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Abstract

Regularization by denoising (RED) is a powerful frame-
work for solving imaging inverse problems. Most RED al-
gorithms are iterative batch procedures, which limits their
applicability to very large datasets. In this paper, we address
this limitation by introducing a novel online RED (On-RED)
algorithm, which processes a small subset of the data at a
time. We establish the theoretical convergence of On-RED
in convex settings and empirically discuss its effectiveness
in non-convex ones by illustrating its applicability to phase
retrieval. Our results suggest that On-RED is an effective
alternative to the traditional RED algorithms when dealing
with large datasets.'

1. Introduction

The recovery of an unknown image = € R from a set of
noisy measurement is crucial in many applications, including
computational microscopy [44], astronomical imaging [38],
and phase retrieval [1 1]. The problem is usually formulated
as a regularized optimization

& —argmin{f(z)} with f(2)=g(z)+h(z), ()

xRN

where g is the data-fidelity term that ensures the consistency
with the measurements, and £ is the regularizer that imposes
the prior knowledge on the unknown image. Popular meth-
ods for solving such optimization problems include the fam-
ily of proximal methods, such as proximal gradient method
(PGM) [3,4, 14, 19] and alternating direction method of mul-
tipliers (ADMM) [1, 7, 16, 30], due to their compatibility
with non-differentiable regularizers [17, 18,35].

Recent work has demonstrated the benefit of using de-
noisers as priors for solving imaging inverse problems
[8,12,23,26,27,37,40,41,43,49]. One popular frame-
work, known as plug-and-play priors (PnP) [46], extends
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Figure 1. Conceptual illustration of online regularization by denois-
ing (On-RED). The proposed algorithm uses a random subset of
noisy measurements at every iteration to reconstruct a high-quality
image using a convolutional neural network (CNN) denoser.

traditional proximal methods by replacing the proximal op-
erator with a general denoising function. This grants PnP a
remarkable flexibility in choosing image priors, but also com-
plicates its analysis due to the lack of an explicit objective
function.

An alternative strategy for leveraging denoisers is the
regularization by denoising (RED) framework [34], which
formulates an explicit regularizer h for certain classes of de-
noisers [33, 34]. Recent work has shown the effectiveness of
RED under sophisticated denoisers for many different image
reconstruction tasks [27,33,34,39]. For example, Metzler
et al. [27] demonstrated the state-of-the-art performance of
RED for phase retrieval by using the DnCNN denoiser [48].

Typical PnP and RED algorithms are iterative batch pro-
cedures, which means that they processes the entire set of
measurements at every iteration. This type of batch process-
ing of data is known to be inefficient when dealing with large
datasets [6,24]. Recently, an online variant of PnP [40] has
been proposed to address this problem, yet such an algorithm
is still missing for the RED framework.

In order to address this gap, we propose an online ex-
tension of RED, called online regularization by denoising
(On-RED). Unlike its batch counterparts, On-RED adopts
online processing of data by using only a random subset
of measurements at a time (see Figure | for a conceptual



illustration). This empowers the proposed method to effec-
tively scale to datasets that are too large for batch processing.
Moreover, On-RED can fully leverage the flexibility offered
by deep learning by using convolutional neural network
(CNN) denoisers.

The key contributions of this paper are as follows:

e We propose a novel On-RED algorithm for online pro-
cessing of measurements. We provide the theoretical
convergence analysis of the algorithm under several
transparent assumptions. In particular, given a convex g
and nonexpansive denoiser, which does not necessarily
correspond to any explicit h, our analysis shows that
On-RED converges to a fixed point at the worst-case
rate of O(1/+/1).

e We validate the effectiveness of On-RED for phase
retrieval from Coded Diffraction Patterns (CDP) [11]
under a CNN denoiser. Numerical results demonstrate
the empirical fixed-point convergence of On-RED in
this non-convex setting and show its potential for pro-
cessing large datasets under nonconvex g.

2. Background

In this section, we first review the problem of regularized
image reconstruction and then introduce some related work.

2.1. Inverse Problems in Imaging

Consider the inverse problem of recovering € R™ from
measurements y € R™ specified by the linear system

y=Hz+e, 2

where the measurement matrix H € R"*" characterizes
the response of the system, and e is usually assumed to be
additive white Gaussian noise (AWGN). When the inverse
problem is nonlinear, the measurement operator can be gen-
eralized to a mapping H : R” — R™. A common example
is the problem of phase retrieval (PR), which corresponds
the following nonlinear system
y=H(x)+e, with H(x)=|Ax| 3)

where | - | denotes an element-wise absolute value, and
A € C™*™ is the measurement matrix.

