results in many contexts.
However, solving the corresponding estimation problem is still
a significant computational challenge, especially in the context
of high-dimensional vectors , typical in imaging applications.

In this work, we extend the current family of RED al-
gorithms by introducing a new block coordinate RED (BC-
RED) algorithm. The algorithm relies on partial updates on
x, which makes it scalable to images that would otherwise be
prohibitively large for direct processing. Additionally, as we
shall see, the overall computational complexity of BC-RED can
sometimes be lower than corresponding methods operating on
the full image. This behavior is consistent with the traditional
coordinate descent methods that can outperform their full
gradient counterparts by being able to better reuse local updates
and take larger steps [26]-[30]. We present two theoretical
results related to BC-RED. We first theoretically characterize
the convergence of the algorithm under a set of transparent
assumptions on the data-fidelity and the denoiser. Our analysis
complements the recent theoretical analysis of the traditional
RED algorithms in [23] by considering block-coordinate
updates and establishing the explicit worst-case convergence
rate. Our second result establishes backward compatibility of
BC-RED with traditional proximal optimization. We show that
when the denoiser corresponds to a proximal operator, BC-
RED can be interpreted as an approximate MAP estimator,
whose approximation error can be made arbitrarily small. To
the best of our knowledge, this explicit link with proximal
optimization is missing in the current literature on RED. BC-
RED thus provides a flexible, scalable, and theoretically sound
algorithm applicable to a wide variety of large-scale imaging
problems. We demonstrate BC-RED on image recovery from
linear measurements using several denoising priors, including
those based on deep neural nets.

The outline for the rest of the paper is as follows. In
Section II, we review some relevant background material on
image reconstruction. In Section III, we introduce BC-RED
and present its fixed point interpretation. In Section IV, we
analyze the convergence of BC-RED under several transparent
assumptions. In Section V, we provide numerical experiments
that illustrate key properties of our method. Section VI
concludes the paper. A preliminary version of this work was



presented in [31]. The current paper contains all the proofs
and additional simulations.

II. BACKGROUND
It is common to formulate image reconstruction as an
optimization problem

Z = argmin f(x)
xeR”™

with f(2) = gla) + h(z), (1)

where ¢ is the data-fidelity term and h is the regularizer.
For example, the maximum a posteriori probability (MAP)
estimator is obtained by setting

9(x) = —log(pyjo(ylz)) and h(z) = —log(pz()),

where py |, is the likelihood that depends on y and p, is
the prior. One of the most popular data-fidelity terms is
least-squares g(z) = 1|y — Ax||3, which assumes a linear
measurement model under AWGN. Similarly, one of the most
popular regularizers is based on a sparsity-promoting penalty
h(x) = 7||Dz||1, where D is a linear transform and 7 > 0 is
the regularization parameter [32]-[35].

Many widely used regularizers, including the ones based on
the /1-norm, are nondifferentiable. Proximal algorithms [2],
such as the proximal-gradient method (PGM) [36]-[39] and
alternating direction method of multipliers (ADMM) [40]-[43],
are a class of optimization methods that avoid differentiating

nonsmooth regularizers by using the proximal operator

.1
prox,,; (%) := argmin {2|w—z||% +uh(w)}7 )
meRn

where ;1 > 0 is a parameter. The observation that the proximal
operator can be interpreted as the MAP denoiser for AWGN
has prompted the development of PnP [1], where the proximal
operator prox,,; (), within ADMM or PGM, is replaced with
a more general image denoiser D(-).

Consider the following alternative to PnP [21], [22]

' — 7 -Gz, v >0, (3a)

where the update direction also relies on a denoising function
G(z) = Vy(z) + 7(z — D(z)), (3b)

Under some conditions on the denoiser, it is possible to
relate H(xz) = 7(x — D(x)) in (3a) to some explicit
regularization function h. For example, when the denoiser is
locally homogeneous and has a symmetric Jacobian [21], [23],
the operator H(-) corresponds to the gradient of the following
function

7> 0.

h(@) = Ja"(2 - D()). @

On the other hand, when the denoiser corresponds to the
minimum mean squared error (MMSE) estimator D(z) =
E[x|z] for the AWGN denoising problem [22], [23], z =
x + e, with  ~ py(x) and e ~ N(0,02I), the operator H(-)
corresponds to the gradient of

h(z) = —70o’log(p=(x)), (5)

where

pel@) = (2 4 p)@) = | palz)onle— )0z,

Algorithm 1 Block Coordinate Regularization by Denoising
0

1: input: initial value
step-size v > 0.

2: for k=1,2,3,... do
Choose an index ij € {1,...,b}
4z 2t —qU,, G (k)

where G;(z) = U] G(x)

with G(z) = Vg(z) + 7(x — D(x)).
5: end for

€ R”, parameter 7 > 0, and

(95}

where ¢, is the Gaussian probability density function of
variance o2 and * denotes convolution. In this paper, we will
use the term RED to denote the method in (3a). The key benefits
of the RED methods [21]-[25] are their explicit separation of
the forward model from the prior, their ability to accommodate
powerful denoisers (such as the ones based on deep neural
nets) without differentiating them, and their state-of-the-art
performance on a number of imaging tasks. The next section
further extends the scalability of RED by designing a new
block coordinate RED algorithm.

III. BLOCK COORDINATE RED

All the current RED algorithms operate on vectors in R”.
We propose BC-RED, shown in Algorithm 1, to allow for
partial randomized updates on . Consider the decomposition
of R™ into b > 1 subspaces

R*" =R™ xR™x.--xR™ with n=n;+na+---+np.

For each i € {1,...,b}, we define the matrix U; : R — R”
that injects a vector in R™ into R™ and its transpose U] that
extracts the ith block from a vector in R™. Then, for any
z=(x1,...,2p) €R"

b
x=> Um; with z;=UlzcR", i=1,...b (6)
=1

which is equivalent to Zle U;U] = I. Note that (6) directly
implies the norm preservation ||x||3 = ||z1]|3+- - -+ ||xp]||3 for
any € R™. We are interested in a block-coordinate algorithm
that uses only a subset of operator outputs corresponding
to coordinates in some block ¢ € {1,...,b}. Hence, for an
operator G : R™ — R"™, we define the block-coordinate operator
Gi :R™ — R™ as

Gi(x) == [G(x)]; = U] G(x) e R™, xcR". (7)

The proposed BC-RED algorithm is summarized in Al-
gorithm 1. Note that when b = 1, we have n = n; and
Uy = U] = I. Hence, the theoretical analysis in this paper is
also applicable to the full-gradient RED algorithm in (3a).

