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1 Introduction

There is strong observational evidence supporting the hypothesis that the early universe went
through a rapid period of accelerated expansion dubbed inflation [1, 2]. As well as resolving
the horizon, flatness, curvature, and gravitino/monopole problems, inflation provides a sim-
ple explanation for the observed red-tilted, approximately Gaussian and adiabatic density
fluctuations [3, 4]. The inflationary scenario also generically predicts primordial gravita-
tional waves, which can be measured or constrained through the B-mode polarization of the
cosmic microwave background. Current measurements restrict the tensor-to-scalar ratio to
r . 0.09 [5, 6], which tightens to r . 0.06 when the consistency relation nt = −r/8, as
appropriate for vacuum fluctuations from slow-roll inflation, is imposed. Future experiments
are expected to reach σr ∼ 0.001 [7].

Slow-roll inflation requires a flat potential; in axion (or natural) inflation this flatness
is a natural consequence of an approximate shift symmetry [8]. Originally motivated as a
possible solution to the strong CP problem [9], axions, or pseudoscalar, fields are ubiquitous
in string theory, and monodromy [10–14] or alignment [15–18] effects can make them inflaton
candidates, giving rise to vacuum primordial gravitational waves within the reach of future
experiments.
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Due to the approximate shift symmetry, the axion inflaton ϕ must couple derivatively
to matter fields. At mass-dimension five, the possible couplings are

∆L =
ϕ

f
FF̃ +

∂µϕ

f
X̄γµγ5X , (1.1)

to gauge fields and fermions X, respectively. Here F is the usual gauge-field field-strength
tensor, F̃ is its dual, and f is a scale known as the axion decay constant. This coupling of the
axion to gauge fields leads to exponentially large gauge field amplification, with several possi-
ble phenomenological consequences (see [19] for a review). These include steep inflation [20],
thermalized inflation [21, 22], magnetic field production [23–28], large non-Gaussianity [29–
31], chiral gravitational wave production [32–37], instantaneous preheating [38, 39], and the
generation of primordial black holes [40–42].

The fermionic coupling has not attracted as much attention, first being studied by one of
us in reference [43], and, more recently, in references [44–46]. Due to Pauli blocking, fermions
cannot undergo the same exponential amplification as the gauge fields. Furthermore, on the
one hand, massless fermions are conformal and therefore cannot be created gravitationally
through the expansion of the Universe [47]. On the other hand, very heavy fermions decouple,
so that, in the absence of the coupling (1.1), only fermions with mass m ≈ H are produced in
sizable quantities. With only one scale in the problem, the Hubble scale, the energy density
is ∼ H4, which is too small to produce observable effects (with the possible exception of
super-heavy dark matter [48, 49]). During axion inflation, however, this conclusion does not
follow due to the presence of the additional scale ϕ̇/f .

We have previously studied the regime ϕ̇/f � H in reference [44]. Because fermion
modes can be populated up to k ∼ ϕ̇/f , the energy density can be parametrically larger1 than
H4, as first noticed in reference [43]. In reference [44] we also identified a regime in which
the sourced contribution to the power spectrum dominates the vacuum contribution, yet
the non-Gaussianity is beneath current observational bounds. This behavior is in striking
contrast to the analogous effect in systems with strong bosonic particle production. This
difference can be understood by noting that phenomenologically interesting results require
one to populate a large number of fermion modes and, since the occupation of these modes is
restricted by Pauli exclusion, their sum is uncorrelated and becomes increasingly Gaussian by
the central limit theorem. Bosonic systems, conversely, allow for large occupation numbers
per mode, which add coherently leading to sourced n-point functions that are generically

related to the two-point function by 〈δϕn〉 ∼
(
〈δϕ2〉

)n/2
[50]. As the fermion-axion coupling

is increased, eventually one enters a regime of strong backreaction where the evolution of the
inflaton zero-mode is controlled by particle production; this is the fermionic analogue of steep
inflation studied in reference [20]. We expect that the above argument that non-Gaussianity
remains small still holds in the regime of strong backreaction.

Given the rich phenomenology of the scalar perturbations found in reference [44], it
is important to characterize how fermions source gravitational waves in the regime where
ϕ̇/f � H. As was noticed in reference [43] and confirmed in reference [44], the produced
fermions have a helicity asymmetry, which was used for leptogenesis in reference [51]. This
helicity asymmetry raises the possibility that the spectrum of sourced gravitational waves has
a chiral component. Sourced production of gravitational waves in this context was previously

1On the contrary, in the opposite ϕ̇/f � H regime the effect of this coupling leads to a fermion energy
density that is much smaller than H4, and thus is negligible.
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studied2 in reference [53]. However, the fermion basis used in that work was leading to
pathologies as m→ 0, whereas in this work we use the basis introduced in reference [44], in
which perturbation theory remains valid as the fermion mass m becomes small. We review
this basis while introducing our model in section 2.

This paper is organized as follows. In section 2, we introduce our theory, and working
in the Arnowitt-Deser-Misner (ADM) [54] formalism, we solve the gravitational constraint
equations to second order. We then use these solutions to obtain the interaction Lagrangian
to fourth order in fluctuations. From this interaction Lagrangian, we obtain one O(γΨ2)
vertex and seven O(γ2Ψ2) vertices, where γ and Ψ respectively denote, schematically, the
tensor and the fermion degrees of freedom. In section 3, we use these interactions to compute
eight loop diagrams in the in-in formalism [55, 56]. The O(γ2Ψ2) interactions lead to seven
one-loop one-vertex diagrams, which we evaluate in section 3.2.1, while the O(γΨ2) generates
a two-vertex loop, which we evaluate in section 3.2.2. We discuss our results in section 3.3; we
show that the chirally asymmetric contribution is subdominant, and that the total sourced
contribution to the tensor-to-scalar ratio is beneath the vacuum component. Details of
our calculations can be found in the various appendices. We work in natural units where
~ = c = 1, and MPl = 1/

√
8πG is the reduced Planck mass.

2 Fermion-graviton interactions during axion inflation

The aim of this work is to compute the amplitude of the tensor modes sourced by fermions
in a model where a pseudoscalar inflaton ϕ is derivatively coupled to a fermion X of mass
m, as described in the action (2.1) below. At leading order in perturbation theory, fermions
source gravitational wave power at one-loop. At one-loop, diagrams of two topologies are
possible. The first topology — the cubic loop — is a two-vertex diagram that is generated
by two cubic order vertices consisting of one gravitational wave and a fermion bilinear. The
second topology — the quartic loop — is a one-vertex diagram generated by a quartic-order
vertex consisting of two gravitational waves and a fermion bilinear (see figure 1 below). To
find the required interactions, we therefore need to expand the full action to quartic order in
fluctuations.

2.1 Starting action

We consider a theory containing a pseudoscalar inflaton ϕ with a shift-symmetric coupling to
a fermion X and minimally coupled to gravity, so that our action, in mostly minus convention,
reads

S =

∫
d4x
√
−g
[
M2

Pl

2
R+

gµν

2
∂µϕ∂νϕ− V (ϕ) + X̄

(
iγµDµ −m−

1

f
∂µϕγ

µγ5

)
X

]
. (2.1)

As discussed in reference [44] (in particular, see appendix B of that work for details),
the use of these fields makes apparent the shift-symmetric nature of the inflaton-fermion
interaction, but it obscures the fact that such interaction vanishes as m→ 0. It is therefore
convenient to redefine the fermion according to

X → Ψ = e
iγ5

ϕ
f X , (2.2)

2Gravitational wave production by non-chiral fermions has also been studied in reference [52].
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which puts the fermion action in the form

SΨ =

∫
d4x
√
−g Ψ̄

[
iγCeC

µ

(
∂µ+

1

2
ωµABΣAB

)
Ψ−m cos

(
2ϕ

f

)
+im sin

(
2ϕ

f

)
γ5

]
Ψ, (2.3)

where greek letters are spacetime indices µ, ν ∈ {0, 1, 2, 3}, capital roman letters are 4D
Lorentz indices A,B,C ∈ {0, 1, 2, 3}. In this paper we will also use lower case roman letters
from the start of the alphabet as spatial Lorentz indices a, b, c ∈ {1, 2, 3}, and finally roman
letters from the middle of the alphabet as spatial spacetime indices, i, j, k ∈ {1, 2, 3}. The
generator of local Lorentz transformations is ΣAB = 1

4

[
γA, γB

]
, and the spin connection is

ωµ
AB = eAν∇µeBν , where eAν is the vierbein.

2.2 The action in ADM form

Because certain components of the metric are constrained degrees of freedom whose val-
ues depend on the fermion bilinears (as well as the other dynamical degrees of freedom),
gravitationally-mediated fermion-graviton couplings are generated when these constraints
are eliminated from the action. In order to perform this analysis, it is convenient to decom-
pose the metric using the ADM formalism. The key advantage of this formulation is that
the constrained degrees of freedom enter the theory algebraically; their equations of motion
are algebraic constraints. The metric in ADM form reads

ds2 = N2dτ2 − hij(dxi +N idτ)(dxj +N jdτ) , (2.4)

where N is the lapse and N i is the shift. For the background metric we choose N = a, so that
τ denotes conformal time. Derivatives with respect to τ are represented with primes. The
spatial indices, i, j, k, . . . are raised and lowered with hij , so that N i ≡ hij Nj , h

ij hjk = δik.
Finally, det [g] = −N2 det [h].