Due to the ill-posedness, inverse problems are often for-
mulated as (1). A widely-used data-fidelity term is the least-
square loss

1
9(x) = 5 lly = H(@)|3, @)

which penalizes the mismatch to the measurements in terms
of /o-norm. In particular, for the PR problem, the data-
fidelity becomes 1|y — | Ax|||3, which is known to be non-
convex. Two common choices for the regularizer include

the sparsity-enhancing ¢; penalty h(x) = 7|«||; and the
total variation (TV) penalty h(z) = 7| Dz||1, where 7 > 0
controls the strength of regularization and D denotes the
discrete gradient operator [10, 15,22,35,45].

Two popular methods for solving (1) are PGM and
ADMM. They circumvent the differentiation of non-smooth
regularizers by using a mathematical concept called proximal
map [29]

prox.,(z) = argmin {1||x—z|g+7h(:ﬂ)}. Q)
xTcR™ 2

A close inspection of (5) reveals that the proximal map actu-

ally corresponds to an image denoiser based on regularized

optimization. This mathematical equivalence led to the de-

velopment of PnP and RED.

2.2. Plug-and-play algorithms
Consider the ADMM iteration

2k prong(:/c"_1 — sk
x « prox,, (2" + 871 6)

sP e sF 4 (2P — ab),

where k > 1 denotes the iteration number. In (6), the regu-
larization is imposed by prox.; : R™ — R", which denotes
the proximal map of h.

Inspired by the equivalence that the proximal map is a
denoiser, Venkatakrishnan et al. [46] introduced the PnP
framework based on ADMM by replacing prox.;, in (6) with
a general denoising function D,, : R — R"

xb « Dy (2" + 571

where o > 0 controls the strength of denoising. This
simple replacement enables PnP to regularize the prob-
lem by using advanced denoisers, such as BM3D [13] and
DnCNN. Numerical experiments show that PnP achieves
the state-of-the-art performance in many applications. Sim-
ilar PnP algorithms have been developed using PGM [23],
primal-dual splitting [3 1], and approximate message passing
(AMP) [20,28].

Considerable effort has been made to understand the the-
oretical convergence of the PnP algorithms [9, 12,26,36,37,

,42]. Recently, Sun et al. [40] proposed an online PnP
algorithm based on PGM, named PnP-SPGM, and analyzed
its fixed-point convergence using the monotone operator
theory [2]. This paper extends their results to the RED
framework by introducing a new algorithm and analyzing its
theoretical convergence.

2.3. Regularization by Denoising

The RED framework, proposed by Romano er al. [34],
is an alternative way to leverage image denoisers. RED has



Algorithm 1 GM-RED

Algorithm 2 On-RED

1: input: 2° € R”, 7> 0,ando > 0

2. fork=1,2,... do

3 Vg(zF 1) « fullGradient(x*~1)

4 G(zF 1) « Vg(zF 1) + r(xF " - D, (zF L))
5 xk — 2kt — 4 G(zF )

6: end for

been shown successful in many regularized reconstruction
tasks, including image deblurring [34], super-resolution [25],
and phase retrieval [27]. The framework aims to find a fixed
point * that satisfies

G(z") = Vg(z*) + 7(z" — Do (2")) =0, (7

where 7 > 0 and Vg denotes the gradient of g. Equivalently,
x* lies in the zero set of G : R™ — R™

x* € zer(G) = {x e R" | G(x) = 0}. (8)

Romano et al. discussed several RED algorithms for finding
such x*. One popular algorithm is the gradient descent
(summarized in Algorithm 1)

xb — b — 4 (Vg(zF 1) + H(zr 1))
with H(x) = 7(x — D,(x)), )

where v > 0 is the step-size. They have justified H(-) as a
gradient of some explicit function under some conditions. In
particular, when denoiser D, is locally homogeneous and
has a symmetric Jacobian [33, 34], H corresponds to the
gradient of the following regularizer

T

h(x) = §mT(:c — D, ()). (10)
By having a closed-form objective function, one can use the
classical optimization theory to analyze the convergence of
RED algorithms [34]. On the other hand, fixed-point conver-
gence has also been established without having an explicit
objective function [33,39]. Reehorst et al. [33] have shown
that RED proximal gradient methods (RED-PG) converge to
a fixed point by utilizing the montone operator theory. Sun et
al. [39] have established the worst-case convergence for the
block coordinate variant of RED algorithm (BC-RED) under
a nonexpansive D,,. In this paper, we extend the analysis of
BC-RED in [39] to the randomized processing of measure-
ments instead of image blocks, which opens up applications
requiring the processing of a large number of measurements.