As with traditional coordinate descent methods (see [29] for
a review), BC-RED can be implemented using different block
selection strategies. The strategy adopted for our theoretical
analysis selects block indices ¢;, as independent and identically
distributed (i.i.d.) random variables distributed uniformly over

{1,...,b}. An alternative is to proceed in epochs of b
consecutive iterations, where at the start of each epoch the set
{1,...,b} is reshuffled, and i is then selected consecutively



from this ordered set. We numerically compare the convergence
of both BC-RED variants in Section V.

BC-RED updates its iterates one randomly picked block at
a time using the output of G. When the algorithm converges,
it converges to the vectors in the zero set of G

G(z*) = Vg(z*) + 7(=* — D(z*)) =0

& x"czer(G) = {x e R":G(x) =0}. (8)
Consider the following two sets
zer(Vg) = {x € R" : Vg(z) = 0}
and fix(D) == {x e R" : x = D(x)}, )

where zer(Vg) is the set of all critical points of the data-
fidelity and fix(D) is the set of all fixed points of the denoiser.
Intuitively, the fixed points of D correspond to all the vectors
that are not denoised, and therefore can be interpreted as vectors
that are noise-free according to the denoiser.

Note that if * € zer(Vg) Nfix(D), then G(x*) = 0 and z=*
is one of the solutions of BC-RED. Hence, any vector that is
consistent with the data for a convex g and noiseless according
to D is in the solution set. When zer(Vg) N fix(D) = @,
x* € zer(G) is an equilibrium point balancing the direction
towards higher data-fit Vg(x) by the direction towards higher
regularity (x —D(x)), explicitly weighted by 7 > 0 (see Fig. 3
in the appendix for an illustration). This explicit control is one
of the key differences between RED and PnP.

BC-RED benefits from considerable flexibility compared
to the full-gradient RED. Since each update is restricted to
only one block of x, the algorithm is suitable for parallel
implementations and can deal with problems where the vector
x is distributed in space and in time. However, the maximal
benefit of BC-RED is achieved when G; is efficient to evaluate.
Fortunately, it was systematically shown in [44] that many
operators—common in machine learning, image processing,
and compressive sensing—admit coordinate friendly updates.

For a specific example, consider the least-squares data-
fidelity g and a patch-wise denoiser D. Define the residual
vector r(x) = Ax —y and consider a single iteration of BC-
RED that produces = by updating the ith block of z. Then,
the update direction and the residual update are computed as

Gi(z) = Alr(x) + 7(x; — D(x;))

and r(z") =r(x) — vA;Gi(x), (10)

where A; € R™*™ is a submatrix of A consisting of the
columns corresponding to the :th block. In many problems
of practical interest [44], the complexity of working with A;
is roughly b times lower than with A. Also, many advanced
denoisers can be effectively applied on image patches rather
than on the full image [45]-[47]. Therefore, in such settings, the
speed of b iterations of BC-RED is expected to be comparable
to a single iteration of the full-gradient RED (see also the
discussion in Appendix D).

IV. CONVERGENCE ANALYSIS AND COMPATIBILITY WITH
PROXIMAL OPTIMIZATION

In this section, we present two theoretical results related to
BC-RED. We first establish its convergence to an element of

zer(G) and then discuss its compatibility with the theory of
proximal optimization.

A. Fixed Point Convergence of BC-RED

Our analysis requires several assumptions that together serve
as sufficient conditions for convergence.

Assumption 1. The operator G is such that zer(G) # @.
There is a finite number R such that the distance of the initial
x° € R™ 1o the farthest element of zer(G) is bounded, that is

max

l° — 2*[|2 < Ro.
x> czer(G)

This assumption is related to the existence of minimizers in
the literature on traditional coordinate minimization [26]-[29].
The assumption that zer(G) # & is analogous to assuming
that zer(Vf) # & when minimizing a convex and smooth
function f. In this setting, zer(V f) fully characterizes the
minimizers of f. Thus, zer(V f) = @, implies that f does not
have minimizers. Similarly, zer(G) = @ implies that (8) has
no solutions, which this assumption precludes.

The next two assumptions rely on Lipschitz constants along
directions specified by specific blocks. We say that G; is block
Lipschitz continuous with constant \; > 0 if

1Gi(®) = Gi(y)ll2 < Aillhill2, (11)

where € = y + U;h;, y € R”, and h; € R™. When \; = 1,
we say that G; is block nonexpansive. Note that if an operator G
is globally A-Lipschitz continuous, then it is straightforward to
see that each G; = U] G is also block \-Lipschitz continuous.

Assumption 2. The function g is continuously differen-
tiable and convex. Additionally, the block gradient Vg is
block Lipschitz continuous with constant L; > 0 for each
1€ {1,...,b}. We define the largest block Lipschitz constant
as Lmax = max{Ly,..., Ly}

Let L > 0 denote the global Lipschitz constant of Vg. We
always have L.« < L and, for some g, it may even happen that
Lmax = L/b[29]. As we shall see, the largest possible step-size
~ of BC-RED depends on L.y, while that of the traditional
full-gradient RED on L. Hence, one natural advantage of BC-
RED is that it can often take more aggressive steps compared
to the full-gradient RED.

Assumption 3. The denoiser D is such that each block denoiser
D; is block nonexpansive.

Since the proximal operator is nonexpansive [2], it automat-
ically satisfies this assumption. We revisit this scenario in
a greater depth in Section IV-B. We can now establish the
following result for BC-RED.

Theorem 1. Run BC-RED for t > 1 iterations with random
i.i.d. block selection under Assumptions 1-3 using a fixed step-
size 0 < v < 1/(Lmax + 27). Then, we have

E (12)

1< B b( Loy + 27
;ZIIG(w’“ 1)II%] < (W)RE-
k=1



A proof of the theorem is provided in Appendix A.
Theorem 1 implies that E[||G(z*)||3] is summable and
E[||G(z*)||3] — 0, which establishes the fixed-point con-
vergence of BC-RED in expectation to zer(G) with O(1/t)
rate, thus matching the rate of the traditional gradient-based
methods [48]. The proof relies on the monotone operator
theory [49], [50], widely used in the context of convex optimiza-
tion [2], including in the unified analysis of various traditional
coordinate descent algorithms [51], [52]. The theorem does
not assume the existence of any regularizer h, which makes it
applicable to denoisers beyond those characterized with explicit
functions in (4) and (5).

Since Lmax < L, one important implication of Theorem 1, is
that the upper-bound on the convergence rate (in expectation) of
b iterations of BC-RED is better than that of a single iteration
of the full-gradient RED (to see this, note that the full-gradient
rate is obtained by setting b = 1, L.« = L, and removing the
expectation in (12)). This implies that in coordinate friendly
settings (as discussed at the end of Section III), the overall
computational complexity of BC-RED can be lower than that of
the full-gradient RED. This gain is primarily due to two factors:
(a) possibility to pick a larger step-size ¥ = 1/(Lmax + 27); (b)
immediate reuse of each local block-update when computing
the next iterate (the full-gradient RED updates the full vector
before computing the next iterate).