In these coordinates, the action for the purely bosonic sector of the theory (involving
gravity and the inflaton) becomes

SB =

∫
dτ d3xN

√
h

[
M2

Pl

2

(
(3)R+KijKij −K2

)
+

π2
ϕ

2N2
− 1

2
hij∂iϕ∂jϕ− V (ϕ)

]
, (2.5)

where πϕ ≡ ϕ′ −N j∂jϕ and

Kij ≡−
1

2N

(
h′ij − (3)∇iNj − (3)∇jNi

)
, K = Ki

i . (2.6)

The fermionic action, SF , in these coordinates reads

SF =

∫
d4xLF , (2.7)

where (see appendix A)

LF = a3

{
iΨ̄γ0

[
∂0+

(
∂iN−N jKij

)
eb
iΣ0b+

1

2
eck

(
∂0eb

k−
(
NKk

m−(3)∇mNk
)
eb
m
)
ηacΣ

ab

]
Ψ

+iΨ̄
(
γaNea

k−γ0Nk
)[
∂k−Kikeb

iΣ0b+
1

2

(
eci∂keb

i+(3)Γmike
c
meb

i
)
ηacΣ

ab

]
Ψ

−NmΨ̄

[
cos

(
2ϕ

f

)
+isin

(
2ϕ

f

)
γ5

]
Ψ

}
. (2.8)
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In these expressions, (3)∇i denotes the three dimensional covariant derivative, ηab is the
spatial part of the Minkowski metric, ηAB = diag[1,−1,−1,−1], and the spatial vielbeins
satisfy δabe

a
ie
b
j = hij . The total action is the sum S = SB + SF .

2.3 Constraints

When written in terms of the ADM decomposition, one can see that the lapse N and the
shift Ni enter in the action, eqs. (2.5) and (2.8), without time derivatives (in the case of the
lapse, spatial derivatives are also missing from the action). This implies that the correspond-
ing Euler-Lagrange equations are constraints. The equation of motion for the lapse is the
Hamiltonian constraint

0 =
δS

δN
=
M2

Pl

2
(3)R− 1

2
hij∂iϕ∂jϕ− V −

M2
Pl

2
(KijKij −K2)− 1

2N2
π2
ϕ

+
i

2
ea
i(Ψ̄ γa ∂iΨ− ∂iΨ̄ γa Ψ)− 1

4
ea
i ebj

(3)∇iecj εabc Ψ̄γ0γ5Ψ

−m Ψ̄

[
cos

(
2ϕ

f

)
+ i sin

(
2ϕ

f

)
γ5

]
Ψ , (2.9)

while the equation of motion for the shift is the momentum constraint

0 =
δS

δNi
−(3)∇j

δS

δ((3)∇jNi)
=

1

N
πϕ∂iϕ+

i

2
(Ψ̄γ0∂iΨ−∂iΨ̄γ0 Ψ)+

1

4
eaj

(3)∇iebj εabc Ψ̄γcγ5Ψ

+M2
Pl

(3)∇j (Kij−hijK)+
1

4
(3)∇j

(
eai e

b
j εabc Ψ̄γcγ5Ψ

)
. (2.10)

In these expressions, εabc is the “flat” three-dimensional Levi-Civita tensor, with the conven-
tion ε123 = +1.

We work in the spatially flat gauge where det[hij ] = a6 and the dynamical scalar
fluctuation degrees of freedom are in the fluctuations of the inflaton. We parametrize the
tensor perturbations of the metric as3

hij = a2 (eγ)ij = a2

[
δij + γij +

1

2
γimγmj + . . .

]
, (2.11)

where a(τ) is the scale factor. The transverse-traceless nature of the tensor modes,
δijγij = γij,j = 0, implies that det [eγ ] = 1. Similarly, the spatial vielbeins are expanded
in terms of the tensor perturbations as

eai = a δake
1
2
γki = a δak

[
1 +

1

2
γki +

1

8
γkjγji . . .

]
. (2.12)

Our goal is to determine the effective cubic γΨ̄Ψ and quartic γγΨ̄Ψ component of the
Lagrangian, where γ schematically denotes the graviton. As is well known, in order to deter-
mine the action to n-th order in the fluctuations, the solutions to the constraint equations
are required at order n−2; terms of order n and n−1 simply multiply lower-order constraint
equations [57]. Thus, to obtain the action up to fourth order in the fluctuations, we require
solutions for the constraints (the lapse and shift) up to quadratic order. Note that Lorentz
invariance means that the fermion fields only begin to contribute to the constraint equations

3Repeated lower roman indices are summed with the Kronecker delta: xixi ≡
∑3

i,j=1 δ
ijxixj .
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at quadratic order. We therefore solve the above constraints in eqs. (2.9) and (2.10) perturba-
tively, to second order in the fluctuations, before plugging them back into the original action.

To facilitate a perturbative solution, we expand the lapse and shift functions as

N = a
(

1 + α(1) + α(2) + . . .
)
,

Ni = ∂iθ
(1) + ∂iθ

(2) + · · ·+ β
(1)
i + β

(2)
i + . . . , (2.13)

where the superscript denotes the order of the expansion, and where β
(1, 2)
i are transverse,

∂
(1, 2)
i βi = 0. We also expand the inflaton as ϕ(τ, ~x) = ϕ0(τ) + δϕ(τ, ~x), and we treat the

fermions as first order quanties, so that fermion bilinears are of second order.
To zeroth order, the Hamiltonian constraint reduces to the Friedmann equation

H2 =
1

3M2
Pl

(
ϕ′0

2

2
+ a2 V (ϕ)

)
, H ≡ a′

a
, (2.14)

while the momentum constraint is automatically satisfied. At first order, we obtain [55]

β(1) = 0 , α(1) =
ϕ′0

2HM2
P

δϕ , ∆θ(1) = − ϕ′20
2M2

PH2

(
H δϕ
ϕ′0

)′
. (2.15)

Since we are not interested in the perturbations sourced by fluctuations of the inflaton, we
drop these from now on. Ignoring inflaton fluctuations, the second order constraints read

α(2) = ∆−1

{
1

8H
∂j
[
(∂jγ`i)γ

′
i`

]
+

ia

4M2
PlH

[
Ψ̄γ0∆Ψ−(∆Ψ̄)γ0Ψ

]}
,

β
(2)
j = ∆−1

{
1

2
∆−1∂j∂k

[
(∂kγ`i)γ

′
i`

]
− 1

2

[
(∂iγ

′
jk)γki+(∂jγ`i)γ

′
i`−(∂iγjk)γ

′
ki

]
+

ia

M2
Pl

∂j∆
−1
[
Ψ̄γ0∆Ψ−(∆Ψ̄)γ0Ψ

]
− a

M2
Pl

[
i
(
Ψ̄γ0∂jΨ−(∂jΨ̄)γ0Ψ

)
− 1

2
εijk∂i(Ψ̄γ

kγ5Ψ)

]}
,

θ(2) = ∆−1

{
− 1

16H
[
γ′ijγ

′
ij+(∂jγkq)∂jγqk

]
− ia

4M2
PlH

(
Ψ̄γ0∂0Ψ−(∂0Ψ̄)γ0Ψ

)
− a2

M2
PlH

V (ϕ0)∆−1

{
1

8H
∂j
[
(∂jγ`i)γ

′
i`

]
+

ia

4M2
PlH

[
Ψ̄γ0∆Ψ−(∆Ψ̄)γ0Ψ

]}}
, (2.16)

where ∆ = ∂i∂i is the spatial Laplacian, ∆−1 is its inverse, and we note that ε123 = −1. We
have used the linear equation of motion for the fermion to simplify the solution for θ(2); the
details of this calculation are given in appendix A.

2.4 Explicit form of the fermion action, and fermion-GW interactions

We insert the solutions to the constraint equations for N and N i to second order (eqs. (2.14),
(2.15), and (2.16)) into the action, eq. (2.5) + (2.7), and then expand order by order in the

fluctuations. This gives the quadratic action S(2) = S
(2)
γ + S

(2)
F for the free gravitons and

fermions, the cubic action S
(3)
F describing the O

(
Ψ2γ

)
interactions, and the quartic action

S
(4)
F describing the O

(
Ψ2γ2

)
interactions.

– 6 –
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The quadratic action for the gravitons reads

S(2)
γ =

M2
Pl

8

∫
d4x a2

[
γ′ijγ

′
ij − ∂kγij∂kγij

]
, (2.17)

while the quadratic action for the fermions is

S
(2)
F =

∫
d4x

[
iψ̄
(
γ0∂0 + γa∂a

)
ψ −ma cos

(
2ϕ

f

)
ψ̄ψ + ima sin

(
2ϕ

f

)
ψ̄γ5ψ

]
, (2.18)

where we have rescaled the fermion field according to ψ ≡ a3/2Ψ.
At cubic order we find

S
(3)
F = − i

2

∫
d4x γij ψ̄ γ

i ∂j ψ ≡
∫
d4xL(3) , (2.19)

and some straightforward, but lengthy, algebra leads to the quartic order action

S
(4)
F =

∫
d4x

{
i

16
γab γbk

(
ψ̄γa∂kψ−∂kψ̄γaψ

)
+

1

16
γ′ajγjbεabcψ̄γ

cγ5ψ+
1

16
εabcγkc (∂aγkb) ψ̄γ

0γ5ψ

+
i

4

(
1− V

4H2M2
Pl

)
∆−2∂m

(
∂mγkn γ

′
kn

)(
ψ̄γ0∆ψ−(∆ψ̄)γ0ψ

)
−∆−1

8
(γ′jk ∂jγik−γjk ∂jγ′ik−γ′kj ∂iγkj)

[
εaic∂a(ψ̄γ

cγ5ψ)+2 i
(
ψ̄γ0∂iψ−∂iψ̄γ0ψ

)]
− i

32aH

(
∂iγjk ∂iγjk+γ′ijγ

′
ij

)
∆−1

(
ψ̄γ0 ∆ψ−∆ψ̄γ0ψ

)
− i

16aH

(
ψ̄γ0ψ′−ψ̄′ γ0ψ

)
∆−1∂i

(
∂iγkj γ

′
kj

)}
≡
∫
d4xL(4)≡

7∑
i=1

∫
d4xL(4)

i , (2.20)

where H = ȧ/a is the Hubble parameter and ε123 = −1. L(4)
1 , L(4)

2 , L(4)
3 refer to the three

terms in the first line of eq. (2.20), while the remaining L(4)
i refer to the other four lines (one

term per line). Note that the interactions L(4)
4 , L(4)

5 , L(4)
6 , L(4)

7 arise from integrating out the
non-dynamical constraints (the second order parts of the lapse and shift). From the cubic
and quartic Lagrangian densities we find the interaction Hamiltonian densities

H
(3)
int (τ) = −

∫
d3xL(3) ,

H
(4)
int,i (τ) = −

∫
d3xL(4)

i , (i = 1, . . . 7) . (2.21)

To proceed, we expand the tensors in Fourier space as

γij(x, τ) =
∑
λ

∫
d3k

(2π)3/2
γλk(τ) Πλ

ij (k) eik·x, γλk(τ) =

√
2

a(τ)MPl
tλk(τ), (2.22)

where the field tλk is canonically normalized. The sum is over the right-handed (λ = +1) and
left-handed (λ = −1) tensor polarizations, with the polarization tensors satisfying

Πλ
ij (k)∗ = Π−λij (k) = Πλ

ij (−k) , Πλ
ij (k) Πλ′

ij (k) = 2δλ,−λ′ , εabckbΠ
λ
cd (k) = iλkΠλ

ad (k) .