3. Online Regularization by Denoising

We now introduce the proposed online RED (On-RED),
which processes the measurements in an online fashion. The

1: input: 2° € R®, 7> 0,0 >0,and B > 1

2. fork=1,2,... do

3 Vg(x*~1) + minibatchGradient(z*~1, B)

4 G(aF 1) « Vg(zh=1) + 7(z*! — D,y (zF 1))
5 ok 1 — 4G(ah )

6: end for

online processing of measurements is especially beneficial
for problems with the following data-fidelity

I
o(@) = Elgi(@)] = 7 3 oi(w) an
i=1

which is composed of I component functions g;(x), each
evaluated only on the subset y; of the measurements y. The
computation of the gradient

1
Vo(e) = E[Voi(e)) = ; 3 Vaila) (2

is proportional to the total number /. Note that the expecta-
tionin (11) and (12) is taken over a uniformly distributed ran-
dom variable i € {1,...,I}. Large I effectively precludes
the usage of batch GM-RED algorithms because of large
memory requirements or impractical computation times. The
key idea of On-RED is to approximate the gradient at every
iteration by averaging B < I component gradients

. 1 E
Vy(z) = EZVgib(w), (13)
b=1

where i1, ...,ip are independent random indices that are
distributed uniformly over {1, ..., I}. The minibatch size
parameter B > 1 controls the number of gradient compo-
nents used at every iteration.

Algorithm 2 summarizes the algorithmic details of On-
RED, where the operation minibatchGradient computes the
averaged gradients with respect to the selected minibatch
components. Note that at each iteration, the minibatch is
randomly sampled from the entire set of measurements. In
the next section, we will present the theoretical convergence
analysis of On-RED.

4. Convergence Analysis under Convexity

A fixed-point convergence of averaged operators is well
known as Krasnosel’skii-Mann theorem [2], which was ap-
plied to the aforementioned analysis of PnP [40] and RED
algorithms [33, 39]. Here, our analysis extends these re-
sults to the online processing of measurements and provides



explicit worst-case convergence rates for On-RED. Note
that our analysis does not assume that H corresponds to any
explicit regularizer h. We first introduce the assumptions
necessary for our analysis and then present the main results.

Assumption 1. We make the following assumptions on the

data-fidelity term g:

(a) The component functions g; are all convex and differen-
tiable with the same Lipschitz constant L > 0.

(b) At every iteration, the gradient estimate is unbiased and
has a bounded variance:

[

v

E[Vg(x)] = Vg(z), E[|Vy(z) - Vg(@)|3] < =,

for some constant v > 0.

Assumption 1(a) implies that the overall data-fidelity g is
also convex and has Lipschitz continuous gradient with con-
stant L. Assumption 1(b) assumes that the minibatch gradi-
ent is an unbiased estimate of the full gradient. The bounded
variance assumption is a standard assumption used in the
analysis of online and stochastic algorithms [5,21,40,47]

Assumption 2. Let operator G have a nonempty zero set
zer(G) # . The distance between the the farthest point
in zer(G) and the sequence {x"}y_o 1.... generated by On-
RED is bounded by constant Ry

max _||z¥ —x*||s < Ry, k>0
x> zer(G)

This assumption indicates that the iterates of On-RED lie
within a Euclidean ball of a bounded radius from zer(G).

Assumption 3. Given o > 0, the denoiser D, is a nonex-
pansive operator such that

IDo(2) = Do (y)l2 < [l —ylla =,y € R,

Since the proximal operator is nonexpansive [32], it au-
tomatically satisfies this assumption. Nonexpansive CNN
denoisers can also be trained by using spectral normaliza-
tion techniques [39]. Under the above assumptions, we now
establish the convergence theorem for On-RED.

