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via Marzolo 8, I-35131, Padova, Italy

eTheoretical Physics, Blackett Laboratory, Imperial College,
London, SW7 2AZ, United Kingdom

fAmherst Center for Fundamental Interactions,
Department of Physics, University of Massachusetts,
Amherst, MA 01003, U.S.A.

gDepartment of Physics, Swansea University,
Swansea, SA2 8PP, United Kingdom

E-mail: valerie.domcke@desy.de, juan.garciabellido@uam.es,
marco.peloso@pd.infn.it, m.pieroni@imperial.ac.uk, angelo.ricciardone@pd.infn.it,
sorbo@physics.umass.edu, g.tasinato@swansea.ac.uk

Received October 31, 2019
Accepted April 7, 2020
Published May 13, 2020

Abstract. Parity violating interactions in the early Universe can source a stochastic gravi-
tational wave background (SGWB) with a net circular polarization. In this paper, we study
possible ways to search for circular polarization of the SGWB with interferometers. Planar
detectors are unable to measure the net circular polarization of an isotropic SGWB. We
discuss the possibility of using the dipolar anisotropy kinematically induced by the motion of
the solar system with respect to the cosmic reference frame to measure the net circular po-
larization of the SGWB with planar detectors. We apply this approach to LISA, re-assessing
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previous analyses by means of a more detailed computation and using the most recent in-
strument specifications, and to the Einstein Telescope (ET), estimating for the first time
its sensitivity to circular polarization. We find that both LISA and ET, despite operating
at different frequencies, could detect net circular polarization with a signal-to-noise ratio of
order one in a SGWB with amplitude h2ΩGW ' 10−11. We also investigate the case of a
network of ground based detectors. We present fully analytical, covariant formulas for the
detector overlap functions in the presence of circular polarization. Our formulas do not rely
on particular choices of reference frame, and can be applied to interferometers with arbitrary
angles among their arms.

Keywords: gravitational wave detectors, gravitational waves / theory, primordial gravita-
tional waves (theory)
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1 Introduction

A direct detection of the SGWB represents a major future target of gravitational wave (GW)
experiments working at interferometer scales. The characterization of the SGWB properties,
and the corresponding detection strategies, are essential for distinguishing between a cosmo-
logical and an astrophysical origin of the signal. See e.g. [1–6] for comprehensive reviews on
theoretical and experimental aspects of the physics of SGWBs. Among the properties that
can characterize a SGWB is an intrinsic circular polarization, associated with an asymmetry
in the amplitude of GWs of left and right polarizations.

The astrophysical SGWB is a combination of several independent signals from uncor-
related sources. Therefore, we do not expect the astrophysical SGWB to carry a net polar-
ization. On the other hand, cosmological SGWBs can be produced coherently (for example,
the SGWB from inflation): if this coherence is accompanied by interactions that violate
parity, then a cosmological SGWB with net circular polarization can be generated. In fact,
a sizable degree of polarization can be generated in well-motivated models of inflation with
spontaneous parity violation, manifesting itself e.g. in Chern-Simons couplings between the
inflaton φ and curvature (as φR R̃, [7–10]) or gauge fields (as φF F̃ , see e.g. [11–16]). Such
a scenario, and its consequences for CMB polarization experiments, is the subject of active
research, see e.g. [17–20] for reviews. Interestingly, recent numerical analysis [21] show that
post-inflationary physics associated with magnetohydrodynamic turbulence, in the presence
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of helical initial magnetic fields, can also give rise to net circular polarization of a SGWB po-
tentially detectable with LISA. In this work, we will study the prospects for detecting a net
circular polarization in the SGWB in GW interferometry experiments. A positive detection
would provide a smoking gun for parity violating effects and for a cosmological origin of the
SGWB signal.

It has been proven [22–24] that parity violating effects in an isotropic SGWB can not
be detected by correlating a system of coplanar detectors. A planar interferometer responds
in the same way to a left-handed GW of wave vector ~k and to a right-handed GW of the
same amplitude and of wave vector ~kp, obtained from ~k by changing sign of the component

of ~k perpendicular to the plane of the detector. In particular, this is the case for LISA and
ET, which are planar instruments. A way out of this argument is provided by an anisotropic
SGWB [25, 26], since in this case the GW arriving from the direction ~k have a different
amplitude than those from the ~kp direction. Moreover, this problem is not present when one
correlates signals from different GW detectors which do not lie on the same plane [22, 23, 27],
as is the case for a network of ground-based interferometers.

In this work, we start from the consideration that a SGWB that is (statistically) isotropic
in one frame O is not (statistically) isotropic in any other frame that is boosted with respect
to O. This is true for any stochastic background, and this is for example the origin of the
CMB dipole, which is induced kinematically by the motion of the solar system frame with
respect to the cosmic reference frame. The latter is defined to be the one in which the
CMB is statistically isotropic, and it is the rest frame of the cosmic fluid. It is reasonable
to assume that this is also the frame in which the SGWB is isotropic.1 The fact that
measurements of parity odd SGWB anisotropies allows the detection of circular polarization
was already noticed and developed in [25, 26]. In the present work, we present a more
detailed computation for the LISA instrument, discussing in full extent the properties of the
instrument response functions under parity symmetry in the presence of a dipolar anisotropy,
and clarifying the relation between these properties and the SGWB circular polarization.
Using the most up-to-date LISA instrument specifications, and taking into account the full
frequency band of the instrument, we re-assess the evaluation of the magnitude of the signal-
to-noise ratio associated with measurements of the SGWB circular polarization, obtaining a
result about one order of magnitude greater that of [25].

This analysis can be readily extended to the proposed ground-based Einstein Telescope
(ET).2 A single third-generation telescope of this type features a planar configuration similar
to that of LISA. Using also in this case the kinematically induced dipole, we estimate for
the first time the signal-to-noise ratio (SNR) for this measurement at ET. We find that both
LISA and ET, despite operating at different frequencies, could detect net circular polarization
with a signal-to-noise ratio of order one in a SGWB with amplitude h2ΩGW ' 10−11.

We then consider correlations of ground-based interferometers. In this case, as men-
tioned above, a net circular polarization can already be measured from the SGWB monopole
(namely, from its statistically isotropic component), since a network of two or more detectors
is generically not coplanar. Such an analysis was already performed in [27] for the second

1In fact, the analysis described in this paper will allow us to test this hypothesis, if the SGWB has a net
circular polarization.

2ET will be a ground-based interferometer with a triangular shape, like LISA, with the difference that the
arm length is L = 10 km. It will be an observatory of the third generation aiming to reach a sensitivity
for GW signals emitted by astrophysical and cosmological sources about a factor of 10 better than the
advanced detectors currently operating. It will be formed by three detectors, each in turn composed of
two interferometers (xylophone configuration) [28–30].
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and third generation ground-based interferometers.3 While in [27] a numerical evaluation
of the parity-dependent overlap functions was employed, in this paper we compute, for the
first time, the full analytic form of these functions (the overlap functions for parity even
backgrounds were computed analytically in [31]). We present ‘covariant’ analytic formulas
for overlap functions describing correlations among ground based interferometers in the small
antenna limit (which applies to all existing ground-based interferometers), also including the
kinematically induced dipolar anisotropy. Our expressions are valid for any amount of po-
larization of the SGWB (namely, we provide separate formulas for the left-handed and the
right-handed GW), they do not rely on any special choices of frame (this is why we call
them covariant), and they hold for arbitrary detector shape (namely, they are not limited to
interferometers with orthogonal arms). While the angular integrals necessary to obtain the
overlap functions can be also computed numerically [27], evaluating the analytic formulae
given here is significantly faster, and we hope that it might speed up such analyses.

The structure of the paper is the following: in section 2 we compute the GW two-point
function for a detector which is boosted with respect to a frame in which the SGWB is
isotropic; in section 3 we present the dipole response functions for measuring the net circu-
lar polarization of the SGWB with LISA. We turn to ground-based detectors in section 4,
considering both the case of cross-correlations among a network of (not coplanar) interfer-
ometers, for which already the monopole overlap function is sensitive to chirality, as well
as the proposed Einstein Telescope, which can measure chirality upon taking into account
the kinematic dipole. We conclude in section 5. Four appendices provide further technical
details. In appendix A, we specify the GW polarization operators employed in this work.
Appendix B compares our findings with those of ref. [25] for the measurement of the SGWB
circular polarization with LISA. Appendix C lists the position of the ground-based detec-
tors considered, and appendix D contains the derivation of the analytical expressions for the
monopole and dipole overlap functions for ground-based detectors.

2 Dipolar anisotropy of a cosmological SGWB

Let us assume that there exists a frame in which the SGWB is (statistically) isotropic. It is
natural to associate this frame to the cosmological frame, in which the CMB is isotropic. The
peculiar motion of the solar system in this frame will kinematically make the observed SGWB
anisotropic, as is this the case for the CMB, where it is found that our local system is moving
with speed v = 1.23×10−3 in a direction (φE , θE) = (172◦, −11◦) in ecliptic coordinates (see
e.g. [32]). The possibility to detect a kinematically-induced dipolar anisotropy with ground
based experiments was first quantitatively explored in [33], and more recently re-assessed
in [34] for the space-based experiment DECIGO. In this section, we derive general formulas
describing how a dipolar anisotropy is induced on an otherwise isotropic SGWB. In section 3,
we use these results to study how such dipolar anisotropy can enable the detection of the net
circular polarization of a SGWB with the LISA instrument.