(2.23)
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We also Fourier transform the fermions according to

ψ(x, τ) =

∫
d3k

(2π)3/2
ψk(τ) eik·x . (2.24)

In terms of the fields tλk and ψk, the quadratic action is

S(2) =

∫
dt

[∫
d3k
(
iψ̄k

(
γ0∂0 + iγaka

)
ψk −ma cos

(
2ϕ

f

)
ψ̄kψk + ima sin

(
2ϕ

f

)
ψ̄kγ5ψk

)
+
∑
λ

1

2

∫
d3k

(
∂0tλ−k∂0tλk −

(
k2 − a′′

a

)
tλ−ktλk

)]
, (2.25)

and we note that the kinetic terms are canonically normalized.
Inserting eqs. (2.22) and (2.24) in the interaction Hamiltonians eq. (2.21), we obtain

the Fourier space Hamiltonian densities we report in appendix B.

3 Fermion contributions to the tensor power spectrum

In this section, making use of the interaction Hamiltonians derived in the previous section, we
compute the fermion contribution to the gravitational wave two-point correlation function.
After quantizing the free theory, we introduce the in-in formalism and compute the cubic and
quartic loops generated by the interactions derived in section 2. Finally, we end this section
by showing how simple scaling arguments concur with our results.

3.1 Quantization

We canonically quantize the theory by expanding the fields into modes

t̂λk (τ) = tλk (τ) aλk + tλ,∗k (τ) aλ,†−k , ψk (τ) =
∑
r=±

(
U rk (τ) brk + V r

−k (τ) cr,†−k

)
, (3.1)

where the creation-annihilation operators for the tensor modes satisfy the commutation re-
lations [

aλk, a
λ′
k′
†
]

= δλλ′ δ
(
k− k′

)
, (3.2)

and the fermionic operators satisfy anti-commutation relations

{brk, br
′

k′
†} = {crk, cr

′
k′
†} = δrr′ δ

(
k− k′

)
. (3.3)

The mode functions tλk (τ), and the spinors U rk (τ) and V r
−k (τ) are solutions of the Euler-

Lagrange equations of motion that follow from the action in eq. (2.25). We further decompose
the 4-component fermionic spinors into helicity states

U rk (τ) =
1√
2

(
urk (τ) χr(k)
rvrk (τ) χr (k)

)
, V r

k (τ) = C Ū rk (τ)T , (3.4)

where C = iγ0γ2 is the charge-conjugation operator, and the spinors χr (k) are explicitly
given by

χr (k) ≡ k + rσ · k√
2k (k + kz)

χ̄r , χ̄+ =

(
1
0

)
, χ̄− =

(
0
1

)
, (3.5)
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where kz is the z-component of k, and σi are the Pauli matrices. Note that χr (k) are helicity
eigenspinors which satisfy k · σχr (k) = rkχr (k). We use the Dirac representation for the γ
matrices,4

γ0 =

(
1 0
0 −1

)
, γi =

(
0 σi

−σi 0

)
, γ5 =

(
0 1

1 0

)
. (3.6)

To obtain solutions to the classical mode equations, we approximate the background infla-
tionary spacetime as de Sitter space and take the evolution of the inflaton to be rolling at a
constant speed in cosmic time. This implies ϕ0(τ)/f = ϕin

0 /f − 2ξ log (x/xin), with x ≡ −kτ
and xin ≡ −kτin, where τin is some reference time. With these approximations, the mode
functions for the fermion field are given by

ur(x) =
1√
2x

[
eirϕ0/f sr (x) + e−irϕ0/f dr (x)

]
,

vr(x) =
1√
2x

[
eirϕ0/f sr (x)− e−irϕ0/f dr (x)

]
, (3.7)

which satisfy the normalization condition |ur|2 + |vr|2 = 2, with [43, 44]

sr (x) = e−πrξW 1
2

+2irξ, i
√
µ2+4ξ2

(−2ix) , dr (x) = −i µ e−πrξW− 1
2

+2irξ, i
√
µ2+4ξ2

(−2ix) ,

(3.8)

where Wµ, λ(z) denotes the Whittaker W-function and

µ ≡ m

H
, ξ ≡ ϕ̇0

2fH
. (3.9)

In the same approximation, the tensor mode functions read

tλk(τ) =
1√
2k

(
1− i

kτ

)
e−ikτ . (3.10)

In both cases, the integration constants have been chosen so that the solutions match onto
the appropriate Bunch-Davies vacuum solution at early times, x→∞.

3.2 Fermion loop-corrections to the gravitational wave power spectrum

The interaction Hamiltonians derived above allow us to compute the leading order contribu-
tions from the produced fermions to the two-point function of the graviton. These are com-
puted using the in-in formalism, where the correlation function of an operator Ô1 . . . Ôn (τ)
at time τ is given by〈

Ô1 . . . Ôn (τ)
〉

=

∞∑
N=0

(−i)N
∫ τ

dτ1 . . .

∫ τN−1

dτN

×
〈[[

. . .
[
Ô

(0)
1 . . . Ô(0)

n (τ) , Hint (τ1)
]
, . . .

]
, Hint (τN )

]〉
. (3.11)

The interactions in section 2 result in two classes of diagrams: there are seven quartic loop
diagrams, illustrated in the left panel of figure 1, one for each of the seven vertices generated
by the quartic action (2.20), and one cubic loop diagram with two vertices generated by the
cubic action (2.19), illustrated in the right panel of figure 1. We discuss these diagrams in
the next two subsections.

4In these expressions, 1 denotes the 2 × 2 identity matrix.
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Ψ

γ γ γ γ

Ψ

Ψ

Figure 1. The two diagrams that contribute at leading order to the two-point function of the
graviton γ.

3.2.1 Quartic loops

We begin with the left diagram of figure 1. The seven terms in the quartic action lead to
seven quartic contributions to the graviton spectrum of the form〈

γλ1p1
(τ) γλ2p2

(τ)
〉(4)

i
= − 2i

M2
Pl a(τ)2

∫ τ

dτ1

〈[
tλ1p1

(τ) tλ2p2
(τ), H

(4)
int, i(τ1)

]〉
, i = 1, . . . , 7 ,

(3.12)

where the interaction Hamiltonians H
(4)
int,i are given in eq. (B.2). Remarkably, all these

diagrams can be computed exactly. The details of the calculation, as well as the exact
results, are presented in appendix C. Here we summarize the main issues one encounters
when performing this calculation. At the end of this section we present the expression of the
sum of the quartic loops in the limit µ� 1� ξ.

First, several of the terms in the interaction Hamiltonian contain the nonlocal operator
∆−1, the inverse of the Laplacian. When evaluating eq. (3.12) one often encounters the
expectation value of quantities evaluated at vanishing momentum that, when acted upon by
∆−1, lead to a undetermined “0/0” that needs to be regularized. To deal with this limit we
follow the prescription given in [58]: these undetermined quantities are schematically given by

1

|q1 − q2|2
f(q1 − q2, p1)δ(q1 − q2) , f(0, p1) = 0 , (3.13)

where p1 is an external momentum. We regularize eq. (3.13) by setting q1 = q2 + ε, where
we eventually send ε→ 0. Since f is a scalar, it depends only on ε · p1, p2

1, and ε2. We then
impose that ε approaches zero in a direction that is orthogonal to p1, so that ε ·p1 = O(ε2).
With this convention, all the operators containing ∆−1 give finite and unambiguous results.

Secondly, many integrals contributing to the graviton two-point function are divergent in
the ultraviolet. We deal with these divergences as we did in [44], by introducing a ultraviolet
cutoff Λ and by subtracting all the terms that are divergent as Λ→∞. As we have discussed
in [44], we expect the result of this procedure to be equivalent to that obtained by adiabatic
subtraction in the limit ξ � 1.

After long calculations, which we outline in appendix C, we obtain the leading contri-
bution from the quartic diagrams∑

vertices

〈
γ̂λ1p1

(τ)γ̂λ2p2
(τ)
〉

quartic
' −8H4 log(−p1τ)

9πM4
Pl p

3
1

µ2 ξ3 δ(p1 + p2) δλ1,λ2 , (3.14)

in the limit µ� 1� ξ and for superhorizon modes −kτ � 1. We note that this contribution

is parity-even. Parity-odd terms are associated to the operatorsH
(4)
int,2, H

(4)
int,3 andH

(4)
int,5, which
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contain the Levi-Civita symbol. However, the contributions from H
(4)
int,2 and from the parity-

odd part of H
(4)
int,5 vanish identically after angular integrations, so that the only parity-odd

contribution to the tensor power spectrum is given by H
(4)
int,3 and yields〈

γ̂λ1p1
(τ)γ̂λ2p2

(τ)
〉

parity−odd
' λ1

H4

3M4
Pl p

3
1

µ2 ξ2 δ(p1 + p2) δλ1,λ2 , (3.15)

which is sub-leading, by a factor 1/ξ, with respect to the parity-even component.