Theorem 1. Run On-RED for t > 1 iterations under As-
sumptions 1-3 using a fixed step-size v € (0,1/(L 4 271)]
and a fixed minibatch size B > 1. Then, we have

B, _pin 613

ke{l,...t

t
1 _
<E [tzmw oIl
k=1

(L+27) V272+27—VR0+R—% .
¥ B VB t

<

Proof. See Section 7. O

When ¢ goes to infinity, this theorem shows that the accuracy
of the expected convergence of On-RED to an element of
zer(G) improves with smaller -y and larger B. For example,
we can have the convergence rate of O(1/1/t) by setting
v=1/(L+27)and B =t

1 C
S lIsEE B <

k=1

E )
TVt

where C' > 0 is a constant and we use the bound % < %

that is valid for ¢t > 1.

5. Numerical Simulation for Phase Retrieval

In this section, we test the performance of On-RED on a
nonconvex phase retrieval problem from coded diffraction
patterns (CDP). The state-of-the-art performance of RED
for this problem was shown by Metzler et al. [27]. Here,
we investigate the convergence of On-RED and show its
effectiveness for reducing the per-iteration complexity of the
traditional batch GM-RED. Our results show the potential
of On-RED to scale to a large member of measurements
under powerful denoisers that do not correspond to explicit
regularizers.

5.1. Experiment Setup

In CDP, the object € R" is illuminated by a coherent
light source. A random known phase mask modulates the
light and the modulation code is denoted as M for the ith
measurement. In this work, each entry of M, is drawn
uniformly from the unit circle in the complex plane. The
light goes through the far-field Fraunhofer diffraction and a
camera measures its intensity y; € R. Since Fraunhofer
diffraction can be modeled by 2D Fourier Transform, the ith
data-fidelity term of this phase reconstruction problem can
be formulated as follows:

1
gi() = 5 lvi — | F Mia |3

where F' denotes 2D discrete Fast Fourier Transform (FFT).
The total data-fidelity term for all the measurements then
becomes

I
o(x) = Elgi(@)] = 7 3 gila).
i=1

Noticeably, this problem is well suited for On-RED because
it has the same formulation as (11).

In the experiments, we reconstruct six 256 x 256 standard
grayscale natural images, displayed in Figure 2. The simu-
lated measurements are corrupted by AWGN corresponding



Figure 2. Test images used in the experiments. From left to right: Barbara, Boat, Lenna, Monarch, Parrot, Pepper.
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Figure 3. Illustration of the influence of v and B on the convergence of On-RED for phase retrieval under DnCNN™. The left plot shows the
convergence results of On-RED for three different step sizes with a fixed minibatch size B = 10 and the right plot shows the results of

On-RED for three different minibatch sizes with a fixed step size v =

_1
L+21

. Both experiments draw random samples from a total of / = 40

measurements. The plots validate that smaller -y and larger B improve the convergence accuracy in this nonconvex setting.

to 25 dB of input signal-to-noise ratio (SNR), defined as
follows

where g represents the noisy vector and y denotes the ground
truth. We also use SNR as a quantitative measure for the
quality of reconstructions.

We used DnCNN* as our CNN denoiser for the experi-
ments. The architecture of DnCNN™ is illustrated in Figure
1 and was adopted from the popular DnCNN. We gener-
ated training examples by adding AWGN to images from
BSD400 and applying standard data augmentation strategy
including flipping, rotating, and rescaling. We used the resid-
ual learning technique where DnCNN* predicts the noise
image from the input. The network was trained to minimize
the following loss

Lo= % > {1 fo(@:) = will + 1 fo(m:) — will1}, (14)
1=1

where x; is the noisy input, y; is the noise, and fy represents
DnCNN*.