In the special case of D(z) = x — (1/7)Vh(x), for
some convex h, BC-RED reduces to the traditional coordinate
descent method applied to (1). Hence, under the assumptions
of Theorem 1, one can rely on the analysis of traditional
randomized coordinate descent methods in [29] to obtain

E[f(z")] 2

* 2
fr< t Ry
where f* is the minimum value in (1). A proof of (13) can be
found in [29]. Therefore, such denoisers lead to explicit convex
RED regularizers and O(1/t) convergence of BC-RED in terms
of the objective. However, as discussed in Section IV-B, when
the denoiser is a proximal operator of some convex h, BC-RED
is not directly solving (1), but rather its approximation.

Note that Theorem 1 only provides sufficient conditions for
the convergence of BC-RED. As corroborated by our numerical
studies in Section V, the actual convergence of BC-RED is more
general and often holds beyond nonexpansive denoisers. One
plausible explanation for this is that such denoisers are locally
nonexpansive over the set of input vectors used in testing. On
the other hand, the recent techniques for spectral-normalization
of deep neural nets [53]-[55] provide a convenient tool for
building globally nonexpansive neural denoisers that result in
provable convergence of BC-RED.

13)

B. Convergence for Proximal Operators

One of the limitations of the current RED theory is in its
limited backward compatibility with the theory of proximal
optimization. For example, as discussed in [21] (see section
“Can we mimic any prior?”), the popular total variation (TV)
denoiser [32] cannot be justified with the original RED
regularization function (4). In this section, we show that BC-
RED (and hence also the full-gradient RED) can be used

to solve (1) for any convex, closed, and proper function h.
We do this by establishing a formal link between RED and
the concept of Moreau smoothing, widely used in nonsmooth
optimization [56]-[58]. In particular, we consider the following
proximal-operator denoiser

D(z) = PFOX(1/T)h(Z) (14)

—argmin {5 213 + (1/7)h(a) |
xR 2

where 7 > 0, z € R™, and h is a closed, proper, and convex

function [2]. Since the proximal operator is nonexpansive,

Assumption 3 is automatically satisfied. Our analysis, however,

requires an additional assumption using the constant R defined

in Assumption 1.

Assumption 4. There is a finite number G that bounds the
largest subgradient of h, that is

max{[|€(z)||2 : £(x) € Oh(x),a € B(x®, Ro)} < Go,

where B(x°, Rg) = {x € R": ||z — 2°||2 < Ry} denotes a

ball of radius Ry, centered at 0.

This assumption on boundedness of the subgradients holds
for a large number of regularizers used in practice, including
both TV and the /;-norm penalties. We can now establish the
following result.

Theorem 2. Run BC-RED for t > 1 iterations with random

i.i.d. block selection and the denoiser (14) under Assumptions 1-
4 using a fixed step-size 0 < v < 1/(Lmax + 27). Then

2b G2

E t < 7R2 ~o

[f(m)} f _’Yt 0+27_7

where the function f is defined in (1) and f* is its minimum.

15)

The theorem is proved in Appendix B. It establishes that BC-
RED in expectation approximates the solution of (1) with an
error bounded by (G3/(27)). For example, by setting 7 = v/t
and v = 1/(Lmax + 24/1), one obtains the following bound

E[f(z")] - f* < %

When h(x) = —log(pz(x)), the proximal operator cor-
responds to the MAP denoiser, and the solution of BC-
RED corresponds to an approximate MAP estimator. This
approximation can be made as precise as desired by considering
larger values for the parameter 7 > 0. Note that this further
justifies the RED framework by establishing that it can be used
to compute a minimizer of any proper, closed, and convex
(but not necessarily differentiable) h. Therefore, our analysis
strengthens RED by showing that it can accommodate a much
larger class of explicit regularization functions, beyond those
characterized in (4) and (5).

[2b(Lmax + 2)R + G5 . (16)

V. NUMERICAL VALIDATION

There is a considerable recent interest in using advanced
priors in the context of image recovery from underdetermined
(m < n) and noisy measurements. Recent work [21]-[25]
suggests significant performance improvements due to advanced



Fig. 1. Ten randomly selected test images from the fastMRI knee dataset [59].

Residual

Direct

Fig. 2. The architecture of two variants of DnCNN* used in our simulations.
Each neural net is trained to remove AWGN from noisy input images. Residual
denoiser is trained to predict the noise from the input. The final desired
denoiser D is obtained by simply subtracting the predicted noise from the
input D(z) = z — DnCNN*(z). Direct denoiser is trained to directly output
a clean image from a noisy input D(z) = DnCNN*(2). In some experiments,
we further constrain the Lipschitz constant (LC) of the direct denoiser to LC
=1 and of the residual denoiser to LC = 2 using spectral normalization [54].
LC = 1 implies a nonexpansive denoiser. A residual R =1 — D with LC =2
provides a necessary (but not sufficient) condition for a nonexpansive denoiser.

denoisers (such as BM3D [3] or DnCNN [4]) over traditional
sparsity-driven priors (such as TV [32]). Our goal is to
complement these studies with simulations validating our
theoretical analysis and providing additional insights'. The
simulations in this paper were performed on a machine
equipped with an Intel Xeon E5-2620 v4 that has 8 cores
of 2.1 GHz and 264 GBs of DDR memory. We trained all
neural nets using NVIDIA RTX 2080 GPUs (see Appendix E
for the details on training).

We consider inverse problems of form y = Ax + e,
where e € R™ is an AWGN vector and A € R™*" is a
matrix corresponding to either a sparse-view Radon transform,
i.i.d. zero-mean Gaussian random matrix of variance 1/m, or
radially subsampled two-dimensional Fourier transform. Such
matrices are commonly used in the context of computerized
tomography (CT) [60], compressive sensing [34], [35], and
magnetic resonance imaging (MRI) [61], respectively. In all
simulations, we set the measurement ratio to be approximately
m/n = 0.5 with AWGN corresponding to input signal-to-noise
ratio (SNR) of 30 dB and 40 dB. Throughout this paper, we

10ur code is available on GitHub https:/github.com/wustl-cig/bcred.

e
T 7 =0.0001 7=0.01

Fig. 3. Evolution of the images reconstructed by BC-RED using the DnCNN*
denoiser for different values of 7. The first row corresponds to Fourier matrix
with 30 dB noise, while the second row corresponds to the Radon matrix
with 40 dB noise. Each reconstructed image is marked with its SNR value
with respect to the ground truth image. The optimal parameters 7* for the
two problems are 0.0037 and 2.35, respectively. The denoiser used in this
simulation is the residual DnCNN* with a Lipschitz constant LC = 2. This
figure illustrates how 7 enables an explicit tradeoff between the data-fit and
the regularization.

define SNR using the follows equation

SN A lyll2 )
SN(.) & 2o (Ve
where y represents the noisy vector and y denotes the ground
truth. Fig. 1 shows the images we used, which correspond to 10
images randomly selected from the NYU fastMRI dataset [59],
resized to be 160 x 160 pixels. BC-RED is set to work with 16
blocks, each of size 40 x 40 pixels. The reconstruction quality
is quantified using SNR averaged over all ten test images.