3.2.2 Cubic loop

Next we consider the cubic loop, shown on the right side of figure 1. There is a single
contribution to this diagram, given by〈
γλ1p1

(τ) γλ2p2
(τ)
〉(3)

= − 2

M2
Pl a(τ)2

∫ τ

dτ1

∫ τ1

dτ2

〈[[
tλ1p1

(τ) tλ2p2
(τ), H

(3)
int (τ1)

]
, H

(3)
int (τ2)

]〉
,

(3.16)

where H
(3)
int (τ) is given by eq. (B.1). Unlike those appearing in the quartic loops, the integrals

in the cubic loop are prohibitively difficult to evaluate exactly. The expressions appearing in
this diagram, however, are very similar to those which appeared in the cubic loop contribution
to the spectrum of scalar perturbations considered in reference [44]. Therefore, we apply the
same sequence of approximations developed in that work to the present calculation. Here we
outline these approximations; the details of the calculation are presented in appendix D.

We start by setting the external momenta to zero; as discussed in [44] we expect this
approximation to generate at most a O(1) error. Next, since the functions appearing in
the integrals are rapidly oscillating, we perform a Wick rotation on the time integration
variables, so that the Whittaker functions appearing in the fermion mode functions now have
real argument and are exponentially increasing or decreasing. Next, we approximate those
Whittaker functions as linear combinations of monomials times exponentials, with special
attention given to the branch cuts. The explicit form of those approximations are given in
eqs. (D.5) and (D.6), and we have verified their validity in the regime ξ � 1 we are interested
in. These approximate expressions contain a part that behaves like positive frequency (we
schematically denote the coefficient of this part by A) and a part that behaves like negative
frequency (whose coefficient is denoted schematically by B). Explicit expressions for A and
B can be found in appendix D.

Once the above approximations are in place, the integrals can be computed analytically.
We find a divergence in the limit τ2 → τ1, although it is only present in the A2 term. Since
this term corresponds to positive frequency, “vacuum only” modes, we subtract them. Once
this component is subtracted, we are left with the final result〈

γ̂λ1p1
(τ)γ̂λ2p2

(τ)
〉(3)
∼ O(0.1)× H4δ(p1 + p2)δλ1,λ2

M4
Pl p

3
1

µ2 ξ3 log(−p1τ), (3.17)

which has the same parametric dependence as the contribution from the quartic loop.

3.3 Scaling of our result

The gravitational wave power spectrum is related to the two point function as

〈γλ1p1
(τ) γλ2p2

(τ)〉 =
2π2

p3
1

Pλt δ(p1 + p2) δλ1,λ2 . (3.18)
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The contribution from the produced fermions, using the results eqs. (3.14) and (3.17)
we derived in the previous subsections, is

δP λt ' O(0.01)
H4

M4
Pl

µ2 ξ3 log(−p1τ). (3.19)

We now compare this sourced gravitational wave signal to the vacuum contribution,
Pvacuum
t ∼ 0.1H2/M2

Pl. Their ratio can be written as

δPt
Pvacuum
t

' 0.1
µ2 ξ3H2

M2
Pl

log(−p1τ) . (3.20)

As discussed in reference [44], the quantity µ2 ξ3H2/M2
Pl corresponds to the ratio between

the energy density in fermions and the total energy density in the Universe, which must be
much smaller than unity. We thus conclude that an axion-like inflaton coupled to fermions
cannot produce tensor modes that dominate over the spectrum of vacuum fluctuations, in
contrast to the scenario in which an axionic inflaton is coupled to gauge fields.

More specifically, if we require that the energy in fermions does not exceed O(10%)
of the background energy, then the correction induced by the sourced component to the
amplitude of the tensor spectrum is at most of O(1%), irrespective of the amplitude of
the tensor-to-scalar ratio. This constraint, along with the current observational constraint
r . 0.06, already puts the sourced component below the r ' 10−3 sensitivity of Stage-4 [7]
CMB experiments. More importantly, both the sourced and the vacuum contributions are,
to a first approximation, parity-even and scale invariant, so that it would be difficult for
observations to tell from one component from the other. While theoretically the sourced
tensors contain a distinctive parity-odd component, such a component is suppressed by a
factor 1/ξ with respect to the parity even one. Therefore, since ξ & 10, the parity odd
component would make up less than 0.1% of the full tensor spectrum, which sends the level
of parity violation in this model well below the threshold of detectability.

Finally, in reference [44] we determined the overall scaling, as a function of the parameter
ξ and µ, of the diagrams that are relevant for the scalar (bi)spectrum. Here we apply analo-
gous arguments to the diagrams that led to the result in eq. (3.19) for the tensor spectrum.

Our first observation is that the cubic interaction (2.19) gives a contribution∼ γij ψ̄Γpψ,
whereas each quartic interaction in eq. (2.20) gives a contribution ∼ γ2

ij ψ̄ Γ pψ, where p
schematically denotes a quantity that scales as fermion momentum and Γ denotes some com-

bination of the Dirac γ-matrices (exceptions are L(4)
2 and L(4)

3 which contain no dependence
on the fermion momentum, but only on the graviton momentum). The contribution from
〈ψ̄ γi p̂i γ5 ψ〉 is ultimately zero, due to the asymmetry of the Levi-Civita symbol. A numeri-
cal evaluation shows that the combinations 〈ψ̄ γi p̂i ψ〉 and 〈ψ̄ γ5 γ0 ψ〉 (which appear in both
the cubic and quartic gravitational vertices) oscillate with amplitude µ2/ξ, for momenta up

to −kτ ' ξ. Moreover, the fermion part of the operators in L(4)
4, 5, 6, 7 can always be brought

to a form 〈=
(
∂kψ̄ γ

0ψ
)
〉 (see eqs. (C.3) and (C.4) — here = denotes the imaginary part),

which can also be seen to scale as µ2/ξ for momenta up to −kτ ' ξ. (We note for comparison
that the bilinears which appear in the diagrams involving fluctuations of the inflaton, 〈ψ̄ ψ〉
and 〈ψ̄ γ5ψ〉, oscillate instead with amplitude µ/ξ. These were considered in reference [44].)
Since all fermion bilinears in the γψ̄ψ and the γγψ̄ψ sector scale as µ2/ξ, each fermionic line
in the diagrams of figure 1 contributes µ2/ξ.
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We recall that each interaction Hamiltonian (with the exception of L(4)
2 and L(4)

3 , as
noted above) also carries a power of p, and therefore each vertex gives an additional power of
ξ. Furthermore, every fermionic loop integral, which goes as d3k, gives a contribution ∼ ξ3.

Once we apply these scalings to the quartic diagrams, we have a scaling (µ2/ξ) (one
fermion line) times ξ (one vertex) times ξ3, giving an overall scaling (µ2/ξ)×(ξ)×(ξ3) ∼ µ2 ξ3.

The quartic diagrams involving L(4)
2 and L(4)

3 are respectively vanishing (as a consequence of
the symmetries of the operator) and scaling as (µ2/ξ) × (1) × (ξ3) ∼ µ2 ξ2 — the factor of
(1) instead of (ξ) originates from the fact that this vertex does not contain a power of the
fermion momentum. These results are in agreement with the direct calculations presented in
appendix C.

For the cubic gravitational diagram, a naive implementation of these scalings would read
(µ2/ξ)2 (two fermion lines) times ξ2 (two vertices) times ξ3, giving an overall scaling ∼ µ4 ξ3.
This would disagree by a factor of µ2 with the result obtained by the direct (albeit approx-
imate) calculation of appendix D. The different scaling with µ can, however, be understood
as follows. Each fermion line in fact scales as O(1)+O(µ2), although in the quartic diagrams
the O(1) contribution is always divergent and therefore is removed by regularization. The
cubic diagram, with two fermion lines, has terms of order O(1), O(µ2), and O(µ4). The first
is again removed by renormalization, leaving the O(µ2) term which arises from interference.

Given the parity violating nature of the system, one can expect a parity violating tensor
spectrum δP+1

t 6= δP−1
t , which we did indeed find. As mentioned above, however, this is

subdominant by a factor 1/ξ with respect to the parity-even part.

4 Conclusion

Axion, or natural inflation is a class of models for slow-roll inflation where the required flatness
of the potential is protected from radiative corrections by an approximate shift symmetry.
This shift symmetry means that any axion-matter couplings must be via derivatives, and the
lowest dimension couplings of an axion inflaton to gauge fields and fermions are given by
eq. (1.1). These couplings are typically employed for reheating in these models. The recent
literature (see [19] for a review) has shown that the coupling of the axion to gauge fields
can lead to a rich phenomenology during inflation. Analogous studies for fermions are more
scarce [43–45, 53].

The present work is a direct continuation of our previous paper [44], that focused on the
characterization of the scalar perturbations sourced by the fermions, and complements it with
the computation of the sourced gravitational waves. We worked in the ADM basis, in which
the nondynamical metric perturbations N and N i are integrated out via the corresponding
energy and momentum constraints. We have solved these constraints perturbatively in the
fermionic field Ψ and in the gravitational waves γ. We thus obtained the O

(
γΨ̄Ψ

)
and

O
(
γγΨ̄Ψ

)
interactions, which we used to compute the contribution to the gravitational

wave spectrum from the diagrams shown in figure 1. The left diagram is technically simpler;
after regularizing it we were able to evaluate it exactly, as described in appendix C. The right
diagram is much more involved, necessitating the approximations discussed in appendix D,
analogous to those made for the cubic diagram in reference [44]. Although the computations
were very involved, in section 3.3 we presented some simple scaling arguments that correctly
capture the scaling of the result with the parameters, µ and ξ, of the model.