We compute the GW two-point function seen by an observer who is moving with a
constant velocity ~v with respect to a frame in which the SGWB is isotropic. The motion

3To detect chirality, we need to measure PL and PR separately, so at least three interferometers are needed.
Two interferometers are enough if one assumes as an input the spectral form of the signal, as in this case
the measurements at different frequencies can be combined together [27]. For planar interferometers such as
LISA and ET, the needed plurality of measurements is guaranteed by the different time-delay-interferometers
at their vertices.
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with velocity ~v of the observer generates a dipole in the observed GW power spectrum at
order v, a quadrupole at order v2 and so on. Under the assumption that v � 1 (as it is the
case if the isotropic frame of the SGWB and of the CMB coincide), we only focus on the
dipole component, considering terms up to O(v).

We start the computation by considering a frame {t, ~x} in which the SGWB is isotropic.
In this frame, we decompose the tensor field into modes of definite circular polarization, with
λ = ±1 denoting right- and left-handed modes, respectively,

hij(t, ~x) =

∫
d3k e−2πi

~k·~x
∑
λ

eij,λ(k̂)hλ(t,~k) , (2.1)

where the GW polarization operators in the chiral basis eab,λ(k̂) are introduced in appendix A
and we adopt the transverse-traceless (TT) gauge, where: hµ0 = 0, and hii = ∂i h

i
j = 0.

The mode momentum-space operators of definite helicity satisfy the condition hλ(t,~k) =
hλ(t,−~k)∗ which, together with the property (A.3), ensures that the expression (2.1) is real.
This expression satisfies the wave equation for a massless particle, which is solved by

hλ(t,~k) = Aλ~k cos(2πk t) +Bλ
~k

sin(2πk t) , (2.2)

where Aλ~k
= (Aλ

−~k
)∗ and Bλ

~k
= (Bλ

−~k
)∗ are stochastic variables that obey

〈Aλ~k A
λ′

~k′
〉 = 〈Bλ

~k
Bλ′

~k′
〉 =

Pλ(k)

4πk3
δλλ′δ(~k + ~k′) , 〈Aλ~k B

λ′

~k′
〉 = 0 , (2.3)

where Pλ(k) is the GW helicity-λ power spectrum, depending only on the absolute value k
due to statistical isotropy. We note that, with our 2π convention, k = |~k| is the frequency of
the mode. Moreover, we have

no net circular polarization ⇔ PR (k) = PL (k) ⇔
∑
λ

λPλ (k) = 0 . (2.4)

Equations (2.3) derive from the requirement that the equal time correlator takes the time-
independent form4

〈hλ(t,~k)hλ
′
(t,~k′)〉 ≡ Pλ(k)

4πk3
δλλ′δ

(
~k + ~k′

)
. (2.5)

The condition 〈Aλ~k B
λ′

~k′
〉 = 0 in equation (2.3) does not, strictly speaking, derive from imposing

eq. (2.5), since a non-vanishing value of 〈Aλ~k B
λ′

~k′
〉 = 0 (that will be proportional to δ(~k+ ~k′))

would give an oscillating contribution proportional to sin(4πkt) to the equal-time correlator
that would average to zero over many periods. However, this same contribution would break
invariance of the power spectrum under time translation, a possibility that we will exclude
here by imposing 〈Aλ~k B

λ′

~k′
〉 = 0.

4Here we are considering the present-day SGWB, evaluated at times relevant for the detection. When
considering cosmological time scales (e.g. when comparing with the primordial power spectrum), the expansion
of the Universe must be taken into account, encoded in the cosmic transfer function .
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The gravitational wave correlator at arbitrary times then reads

〈hij(~x, t)hi′j′(~x ′, t′)〉 =
∑
σ

∫
d3k

4πk3
e−2πi

~k·(~x−~x ′) eij,σ(k̂)ei′j′,σ(−k̂)P σ(k) cos(2πk(t− t′))

=
1

2

∑
σ

∫
d3k

4πk3
e−2πi

~k·(~x−~x ′)+2πik(t−t′) eij,σ(k̂)ei′j′,σ(−k̂)P σ(k)

+
1

2

∑
σ

∫
d3k

4πk3
e−2πi

~k·(~x−~x ′)−2πik(t−t′) eij,σ(k̂)ei′j′,σ(−k̂)P σ(k) .

(2.6)

We now perform a boost to a frame {τ, ~y} that is moving with constant velocity ~v,
directed along the first coordinate, with respect to the {t, ~x} frame

t = γ(τ − v y1) , x1 = γ(y1 − v τ) , x2 = y2 , x3 = y3 , (2.7)

where γ ≡ 1/
√

1− v2. Being a rank-2 tensor, hij transforms as5

hij(x1, x2, x3, t) = hab(γ(y1 − v τ), y2, y3, γ(τ − v y1))
∂ya
∂xi

∂yb
∂xj

' hij(γ(y1 − v τ), y2, y3, γ(τ − v y1)) +O
(
v2
)
. (2.8)

Let us perform this transformation on the decomposition (2.6). To preserve the same plane
wave structure of the phase in the decomposition, we simultaneously perform a change in the
integration variable, which can be also thought of as a boost on the momenta, with opposite
signs of the boost parameter depending on whether we are in the negative (second line of
eq. (2.6), ~k 7→ ~q) or positive (third line of eq. (2.6), ~k 7→ ~p) frequency component of the
unequal-time correlator,

second line of eq. (2.6) third line of eq. (2.6)
k1 = γ(q1 − v q)
k2 = q2
k3 = q3
k = γ(q − v q1)

,


k1 = γ(p1 + v p)
k2 = p2
k3 = p3
k = γ(p+ v p1)

(2.9)

with q ≡ |~q| and p ≡ |~p|. Therefore, the unequal time correlator in the boosted frame can be
written as

〈hij(~y, τ)hi′j′(~y
′, τ ′)〉 =

1

2

∑
σ

∫
d3k

4πk3
e−2πi~q·(~y−~y

′)+2πiq(τ−τ ′) eij,σ(k̂)ei′j′,σ(−k̂)P σ(k)

+
1

2

∑
σ

∫
d3k

4πk3
e−2πi~p·(~y−~y

′)−2πip(τ−τ ′)eij,σ(k̂)ei′j′,σ(−k̂)P σ(k) ,

(2.10)

5When we perform the boost on the tensor hµν we should take into account the transformations of all the
components of the metric, in particular how the boost affects h00 and h0i. If we perform the transforma-
tion (2.7), and we indicate with a prime the boosted frame, we find h′

00 = 0 and h′
0i = hijvj . This means

that, after the boost, the tensor perturbation is not in the TT gauge anymore. However, this does not have
any consequence on the rest of the calculation and does not affect our results, since the correlator 〈h′

0ih
′
jk〉

vanishes for statistical isotropy, and the correlator 〈h′
0ih

′
0j〉 ∼ O(v2), so it can be disregarded.
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where the dependence on the velocity ~v is hidden in the relation between the variables ~q, ~p
and ~k.

In the following, we perform explicit computations only on the first term on the right
hand side of eq. (2.10), since the second one is obtained from the first one with the replace-
ments ~q → ~p, ~v → −~v, τ ↔ τ ′. We obtain the correlator for the variables of definite helicity
in momentum space

〈hλ(~l, τ)hλ
′
(~l ′, τ ′)〉 ≡ eij,λ(−l̂)ei′j′,λ′(−l̂′)

∫
d3y d3y′e2πi

~l·~y+2πi~l′·~y′〈hij(~y, τ)hi′j′(~y
′, τ ′)〉

= δ(~l +~l ′)eij,λ(−l̂)ei′j′,λ′(l̂)

[
1

2

∑
σ

∫
d3k

4π k3
e2πiq(τ−τ

′) δ(~q −~l) eij,σ(k̂)ei′j′,σ(−k̂)P σ(k)

+ (~q → ~p, ~v → −~v, τ ↔ τ ′)

]
. (2.11)

Our task is then to eliminate ~k from the last equation, expressing it in terms of ~q only.
Firstly, from d3k = γ (1− q̂ · ~v) d3q and k = γ (q − ~q · ~v), we obtain

d3k

k3
= (1 + 2 q̂ · ~v)

d3q

q3
+O

(
v2
)
. (2.12)

Secondly, we decompose the product of the two polarization operators in eq. (2.11) in terms of
four 1-index quantities ei,λ (see eq. (A.1)) and we use the identity (A.4), that we can express

as a function of q̂ using the relation k̂ = q̂−~v+ q̂ (q̂ · ~v) + O
(
v2
)
, with q̂ = l̂ as a consequence

of the Dirac delta in eq. (2.11). Using these relations and the property lieij,λ(−l̂) = 0, we
find that, to first order in ~v, the part of eq. (2.11) that depends on the polarization operators
does not receive any correction at linear order in v:

eij,λ(−l̂)ei′j′,λ′(l̂) eij,σ(k̂)ei′j′,σ(−k̂) δ(~q −~l) = eij,λ(−l̂)ei′j′,λ′(l̂) eij,σ(l̂)ei′j′,σ(−l̂) +O(v2)

= δλσδλσ′ +O(v2) . (2.13)

Finally we expand P λ(k) = P λ(γ (q − ~q · ~v)) = P λ(q)− (~q · ~v)P λ′(q) +O(v2).
Using these results, and accounting for both terms in the second line of eq. (2.10), we

finally obtain the correlator in the boosted frame

〈hλ(~l, τ)hλ
′
(~l ′, τ ′)〉 = δλλ′

δ(3)(~l +~l ′)

4π l3

{
P λ(l) cos[2πl(τ − τ ′)]

+ i(l̂ · ~v)
[
2P λ(l)− l P λ′(l)

]
sin[2πl(τ − τ ′)]

}
+O(v2). (2.14)

It is worth noting that the dipole contribution vanishes in the equal-time case. This is because
〈hλ(~l, τ)hλ(~l ′, τ ′)〉 = 〈hλ(~l ′, τ ′)hλ(~l, τ)〉, which implies that the correlator is invariant under
~l↔ ~l′ in the equal time case.