In addition to well-studied denoisers, such as TV and
BM3D, we design our own deep neural net denoiser denoted
DnCNN*, which is a simplified version of the popular DnCNN
denoiser (see Fig. 2 for illustration and Sec. E in Appendix
for details). This simplification reduces the computational
complexity of denoising, which is important when running
many iterations of BC-RED. Additionally, it makes it easier
to control the global Lipschitz constant (LC) of the neural
net via spectral-normalization [54]. We train DnCNN™ for
the removal of AWGN at four noise levels corresponding to
o € {5,10,15, 20}. For each experiment, we select the denoiser
achieving the highest SNR value. Note that the o parameter of
BM3D is also fine-tuned for each experiment from the same
set {5, 10,15,20}.

Theorem 1 establishes the convergence of BC-RED in
expectation to an element of zer(G). This is illustrated in Fig. 4
(left) for the Radon matrix with 30 dB noise and a nonexpansive
DnCNN* denoiser. The average value of ||G(z")||2/||G(x°)||?
is plotted against the iteration number for the full-gradient RED
and BC-RED, with b updates of BC-RED (each modifying a
single block) represented as one iteration. We numerically tested
two block selection rules for BC-RED (i.i.d. and epoch) and
observed that processing in randomized epochs leads to a faster
convergence. For reference, the figure also plots the normalized
squared norm of the gradient mapping vectors produced by the
traditional PGM with TV [62]. The shaded areas indicate the
range of values taken over 10 runs corresponding to each test
image. The results highlight the potential of BC-RED to enjoy
a better convergence rate compared to the full-gradient RED,
with BC-RED (epoch) achieving the accuracy of 107! in


https://github.com/wustl-cig/bcred

TABLE I
AVERAGE SIGNAL-TO-NOISE RATIOS (SNRS) COMPUTED OVER 10 TEST IMAGES FOR DIFFERENT INVERSE PROBLEMS AND NOISE LEVELS. THE BEST SNR
FOR EACH EXPRIMENT IS HIGHLIGHTED IN BOLD-ITALIC, WHILE THE BEST DENOISER PRIOR IS IN LIGHT-GREEN.

Forward models FISTA (TV) UNet RED BC-RED
TV BM3D DnCNN* TV BM3D DnCNN*
Radon 30 dB 20.66 21.90 20.79 21.55 20.89 20.78 21.56 20.88
40 dB 24.40 21.72 24.46 25.24 24.38 24.42 25.16 24.42
Random 30 dB 26.07 16.37 25.64 26.46 26.53 25.70 26.50 26.60
40 dB 28.42 16.40 28.30 27.82 28.05 28.39 27.88 28.12
Fourier 30 dB 28.74 22.11 28.67 28.89 29.33 28.71 28.85 29.40
40 dB 29.99 22.11 29.97 29.79 30.32 29.99 29.80 30.39
PGM (TV)--- 10°
<\ Radon (30 dB) ™)
ak RED (DnCNN*) —
6; BC-RED (i.i.d.) —
Cj BC-RED (epoch) —
-fi_i/ __________
[C} Residual
= LC=2 | 10-14
0 iteration 500 0 iteration 500

Fig. 4. Illustration of the convergence of BC-RED under two DnCNN* priors. The left plot correspond to the direct DnCNN* with the LC = 1, while the
right plot correspond to the residual DnCNN* with LC = 2. The average normalized distance to zer(G) is plotted against the iteration number for the Radon
matrix with the shaded areas representing the range of values attained over all test images. Note that LC = 1 implies a nonexpansive denoiser, and LC = 2

provides a necessary (but not sufficient) condition for a nonexpansive denoiser.

PGM (TV)---

RED (DnCNN*) —
BC-RED (i.i.d.)—

- BC-RED (epoch) —

0 seconds

100 0O

Residual
LC=2

seconds 100

Fig. 5. Tllustration of the run-time convergence of BC-RED under two DnCNN* priors. The left plot correspond to the direct DnCNN* with the LC = 1,
while the right plot correspond to the residual DnCNN* with LC = 2. The average normalized distance to zer(G) is plotted against the run-time for the
Random matrix with the shaded areas representing the range of values attained over all test images. The run-time convergence of PGM with TV is also plotted

for reference.
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Fig. 6. Illustration of the influence of the parameter 7 > 0 for solving
TV regularized least-squares problem using BC-RED. As 7 increases, BC-
RED provides an increasingly accurate approximation to the TV optimization
problem.

104 iterations, while the full-gradient RED achieves the same
accuracy in 190 iterations. Additionally, the faster convergence
in time of BC-RED, compared to the full-gradient RED, is

also empirically highlighted in Fig. 5 for the Random matrix
with 30 dB noise and the nonexpansive DnCNN™ denoiser.
Specifically, BC-RED (epoch) achieves the accuracy of 10713
in 100 seconds, while the full-gradient RED achieves the
accuracy of 10~ in the same amount of time. This speedup
shows the potential of of BC-RED to lead to faster convergence
when applied to coordinate friendly reconstruction problems.

Theorem 2 establishes that for proximal-operator denoisers,
BC-RED computes an approximate solution to (1) with an
accuracy controlled by the parameter 7. This is illustrated
in Fig. 6 for the Fourier matrix with 40 dB noise and the
TV regularized least-squares problem. The average value of
(f(xz*) — f*)/(f(z°) — f*) is plotted against the iteration
number for BC-RED with 7 € {0.01,0.1,1}. The optimal
value f* is obtained by running the traditional PGM until
convergence. As before, the figure groups b updates of BC-
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Fig. 7. Visual comparison between BC-RED and RED against PGM (TV)
and U-Net for all three matrices with 30 dB noise. For BC-RED and RED, we
selected the denoiser resulting in the best reconstruction performance. Every
image is marked by its SNR value with respect to the ground truth. We highlight
the excellent agreement between BC-RED and RED in all experiments. Note
the strong degradation in the image quality for U-Net, due to the mismatch
between the training and testing.

RED as a single iteration. The results are consistent with our
theoretical analysis and show that as 7 increases BC-RED
provides an increasingly accurate solution to TV. Since the
range of possible values for the step-size v depends on 7, the
speed of convergence to f* is also influenced by 7.