Our main conclusion is that, in contrast to the scenario in which the axion inflaton is
coupled to vector fields, the gravitational waves sourced by the fermions cannot be greater
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than the vacuum gravitational waves. This conclusion holds also in the regime, studied in
reference [44], where the strong backreaction of the fermion degrees of freedom controls the
dynamic of the zero mode of the inflaton, and we plan to further explore the implications of
our studies for inflationary model building.
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A Computation of the fermion-gravitational wave interactions

In this appendix we discuss the steps that lead from eq. (2.3) to eq. (2.8). We begin by
writing down the vielbeins for the line element in eq. (2.4), gµν = ηABe

A
µe
B
ν . These are

given by

eAµ =

(
N 0

N ieai e
a
i

)
, (A.1)

where the spatial components eai satisfy δabe
a
ie
b
j =hij . Starting from (A.1), we can also write

eAµ = ηABe
B
µ =

(
N 0

N iηabe
b
i ηabe

b
j

)
, eA

µ =

(
1
N −

Nj

N
0 ea

j

)
, eAµ =

(
1
N −Nj

N
0 ηabeb

j

)
, (A.2)

and one can indeed verify that the product gµν = eµAe
ν
Bη

AB is the inverse of the metric in
eq. (2.4).

In terms of the vielbein, the spin connections are obtained from

ωµ
AB = eAν∇µeBν = eAν

(
∂µe

Bν + Γνσµe
Bσ
)
, (A.3)

where Γνσµ are the usual Christoffel symbols associated with the metric gµν . Using eq. (A.1)
and (A.2), we find the components of the spin connection in ADM coordinates

ω0
0b =

(
∂iN −N jKij

)
ηabea

i ,

ω0
ab = eak∂0ec

kηbc +
(
−NhikKkm +(3)∇mN i

)
eaiec

mηbc ,

ωi
0b = −Kkiec

kηbc ,

ωi
ab = eak∂iec

kηbc −(3)Γmkie
a
mec

kηbc . (A.4)

Inserting these in the action (2.3) we obtain an expanded form of the fermion action in ADM
coordinates

SF =

∫
d4xLF , (A.5)
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where

LF = a3

{
iΨ̄γ0

[
∂0+

(
∂iN−N jKij

)
eb
iΣ0b+

1

2
eck

(
∂0eb

k−
(
NKk

m−(3)∇mNk
)
eb
m
)
ηacΣ

ab

]
Ψ

+iΨ̄
(
γaNea

k−γ0Nk
)[
∂k−Kikeb

iΣ0b+
1

2

(
eci∂keb

i+(3)Γmike
c
meb

i
)
ηacΣ

ab

]
Ψ

−NmΨ̄

[
cos

(
2ϕ

f

)
+isin

(
2ϕ

f

)
γ5

]
Ψ

}
, (A.6)

and ΣAB = [γA, γB]/4. The full action is the sum of the bosonic part in eq. (2.5) and the
fermionic part in eq. (A.5).

We are interested in the interactions between the fermions and the tensor modes of the
metric, and so we expand the spatial part of the vielbein as

eai = a δake
1
2
γki = a δak

[
δki +

1

2
γki +

1

8
γkjγji + . . .

]
, (A.7)

ea
i = a−1 δkaδ

ije−
1
2
γkj = a−1 δkaδ

ij ,

[
δij −

1

2
γij +

1

8
γi`γ`j + . . .

]
, (A.8)

which leads to the following components of the spin connection (expanded here to quadratic
order in tensors)

ω0
0b = a−1

(
∂aN+

H
N
Na

)
ηab , (A.9)

ω0
ab =−1

8
ηacηbd

(
γ′cjγjd−γcjγ′jd

)
− a
−2

2
(∂dNc−∂cNd)η

acηbd , (A.10)

ωi
0b =

aH
N
ηbc
(
δci+

1

2
γci+

1

8
γ2
ci

)
− 1

2aN
ηbc (∂iNc+∂cNi)+

a

2N
ηbc
(
γ′ic+

1

2
γinγ

′
nc

)
, (A.11)

ωi
ab =−ηacηbd

(
1

2
(∂dγic−∂cγid)+

1

8
(γdk∂iγkc−γck∂iγkd)

+
1

4
(∂dγ

2
ic−∂cγ2

id)+
1

4
(γdk∂cγki−γcm∂dγmi)+

1

4
(γck∂kγid−γdk∂kγic)

)
. (A.12)

These relations, along with the expansion of the lapse and shift in eqs. (2.13), are inserted into
the constraint equations (2.9) and (2.10). The part of the Hamiltonian constraint equation
quadratic in field fluctuations is

4HM2
Pl∆θ

(2)+
M2

Pl

4

[
(γ′)ij(γ′)ij+(∂jγkq)∂jγqk

]
=−4a2α(2)V (ϕ0)+2a

[
i

2

(
Ψ̄γa∂aΨ−(∂aΨ̄)γaΨ

)
−mΨ̄

[
cos

(
2ϕ0

f

)
−iγ5 sin

(
2ϕ0

f

)]
Ψ

]
,

(A.13)

while the quadratic part of the momentum constraint reads

0 = 2M2
PlH ∂jα(2) +M2

Pl

[
−1

2
∆β

(2)
j −

1

4
(∂iγ

′)jkγki −
1

4
(∂jγ`i)(γ

′)i` +
1

4
(∂iγjk)(γ

′)ki

]
− a

[
i

2

(
Ψ̄γ0∂jΨ− (∂jΨ̄)γ0Ψ

)
− 1

4
εjab∂a

(
Ψ̄γbγ5Ψ

)]
. (A.14)

– 15 –



J
C
A
P
1
0
(
2
0
1
9
)
0
1
8

Eqs. (A.13) and (A.14) can be solved to find the quadratic order lapse and shift

α(2) = ∆−1

{
1

8H
∂j
[
(∂jγ`i)(γ

′)i`
]
+

ia

4M2
PlH

[
Ψ̄γ0∆Ψ−(∆Ψ̄)γ0Ψ

]}
,

β
(2)
j = ∆−1

{
1

2
∆−1∂j∂k

[
(∂kγ`i)(γ

′)i`
]
− 1

2

[
(∂iγ

′)jkγki+(∂jγ`i)(γ
′)i`−(∂iγjk)(γ

′)ki
]

+
ia

M2
Pl

∂j∆
−1
[
Ψ̄γ0∆Ψ−(∆Ψ̄)γ0Ψ

]
− a

M2
Pl

[
i
(
Ψ̄γ0∂jΨ−(∂jΨ̄)γ0Ψ

)
− 1

2
εijk∂i(Ψ̄γ

kγ5Ψ)

]}
,

θ(2) = ∆−1

{
− 1

16H
[
(γ′)ij(γ′)ij+(∂jγkq)∂jγqk

]
− ia

4M2
PlH

(
Ψ̄γ0∂0Ψ−(∂0Ψ̄)γ0Ψ

)
− a2

M2
PlH

V (ϕ0)∆−1

{
1

8H
∂j
[
(∂jγ`i)(γ

′)i`
]
+

ia

4M2
PlH

[
Ψ̄γ0∆Ψ−(∆Ψ̄)γ0Ψ

]}}
, (A.15)

where ∆ = ∂i∂i is the spatial Laplacian, and ∆−1 is its inverse. In deriving these solutions,
we have disregarded fluctuations of the inflaton field because we are only interested in the
interactions between gravitational waves and fermions. The inclusion of inflaton fluctuations
introduces terms that are quadratic in the inflaton fluctuations, as well as terms quadratic
in the first order perturbation to the lapse and shift.5 We have also made use of the linear
order equation of motion for the fermion. This induces corrections to the action that begin
at fifth order in fluctuations and are thus irrelevant here.

We are now ready to evaluate the action, eq. (A.6), on the constraint surface and
eliminate the non-dynamical lapse and shift. Inserting the solutions to the constraints (A.15)
into the full action, eq. (2.5) + (2.8), we expand the result to quartic order. This results in an
action for the dynamical fields, ψ and γ, consisting of a quadratic (free) part, S(2) and cubic

and quartic parts, S
(3)
F and S

(4)
F , which describe the interactions of a fermion bilinear with

one and two gravitational waves, respectively. The action that results from the procedure
just described is very long and complicated. However, in practice there are a number of facts
that considerably simplify the result. Because the constraint equations are derived from
the variation of the action with respect to the lapse and shift, one can use their equations
of motion before substituting in their solutions. This results in the cancellation of a large
number of terms, and leaves the result we report above in eqs. (2.19) and (2.20).

B Interaction Hamiltonian

In this appendix we write the explicit forms of the interaction Hamiltonian terms eq. (2.21),
obtained by inserting the decompositions (2.22) and (2.24) into the actions in eqs. (2.19)
and (2.20). For the cubic term, we find

H
(3)
int = − 1

2
√

2MPl

1

a(τ)

∑
λ

∫ ∏3
i=1 d

3ki

(2π)3/2
tλk1
ψ̄k2γ

cψk3Πλ
cj(k1)(k2 + k3)j δ

(3)(k1 − k2 + k3) .