3 Measuring the SGWB net circular polarization with LISA

We now discuss how the kinematically induced dipolar anisotropy can be used to measure the
net circular polarization of SGWBs with the planar interferometer LISA. This was first stud-
ied in [25, 26], where it was noticed that a measurement of parity odd SGWB anisotropies can
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be used to detect parity violating effects in gravitational interactions. Those works focus on
the small frequency limit of the detector response functions, and make use of the properties
of the detector in such regime, as discussed in [35, 36]. In our work, we first systematically
discuss, in section 3.1, the general properties of the instrument response functions under par-
ity symmetry, clarifying the relation between these properties and measurements of circular
polarization. In section 3.2, using the most up-to-date LISA instrument specifications and
performing an analysis over the full LISA frequency band, we re-assess the evaluation of the
signal-to-noise ratio associated with measurements of the SGWB circular polarization.

3.1 LISA response functions

The space-based laser interferometer LISA [37] will be a constellation of three satellites placed
at the vertices (here placed at the positions {~x1, ~x2, ~x3}) of an (approximate) equilateral
triangle with side length L = 2.5 million kilometers. Each satellite is connected to the
other two via laser links, resulting in three virtual Michelson interferometers with an opening
angle of 60 degrees, labelled by their respective central node. A passing gravitational wave
modifies the relative arm lengths in each of these interferometers, inducing a difference in the
travel time of the laser light performing a round trip in the two interferometer arms. This
difference in travel time corresponds to a phase shift between the two laser beams returning
to the central node, which can be detected in the resulting interference pattern.

The time-delay induced by a gravitational wave in the i-th interferometer is obtained by
integrating along the photon geodesic taking into account the perturbation of the metric due
to the gravitational wave. The result can be expressed as a convolution of the gravitational
wave with the response function Qi containing the geometry of the detector [6, 38, 39],

σi (t) ≡ δt

t
=

δt

2L
=
∑
λ

∫
d3k hλ(~k, t− L) eab,λ(k̂)Qiab(~xi,~k; {Ûj}) , (3.1)

with

Qiab(~xi,~k; {Ûj}) =
1

4
e−2πi

~k·~xi
[
T (kL, k̂ · Ûi) Ûai Û bi − T (kL,−k̂ · Ûi+2) Û

a
i+2Û

b
i+2

]
, (3.2)

where Ûi ≡ ~xi+1−~xi
L is the unit vector in the direction of the arm that goes from the satellite

~xi to the satellite ~xi+1. All indices {i, i+ 1, . . . } in eq. (3.2) are understood to be modulo 3.
The detector transfer function T is given by

T (kL, k̂ · Ûi)≡ e−π ikL[1+k̂·Ûi] sinc
[
π kL

(
1− k̂ · Ûi

)]
+eπ ikL[1−k̂·Ûi] sinc

[
π kL

(
1+ k̂ · Ûi

)]
,

(3.3)

which reduces to T ' 2 for kL� 1.
Performing linear combinations of the interferometers ~xi we can construct the Time

Delay Interferometry (TDI) LISA channels {A,E, T} [40]

ΣA ≡
1

3
(2σX − σY − σZ) , ΣE ≡

1√
3

(σZ − σY ) , ΣT ≡
1

3
(σX + σY + σZ) . (3.4)

For an isotropic background, we can exploit the symmetry under the exchange of the vertices
of the equilateral triangle to see that all self correlators among σX , σY , σZ are equal to each
other, as are all cross correlations. This in particular implies 〈ΣAΣA〉 = 〈ΣEΣE〉, while
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the cross correlations among ΣA, ΣE and ΣT vanish. As we will see explicitly below, these
statements do not apply to anisotropic components of the SGWB.

The signal induced by a passing gravitational wave in the channels O = {A,E, T} is

ΣO(t) =
∑
λ

∫
d3k hλ(~k, t− L) eab,λ(k̂)QOab(~k; {x̂j}) , (3.5)

with QOab(~k; {x̂j}) =
∑

i c
O
i Qiab(~xi,~k; {Ûj}), where the matrix c is given by

c =

2
3 −

1
3 −

1
3

0 − 1√
3

1√
3

1
3

1
3

1
3

 . (3.6)

For more details on the derivation and notation, see ref. [39].

3.1.1 Response function to the SGWB monopole and dipole components

Combining eq. (2.14) and (3.5) yields the two-point correlation function in the time domain,〈
ΣO(t)ΣO′(t′)

〉
=

1

4

∑
λ

∫
dk

k

[
Mλ

OO′(k)Pλ(k) cos
[
2πk(t− t′)

]
+ vDλOO′

(
2Pλ(k)− kP ′λ(k)

)
sin
[
2πk(t− t′)

]]
, (3.7)

where we have introduced the monopole and dipole response functions

Mλ
OO′ (k) ≡ 4

∫
dΩk̂

4π
eab,λ(k̂)ea′b′,λ(−k̂)QOab(~k)QO′

a′b′(−~k) , (3.8)

DλOO′ (k, v̂ · n̂) ≡ 4i

∫
dΩk̂

4π
eab,λ(k̂)ea′b′,λ(−k̂)QOab(~k)QO′

a′b′(−~k) k̂ · v̂ , (3.9)

where n̂ is the normal to the plane of LISA, that, for definiteness, we take it to be oriented
upwards for an observer for whom the vertices labeled as ~x1, ~x2, ~x3 follow one another in the
anti-clockwise direction.

The two response functions satisfy the following properties

1. Mλ
OO′ and DλOO′ are real,

2. Mλ
OO′ does not depend on the orientation of the detector; DλOO′ depends on the direc-

tion of the detector only through the cosine of the angle between n̂ and v̂,

3. Mλ
OO′ →Mλ

OO′ , DλOO′ → −DλOO′ if ~v → −~v,

4. MR
OO′ (k) =ML

OO′ (k) , DROO′ (k, v̂ · n̂) = −DLOO′ (k, v̂ · n̂),

which we now prove.
The first property immediately follows from the fact that QOab(−~k) = (QOab(~k))∗, and

identically for the GW polarization operators.
The second property is a consequence of statistical isotropy of the monopole, and of

the statistical isotropy of the dipole under rotations that preserve the direction of ~v. Let us
verify that the above relations ensure these properties. We start by noting that the transfer
function T depends on k̂ only through k̂ · Ûi. The argument in the exponential pre-factor in
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Qi can be expressed as 2πikk̂ · (~x0 + (~xi− ~x0)) with ~x0 denoting the center of the equilateral
triangle formed by the three satellites. The factor exp(2πikk̂ · ~x0) is thus universal to all Qi
and drops out in the dipole response function due to the property QOab(−~k) = (QOab(~k))∗. The

remaining factor can also be written as a scalar product between k̂ and the direction of the
LISA arms. For instance, for i = 1, we have

k̂ · (~x1 − ~x0) = k̂ ·
(
~x1 −

~x1 + ~x2 + ~x3
3

)
=
k̂ ·
(
Û3 − Û2

)
3

, (3.10)

and analogously for i = 2, 3. Therefore,

QOab(~k)QO′
a′b′(−~k) = function of k̂ · Û1 , k̂ · Û2 , and of k̂ · Û3 . (3.11)

As a consequence, any rotation of the LISA instrument (that for this discussion we consider
as a rigid equilateral triangle) can be “compensated” by a rotation of k̂. The rotation of k̂
does not change the monopole response function (3.8), as this is just the integration variable.
It follows that every orientation of the instrument results in the same value for the monopole
response function. In the case of the dipole response function, any change of the orientation
of the instrument can be “compensated” by a rotation of k̂ and of ~v, (since also the last factor
must be unchanged). Again, since k̂ is simply an internal variable, it follows that the dipole
response function does not change if we rotate both the instrument and ~v. If we now consider
a rotation around the direction of ~v, we then see that the dipole response function (3.9) is
unchanged for rotations of the instrument that do not change the angle between ~v and the
normal to the plane of the instrument. Therefore, it depends on the orientation of the
instrument and of the dipole only through the product v̂ · n̂. More specifically, if we consider
a coordinate system in which n̂ is directed along the z-axis, we see that the last factor in
eq. (3.9) factorizes a cosine of this angle.

The third property follows immediately from the properties that we just proved, and
from the definition of the response functions.

The fourth property will be essential for our aim of measuring the SGWB circular
polarization. To prove it, let us consider a mirror transformation with respect to the plane of
the detector. Under this transformation, the component of a vector along n̂ (that we denote
as ⊥) changes sign, while the component of the vector on the plane of the detector (that we
denote as //) remains invariant. Therefore, the product QOab(~k)QO′

a′b′(−~k) is invariant under
this symmetry, due to (3.11). As seen from eq. (3.2), only the components of eab,λ along
the plane of the detector contribute to the response functions. One can verify by direct
inspection (by using the explicit form of eq. (A.2)) that these components are unchanged
if we perform this mirror transformation and we simultaneously change the GW chirality.
Namely, eab,λQ

i
ab

(
k//, k⊥

)
= eab,−λQ

i
ab

(
k//, −k⊥

)
, as we already proved in [39]. Under the

mirror transformation, v⊥ changes sign. Therefore, the integrand of the monopole response
function is unchanged if we perform this mirror symmetry, and we flip the two helicities, while
the integrand of the dipole response function changes sign under the same transformations.
The change of ~k can be then “undone” by a change of the integration variable. This implies
that the monopole response function is invariant when we flip the two helicities, while the
dipole response function changes sign.