In BC-RED, the parameter 7 controls the tradeoff between
zer(Vyg) and fix(D). Fig. 3 illustrates evolution of images recon-
structed by BC-RED for different 7. The first row corresponds
to the reconstruction from the Fourier measurements with 30
dB noise, while the second row corresponds to the Radon
measurements with 40 dB noise. The figure clearly shows
how 7 explicitly adjusts the balance between the data-fit and
the denoiser. In particular, small 7, corresponding to weak
denoising, results in unwanted artifacts in the reconstructed
images, while large 7 promotes denoising strength but smooths
out desired features and details. The leftmost images in Fig. 3
shows the optimal balance introduced by 7*.

The benefits of the full-gradient RED algorithms have been
well discussed in prior work [21]-[25]. Table I summarizes
the average SNR performance of BC-RED in comparison to
the full-gradient RED for all three matrix types and several
priors. Corresponding visual results are illustrated in Fig. 7.
Unlike the full-gradient RED, BC-RED is implemented using
block-wise denoisers that work on image patches rather than
the full images. We empirically found that 40 pixel padding
on the denoiser input is sufficient for BC-RED to match the
performance of the full-gradient RED (see Appendix G for
additional details). The table also includes the results for the
traditional PGM with TV [62] and the widely-used end-to-end
U-Net approach [63], [64]. The latter first backprojects the
measurements into the image domain and then denoises the
result using U-Net [65]. The model was specifically trained
end-to-end for the Radon matrix with 30 dB noise and applied
as such to other measurement settings. All the algorithms

were run until convergence with hyperparameters optimized
for SNR. The DnCNN™ denoiser in the table corresponds to
the residual network with LC = 2. The overall best SNR in the
table is highlighted in bold-italic, while the best RED prior is
highlighted in light-green. First, note the excellent agreement
between BC-RED and the full-gradient RED. This close agree-
ment between two methods is encouraging as BC-RED relies
on block-wise denoising and our analysis does not establish
uniqueness of the solution, yet, in practice, both methods seem
to yield solutions of nearly identical quality. Second, note
that BC-RED and RED provide excellent approximations to
PGM-TYV solutions. Third, note how (unlike U-Net) BC-RED
and RED with DnCNN* generalize to different measurement
models. Finally. no prior seems to be universally good on all
measurement settings, which indicates to the potential benefit
of tailoring specific priors to specific measurement models.

Fig. 7 visually compares the images recovered by BC-
RED and RED and two baseline methods. First, the images
visually illustrate the excellent agreement between BC-RED
and RED. Second, leveraging advanced denoisers in BC-RED
largely improves the reconstruction quality over PGM with the
traditional TV prior. For instance, BC-RED under DnCNN*
outperforms PGM under TV by 1 dB for Fourier matrix. Finally,
we note the stability of BC-RED using the deep neural net
denoiser versus the deteriorating performance of U-Net, which
is trained end-to-end for Radon matrix with 30 dB noise. This
fact highlights one key merit of the RED framework, that the
denoiser, only trained once, can be directly applied in different
scenarios for different tasks with no degradation.

VI. CONCLUSION

Coordinate descent methods have become increasingly
important in optimization for solving large-scale problems
arising in data analysis. We have introduced BC-RED as
a coordinate descent extension to the current family of
RED algorithms and theoretically analyzed its convergence.
Our analysis provides two complementary interpretations for
BC-RED: (i) equilibrium interpretation where the algorithm
balances the direction towards higher data-fit by the direction
towards higher regularity; (if) minimization interpretation where
the algorithm can perform traditional regularized inversion for
arbitrary convex regularizers. Preliminary experiments suggest
that BC-RED can be an effective tool in large-scale estimation
problems arising in image recovery. More experiments are
certainly needed to better asses the promise of this approach
in various estimation tasks. The method and analysis presented
in this paper can be extended in several complementary ways.
One interesting direction would be to allow the algorithm to
consider overlapping blocks, as is typically done in patch-based
image denoising [3], [46]. Another interesting direction would
be to consider improving the efficiency of the algorithm by
designing data-adaptive block selection strategies [66]. Finally,
one might consider going beyond gradient-based algorithms
by designing block-coordinate variants of ADMM operating
on image patches.



APPENDIX
A. Proof of Theorem 1

A fixed-point convergence of averaged operators is well-
known under the name of Krasnosel’skii-Mann theorem (see
Section 5.2 in [49]) and was recently applied to the analysis of
PnP [13] and several full-gradient RED algorithms in [23]. We
extend these results to the block-coordinate setting and pro-
vides explicit worst-case convergence rates for BC-RED. Our
analysis of BC-RED relates to the analysis of block-coordinate
optimization algorithms by Tseng [26], Nesterov [27], Beck
and Tetruashvili [28], and Wright [29]. The key difference of
our analysis from those prior works is that it does not require
the prior to be expressible in the form of a regularization
function, enabling BC-RED to exploit most effective image
denoisers, such as those based on deep neural nets.

We consider the following operators G, = V;g + H; with
H; = 7UJ (I — D). and proceed in several steps.

(a) Since V,g is block L;-Lipschitz continuous, it is also
block Lpax-Lipschitz continuous. Hence, we know from
Proposition 7 that it is block (1/Lmax)-cocoercive.
Then from Proposition 4, we know that the operator
(U] — (2/Lmax)Vig) is block nonexpansive.

From the definition of H; and the fact that D; is block
nonexpansive, we know that (U] — (1/7)H;) = D; is
block nonexpansive.

From Proposition 1, we know that a convex combination of
block nonexpansive operators is also block nonexpansive,
hence we conclude that

2 2 27 1
T_ 4 oo I T_ Iy
Ui Lmax+27G1 +<Lmax+27 2>{Ul THZ:|

2 L 2
_ . Lmax UT . vz ’
(Lmax + 27 2 ) |: ! Lmax g:|

is block nonexpansive. Then from Proposition 4, we know
that G; is block 1/(Lmax + 27)-cocoercive.

Consider any «* € zer(G), an index ¢ € {1,...,b} picked
uniformly at random, and a single iteration of BC-RED
T = & —yU;G;x. Define a vector h; = UZT(a: —x*) €
R"™. We then have

(b)

(©)

(d)

Jzt — z*|?
= |lz —z* — U,Gz|]?
= |z — x*|]> = 29(Gix — Giz*) " h; + 7*(|Gx|?

27 — (Lmax + 27—)72

< Jla - &2 = =m0 G a
max
* Y
< o —o"|]* - — 5= lGial, (17)

where we used G;x* = UIGw* = 0, the block cocoerciv-
ity of G;, and the fact that 0 < v < 1/(Lmax + 27).