(B.1)

5Our solutions for the part of the second order constraints that is quadratic in tensors differs from the
results presented in reference [59]; however, this does not affect the conclusions of that work.
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The various terms contributing at quartic order are

H
(4)
int,1 =

1

8M2
Pl

1

a2

∑
λλ′

∫ ∏4
i=1 d

3ki
(2π)3

tλk1
tλ
′

k2
ψ̄k3γ

cψk4Πλ
cm(k1)Πλ′

mj(k2)(k3 + k4)j

× δ(3)(k1 + k2 − k3 + k4) ,

H
(4)
int,2 =

1

8M2
Pl

1

a

∑
λλ′

∫ ∏4
i=1 d

3ki
(2π)3

[(
tλk1

a

)′
tλ
′

k2
ψ̄k3γ

cγ5ψk4ε
abcΠλ

aj(k1)Πλ′
jb(k2)

]
× δ(3)(k1 + k2 − k3 + k4) ,

H
(4)
int,3 =

1

8M2
Pl

1

a2

∑
λλ′

∫ ∏4
i=1 d

3ki
(2π)3

[
tλk1

tλ
′

k2
ψ̄k3γ

0γ5ψk4λ
′k2Πλ

bk(k1)Πλ′
kb(k2)

]
× δ(3)(k1 + k2 − k3 + k4) ,

H
(4)
int,4 = − i

2 aM2
Pl

(
1− V

4M2
PlH

2

)∑
λλ′

∫ ∏4
i=1 d

3ki
(2π)3

[
tλk1

(
tλ
′

k2

a

)′
ψ̄k3γ

0ψk4(k2
3 − k2

4)

× (k1 + k2) · k1

|k1 + k2|4
Πλ
jk(k1)Πλ′

jk(k2)

]
δ(3)(k1 + k2 − k3 + k4) ,

H
(4)
int,5 = − 1

4M2
Pl

1

a

∑
λλ′

∫ ∏4
i=1 d

3ki
(2π)3

{
tλk1

(
tλ
′

k2

a

)′

×
[
(ψ̄k3γ

cγ5ψk4)
εaic(k3 − k4)a
|k1 + k2|2

− 2i
(k3 + k4)i
|k1 + k2|2

(ψ̄k3γ
0ψk4)

]
×
[
(k1)jΠ

λ
ik(k1)Πλ′

jk(k2)− (k2)jΠ
λ
jk(k1)Πλ′

ik(k2)− (k1)iΠ
λ
jk(k1)Πλ′

jk(k2)
]}

× δ(3)(k1 + k2 − k3 + k4) ,

H
(4)
int,6 = − i

16M2
Pl aH

∑
λλ′

∫ ∏4
i=1 d

3ki
(2π)3

[((
tλk1

a

)′ (
tλ
′

k2

a

)′
− k1 · k2

a2
tλk1

tλ
′

k2

)

× ψ̄k3γ
0ψk4

k2
3 − k2

4

|k3 − k4|2
Πλ
ij(k1)Πλ′

ij (k2)

]
δ(3)(k1 + k2 − k3 + k4) ,

H
(4)
int,7 =

i

8M2
Pla

2H

∑
λλ′

∫ ∏4
i=1 d

3ki
(2π)3

[ (
ψ̄k3γ

0∂0ψk4 − ∂0ψ̄k3γ
0ψk4

)
tλk1

(
tλ
′

k2

a

)′

× k1 · (k1 + k2)

|k1 + k2|2
Πλ
ij(k1)Πλ′

ij (k2)

]
δ(3)(k1 + k2 − k3 + k4) . (B.2)

C Details of the quartic loop computation

Having identified the seven quartic vertices in eq. (B.2), we now proceed to evaluate the left
loop diagram of figure 1, using the mode functions presented in section 3.1. Evaluating the
fermion expectation values produces terms of the form δ(k3−k4), which sets the denominator
in several of the vertices to zero. To ensure mathematically sensible results, we follow an
approach similar to that of [58], in which we set k4 = k3 + ε (and therefore p2 = −p1 + ε)
and take the limit ε→ 0, as discussed below.
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It is convenient to note that, to quadratic order in ε,

Πλ1
ij (p)Πij, λ2(−p + ε) ' 2δλ1,λ2

[
1 +

(p · ε)2 − p2 ε2

2 p4

]
, (C.1)

which can be found using the explicit expressions for the spinors given in [60]; the lack of a
linear term allows for several derivations to be simplified. Similarly, using explicit expressions
for spinors one can show that

χ†−r(p)χ−r(p + ε) ' 1 +
(p · ε)2 − p2 ε2

8p4
. (C.2)

We calculate the two point correlation function with a single loop correction; the sub-
script indicates which of the seven vertices of eq. (B.2) was used. Four of the results are
explicitly independent of ε at lowest order,〈

γ̂λ1p1
(τ)γ̂λ2p2

(τ)
〉

1
= i

δ(p1+p2)δλ1,λ2

2M4
Pla(τ)2

∫ τ

−∞

dτ1

a(τ1)2

(
tλ1p1 (τ)2tλ1p1 (τ1)∗2−h.c.

)
×
∑
r

∫
d3k3

(2π)3

(
k3−

(k3 ·p1)2

k3 p2
1

)[
vrk3(τ1)∗urk3(τ1)+urk3(τ1)∗vrk3(τ1)

]
,〈

γ̂λ1p1
(τ)γ̂λ2p2

(τ)
〉

2
= 0.〈

γ̂λ1p1
(τ)γ̂λ2p2

(τ)
〉

3
= iλ1

δ(p1+p2)δλ1,λ2

2M4
Pla(τ)2

p1

∫ τ

−∞

dτ1

a(τ1)2

(
tλ1p1 (τ)2tλ1p1 (τ1)∗2−h.c.

)
×
∑
r

r

∫
d3k3

(2π)3

[
vrk3(τ1)∗urk3(τ1)+urk3(τ1)∗vrk3(τ1)

]
,

〈
γ̂λ1p1

(τ)γ̂λ2p2
(τ)
〉

6
=
δ(p1+p2)δλ1,λ2

12M4
Pla(τ)2H

∫ τ

−∞

dτ1

a(τ1)

×

tλ1p1 (τ)2

[(
tλ1p1 (τ1)∗

a(τ1)

)′]2

+
p2

1

a(τ1)2
tλ1p1 (τ)2tλ1p1 (τ1)∗2−h.c.


×
∑
r

∫
d3k3

(2π)3
k3

(
vrk3(τ1)∂k3v

r
k3(τ1)∗+urk3(τ1)∂k3u

r
k3(τ1)∗−h.c.

)
, (C.3)

However, the other three are not explicitly independent of the direction of ε at lowest
order,〈

γ̂λ1p1
(τ)γ̂λ2p2

(τ)
〉

4
=−1

3

δ(p1+p2)δλ1,λ2

M4
Pla(τ)2

∫ τ

−∞

dτ1

a(τ1)

(
1− V

4H2M2
Pl

)
×
∑
r

∫
d3k3

(2π)3
k3

(
vrk3(τ1)∂k3v

r
k3(τ1)∗+urk3(τ1)∂k3u

r
k3(τ1)∗−h.c.

)
×F λ1p1 (τ, τ1; ε),〈

γ̂λ1p1
(τ)γ̂λ2p2

(τ)
〉

5
=
δ(p1+p2)δλ1,λ2

3M4
Pla(τ)2

∫ τ

−∞

dτ1

a(τ1)

×
∑
r

∫
d3k3

(2π)3
k3

(
vrk3(τ1)∂k3v

r
k3(τ1)∗+urk3(τ1)∂k3u

r
k3(τ1)∗−h.c.

)
×F λ1p1 (τ, τ1; ε),
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〈
γ̂λ1p1

(τ)γ̂λ2p2
(τ)
〉

7
=
δ(p1+p2)δλ1,λ2

4M4
Pla(τ)2

∫ τ

−∞

dτ1

a(τ1)2H

×
∑
r

∫
d3k3

(2π)3

(
urk3(τ1)urk3(τ1)∗′+vrk3(τ1)vrk3(τ1)∗′−h.c.

)
×F λ1p1 (τ, τ1; ε) , (C.4)

where

F λ1p1 (τ, τ1; ε) ≡

{
tλ1p1 (τ)2tλ1p1 (τ1)∗

(
tλ1p1 (τ1)∗

a(τ1)

)′

− lim
ε→0

(ε · p1)2

ε2 p1

[
tλ1p1 (τ)tλ1p1 (τ1)∗∂p1

[
tλ1p1 (τ)

(
tλ1p1 (τ1)∗

a(τ1)

)′]

−∂p1
[
tλ1p1 (τ) tλ1p1 (τ1)∗

]
tλ1p1 (τ)

(
tλ1p1 (τ1)∗

a(τ1)

)′]
− h.c.

}
. (C.5)

Following reference [58], we impose that the limit is approached from an orthogonal direction,
p1 · ε ∼ ε2, which makes the problematic terms subdominant.

To separate the integrals, we introduce the new variables x1 = −p1τ1 and y1 = −k3τ1;
we also take p1τ → 0, to compute superhorizon quantities. We arrive at〈
γ̂λ1p1

(τ)γ̂λ2p2
(τ)
〉

1
=−H

4δ(p1+p2)δλ1,λ2

12π2M4
Plp

3
1

∫ ∞
x

dx1

x4
1

((
x2

1−1
)

sin(2x1)+2x1 cos(2x1)
)

×
∑
r

∫
dy1 y

3
1 [vr(y1)∗ur(y1)+ur(y1)∗vr(y1)] ,〈

γ̂λ1p1
(τ)γ̂λ2p2

(τ)
〉

2
= 0 ,〈

γ̂λ1p1
(τ)γ̂λ2p2

(τ)
〉

3
=−H

4λ1δ(p1+p2)δλ1,λ2

8π2M4
Plp

3
1

∫ ∞
x

dx1

x3
1

((
x2

1−1
)

sin(2x1)+2x1 cos(2x1)
)

×
∑
r

r

∫
dy1 y

2
1 [vr(y1)∗ur(y1)+ur(y1)∗vr(y1)] ,

〈
γ̂λ1p1

(τ)γ̂λ2p2
(τ)
〉

4
=− iH

4δλ1,λ2δ(p1+p2)

12π2M4
Plp

3
1

(
1− V (ϕ0)

4M2
PlH

2

)∫ ∞
x

dx1

x2
1

[sin(2x1)−x1 cos(2x1)]

×
∑
r

∫
dy1 y

3
1

(
vr(y1)∂y1v

r(y1)∗+ur(y1)∂y1u
r
k3(y1)∗−h.c.

)
,

〈
γ̂λ1p1

(τ)γ̂λ2p2
(τ)
〉

5
=
iH4δλ1,λ2δ(p1+p2)

12π2M4
Plp

3
1

∫ ∞
x

dx1

x2
1

[sin(2x1)−x1 cos(2x1)]

×
∑
r

∫
dy1 y

3
1

(
vr(y1)∂y1v

r(y1)∗+ur(y1)∂y1u
r
k3(y1)∗−h.c.