Having proved the above properties, let us now consider a re-labeling of two satellites,
say ~x2 ↔ ~x3. We see from the definitions (3.4) that the ΣA measurement is invariant under
this re-labeling, while ΣE changes sign. Therefore, the self-correlators 〈ΣAΣA〉 and 〈ΣEΣE〉
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Figure 1. Monopole response function. It vanishes in the AE cross-correlation channel while is
identical in the AA and EE auto-correlation channels and is insensitive to the chirality of the SGWB.
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)

Figure 2. Absolute value of the dipole response function. The dashed (solid) line indicates positive
(negative) values for DRAE = −DLAE . The angle α denotes the angle between the orientation of the
dipole v̂ and the plane of the detector.

are even under the re-labeling, while the cross-correlator 〈ΣAΣE〉 is odd. The re-labeling
has the effect of inverting the direction of the normal to the plane of the instrument, as we
have defined it below eq. (3.9). Due to the property (2.) demonstrated above, the monopole
response function is invariant under this inversion, while the dipole response function changes
sign. Therefore

Mλ
AE = 0 , DλAA = DλEE = 0 . (3.12)

These relations can be immediately verified by a direct evaluation of eqs. (3.8) and (3.9).6

In figures 1 and 2 we depict the monopole response functions for the AA and EE channel as
well as the dipole response function for the AE channel. We recall (property (4.) above) that

6Similarly, re-labeling of the tensor indices in eq. (3.9) while simultaneously flipping k̂ 7→ −k̂ yields DλAE =
−DλEA. Consequently, since 〈ΣA(t)ΣE(t′)〉 = 〈ΣE(t′)ΣA(t)〉, we conclude that the dipole contribution to
〈ΣA(t)ΣE(t′)〉 must be odd under the exchange t ↔ t′, as reflected by the sine function in eq. (3.7). On the
contrary, the auto-correlations 〈ΣA(t)ΣA(t′)〉 and 〈ΣE(t)ΣE(t′)〉 trivially have to be even under t↔ t′.
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Figure 3. Evolution of the dipole antenna pattern in ecliptic coordinates induced by the satellite
rotation. The plots show the real part of the integrand of DR

AE for f = 10−3 Hz and every 1.5 months.
The contour lines are at 0.04, 0.03, 0.02,−0.02,−0.03,−0.04 (red to blue). The green star denotes the
direction of the dipole (assumed to coincide with the CMB dipole), and the brown dot the direction
of the LISA normal.

the dipole response function is odd under a flip of helicity, λ �→ −λ, again reflecting that the
dipole response function is parity odd. In particular, due the summation over helicity, the
total two-point function 〈ΣAΣE〉 will only be non-zero if the stochastic background is chiral,
i.e. if Pλ(k) �= P−λ(k).

An important consequence of this is that one should be careful in assuming that a
nonvanishing value for 〈ΣAΣE〉 would be due only to noise. As we proved above, this cross-
correlator vanishes in presence of the monopole only, and one might be tempted to use any
non-zero result as a toll for noise characterization. We have shown that this quantity is
actually non-vanishing if the SGWB has a net polarization.

3.1.2 Dipole antenna pattern

As discussed above, the dipole response function (3.9) depends only on the angle between the
dipole and the normal vector of the detector plane, v̂ · n̂. The directional sensitivity of the
integrand of eq. (3.9) is more involved, encoding the geometrical sensitivity of the detector
to different sky regions, the so-called antenna pattern. The antenna pattern of the monopole
response function shows that GW interferometers are most sensitive to GWs arriving orthog-
onally to the detector plane (see e.g. [38]). In figure 3 we depict the corresponding dipole
antenna pattern, taking into account that, due to the motion of the LISA-plane around the
sun, the effective dipole will receive an annual modulation. See section 3.2 for more details
about the LISA orbit parametrization.

These antenna patterns give allow for a qualitative understanding of the resolution
of GW detectors to higher order parity odd anisotropies. Moreover, as we will discuss in
section 3.2, the expected annual modulation of the dipole response function can be used to
optimize the signal-to-noise ratio of this measurement. This is in particular true if the SGWB
dipole coincides with the (known) dipole of the CMB.
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3.1.3 Small frequency limit of the response functions

In the small frequency limit, k L � 1, we can Taylor-expand the integrands of eqs. (3.8)
and (3.9), and then perform the integrals numerically. We obtain

Mλ
AA (k) =Mλ

EE (k) =
3

10
− 169π2

420
k2 L2 +O

(
k4L4

)
,

Mλ
TT (k) =

π6

189
k6 L6 +O

(
k8L8

)
,

DλAE (k) = λ v̂ · n̂
[

1

5
− 253π2

840
k2 L2 +O

(
k4L4

)]
. (3.13)

Obviously, these analytical expressions for the small kL expressions satisfy all the prop-
erties of the correlators discussed in the previous subsection. We note that the Mλ

TT corre-
lator vanishes at small frequencies. For this reason this channel is sometimes denoted as the
“null-channel”, and it is expected to provide useful information for noise characterization [40].

For LISA, with

2πkL = 0.05

(
k

10−3 Hz

)(
L

2.5× 106 km

)
, (3.14)

this Taylor expansion is only a good approximation for the lower part of the frequency band.
In the following, and in particular in section 3.2, we will work with the full response functions,
thereby extending the work of ref. [25]. On the other hand, when we turn to the Einstein
Telescope in section 4.2, the small frequency limit will be fully sufficient.

3.1.4 Expressing the results in frequency domain

Performing a Fourier transform on eq. (3.7) yields the two-point function in the frequency
domain,〈

ΣO(f)ΣO′(f ′)
〉

=
1

4

∑
σ

∫
dk

k

[
Mσ

OO′(k)Pσ(k)

∫
dt

∫
dt′e−2πi(tf+t

′f ′) cos
[
2πk(t− t′)

]
+ vDσOO′

(
2Pσ(k)− kP ′σ(k)

) ∫
dt

∫
dt′e−2πi(tf+t

′f ′) sin
[
2πk(t− t′)

]]
.

(3.15)

Here f and f ′ can take both positive and negative values and the integration boundaries of
the time-integrals are t̄−∆T/2 ≤ t, t′ ≤ t̄+ ∆T/2 where t̄ denotes a reference time and ∆T
the typical length of the data streams in the time domain which for LISA is expected to be
O(10 days). Since T is much longer than the inverse of the frequency range LISA is more
sensitive to (which is of the order of hours), we will set ∆T → ∞ from now on. We thus
obtain〈

ΣO(f)ΣO′(f ′)
〉

=
1

4

∑
σ

∫ ∞
0

dk

2k
{Mσ

OO′(k)Pσ(k)
[
δ(−f+k)δ(f ′+k)+δ(f+k)δ(−f ′+k)

]
∫
dk

2k
−ivDσOO′(k)

(
2Pσ(k)−kP ′σ(k)

)[
δ(−f+k)δ(f ′+k)− δ(f+k)δ(−f ′+k)

]}
.

(3.16)

We note that the dipole contribution is odd under f ↔ f ′, indicating that the corresponding
contribution to the two-point function must vanish for O = O′. This is an immediate con-
sequence of the sine function in eq. (2.14) which indicates that the dipole contribution has
support only at unequal times, t 6= t′.
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3.2 The optimal signal-to-noise ratio for measuring circular polarization

Let s̃O(f) be the signal registered by LISA in the O = {A, E} channels, in frequency space.
The signal will be the sum of a physical signal ΣO(f) = δt(f)/2L and of a noise ñO(f):

s̃O(f) = ΣO(f) + ñO(f) . (3.17)

We define a frequency-dependent estimator

F̂(f1, f2) ≡WAE(f1, f2) s̃A(f1) s̃E(f2) , (3.18)

where the filter function WAE(f1, f2) satisfies the reality condition WAE(f1, f2)
∗ =

WAE(−f1, −f2). This implies that the frequency integrated estimator F̂ ≡∫
df1 df2W

AE(f1, f2) s̃A(f1) s̃E(f2) is real, and has expectation value

〈F̂〉 =

∫
df1 df2W

AE(f1, f2)〈s̃A(f1) s̃E(f2)〉 = i

∫ ∞
−∞

df1W
AE(f1, −f1)Ss(f1) , (3.19)

where in the last step we have defined the AE correlator as

〈s̃A(f1) s̃E(f2)〉 =
〈
ΣA(f)ΣE(f ′)

〉
= i δ(f1 + f2)Ss(f1) , (3.20)

with Ss(f) real, and where we have assumed that the noises in the A and in the E channels
are uncorrelated. Note that sinceMσ

AE = 0, only the second line of eq. (3.16) contributes to
this expression, that implies that Ss(−f1) = −Ss(f1).

We next compute the variance of F̂ assuming that the signal is noise dominated, with
〈nO(f1)nO′(f2)〉 = δOO′ Pn,O(f) δ(f1 + f2), so that

〈F̂2〉 =

∫ ∞
−∞

df1 df2 df3 df4W
AE(f1, f2)W

AE(f3, f4)〈ñA(f1) ñE(f2)ñA(f3) ñE(f4)〉

=

∫ ∞
−∞

df1 df2W
AE(f1, f2)W

AE(f1, f2)
∗ Pn,A(f1)Pn,E(f2) . (3.21)

The signal-to-noise ratio (SNR) is then given by 〈F̂〉/
√
〈F̂2〉.

To determine the filter function WAE(f1, f2) we define a noise-weighted scalar product
in frequency space as

(A, B) =

∫ ∞
−∞

df1 df2A(f1, f2)B(f1, f2)
∗Pn,A(f1)Pn,E(f2) , (3.22)

so that the SNR

SNR =

(
WAE , −iδ(f1 + f2)

Ss(f1)
Pn,A(f1)Pn,E(f2)

)
√

(WAE , WAE)
, (3.23)

– 13 –



J
C
A
P
0
5
(
2
0
2
0
)
0
2
8

is maximized for WAE(f1, f2) ∝ −i δ(f1 + f2)
Ss(f1)

PnA(f1)PnE(f2)
. For this optimal estimator, the

SNR is thus given by

SNR =

[
T

∫ ∞
−∞

df1
Ss(f1)

2

PnA(f1)PnE(−f1)

]1/2
=

[
2T

∫ ∞
0

df
Ss(|f |)2

PnA(|f |)PnE(|f |)

]1/2
, (3.24)

where T is the total duration of the measurement.