By taking a conditional expectation on both sides and
rearranging the terms, we obtain

(e)
v i Zb
. 2 — . 2

i=1
<E[llz - — lz* - a*|?|«]

(f) Hence by averaging over ¢ > 1 iterations and taking the
total expectation

E

t

1 _ 1 [ b(Lmax + 27

7> lGa* ”] << [(V)RS] (18)
k=1

The last inequality directly leads to the result.
Remark. Eq. (17) implies that, under Assumptions 1-3, the
iterates of BC-RED satisfy

et — 2% < Jlat~t — 27| <+ < [[2° — 27| < Ro, (19)

which means that the distance of the iterates of BC-RED to
zer(G) is nonincreasing.

Remark. Our analysis in this section can be significantly
strengthened if one adopts an additional assumption that g is
strongly convex. This would imply that the algorithm corre-
sponds to repeated applications of a contractive operator [49],
which would establish the existence of a unique fixed point
a* € zer(G) and the linear convergence of the algorithm. Our
focus on the weaker form of convexity of g comes from its
broader applicability in computational imaging.

B. Proof of Theorem 2

The concept of Moreau smoothing is well-known and has
been extensively used in other contexts (see for example [58]).
Our contribution is to formally connect the concept to RED-
based algorithms, which leads to its novel justification as an
approximate MAP estimator. The basic review of relevant
concepts from proximal optimization is given in Appendix C.

For 7 > 0, we consider the Moreau envelope of h

= min {;Hz )P+ (l/T)h(z)} .

From Proposition 9, we know that

0 < ) = Thaym(@) < 5 (20)
and from Proposition 8, we know that
TVh( 7 (@) = 7(2 = proxy /7y, (x))- 1)

Hence, we can express the function f as follows

f(x) =g(x) + h(z)
= (9(z) + Thar)(x)) + (h(x) — Th(1/r)(T))
= fa/m (@) + (h(z) — Tha/m (),

where f(1/7) == g+ 7h( ;). From eq. (21), we conclude that
a single iteration of BC-RED

xt =x —qU;Gxz with G; =U](Vg(z)+ TVh(i/m ()

is performing a block-coordinate descent on the function f1 /7).
From eq. (20) and the convexity of the Moreau envelope, we
have

fiym = fam(®") < fan (@) < f(z),



where € R", * € zer(G). Hence, there exists a finite f*
such that f(x) > f* with ft1/7y < f7. Consider the iteration
t > 1 of BC-RED, then we have that

Elf(2")] - f* < E[f(@")] - ffi/n)
= Elf1m) (@")] — f{iym) +El(h(@") — Theam (@))])

where we applied (13).
The proof of eq. (16) is directly obtained by setting 7 = /%,
4 = Lmax + 2V/1, and noting that ¢ > /¢, for all ¢ > 1.

C. Background Material

The results in this section are well-known in the optimization
literature and can be found in different forms in standard text-
books [48], [49], [57], [67]. For completeness, we summarize
the key results useful for our analysis by restating them in a
block-coordinate form.

Properties of Block-Coordinate Operators

Most of the concepts in this part come from the tradi-
tional monotone operator theory [49], [50] adapted for block-
coordinate operators.

Definition 1. We define the block-coordinate operator T, :
R™ — R"™ of T:R"™ — R"” as

Tix = [Tz]; =U/ Tz ¢ R™, =z cR"™

The operator T; applies T to its input vector and then extracts
the subset of outputs corresponding to the coordinates in the
block i € {1,...,b}.

Remark. When b = 1, we have that n = nq and U; =
U7 = I. Then, all the properties in this section reduce to their
standard counterparts from the monotone operator theory in
R™. In such settings, we simply drop the word block from the
name of the property.

Definition 2. T, is block Lipschitz continuous with constant
Ai >0 if

HTZ'CL’—Tin < /\1”th, €Tr = y—i—Uihi, Y < Rn,hi e R™,
When \; = 1, we say that T; is block nonexpansive.
Definition 3. An operator T; is block cocoercive with constant
Bi >0 if

(Tiw — Tiy) Thi > Bil| Tz — Toyll®,
where x = y + U;h;, y € R”, h; € R". When 3; = 1, we
say that T; is block firmly nonexpansive.

The following propositions are conclusions derived from the
definition of above.

Proposition 1. Let T;; : R" — R™ for j € J be a set of
block nonexpansive operators. Then, their convex combination

T, = ZejTij’ with Qj > 0 and ZGJ =1,
JjeJ JjeJ

is nonexpansive.

Proof. By using the triangular inequality and the definition of
block nonexpansiveness, we obtain

ITie — Tayl < 01T — Tijy|

jeJ
< [ D20 | Rl = [kl
jeJ
for all y € R™ and h; € R™ where = y + U;h; . O

Proposition 2. Consider R; = U] —T; where T; : R® — R™.
T, is block nonexpansive < R; is (1/2)-block cocoercive.

Proof. First suppose that R; is 1/2 block cocoercive. Let « =
y + U;h; for all y € R™ and h; € R™:. We then have

1

§||Rz‘5¢—Riy||2 < (Riz—Riy) hi = ||h:|*—(Tiz—Ty) hi.
We also have that

1 1 1
SIR@—Ry|* = J[|hi|*~(Tiw—Tiy) Thi+ 3 | Tiz—Toy

By combining these two and simplifying the expression, we
obtain that
ITiw — Tayll < [[hil].

The converse can be proved by following this logic in reverse.
O

Block Averaged Operators

It is well known that the iteration of a nonexpansive
operator does not necessarily converge. To see this consider a
nonexpansive operator T = —I, where | is identity. However,
it is also well known that the convergence can be established
for averaged operators.

Definition 4. For a constant oo € (0,1), we say that the
operator T is «-averaged, if there exists a nonexpansive
operator N such that T = (1 — a)l + aN.

Definition 5. For a constant « € (0,1), we say that T; : R" —
R™ is block a-averaged, if there exists a block nonexpansive
operator N; such that T; = (1 — a)U] + aN,.

Remark. It is clear that if T is «-averaged, then T; = UiTT
is block a-averaged.
The following characterization is often convenient.

Proposition 3. For a block nonexpansive operator T;, a
constant o € (0,1), and the operator R; = UiT —T,, the
following are equivalent

(a) T; is block a-averaged

(b) (1 —1/a)U] + (1/a)T; is block nonexpansive

(@ [Tz — Tyl* < [h]® = (5%) IRz — Riy

x =y +Uh;, yecR"h;cRY

2
’

Proof. The equivalence of (a) and (b) is clear from the
definition. To establish the equivalence with (c), consider an
operator N; and T; = (1 — @)U + aN;. Note that

Ri=Ul —T;, = (U] —N,).