)
,

〈
γ̂λ1p1

(τ)γ̂λ2p2
(τ)
〉

6
=− iH

4δ(p1+p2)δλ1,λ2

48π2M4
Plp

3
1

∫ ∞
x

dx1

x2
1

[sin(2x1)−2x1 cos(2x1)]

×
∑
r

∫
dy1 y

3
1

(
vr(y1)∂y1v

r(y1)∗+ur(y1)∂y1u
r
k3(y1)∗−h.c.

)
,
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〈
γ̂λ1p1

(τ)γ̂λ2p2
(τ)
〉

7
=−H

4δλ1,λ2δ(p1+p2)

8π2M4
Plp

3
1

∫ ∞
x

dx1

x2
1

[sin(2x1)−x1 cos(2x1)]
∑
r

∫
dy1 y

2
1

×
(mc

H
(|ur(y1)|2−|vr(y1)|2)+2y1<{ur(y1)vr(y1)∗}−2r

ms

H
={ur(y1)vr(y1)∗}

)
,

(C.6)

where mc ≡ m cos(ϕ0/f) and ms ≡ m sin(ϕ0/f). Several of the x1 integrals are logarithmi-
cally divergent and are regulated by the finite amount of e-foldings between when the mode
leaves the horizon and the end of inflation. This logarithmic divergence is a consequence of
the fact that the fermions have a nonzero average density that continues to source graviton
fluctuations even when outside the horizon; analogous behavior was observed in the sourced
inflaton perturbations of reference [44].

The remaining integrals are UV-divergent and need to be regularized. We thus introduce
a ultraviolet cutoff Λ. (We discuss renormalization further below.) After some algebra, the
expectation values can be expressed in terms of the three integrals

I1 =
∑
r

∫
dy1 y1<{sr(y1) dr(y1)∗},

I2 =
∑
r

∫
dy1 y

2
1 |sr(y1)|2,

I3 =
∑
r

r

∫
dy1 y1 |sr(y1)|2, (C.7)

where the functions sr(y) and dr(y) are defined in eq. (3.7). We have〈
γ̂λ1p1

(τ)γ̂λ2p2
(τ)
〉

1
=−H

4δ(p1+p2)δλ1,λ2

9π2M4
Plp

3
1

·log(x)

(
I2−2

Λ4

4

)
,〈

γ̂λ1p1
(τ)γ̂λ2p2

(τ)
〉

2
= 0,〈

γ̂λ1p1
(τ)γ̂λ2p2

(τ)
〉

3
=
H4λ1δ(p1+p2)δλ1,λ2

8πM4
Plp

3
1

I3,〈
γ̂λ1p1

(τ)γ̂λ2p2
(τ)
〉

4
=−H

4δλ1,λ2δ(p1+p2)

3π2M4
Plp

3
1

(
1− V (ϕ0)

4M2
PlH

2

)
log(x)

(
−2ξI3−µI1+2

Λ3

3
−I2

)
,〈

γ̂λ1p1
(τ)γ̂λ2p2

(τ)
〉

5
=
H4δλ1,λ2δ(p1+p2)

3π2M4
Plp

3
1

log(x)

(
−2ξI3−µI1+2

Λ3

3
−I2

)
,〈

γ̂λ1p1
(τ)γ̂λ2p2

(τ)
〉

6
=
H4δ(p1+p2)δλ1,λ2

6π2M4
Plp

3
1

(
−2ξI3−µI1+2

Λ3

3
−I2

)
,〈

γ̂λ1p1
(τ)γ̂λ2p2

(τ)
〉

7
=
H4δλ1,λ2δ(p1+p2)

4π2M4
Plp

3
1

log(x)

(
µI1+I2−2

Λ4

4

)
. (C.8)

In reference [44], integrals I1 and I2 were evaluated analytically and exactly. Further-
more, it was found that in the µ � 1 � ξ range, adiabatic subtraction agreed with the
result obtained by simply dropping off the divergent pieces. Outside of this regime, the regu-
larizating term generated by adiabatic regularization dominates the calculated contribution
even outside of the UV limit, and furthermore, the value of the term depends on the order of
adiabatic regularization. Therefore, as in reference [44], we regularize by simply dropping the
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divergent pieces, noting that in the regime in which adiabatic regularization is well-behaved,
these approaches agree.

We reproduce here the exact analytic results for I1 and I2 from reference [44] along
with their finite piece in the regime µ � 1 � ξ. The third integral, I3, can be evaluated
with the same techniques. The first integral is

I1 = µ

[
1

2

(
2Λ2 +

1

4

(
µ4 − 7µ2 + 12

)
− 2(log(2Λ) + γE)

(
µ2 − 8ξ2 + 1

))
+

1

4

(
µ2 − 2ξ(4ξ + 3i) + 1

) [
H−i

(
2ξ+
√
µ2+4ξ2

) (sinh(4πξ)csch
(

2π
√
µ2 + 4ξ2

)
+ 1
)

+H
i
(√

µ2+4ξ2−2ξ
) (1− sinh(4πξ)csch

(
2π
√
µ2 + 4ξ2

))]
+

1

4

(
µ2 − 8ξ2 + 6iξ + 1

) [
H
i
(

2ξ+
√
µ2+4ξ2

) (sinh(4πξ)csch
(

2π
√
µ2 + 4ξ2

)
+ 1
)

+H−i
(√

µ2+4ξ2−2ξ
) (1− sinh(4πξ)csch

(
2π
√
µ2 + 4ξ2

))]
+6ξ

√
µ2 + 4ξ2 sinh(4πξ)csch

(
2π
√
µ2 + 4ξ2

)
− µ4

8
+

11µ2

8
− 12ξ2

]
,

≈ −8µ ξ2 ln(ξ). (C.9)

The second integral reads

I2 = Λ4−Λ2µ2

2
− 7µ4

16
+µ2

(
16ξ2− 19

16

)
−8ξ4+

11ξ2

2

+
ξ

4

(
−26µ2+16ξ2−11

)√
µ2+4ξ2 sinh(4πξ)csch

(
2π
√
µ2+4ξ2

)
+

3

16
µ2
(
µ2−16ξ2+1

)
[4(log(2Λ)+γE)

+

(
H−i

(√
µ2+4ξ2−2ξ

)+H
i
(√

µ2+4ξ2−2ξ
))(sinh(4πξ)csch

(
2π
√
µ2+4ξ2

)
−1
)

−
(
H−i

(
2ξ+
√
µ2+4ξ2

)+H
i
(

2ξ+
√
µ2+4ξ2

))(sinh(4πξ)csch
(

2π
√
µ2+4ξ2

)
+1
)]
,

≈−4πµ2 ξ3. (C.10)

Finally, the third integral evaluates to

I3 =
2

3
ξ
(
−6µ2+8ξ2−1

)
+

1

3

(
4µ2−8ξ2+1

)√
µ2+4ξ2 sinh(4πξ)csch

(
2π
√
µ2+4ξ2

)
+µ2ξ [4(log(2Λ)+γE)

+

(
H−i

(√
µ2+4ξ2−2ξ

)+H
i
(√

µ2+4ξ2−2ξ
))(sinh(4πξ)csch

(
2π
√
µ2+4ξ2

)
−1
)

−
(
H−i

(
2ξ+
√
µ2+4ξ2

)+H
i
(

2ξ+
√
µ2+4ξ2

))(sinh(4πξ)csch
(

2π
√
µ2+4ξ2

)
+1
)]
,

≈ 8

3
πµ2 ξ2. (C.11)
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In these equations Hn denotes the n-th harmonic number. From this we find final results for
each loop, 〈

γ̂λ1p1
(τ)γ̂λ2p2

(τ)
〉

1
=

4H4δ(p1 + p2) δλ1,λ2

9πM4
Pl p

3
1

µ2 ξ3 log(x) ,〈
γ̂λ1p1

(τ)γ̂λ2p2
(τ)
〉

2
= 0,〈

γ̂λ1p1
(τ)γ̂λ2p2

(τ)
〉

3
= λ1

H4δ(p1 + p2)δλ1,λ2

3M4
Pl p

3
1

µ2 ξ2 ,〈
γ̂λ1p1

(τ)γ̂λ2p2
(τ)
〉

4
=
H4δλ1,λ2δ(p1 + p2)

9πM4
Pl p

3
1

µ2 ξ3 log(x) ,〈
γ̂λ1p1

(τ)γ̂λ2p2
(τ)
〉

5
= −4H4δλ1,λ2δ(p1 + p2)

9πM4
Pl p

3
1

µ2 ξ3 log(x) ,〈
γ̂λ1p1

(τ)γ̂λ2p2
(τ)
〉

6
= −2H4δ(p1 + p2)δλ1,λ2

9πM4
Pl p

3
1

µ2 ξ3 ,〈
γ̂λ1p1

(τ)γ̂λ2p2
(τ)
〉

7
= −H

4δλ1,λ2δ(p1 + p2)

πM4
Plp

3
1

µ2 ξ3 log(x) , (C.12)

from which we conclude that the dominant contribution in the µ� 1� ξ limit reads∑
vertices

〈
γ̂λ1p1

(τ)γ̂λ2p2
(τ)
〉

quartic
= −8H4µ2ξ3 log(x)

9πM4
Pl p

3
1

δλ1,λ2δ(p1 + p2) , (C.13)

which we also write as eq. (3.14) of the main text. We conclude this appendix by noting
that the parity violating vertex that originates from the portion of interaction Hamiltonian

denoted by H
(4)
int,3. The parity violation is evident because this term gives a contribution

to the two-point function of the graviton which is proportional to the sign of the graviton
helicity; however, the contribution is sub-dominant, scaling as O(ξ2).