Next, we write explicitly Ss(f) using the response function DλAE(k) = λD(kL) cosα,
where the function D(x) is plotted in figure 2. The quantity DλAE(k) (and, consequently,
the expectation value for the signal Ss(f)) depends on time through the angle α between
the direction of the motion of the solar system and the normal to LISA’s plane that rotates
as the detector orbits the Sun. As a consequence we will write the signal from now on as
Ss(f, T ) ∝ cosα(T ) and, when computing the SNR, we will replace the factor T in eq. (3.24)
with an integral over dT , assuming that the typical timescale on which Fourier transforms are
computed is much shorter than the month-long timescale on which α(T ) changes significantly.

We thus obtain

Ss(f, T ) =
3 v H2

0

2π2 f3
D(|f |L)

(∑
λ

λΩλ
GW

)
cosα(T ) , (3.25)

where we have used the relation P λ(f) =
3H2

0
π2f2

Ωλ
GW, and where we assume, to have a measure

of the reach of this observable, that Ωλ
GW is does not depend on frequency within the LISA

bandwidth, which implies that the quantity 2P λ(|f |)− |f |P λ′(|f |) that appears in eq. (3.16)

equals
12H2

0
π2f2

Ωλ
GW. It is worth reminding here that P λ(f) is the gravitational wave power spec-

trum evaluated at the time of detection, which is different from the primordial gravitational
wave power spectrum, and is related to it by the transfer function (see footnote 4).

In order to determine the noise spectral functions Pn,A(f) = Pn,E(f) ≡ 2
3Pn(f) we use

the formulae given in [41, 42], that give

f Pn(f) ' 7× 10−43
(
f

f∗

)(
1 + 10−4

(
f∗
f

)4
)

(3.26)

+ 2.3× 10−46 (1 + cos2(f/f∗))

(
f∗
f

)3
(

1 + 4× 10−4
(
f∗
f

)2
)(

1 + 39

(
f

f∗

)4
)
,

where f∗ = (2πL)−1 ' .02 Hz.

The final expression for the signal-to-noise ratio, for a scale invariant Ωλ
GW, is thus

SNR =
9H2

0

4π2
v

∣∣∣∣∣∑
λ

λΩλ
GW

∣∣∣∣∣
[
2

∫
dT cos2 α(T )

∫ ∞
0

df

f4
D(fL)2

(f Pn(f))2

]1/2

' 8.5× 1013 v

∣∣∣∣∣∑
λ

λΩλ
GWh

2

∣∣∣∣∣
[∫ T

1 year

0
cos2 α(x) dx

]1/2
. (3.27)

Next, we have to estimate the integral
∫ T

1 year

0 cos2 α(x) dx. LISA will be orbiting the Sun
with its normal vector at 30o with respect to the ecliptic plane, pointing south [37]. Placing
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the ecliptic on the xy plane, and approximating that the orbit of the Earth with a circle, the
unit vector normal to LISA’s plane has components

n =

(√
3

2
cos

(
2π

t

1 year

)
,

√
3

2
sin

(
2π

t

1 year

)
,−1

2

)
. (3.28)

Parametrizing the velocity vector as v = v(cos θv sinφv, cos θv cosφv, sin θv), we have

cosα = n · v =

√
3

2
sin

(
2π

t

1 year
+ φv

)
cos θv −

sin θv
2

. (3.29)

The integral of cos2 α over 1 year gives the result[∫ 1

0
cos2 α(x) dx

]1/2
=

√
5 + cos(2θv)

4
, (3.30)

that, depending on the value of cos θv, ranges between .5 and .61. The value of the inte-
gral over the total time T of observation, which appears in eq. (3.27), can then be found
multiplying the result of eq. (3.30) by

√
T/(1 year).

Thus, approximating
[∫ 1

0 cos2 α(x) dx
]1/2

' .5, the total SNR turns out to be given

approximately by

SNR '
( v

10−3

) ∣∣∣∣∑λ λΩλ
GWh

2

1.4 · 10−11

∣∣∣∣
√

T

3 years
. (3.31)

This is one order of magnitude larger than the estimate obtained in [25].
For definiteness, given that we use a different notation, we present in appendix B a

detailed comparison among our computation and Seto’s results of [25]. On the other hand,
we stress that for our analysis we use the most up-to-date LISA instrument specifications,
and more complete formulas valid for the entire frequency band of the interferometer.

4 Measuring the SGWB net circular polarization with ground-based in-
terferometers

We now apply the formulas and techniques of the previous section to the case of ground-
based interferometers. We develop fully analytical, ‘covariant’ formulas for overlap func-
tions, describing correlations among ground based interferometers in the small antenna limit
(condition (4.1) below).7 Our formulas include the possibility that the SGWB is circularly
polarized, do not rely on special choices of frame (this is why we call them covariant), and
apply to any detector shape (not limited to interferometers with orthogonal arms). When
correlating distinct ground based interferometers, it is well known that the SGWB monopole
is already sensitive to circular polarization (see e.g. [22, 23, 27]). We demonstrate this fact
in terms of our analytic formulas, discuss the most convenient detector locations for maxi-
mizing sensitivity to circular polarization, and also include the kinematically induced dipole
in our analysis. In the final part of this section we turn to the future ground-based Einstein

7As customary in the literature, we call overlap functions the response functions for GW experiments that
correlate distinct detectors.

– 15 –



J
C
A
P
0
5
(
2
0
2
0
)
0
2
8

Telescope. A single instrument of this type will be planar, and hence measuring the chirality
of the SGWB requires taking into accoung the kinematic dipole, as in the analysis for LISA.

Our starting point is given by relations (3.8) and (3.9), which apply also to pairs of
ground-based interferometers (we actually choose a different overall normalization, as we
discuss below). In these cases, the fact that the peak sensitivity of these detectors is at a fre-
quency which is small compared to their inverse arm length, results in a crucial simplification,
allowing us to obtain fully analytical expressions for the overlap functions. Covariant, analyt-
ical formulas for the unpolarized overlap function to the SGWB monopoleMR (k) +ML (k)
can already be found in the literature [31, 43]. Here for the first time we provide covariant,
analytic expressions for the λ−dependent terms (contrary to LISA, these terms do not gen-
erally vanish, since pairs of detectors located in different locations on the Earth are generally
not coplanar). Moreover, for the first time we provide a covariant, analytic expressions for
the overlap function to the SGWB dipole.

For ground-based detectors, the crucial simplification arises from the fact that their
sensitivity region satisfies the “short arm condition” (referred to as “small kL limit” in
section 3.1.3)

2πk L ' 0.0084
k

100 Hz

L

4 km
� 1 , (4.1)

where we have normalized the frequency k to the region of best sensitivity for the existing
and forthcoming detectors, and where we recall that the arms of the two LIGO sites are
L = 4 km long, while those of Virgo and KAGRA are L = 3 km long. In this limit, the
quantity T indroduced in eq. (3.3) evaluates to T → 2. Using this value, eq. (3.1) assumes
the simpler form

σi (t) ≡ δt

t
= Dab

i

∑
λ

∫
d3k hλ

(
~k, t− L

)
eab,λ(k̂) e−2πi

~k·~xi , Dab
i ≡

Ûai Û
b
i − V̂ a

i V̂
b
i

2
, (4.2)

where now Ûi and V̂i are the orientations of the arms of the i-th detector, that start from the
common point located at ~xi. In the following, we refer to this point as to the “position of
the detector” for brevity. The vectors ~xi, Ûi, and V̂i for the two LIGO detectors, for Virgo,
and for KAGRA are given in appendix C.

Using eq. (2.14) for the GW correlator, we then obtain an expression identical to (3.7),
namely

〈
Σi(t)Σj(t

′)
〉

=
∑
λ

∫
dk

k

[
Mλ

ij(k)Pλ(k) cos
[
2πk(t− t′)

]
− vDλij

(
2Pλ(k)− kP ′λ(k)

)
sin
[
2πk(t− t′)

]]
, (4.3)

with8

Mλ
ij (k) = Dab

i Dcd
j

∫
dΩk

4π
e−2πi

~k·(~xi−~xj) eab,λ(k̂)ecd,λ(−k̂)

Dλij (k, v̂) = iDab
i Dcd

j

∫
dΩk

4π
e−2πi

~k·(~xi−~xj) eab,λ(k̂)ecd,λ(−k̂) k̂ · v̂ . (4.4)

8We use a different normalization for the overlap function for ground-based interferometers with respect
to the one used for LISA in section 3, to respect the literature.
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In appendix D we compute these expression analytically. Parameterizing the positions of the
different detectors as

κ ≡ 2πk|~xi − ~xj | , ŝij ≡
~xj − ~xi
|~xi − ~xj |

, (4.5)

and introducing the functions

fA (κ) ≡ j1 (κ)

2κ
+

1− κ2

2κ2
j2 (κ) , fB (κ) ≡ j1 (κ)

κ
− 5− κ2

κ2
j2 (κ) ,

fC (κ) ≡ −7j1 (κ)

4κ
+

35− κ2

4κ2
j2 (κ) ,

fD (κ) ≡ j1 (κ)

2
− j2 (κ)

2κ
, fE (κ) ≡ −j1 (κ)

2
+ 5

j2 (κ)