Then, for all y € R” and h; € R™, with x = y + U;h;, we
have that
[Tz — Toyl|* = [|(1 — a)h; + a(Nz — Nyy)||®
= (1= a)[[hi]* + al|Niz — Niy ||~
a(l —a)llh; = (N — Nyy)||?
= (1= a)[lhi|* + af|N;z — N;yl|®

l—«
- () [Riz — Riy|?,
«

where we used the fact that

(22)

A=)z tay|® = (1-a)z|*+aly|*~al-ao)llz-y|?,

where 6 € R and x,y € R". Consider also

l-«a
I = (10) IR - Ryl

— (- ol + alll? — (150) IR - Ryl
(23)
It is clear that we have
(22) < (23) <« N, is block nonexpansive
& T, is block a-averaged, 24)
where we used the definition of block averagedness. [

Proposition 4. Consider a block-coordinate operator
T, = UiTT with T : R" — R" Let « = y + U;h with
x € R", h; € R™ and consider 8; > 0. Then, the following
are equivalent

(a) T; is block B;-cocoercive

(b) B;T; is block firmly nonexpansive

(c) Ul — BT, is block firmly nonexpansive.

(d) B;T; is block (1/2)-averaged.

(e) Ul — 2B, T, is block nonexpansive.

Proof. The equivalence between (a) and (b) is readily observed
by defining P; := (3;T; and noting that
(Piz —Piy) h; = B;(T;x — T;y)"h;

and ||P;x — Pin2 = ﬁfHTlm - Tyl (25)

Define R; := U] — P, and suppose (b) is true, then
(Rix — Ryy)"h; = ||hi||* — (Piz — P;y) Th;
= |Riz — Ryy||> + (Pyx — Pyy)Th; — ||Piz — Piy|®
> ||Riz — Riy||>.

By repeating the same argument for P; = U] —R;, we establish
the full equivalence between (b) and (c).

The full equivalence of (b) and (d) can be established by
observing that
2||Piz — Piy||* < 2(Pix — Piy) Th,
& ||Pix — Piy|? < 2(Pix — Piy)Th; — ||Piz — Pyl
= [[Ril® = (Ihill* — 2(Piz — Piy) " hi + |[Piz — Piy||?)
= |[hi]?* - |Riz — Riy|*.

To show the equivalence with (e), first suppose
that N, := UiT —2P; is block nonexpansive, then
P; = 1(U] + (=N;)) is block 1/2-averaged, which means
that it is block firmly nonexpansive. On the other hand, if P;
is block firmly nonexpansive, then it is block 1/2-averaged,
which means that from Proposition 3(b) we have that
(1 =2)UJ +2P; = 2P, — U] = —N; is block nonexpansive.
This directly means that N; is block nonexpansive. O

Operator Properties for Convex Function

It is convenient to link properties of a function f : R” — R,
x — y = f(x), to the properties of operators derived from it.
The key properties for our analysis are related to continuity
and convexity.

Proposition 5. Let f be continuously differentiable function
with V; f that is block L;-Lipschitz continuous. Then,

L;
fly) < flx)+ V@) (y —z)+ 5 lly - ||?
L;
= f(®) + Vif (@) hi + 7Hhi||2
for all x € R™ and h; € R™, where y = x + U;h,.

Proof. The proof is a minor variation of the one presented in
Section 2.1 of [48]. O

Proposition 6. Consider a continuously differentiable [ such
that V; f is block L;-Lipschitz continuous. Let x* € R"™ denote
the global minimizer of f. Then, we have that

1 . L .
S IVif @) < (F(@) — @) < Lo — 7%, @6)
where x = x* + U;h;, * € R", h; € R™,

Proof. The proof is a minor variation of the discussion in
Section 9.1.2 of [67]. O

Proposition 7. For a convex and continuously differentiable
function f, we have

V. f is block L;-Lipschitz continuous
< V.f is block (1/L;)-cocoercive.

Proof. The proof is a minor variation of the one presented as
Theorem 2.1.5 in Section 2.1 of [48]. ]

Moreau smoothing and proximal operators

In this section, we consider a class of functions that are
proper, closed, and convex, but are not necessarily differentiable.
The proximal operator is a widely-used concept in such
nonsmooth optimization problems [56], [57].

Definition 6. Consider a proper, closed, and convex h and a
constant [ > 0. We define the proximal operator

(1
prox,,,(x) = argmin {2||z —z|*+ uh(z)}
ZGR7L

and the Moreau envelope

hu(x) =

min
z€ER™

{3l el +unia)}.



Proposition 8. The function h,, is convex and continuously
differentiable with a 1-Lipschitz gradient
Vhu(x) = x — prox,,(z), = eR".

Proof. We first show that h,, is convex. Consider

1
q((I},Z) = gHz - sz + p,h(Z),

which is convex (x,z). Then, for any 0 < 6 < 1 and
(21, 21), (T2, 22) € R?™, we have

hu(0xy + (1 — 0)xa) < (01 + (1 — )2, 021 + (1 — 0)22)

< 0q(x1,21) + (1 — 0)q(x2, z2),
(27)

where we used the convexity of g. Since this inequality holds
everywhere, we have

hu(0xy + (1 — 0)xa) < Ohy (1) + (1 — 0)h,(x2),
with

hu(x1) = n;in q(x1,2z1) and hy(xs) = n;;n q(x2, 22).

To show the differentiability, note that

1 1
(@) = el = max {aT=  un(z) - 5la1?}

z€R™
1 N . 1
= Sllell? = ¢* (@) with 6(2) = S =]? + ph(=),

where ¢* denotes the conjugate of ¢. The function ¢ is closed
and 1-strongly convex. Hence, we know that ¢* is defined for
all x € R™ and is differentiable with gradient [67]

V¢*(x) = arg max {mTz — ph(z) — ;||z|2} = prox,, ().
z€R™

Hence, we conclude that
Vhu(x) =x — V¢*(x) = x — prox,,;, ().

Note that since the proximal operator is firmly nonexpansive,
Vh,, is also firmly nonexpansive, which means that it is 1-
Lipschitz. O

The next result shows that the Moreau envelope can serve
as a smooth approximation to a nonsmooth function.