D Details of the cubic loop computation

In this appendix, we calculate the contribution from the one loop diagram with two cubic
vertices shown in the right panel of figure 1, using the interaction term (B.1) and the mode
functions calculated in section 3.1. We follow the approach, including the approximations,
used in reference [44]. To start with, we drop the external momentum within the loop integral
(k1 + p1 → k1); then after taking the τ → 0 we have〈

γ̂λ1p1
(τ)γ̂λ2p2

(τ)
〉

=
H4δ(p1 + p2)δλ1,λ2

12M4
Pl p

6
1

∫ τ

dτ1[p1τ1 cos(p1τ1)− sin(p1τ1)]

×

{∫ τ1

dτ2 e
ip1τ2(p1τ2 + i)

∑
r,s

∫
d3k1

(2π)3
k2

1

(
1− sr

5

) [
rsvrk1(τ1)vsk1(τ1)− urk1(τ1)usk1(τ1)

]
×
[
rsvrk1(τ2)∗vsk1(τ2)∗ − urk1(τ2)∗usk1(τ2)∗

]
+ h.c.

}
. (D.1)

The evaluation of these integrals is complicated by the fact that the integrand is oscil-
lating rapidly. Therefore, we perform a Wick rotation, noting that τ1 > τ2 and, because of
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the nested integrals, both must be Wick rotated in the same direction. This gives

〈
γ̂λ1p1

(τ)γ̂λ2p2
(τ)
〉

=−H
4 δ(p1+p2)δλ1,λ2

60π2M4
Plp

3
1

∫ ∞
x

dx1

x4
1

(x1 cosh(x1)−sinh(x1))

∫ ∞
x1

dx2

x2
e−x2(1+x2)

×
∑
r

∫
dy1 y

2
1

[
3
(
sr(−iy1)s−r(−iy1)+dr(−iy1)d−r(−iy1)

)
×
(
sr
(
−ix2y1

x1

)∗
s−r

(
−ix2y1

x1

)∗
+dr

(
−ix2y1

x1

)∗
d−r

(
−ix2y1

x1

)∗)
+2(sr (−iy1)dr (−iy1)+dr (−iy1)sr (−iy1))

×
(
sr
(
−ix2y1

x1

)∗
dr
(
−ix2y1

x1

)∗
+dr

(
−ix2y1

x1

)∗
sr
(
−ix2y1

x1

)∗)
+h.c.

]
,

(D.2)

where x1 = −p1τ1, x2 = −p1τ2, and y1 = −k1τ1, and functions such as sr(−iy1)∗ should be
interpreted as first complex conjugating sr(x) and then substituting x = −iy1.

Next we introduce polar coordinates in the x1 − x2 plane,

x1 = ρ cos(α), x2 = ρ sin(α). (D.3)

The true region of integration is shown on the left side of figure 2; however, we approxi-
mate the integral by using the region of integration shown on the right side. We show below
that at fixed y1, the integral is exponentially suppressed as α→ π/2, and therefore we expect
this to contribute at most a O(1) factor.

After further substituting β = tan(α), we can perform the integral in dρ to find

〈
γ̂λ1p1

(τ)γ̂λ2p2
(τ)
〉

=
H4 δ(p1+p2)δλ1,λ2

540π2M4
Plp

3
1

×
∫ ∞

1

dβ

β

(
3β3 coth−1β−3β2−3coth−1

(
β2
)
+3logρ∗+3γE−4

)
×
∑
r

∫
dy1 y

2
1

[
3
(
sr(−iy1)s−r(−iy1)+dr(−iy1)d−r(−iy1)

)
×
(
sr
(
−ix2y1

x1

)∗
s−r

(
−ix2y1

x1

)∗
+dr

(
−ix2y1

x1

)∗
d−r

(
−ix2y1

x1

)∗)
+2(sr(−iy1)dr(−iy1)+dr(−iy1)sr(−iy1))

×
(
sr
(
−ix2y1

x1

)∗
dr
(
−ix2y1

x1

)∗
+dr

(
−ix2y1

x1

)∗
sr
(
−ix2y1

x1

)∗)
+h.c.

]
,

(D.4)

in the ρ∗ → 0 limit. This is dominated by the log(ρ∗) piece, which is regulated by the finite
number of e-foldings between when the mode leaves the horizon and the end of inflation; the
same behavior was also observed in the quartic loops in appendix C above. Physically, this
logarithmic behavior is a consequence of the fact that the nonzero fermion energy density
continues to source graviton fluctuations even once it is outside the horizon.
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x1

x2

x∗

x∗
x1

x2

ρ∗

Figure 2. Left: the actual region of integration in the x1−x2 plane. Right: the region of integration
used. At fixed y1, the integrand is exponentially suppressed as the polar angle α→ π/2, and so this
replacement introduces at most an O(1) uncertainty.

Finally, we approximate the Whittaker functions as in reference [44]. Along the positive
axis we use (defining M ≡

√
µ2 + 4 ξ2)

W1/2−2irξ,iM (2x > 0) ≈ (2x)−irM+1/2e−x

Γ(irM + 2irξ)
Γ(2irM),

W−1/2−2irξ,iM (2x > 0) ≈ (2x)−irM+1/2e−x

Γ(irM + 2irξ + 1)
Γ(2irM), (D.5)

and we note that the Whittaker functions are even in their second index. Along the negative
axis, we use

W1/2+2irξ,−iM (2x < 0) ≈ A1re
−2πξe−xx

1
2

+irM + B1re
−2πξex(−x)

1
2
−irM ,

W−1/2+2irξ,−iM (2x < 0) ≈ A2re
−2πξe−xx

1
2

+irM + B2re
−2πξex(−x)

1
2
−irM , (D.6)

where

A1r = −2
1
2

+irMe−2πξΓ (−2irM)

Γ (−ir (2ξ +M))
, B1r =

ir2
3
2
−irMΓ (2irM) sinh (π (M + 2ξ))

Γ (ir (M − 2ξ))
,

A2r = −2
1
2

+irMe−2πξΓ (−2irM)

Γ (−2irξ − irM + 1)
, B2r =

ir2
3
2
−irMΓ (2irM) sinh (π (M + 2ξ))

Γ (−2irξ + irM + 1)
. (D.7)

With these approximations, we find

〈
γ̂λ1p1

(τ)γ̂λ2p2
(τ)
〉

=
H4 δ(p1 + p2)δλ1,λ2

180π2M4
Plp

3
1

log(ρ∗)
∫ ∞

1

dβ

β

∑
r

∫
dy1 y

2
1 e
−2βy1 e−4πξ

×
{[

3C1,r β y
2
1

[(
−A1,rA1,−r + µ2A2,rA2,−r

)
e2y1 +

(
B1,rB1,−r − µ2B2,rB2,−r

)
e−2y1

+i
(
A1,rB1,−r − µ2A2,rB2,−r

)
(−y2

1)irM + i
(
B1,rA1,−r − µ2B2,rA2,−r

)
(−y2

1)−irM
]

+ 8µ2 e−4πrξ C2,r y
2
1 β

1−2iMr
[
−A1,rA2,r e

−2πMr+2y1 + B1,r B2,ry
−4iMr
1 e−2y1

+i y−2iMr
1 e−Mπr (A1,r B2,r +A2,r B1,r)

] ]
+ h.c.

}
,

(D.8)
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where we have defined

C1,r =
4 ξ

M
csch(2πMr) sinh(πr(M + 2ξ)),

C2,r =
Γ(2iMr)221−2iMr

Γ(iMr + 2iξr)Γ(iMr + 2iξr + 1)
. (D.9)

Eq. (D.8) shows that, as claimed, at fixed y1, this contribution to the graviton two-point
function is exponentially suppressed as β → ∞ (α → π/2). The dy1 integral may now be
performed analytically, leaving the dβ integral. We separate this into parts involving A only,
B only, and mixed. From the form (D.6), we recognize that the A terms correspond to the
vacuum part of the modes, which are nonzero and positive frequency as p→∞. We subtract
this part by hand; we also note that it is only the purely A part which has a divergent piece.
We regularize this by writing the lower limit of the dβ integral as 1 + ε and taking the limit
as ε→ 0.

Taking the large ξ limit, the purely A piece which we renormalize away is〈
γ̂λ1p1

(τ)γ̂λ2p2
(τ)
〉
AA

= −H
4 δ(p1 + p2)δλ1,λ2

240π2M4
Plp

3
1

log(ρ∗)µ2

{
− 8

ε2
+

16

ε

−16

9
ξ2 (6H4iξ+3 + 6H3−4iξ + 12 log(ε)− 25)

}
, (D.10)

where we have dropped a term that, in the large ξ limit, is proportional to ξ−2ε−4, and where
Hn is the n-th harmonic number. The mixed term is〈

γ̂λ1p1
(τ)γ̂λ2p2

(τ)
〉
AB

=
16H4 δ(p1 + p2)δλ1,λ2

45πM4
Pl p

3
1

µ2 ξ3 log(ρ∗) , (D.11)

while the purely B contribution is〈
γ̂λ1p1

(τ)γ̂λ2p2
(τ)
〉
BB

=
H4 δ(p1 + p2)δλ1,λ2

180π2M4
Pl p

3
1

log(ρ∗)
{
−9

8
sinh

(
πµ2

4ξ

)
+(1− i)π3/2 µ4 2

17
2

+8iξ e4πξ ξ3/2B−1(4iξ + 4,−8iξ − 4)

+(1 + i)π3/2 µ4 2
17
2
−8iξ e4πξ ξ3/2B∗−1(4iξ + 4,−8iξ − 4)

}
, (D.12)

where Bn(x, y) denotes the incomplete beta function. This term has a piece which scales as
µ2/ξ and a piece which scales approximately as µ4ξ. In the regime µ . 1 and ξ � 1 either
can dominate, depending on how small µ is. Regardless, the mixed term (D.11) dominates,
and the leading contribution from the cubic diagram is〈

γ̂λ1p1
(τ)γ̂λ2p2

(τ)
〉
AB
∼ O(0.1)× H4δ(p1 + p2)δλ1,λ2

M4
P p

3
1

µ2 ξ3 log(ρ∗), (D.13)

where we have noted an overall uncertainty due to the approximations used. We also note
that ρ∗ ∼ −p1τ from the change to polar coordinates. This expression is reported as eq. (3.17)
of the main text. This is the same order of magnitude as the quartic result in eq. (C.13),
although with the opposite sign.
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