The hyperparameters for experiments in 5.2 and 5.3 are
listed in Table 1. All algorithms start from x° = 0, where
0 € R" is all zeros. The value of 7 for each image was
optimized for the best SNR performance with respect to
ground truth test images. In this paper, the values of B and

Table 1. List of algorithmic hyperparameters

Hyperparameters 5.2 5.3
x° initial point of reconstructions 0 0
o input noise level for denoisers 5 5
7 level of regularization in RED 0.2 optimized
v step size 7L_&27 1,3, 5} L-&Z‘r
B minibatch size at every iteration {10, 20,30} 1
I batch size 40 6

Table 2. Convergence accuracy averaged over the test images

Denoiser Step-size () Mini-batch size (B)
1 1 1
T+or 3(L+27)  9(L+27) 10 20 30
TV 8.65e-5 2.36e-5 9.43e-6 8.65e-5 2.8le-5 9.8le-6
BM3D 8.01e-5 1.59¢-5 9.10e-6 8.0le-6  2.72e-5 8.93e-6
DnCNN*  7.63e-5 1.94¢-6 5.03e-6 7.63e-5  2.72e-5 8.88e-6

I are set only to show the potential of On-RED dealing with

large datasets.

5.2. Convergence of On-RED

Theorem 1 implies that the expected accuracy improves
for a smaller step size v and larger minibatch size B. In
order to numerically evaluate the convergence, we define
and consider the following normalized accuracy

Norm. Acc. = ||G(z")|[3/[1G(=")I3

o

verges to a fixed point in zer(G), the normalized accuracy
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Figure 4. Visual examples of recontructed Barbara, Parrot, and Pepper images by GM-RED (1), On-RED (1), and GM-RED (6) with
BM3D and DnCNN* denoisers. The original images are displayed in the first column. The second and the third columns show the results
of batch GM-RED using 1 fixed measurement. The fourth and the fifth columns present the results of On-RED using a single randomly
selected measurement per-iteration out of 6 total measurements. The results of the batch algorithm using all 6 measurements are given in the
last column. Differences are zoomed in using boxes inside the images. Each reconstruction is labeled by its SNR (dB) with respect to the

original image. Note that On-RED (1) recovers the details lost by GM-RED (1) by approaching the performance of GM-RED (6)

decreases to zero.

Figure 3 (left) shows the evolution of the convergence
accuracy for v € {57, 57197y sy ) With DnCNN®.
Here, L denotes the Lipschitz constant defined in Assump-
tion 1 and 7 represents the parameter of RED. We observe
that the empirical performance of On-RED using DnCNN*
is consistent with Theorem 1, as the accuracy improves
with smaller step size. Moreover, Figure 3 (right) numer-
ically evaluates the convergence accuracy of On-RED for
minibatch size B € {10, 20,30}. This plot shows that the
convergence accuracy improves when minibatch size B be-
comes larger. Therefore, the change of convergence accuracy
with both step size v and minibatch size B follows the same
trend in Theorem 1 for this nonconvex problem.

We note that the similar trend generalizes to BM3D and
TV denoisers as well. The summary in Table 2 gives the
convergence results of all three denoisers.

5.3. Benefits of On-RED with a CNN Denoiser

In this subsection, we show the performance and effi-
ciency of On-RED in solving CDP. To understand the po-
tential of On-RED to scale to large datasets, we consider
the scenario where the number of illuminations processed at
every iteration is fixed to one.

Table 3 provides the SNR performance of different algo-
rithms. GM-RED (fixed 1) uses 1 fixed measurement and
On-RED (B = 1) uses 1 random measurement out of 6 total
measurements at every iteration, so they have the same per-
iteration computation cost. On-RED outperforms GM-RED
by 4.54 dB and 4.99 dB under BM3D and DnCNN*, respec-
tively, by actually using all measurements. We also note
that the average SNR of stochastic gradient method (SGM)
(B = 1) is higher than that of GM-RED (fixed 1) for both
denoisers. This implies that the online processing in SGM



Table 3. Optimized SNR for each test image in dB

Algorithms  SGM GM-RED On-RED GM-RED
I=6) (B=1 (fixed 1) (B=1) (fixed 6)
Denoisers — BM3D DnCNN* BM3D DnCNN* DnCNN*
Barbara 27.37 2604 2615 3095  31.50 32.59
Boat 27.68 2690 2753 3165 326l 33.17
Lenna 27.65 2655 2758 3147 3254 33.20
Monarch 27.51 2476 2634  29.66 3131 32.63
Parrot 27.20 2798 2807 3161  32.10 33.48
Pepper 27.08 26.14 2585 3029  31.39 32.58
Average 27.42 2640 2692 3094 3191 32.94

boosts the SNR more than the regularization of GM-RED.
By combining online processing and advanced denoisers,
On-RED largely improves the reconstruction performance,
which is close to that of the batch algorithm GM-RED (6)
using all 6 measurements.