Proposition 9. Consider h € R" and its Moreau envelope
hy(x) for p > 0. Then,
1
0 < h(@) - —hy(w) < 562
1

. 2
min ,
£€Oh(x) ||£||

with G2 = x e R"

Proof. First note that

—hy(x) = min

1 2
L zE]R"{Qlu,z z|| +h(z)} < h(x), xecR",

Algorithm 2 BC-RED for a quadratic g and block-wise D
1: input: 2° € R™, 7 >0, and v > 0.
2: initialize: 70+ Ax" —y
3: for k=1,2,3,... do
4
5

Choose an index iy, € {1,...,b}
kb1 —qU, G, (xF1)

with le (a:’“_l) = A;—%”'k_l + T(mik - D(wlk))
6 rhe bl _~yA, G (¢
7: end for

which is due to the fact that z = « is potentially suboptimal.
We additionally have for any & € Oh(x)

hy(x) — ph(x) = min

i, {Mh(z) — ph(z) + %Hz _ sz}

This directly leads to the conclusion. O

D. Coordinate-Friendly Implementations

Theoretical analysis in Section IV of the main paper suggests
that, if b updates of BC-RED (each modifying a single block)
are counted as a single iteration, the worst-case convergence
rate of BC-RED is expected to be better than that of the
full-gradient RED. This fact was empirically validated in
Section V, where we showed that in practice BC-RED needs
much fewer iterations to converge. However, the overall
computational complexity of two methods depends on their
per-iteration complexities. In particular, the overall complexity
of BC-RED is favorable when its total number of iterations
required for convergence offsets the cost of solving the problem
in a block-coordinate fashion. As for traditional coordinate
descent methods [44], [68], in many problems of interest, the
computational complexity of a single update of BC-RED will
be roughly b times lower than that of the full-gradient method.

The computational complexity of each block-update will
depend on the specifics of the data-fidelity term ¢ and the
denoiser D used in the estimation problem. For example,
consider the problem where g(x) = 1 || Az —y||3. Additionally,
suppose that x is such that it is sufficient represent its prior
with a block-wise denoiser on each x;, rather than on the full
. This situation is very common in image processing, where
many popular denoisers are applied block-wise [47]. Then,
one can obtain a very efficient implementation of BC-RED,
illustrated in Algorithm 2.

The worst-case complexity of applying A; and A] is
O(mn;), which means that the cost of b updates such updates
for i € {1,...,b} is O(mn). Additionally, if the complexity
of b block-wise denoising operations is equivalent or less than
the complexity of denoising the full vector (which is generally
true for advanced denoisers), then the complexity of b updates
of BC-RED will be equivalent or better than a single iteration
of the full-gradient RED.



TABLE II
AVERAGE SNR ACHIEVED BY BC-RED FOR TWO VARIANTS OF DNCNN* AT DIFFERENT LIPSCHITZ CONSTANT (LC) VALUES.

Variants of DnCNN* Radon Random Fourier
30 dB 40 dB 30 dB 40 dB 30 dB 40 dB
Direct Unconstrained 21.67 24.74 Diverges  Diverges 29.40 30.35
LC=1 19.33 22.98 19.89 20.26 25.06 25.40
Residual Unconstrained 20.88 24.68 26.49 27.60 29.39 30.31
u LC=2 20.88 24.42 26.60 28.12 29.40 30.39

Some of our simulations were conducted using denoisers
applied on the full-image and others using patch-wise denoisers.
In particular, the convergence simulations in Fig. 4 relied on
the full-image denoisers, in order to use identical denoisers
for both RED and BC-RED and be fully compatible with
the theoretical analysis. On the other hand, the SNR results
in Table I, Table II, Fig. 7, and Fig. 3 rely on block-wise
denoisers, where the denoiser input includes an additional 40
pixel padding around the block and the output has the exact
size of the block. The padding size was determined empirically
in order to have a close match between BC-RED and RED.
We have observed that having even larger paddings does not
influence the results of BC-RED.

E. Architecture and Training of DnCNN*

We designed DnCNN* fully based on DnCNN architecture.
The network contains three parts. The first part is a composite
convolutional layer, consisting of a normal convolutional layer
and a rectified linear units (ReLU) layer. It convolves the
n1 X ng input to nq X ny X 64 features maps by using 64 filters
of size 3 x 3. The second part is a sequence of 5 composite
convolutional layers, each having 64 filters of size 3 x 3 x 64.
Those composite layers further processes the feature maps
generated by the first part. The third part of the network, a
single convolutional layer, generates the final output image
by convolving the feature maps with a 3 x 3 x 64 filter.
Every convolution is performed with a stride = 1, so that
the intermediate feature maps share the same spatial size of
the input image. Fig. 2 visualizes the architectural details. We
generated 52000 training examples by adding AWGN to 13000
images (320 x 320) from the NYU fastMRI dataset [59] and
cropping them into 4 sub-images of size 160 x 160 pixels. We
trained DnCNN™ to optimize the mean squared error by using
the Adam optimizer.

F. Influence of the Lipschitz Constant on Performance

Theorem 1 assumes that the denoiser D is nonexpansive.
It is relatively straightforward to control the global Lipscthiz
constants of deep neural nets via spectral normalization [53]-
[55] and we have empirically tested the influence of nonexpan-
siveness to the quality of final image recovery.

Table II summarizes the SNR performance of BC-RED for
two common variants of DnCNN*. The first variant is trained
to learn the direct mapping from a noisy input to a clean
image, while the second variant relies on residual learning
to map its input to noise (shown in Fig. 2). To gain insight

into the influence of the Lipschitz constant (LC) of a denoiser
to its performance as a prior, we trained denoisers with both
globally constrained and nonconstrained LCs via the spectral-
normalization technique from [54]. For the direct network,
we trained DnCNN* with LC = 1, which corresponds to a
nonexpansive denoiser. For the residual network, we considered
LC = 2, which is a necessary (but not sufficient) condition for
the nonexpansiveness. In our simulations, BC-RED converged
for all the variants of DnCNN¥, except for the direct and
unconstrained DnCNN*, which confirms that our theoretical
analysis provides only sufficient conditions for convergence.
Nonetheless, our simulations reveal the performance loss
of the algorithm for the direct and nonexpansive (LC = 1)
DnCNN™. On the other hand, the performance of the residual
DnCNN* with LC = 2 nearly matches the performance of
fully unconstrained networks in all experiments.

G. Influence of padding in patch-wise denoising

The procedure of block-wise image processing of BC-
RED enables one to further reduce the overall computational
complexity by using the patch-wise denoisers, where the
denoising is performed only on the desired patch instead
of the full image. The left table in Fig. 8 summarizes the
averaged SNR values for the patch-wise residual DnCNN*
corresponding to the paddings of size {0, 5, 10, 20, 40} pixels.
The lower SNR for O px suggests the non-separability of
DnCNN*; yet, a small 5 px padding is sufficient for matching
the performance of the full-image DnCNN”. Since the patch-
wise denoiser only approximates the full-image denoiser, the
final accuracy of BC-RED under the patch-wise DnCNN* to
zer(G) is 1.92 x 107, while the accuracy for the full-image
DnCNN* is 1.10 x 10~10, However, the patch-wise DnCNN*
still matches the SNR performance of the full-image DnCNN*
and does it faster due to its reduced denoising complexity. The
slight SNR improvement for 40 px patch-wise denoising over
the full-image denoising is due the fact that 7 parameter of
BC-RED was optimized for that case and reused in the rest
of experiments. Note also the slow convergence of RED using
the full-image BM3D, due to the lower convergence rate and
the high complexity of denoising.
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