2κ
, (4.6)

(where j` are spherical Bessel functions) the overlap function for the SGWB monopole is

Mλ
ij (k) = fA (κ) tr [DiDj ] + fB (κ) (Diŝij)

a (Dj ŝij)
a + fC (κ) (Diŝij ŝij) (Dj ŝij ŝij)

+ λ fD (κ) [DiDj ]
ab εabcŝ

c
ij + λ fE (κ) (Diŝij)

a (Dj ŝij)
b εabcŝ

c
ij , (4.7)

while that to the SGWB dipole is

Dλij (k, v̂) = f ′A (κ) v̂eŝe (DiDj)
aa

+
[
f ′B (κ)−2

fB (κ)

κ

]
v̂eŝe (Diŝb)

a (Dj ŝ)
a+

fB (κ)

κ
[(Div̂)a (Dj ŝ)

a+(Diŝ)
a (Dj v̂)a]

+
[
f ′C (κ)−4

fC (κ)

κ

]
v̂eŝe (Diŝŝ) (Dj ŝŝ)+2

fC (κ)

κ
[(Diŝv̂) (Dj ŝŝ)+(Diŝŝ) (Dj ŝv̂)]

+λ
[
f ′D (κ)− fD (κ)

κ

]
v̂eŝe (DiDj)

ab εabcŝc+λ
fD (κ)

κ
(DiDj)

ab εabcv̂c

+λ
[
f ′E (κ)−3

fE (κ)

κ

]
v̂eŝe (Diŝ)

a (Dj ŝ)
b εabcŝc

+λ
fE (κ)

κ

{[
(Div̂)a (Dj ŝ)

b+(Diŝ)
a (Dj v̂)b

]
εabcŝc+(Diŝ)

a (Dj ŝ)
b εabcv̂c

}
. (4.8)

In these expressions, we have used the combinations

(Div̂)a ≡ Dab
i v̂b , (Div̂ŝ) ≡ Dab

i v̂b ŝa , (DiDj)
ab ≡ Dac

i Dcb
i , . . . (4.9)

As we mentioned, these expressions are valid in the regime in which the product between
the frequency and the arm lengths is much smaller than one, but do not assume that the
product between the frequency and the separation distance between the two detectors, is
also small (namely, κ does not need to be � 1). When this is also true, our results simplify
further into

lim
κ→0
Mλ

ij =
(DiDj)

aa

5
, lim

κ→0
Dλij (v̂) =

2λ (DiDj)
ab

15
εabcv̂c . (4.10)

The analytic expressions (4.7) and (4.8) can be readily evaluated for any pair of detec-
tors. In table 1 in appendix C we provide the explicit expressions for the vectors ~si, Ûi, V̂i
for the two LIGO, the Virgo, and the KAGRA detectors. As an example, in figure 4 we
show the overlap functions for the pair of LIGO detectors (first row) and for the Virgo-
KAGRA pair (second row). The figure confirms the correctness of the covariant, analytical
expressions (4.7) and (4.8), obtained using both the analytical expressions given above and
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Figure 4. First row: monopole and dipole overlap functions for the LIGO Hanford (LH) and LIGO
Livingston (LL) pair. Second row: monopole and dipole overlap functions for the Virgo (V) and KA-
GRA (K) pair. In the dipole case, v̂ = (0, 0, 1) (in the coordinate system introduced in appendix C)
has been chosen for illustrative purposes. The solid lines are the analytic expressions (4.7) and (4.8).
The dotted black lines at small frequency are the asymptotic values (4.10). The dots are obtained
from a numerical evaluation.

numerical evaluations. We have verified that the agreement between the analytic and numer-
ical results persists for other generic directions of v̂, beyond the particular choice in figure 4.
For the case of the monopole, equivalent formulas, but not covariant since they make use of
a particular reference frame, can be found in [22, 23]. Our general results identify clearly
the ‘parity-violating’ contributions proportional to the Levi-Civita tensor εabc, and do not
make any hypothesis on the shape of the detector (whose arms can form angles different than
90 degrees).

4.1 Comments about the chiral contributions to the two-point overlap func-
tion M

The last two contributions to the monopole overlap function (4.7), proportional to fD and
fE , distinguish between the two different GW polarizations and depend on the separation
between interferometers as well as their orientations. We note that they vanish in the limit
of coincident instruments (see eq. (4.10)) or when the detector arms are oriented such that
the quantity Dac

i Dbd
j is symmetric under the a↔ b exchange. The former condition can be

easily understood: by measuring the GW at one location, one cannot determine how its profile
changes as it propagates, and hence left- and right-handed GWs cannot be distinguished. A
geometrical interpretation for the latter condition will be given below.
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To obtain a more explicit expression for the overlap function, we place and orient the
detectors at the following coordinates (this choice can always be done with no loss of gener-
ality),

x̂1 = (1, 0, 0) ,

Û1 = (0, sinα, cosα) , V̂1 = (0, cosα, − sinα) ,

x̂2 = (cosφ, sinφ, 0) ,

Û2 = (− sinφ sinβ, cosφ sinβ, cosβ) , V̂2 = (− sinφ cosβ, cosφ cosβ, − sinβ) , (4.11)

where 0 ≤ φ ≤ π, and 0 ≤ α, β ≤ 2π. The angles α and β give the orientation of the Û−arm
in terms of the angle from the north toward the east direction (where these directions are
expressed at the location of each detector). With this choice, the unit vector going from the
first to the second detector is

ŝ =
1√

2 (1− cosφ)
(−1 + cosφ, sinφ, 0) , (4.12)

and the λ−dependent terms in the monopole overlap function (4.7) give rise to

∆M≡M+
ij −M

−
ij (4.13)

=
κ2 (−3 + cosφ) j0 (κ) +

[
3
(
7− κ2

)
+
(
9 + κ2

)
cosφ

]
j2 (κ)

24κ
sin

(
φ

2

)
sin [2 (α+ β)] ,

where we note that φ is the angle (centered in the center of the Earth) between the two detec-
tors, while α and β express, respectively, the orientations of the U -arm of the two detectors.
We notice that eq. (4.13) always vanishes when φ = 0 (the two detectors are coplanar) and
when the sum (α + β) is equal to zero or π/2. If this condition occurs, indeed, the combi-
nation Daci Dbdj is symmetric in the indexes (a, b): as we have discussed above, this implies
null sensitivity to parity violating effects. This result can also interpreted geometrically
as follows. If α = −β, the system of detectors is symmetric about the plane through the
maximal circle on Earth that passes halfway between the two detectors. As a consequence, a
right-handed gravitational wave coming from one side of this plane is indistinguishable from
a left-handed one coming from the opposite direction, so that the system, after selecting the
isotropic monopole contribution, is insensitive to chirality. This argument is analogous to,
and generalizes, that given in [24], where it was shown that coplanar detectors are insensitive
to chirality (in that case, the symmetry plane coincided with the plane of the two detectors).

In particular, if the detectors are located at the antipodes (φ = π), the absolute value
of eq. (4.13) is maximized and reduces to

∆Mantipodes =
−κ2 j0 (κ) +

(
3− κ2

)
j2 (κ)

6κ
sin [2 (α+ β)] , (4.14)

and its behaviour is plotted in figures 5. In what comes next, using our formulas we discuss
more quantitatively the best choices of location for antipodal ground based detectors in
order to detect parity violating effects in the SGWB. Similar considerations can also be
found in [22, 23].
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Figure 5. The function ∆M, sensitive to parity violation (difference of the overlap functions of
opposite chirality, see eq. (4.14)) of two ideal detectors at the antipodes, and of LIGO-Livingston
with a detector at Perth, Australia. By expanding the κ dependent part of eq. (4.14) for large κ, we
find that the zeros of this function occur at the frequencies f ' π

d

(
1
2 + n

)
, where d is the diameter of

the Earth and n is an integer number. By comparing with the figure, one can see that this relation
works well already at n = 1.

Choice of Earth location for optimal detection of a chiral SGWB. If we search
for the antipodes of the four known detectors (Hanford, Livingston, Virgo, KAGRA), we see
that all of them fall in the Ocean (Pacific, Atlantic and Indian). The antipode of LIGO-
Livingston (L) falls in the Indian Ocean near Australia. The closest large city to it is Perth
(P). Let us compute the optimal overlap function for this pair of detectors. Recall that, in
our coordinate system, defined in appendix C, LIGO-Livingston (L) is located at

~xL = R (−0.011, −0.860, 0.508) , (4.15)

with R denoting the radius of the earth, and its arms are directed along

ûL = (−0.953, −0.144, −0.266) , v̂L = (0.302, −0.488, −0.819) . (4.16)

Moreover, in our coordinate system, P is located at

~xP = R (−0.370, 0.763, −0.529) , (4.17)

which gives a distance

s = |~xp − ~xL| ' 1.96R ⇒ κ ' f

24 Hz
. (4.18)

Therefore the two detectors are nearly opposite, as can be seen in figure 6.
We now place the arm ûP at the angle α from the north direction towards east (from

the point of view of an observer at P), while v̂P is at the angle π
2 + α. We then have

ûP = cosα (−0.230, 0.476, 0.848) + sinα (−0.899,−0.436, 0) ,

v̂P = − sinα (−0.230, 0.476, 0.849) + cosα (−0.899,−0.436, 0) . (4.19)

The difference in the overlap function ∆M for the L-P pair gives

∆M =
κ
(
1− 0.31κ2

)
cosκ+

(
−1 + 0.64κ2

)
sinκ

κ4
[−0.22 cos (2α) + 1.5 sin (2α)] . (4.20)
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Figure 6. The location of all existing detectors on Earth, together with a LIGO-India detector
in Maharashtra, and a hypothetical optimal-for-chiral-SGWB detector in Perth. We also show the
antipodes of the LIGO-Livingston detector (green dot), which is not far from the Perth detector. We
note that the figure shows the point of view of an observer at a specific location in space, who sees
less than half of the Earth. Lighter lines (red dots) are used to indicate continents (interferometers)
that are not seen by this observer.