Visual illustrations of Barbara, Parrot, and Pepper are
given in Figure 4. It is clear that the images reconstructed
by On-RED (1) preserve the features lost by GM-RED (1),
such as the stripes in Barbara, the white feather in Parrot,
and the stems in Pepper. Moreover, these features in the
reconstructed images of On-RED (1) have no visual dif-
ference from the results of GM-RED (6), as illustrated by
column 4, 5, and 6. This indicates that the online algorithm
approaches the image quality of the batch algorithm with a
lower per-iteration complexity.

6. Conclusion

In this paper, we proposed an online algorithm for the
Regularization by Denoising framework. We provided the
theoretical convergence proof under a few transparent as-
sumptions and a detailed analysis in a convex problem set-
ting. We then applied On-RED to a nonconvex phase re-
trieval problem from coded diffraction patterns to show its
convergence. The performance of On-RED with our learn-
ing denoiser DnCNN* demonstrated that On-RED is well
compatible with powerful denoisers that do not correspond
to explicit regularizers. Our results showed that On-RED
has the potential to solve data-intensive problems involving
a large number of measurements by reducing per-iteration
computation cost.

7. Proof of Theorem 1
We consider the following two operators
P:=1-~G and P = |—76

where P is the online variant of P. The iterates of On-RED
can be expressed as

F=PaF ) =aF ' —G(xz" "), with G=Vg+H.
Note also the following equivalence

x* ezer(G) & x* efix(P)

Proposition 1. Consider an operater P and its online vari-
ant P. If the data-fidelity g(-) satisfies Assumption I, then
we have

E[F(z)] = P(z), E[|P(x) - P(x)|3] <

Proof. First, we can show

E[G(z)] = E[Vg(z)] + H(z) = G()

and

E[[|6(2) - G(2)[13] = E[|Vg(=) ~ V() 3] < 5

Then, we can prove the desired result
E[P(z)] = - E[G(x)] = P(z)

and

E[|[P(z) — P(2)||3] = > E[|G(z) — G(x)|3] < L

O

Proposition 2. Let the denoiser D, be such that it satisfies
Assumption 3 and Vg is L-Lipschitz continuous. For any
v € (0,1/(L + 27)], the operator P is nonexpansive

IP(x) —

Proof. The proposition is a direct result of the part (c) of
the proof of Theorem 1 (Section A) in the Supplementary
Material of [39] by setting U = UT = I and G; = G, which
corresponds to the full-gradient RED algorithm of (9). [

Pl <llz -yl vVz,yeR"

Now we prove Theorem 1 in the paper. Consider a single

iteration " = P(x*~1), then we can write for any z* €
zer(G) that

lz* — 2715 = [P(""") - P(z")II3

= [P(a*") = P(@" ") + P(a*") — P(z") |3

= [IP(z""") - P(fv*)HerH (") = P(=" )3
2(P(2"!) — P(a* )T (P(@* ") — P(2"))

< k*li * 27 G k— 1 2 15
< ot - [ (HQT @ as)

+ [P — P13
+2[P(a") = P2 [P(="T) — P2,

where we use the Cauchy-Schwarz inequality and adapt
the bound (14) in the part (d) of the proof of Theorem 1
(Section A) in the Supplementary Material of [39] by setting



U=UT =land G; = G. According to Assumption 2 and
Proposition 2, we have
IP(&"") = P(z")[l2 < "~ —&*[2 < Ro.  (16)

Additionally, by using Jensen’s inequality, we can have for
all x € R™ that

E [IP@) - P@ll] ~ & | /IP(e) - Pla]

< B [IP@ - P@l] < an

v
VB’
By rearranging and taking a conditional expectation of (15)
and using these bounds, we can obtain

E[llz* — a3 - "~ — 23 | =7

2qv y2u? v k—1y (2
< —R, — G
=75 o+ B L+ or [G(=" )]z,

which can be reorganized as

: L+2 222
ot < (252 [T+ 22
gl B VB
L R P I ]

By averaging the inequality over ¢ > 1 iterations, taking the
total expectation, and dropping the last term, we obtain

t
1 -
SCERT
k=1
L+27 [v22 2y R%}
< +—=Ro+ —
Ty [ B TyB Ut

where we apply the law of total expectation and Assump-
tion 2. This establishes the Theorem 1.
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