We then have for:

antipodes , αbest =
π

4
⇒ ∆M = 1.5

κ
(
−1 + κ2/3

)
cosκ+

(
1− 2κ2/3

)
sinκ

κ4

with κ =
f

23.5 Hz
,

L− P , αbest = 2.43 ⇒ ∆M = 1.56
κ
(
−1 + 0.31κ2

)
cosκ+

(
1− 0.64κ2

)
sinκ

κ4

with κ =
f

24 Hz
. (4.21)

At small frequencies κ� 1 this yields

∆Mantipodes(αbest) ' −
f

177 Hz
, ∆ML−P(αbest) ' −

f

191 Hz
. (4.22)

Consequently, an additional GW detector close to Perth, Australia, rotated clockwise by 2.43
radiants from the local north direction, is essentially an optimal choice to measure parity with
a network of ground-based detectors.

The expressions (4.13) and (4.22) can be employed to determine the SNR of detecting
a net polarization in the SGWB. The difference in the frequency dependence of the response
functionsM+ andM− can be utilized to distinguish a chiral from a non-chiral SGWB. This
analysis (using numerically evaluated response functions) was performed in ref. [27] for the
Hanford and Livingston LIGO, VIRGO and KAGRA detectors and for a power-law signal.
In the specific case of a frequency-independent SGWB, it was found that maximal chirality
can be detected or excluded for an amplitude up to ΩGW & 10−8. It would be interesting to
extend this analysis to include an antipodal detector with the optimal orientation αbest, but
this is beyond the scope of the present paper.
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4.2 SNR for the Einstein Telescope

The Einstein Telescope is a proposal for a ground-based interferometer with a triangular
shape with arm length L = 10 km. It will be an observatory of the third generation aiming
to reach a sensitivity for GW signals emitted by astrophysical and cosmological sources
about a factor of ten better than the currently operating ground based detectors. It will
be formed by three detectors, each in turn composed of two interferometers (xylophone
configuration) [28, 29]. The triangular planar configuration of ET, similar to LISA, allows
to use the same approach developed in section 3 to compute the SNR for measuring the
circular polarization. For the computation we use eq. (3.27), where we consider the noise
power spectrum PET

n (f) for a third-generation gravitational wave interferometer [44]. The
expression for the SNR, for a scale invariant Ωλ

GW, in this case is

SNRET =
3H2

0

2π2
v

∣∣∣∣∣∑
λ

λΩλ
GW

∣∣∣∣∣
[
2

∫
dT cos2 α(T )

∫ ∞
0

df

f4
D(fL)2

(f PET
n (f))2

]1/2

≈ 7.5× 1013 v

∣∣∣∣∣∑
λ

λΩλ
GWh

2

∣∣∣∣∣
[∫ T

1 year

0
cos2 α(x) dx

]1/2
, (4.23)

where for the dipole response function D(fL) we have used the value at small frequency
given by eq. (3.13).

Comparing the sensitivity to circular polarization for operating ground-based detectors,
derived in ref. [27], with ET, we note that the improved sensitivity of the Einstein Telescope,
in particular at low frequencies, enables to out-perform the current LIGO configuration,
taking into account the expected magnitude of the kinematic dipole of v ∼ 10−3. This nicely
demonstrates the important interplay between detector sensitivity, location and co-planarity
for ground-based detectors. With two copies of the Einstein Telescope (or of the Cosmic
Explorer [45]), one could of course benefit from increased sensitivity and the elimination of
the dipole factor v since the monopole is already sensitive to chirality.

5 Conclusions

The detection of the SGWB is a major goal for GW interferometers, which is expected
to be achieved in the coming years. On the other hand, the amplitude and properties of
the cosmological SGWB are highly model dependent. Any detection or constraint on this
cosmological SGWB will contain valuable information about the early Universe. In this
situation, it is crucial to extract and characterize all properties of any SGWB detected. In
this paper we focus on the ability of ground- and space-based detectors to measure the net
polarization of the SGWB, which could be a smoking gun for parity violating interactions in
the early Universe.

For an isotropic SGWB, a system of coplanar detectors is insensitive to the polarization
of the SGWB [22–24]. Making the symmetries of the response functions of ground- and
space-based detectors explicit, we provide a transparent demonstration of this result as well
as of the two possibilities to circumvent it: (i) for planar detectors (such as LISA or ET),
we make use of the kinematic dipolar anisotropy induced by the motion of the solar system
with respect to the cosmic rest frame [25, 33, 34] and (ii) for a network of ground-based
detector, the curvature of the earth breaks co-planarity [22, 23, 27]. In the present work we
reconsider previous results by taking into account the full response functions and noise curves
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in the entire frequency band (for planar detectors). Moreover, we provide fully analytical
and covariant expressions for the (parity-sensitive) response functions of a ground-based
detector network.

We find that LISA and ET, despite operating at very different frequencies, will have a
similar sensitivity to a scale-invariant SGWB, and could detect an O(1) net polarization in
a SGWB with a magnitude of ΩGWh

2 ' 10−11 with an SNR of order one. We emphasize
that these two instruments should be seen as complementary probes, since the SGWB may
vary significantly between the LISA and ET frequency bands. For both LISA and ET, the
auto-correlation channels are blind to chirality and the entire sensitivity stems from cross-
correlating the two TDI channels.

For a network of ground-based detectors we provide fully covariant analytical expressions
for the monopole and dipole response functions. It is much more rapid to evaluate these
analytic expressions than to compute numerically the angular integrals that are needed to
obtain the response functions numerically, and therefore we hope that these analytic relations
can be used to speed up future studies of the SGWB polarization. Since the sensitivity to net
polarization of the (dominant) monopole contribution to the SGWB arises from the departure
from co-planarity, the detector location and orientation plays a crucial role.

In summary, in this paper we studied a specific feature that can contribute to the
characterization of the SGWB: the possibility for measuring a circular polarization degree
of a gravitational wave background through a dipolar modulation induced by the motion of
the reference frame with respect to the cosmic frame. This could help single out specific
cosmological mechanisms characterized by violation of parity in the early universe, and it is
therefore an interesting observational target for current and future interferometers. As future
work, it would be interesting to apply this approach to other GW detectors, which can be
sensitive to the circular polarization using this method. For example, the proposed Japanese
space-based GW observatory DECIGO [46], or to astrometric GW observations that aim to
reveal effects induced by a SGWB using data from the Gaia mission [47].
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A GW polarization operators in the chiral basis

We follow the standard definition of the GW polarization operators, that we summarized in
the work [39]. It is straightforward to show that the opertors can be also introduced as

eab,λ

(
k̂
)

= ea,λ

(
k̂
)
eb,λ

(
k̂
)
≡
ûa

(
k̂
)

+ iλ v̂a

(
k̂
)

√
2

ûb

(
k̂
)

+ iλ v̂b

(
k̂
)

√
2

, (A.1)
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where we recall that λ = +1 (respectively, λ = −1) correspond to the right-handed (respec-
tively, the left-handed) helicity,9 and where

û
(
k̂
)
≡ k̂ × êz
|k̂ × êz|

, v̂
(
k̂
)
≡ k̂ × û

(
k̂
)

=

(
k̂ · êz

)
k̂ − êz

|k̂ × êz|
, (A.2)

where êz is the unit vector along the third-axis.
It immediately follows that

e∗ab,λ(k̂) = eab,λ(−k̂) = eab,−λ(k̂) , e∗ab,λ(k̂) eab,λ′(k̂) = δλλ′ . (A.3)

Moreover, one can verify by direct inspection that

ei,λ(k̂)ei′,λ(−k̂) = −1

2

(
δii′ − k̂i k̂i′ − iλ εii′j k̂j

)
. (A.4)

Combining this identity with eq. (A.1), we can also write

eab,λ

(
k̂
)
ecd,λ

(
−k̂
)

=
1

4

[
δac − k̂ak̂c − iλεacek̂e

] [
δbd − k̂bk̂d − iλεbdf k̂f

]
=

1

4

[(
δac − k̂ak̂c

)(
δbd − k̂bk̂d

)
+
(
δad − k̂ak̂d

)(
δbc − k̂bk̂c

)
−
(
δab − k̂ak̂b

)(
δcd − k̂ck̂d

)]
− iλ

4

[(
δac − k̂ak̂c

)
εbdf k̂f +

(
δbd − k̂bk̂d

)
εacek̂e

]
. (A.5)

B Comparison with previous computation

This appendix provides a detailed comparison betweeen our results of section 3.2 and the
findings of Seto in [25] for the magnitude of the signal-to-noise ratio associated with mea-
surements of the SGWB circular polarization with LISA. The comparison is made difficult
by the different notation used in the two works. Our aim is to carry on all the steps that
allow us to re-write the results of [25] using the notation implemented in our paper. Our
conclusion will be that our findings for the magnitude of the signal-to-noise ratio is a factor
of 10 larger than [25]. We use a superscript (S) to denote quantities in Seto’s work [25].

We start from our decomposition for tensor fluctuations,

hij(~x, t) =

∫
d3ke−2πi

~k·~x
∑
P

eij,P (k̂)
[
e2πikthP (k, k̂) + e−2πikth∗P (k,−k̂)

]
, (B.1)

where we decompose in P = +, × polarizations instead of L, R. In [25] the notation is

hij(~x, t) =

∫ ∞
−∞

df d2n̂ e2πif(t−n̂·x)
∑
P

(S)eij,P (n̂)(S)hP (f, n̂) , (B.2)

where (S)eij,P (n̂) =
√

2 eij,P (n̂).

9Another basis that is often chosen for the polarization operators is the {+,×} basis, related to the chiral

basis by eab,λ =
e
(+)
ab

+λie
(×)
ab√

2
.
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To proceed with our comparison, we separate our expressions for hij into (we use n̂ = k̂)

hij(~x, t) =

∫ ∞
0

k2 dk d2n̂e−2πikn̂·~x
∑
P

eij,P (n̂)e2πikthP (k, k̂)

+

∫ ∞
0

k2 dk d2n̂e−2πikn̂·~x
∑
P

eij,P (n̂)e−2πikth∗P (k,−k̂) ,

=

∫ ∞
0

f2 df d2n̂e−2πifn̂·~x
∑
P

eij,P (n̂)e2πifthP (f, n̂)

+

∫ 0

−∞
f2 df d2n̂e2πifn̂·~x

∑
P

eij,P (n̂)e2πifth∗P (−f,−n̂) ,

=

∫ ∞
0

f2 df d2n̂e−2πifn̂·~x
∑
P

eij,P (n̂)e2πifthP (f, n̂)

+

∫ 0

−∞
f2 df d2n̂e−2πifn̂·~x

∑
P

eij,P (−n̂)e2πifth∗P (−f, n̂) , (B.3)

where in the last step we have changed n̂→ −n̂ in the second integral.
To compare with [25], we can make the identification

√
2 (S)hP (f, n̂) = f2

{
hP (f, n̂) f > 0
(−1)Ph∗P (−f, n̂) f < 0

(B.4)

where (−1)P is +1 for P = + and −1 for P = ×. In order to prove this fact, we follow [25],
and write

n̂ = (sin θ cosφ, sin θ sinφ, cos θ) , (B.5)

and

eθ = ∂θn̂ = (cos θ cosφ, cos θ sinφ, − sin θ) ,

eφ = ∂φn̂ = (− sin θ sinφ, sin θ cosφ, 0) . (B.6)

We have the relations e+ = eθ eθ − eφ eφ, e× = eθ eφ + eφ eθ. On the other hand, n̂→ −n̂ is
equivalent to θ → π − θ, φ→ φ+ π. This means that

eθ → ((− cos θ) (− cosφ), (− cos θ) (− sinφ), − sin θ) = eθ ,

eφ → (− sin θ (− sinφ), sin θ (− cosφ), 0) = −eφ , (B.7)

which then implies e+ → e+, but e× → −e×. The work [25] defines

i

2
〈(S)h+(f, n̂)(S)h∗×(f ′, n̂′)− (S)h∗+(f, n̂)(S)h×(f ′, n̂′)〉 = δ(f − f ′) δ(n̂− n̂

′)

4π
V (f, n̂) . (B.8)

We now translate this expression in our notation

i〈h+(f, n̂)h∗×(f ′, n̂′)−h∗+(f, n̂)h×(f ′, n̂′)〉= 2
δ(f−f ′)
f4

δ(n̂−n̂′)
2π

V (f, n̂) f > 0 ,

i〈h∗+(−f, n̂)h×(−f ′, n̂′)−h+(−f, n̂)h∗×(−f ′, n̂′)〉=−2
δ(f−f ′)
f4

δ(n̂−n̂′)
2π

V (f, n̂) f < 0 ,

(B.9)

where these two expressions are actually one the complex conjugate of the other.
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We now proceed to compute expressions in terms hL,R modes. We have

h+ =
1√
2

(hR + hL) , h× =
i√
2

(hR − hL) , (B.10)

so that

i
(
h+h

∗
× − h∗+h×

)
= |hR|2 − |hL|2 . (B.11)

The two point function found in eq. (2.14) reads

〈hσ(~k, τ)hσ
′
(~k′, τ ′)〉 = δσσ′

δ(3)(~k + ~k′)

4π k3
(B.12)

×
{
P σ(k) cos[2πk(τ − τ ′)]− i(k̂ · ~v)

[
2P σ(k)− k P σ ′(k)

]
sin[2πk(τ − τ ′)]

}
,

with

hσ(~k, τ) = e2πikthσ(k, k̂) + e−2πikth∗σ(k,−k̂) . (B.13)

Then the l.h.s. of equation (B.13) rewrites

〈
[
e2πikτhσ(k, k̂) + e−2πikτh∗σ(k,−k̂)

] [
e2πik

′τ ′hσ(k′, k̂′) + e−2πik
′τ ′h∗σ(k′,−k̂′)

]
〉

= 〈e2πi(kτ+k′τ ′)hσ(k, k̂)hσ(k′, k̂′) + e−2πi(kτ+k
′τ ′)h∗σ(k,−k̂)h∗σ(k′,−k̂′)

+ e2πi(kτ−k
′τ ′)hσ(k, k̂)h∗σ(k′,−k̂′) + e−2πi(kτ−k

′τ ′)h∗σ(k,−k̂)hσ(k′, k̂′)〉 . (B.14)

Now we note that this quantity must be a linear combination of sin[2πk(τ − τ ′)] and
cos[2πk(τ − τ ′)]. This implies that

〈hσ(k, k̂)hσ(k′, k̂′)〉 = 〈h∗σ(k,−k̂)h∗σ(k′,−k̂′)〉 = 0 , (B.15)

since these terms multiply cosines and sines of 2πk(τ + τ ′), and

〈cos[2πi(kτ − k′τ ′)]
[
hσ(k, k̂)h∗σ(k′,−k̂′) + h∗σ(k,−k̂)hσ(k′, k̂′)

]
+ i sin[2πi(kτ − k′τ ′)]

[
hσ(k, k̂)h∗σ(k′,−k̂′)− h∗σ(k,−k̂)hσ(k′, k̂′)

]
〉 (B.16)

=
δ(3)(~k + ~k′)

4π k3

{
P σ(k) cos[2πk(τ − τ ′)]− i(k̂ · v)

[
2P σ(k)− k P σ ′(k)

]
sin[2πk(τ − τ ′)]

}
where we note in passing that the quantity in the second square bracket does not vanish.

By comparing the time dependent parts we thus get the time-independent correlators

〈hσ(k, k̂)h∗σ(k′,−k̂′)+h∗σ(k,−k̂)hσ(k′, k̂′)〉= δ(3)(~k+~k′)

4πk3
P σ(k)

〈hσ(k, k̂)h∗σ(k′,−k̂′)−h∗σ(k,−k̂)hσ(k′, k̂′)〉=−δ
(3)(~k+~k′)

4πk3
(k̂ ·~v)

[
2P σ(k)−kP σ ′(k)

]
. (B.17)

We can then conclude that

〈hσ(k, k̂)h∗σ(k′, k̂′)〉 =
δ(3)(~k − ~k′)

8π k3

{
P σ(k)− (k̂ · ~v)

[
2P σ(k)− k P σ ′(k)

] }
. (B.18)
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Let now compute 〈|hR|2 − |hL|2〉 as

〈hR(k, k̂)h∗R(k′, k̂′)− hL(k, k̂)h∗L(k′, k̂′)〉

=
δ(3)(~k − ~k′)

8π k3

{
∆P σ(k)− (k̂ · ~v)

[
2∆P σ(k)− k∆P σ ′(k)

] }
(B.19)

(where ∆P σ = PR−PL), and compare with [25]. First, δ(~k−~k′) = δ(k−k′)
k2

δ(2)(n̂− n̂′) where
we define

δ(2)(n̂− n̂′) =
δ(θ − θ′) δ(φ− φ′)

sin θ′
, (B.20)

so that ∫
d3k δ(3)(~k − ~k′) =

∫
dk sin θ dθ dφ δ(k − k′)δ(2)(n̂− n̂′) . (B.21)

Then we can write

〈hR(k, n̂)h∗R(k′, n̂′)− hL(k, n̂)h∗L(k′, n̂′)〉 =
δ(k − k′) δ(2)(n̂− n̂′)

8π k5

×
{

∆P σ(k)− (n̂ · ~v)
[
2∆P σ(k)− k∆P σ ′(k)

] }
.

We can compare with eq. (B.9) that can be written as

〈hR(f, n̂)h∗R(f ′, n̂′)− h∗L(f, n̂)hL(f ′, n̂′)〉 =
δ(f − f ′)

f4
δ(n̂− n̂′)

π
V (f, n̂) f > 0 (B.22)

so that

V (f, n̂) =
1

8f

{
∆P σ(|f |)− (n̂ · ~v)

[
2∆P σ(|f |)− |f |∆P σ ′(|f |)

] }
. (B.23)

Decomposing the quantity V in spherical harmonics, by choosing the direction of ~v as
the z axis, we find

V00 =
1

8f
∆P σ(|f |) ,

V10 = − v

8f

[
2∆P σ(|f |)− |f |∆P σ ′(|f |)

]
. (B.24)

The work [25] defines the quantity p that in our case, where we consider only the dipole
contribution, reads

p =
|V10|
It

. (B.25)

Here It is the total intensity, that in our regime is well approximated by |I00|, while [25]
defines I as

1

2
〈(S)h+(f, n̂) (S)h∗+(f ′, n̂′) + (S)h×(f, n̂) (S)h∗×(f ′, n̂′)〉 = δ(f − f ′)δ(n̂− n̂

′)

4π
I(f) ,

=
f4

4
〈hR(f, n̂)h∗R(f ′, n̂′) + hL(f, n̂)h∗L(f ′, n̂′)〉 ' f4

4

δ(k − k′) δ(n̂− n̂′)
8π k5

∑
σ

P σ(k) , (B.26)
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where we only keep the monopole contribution from eq. (B.18). So we get

I(f) =
1

8f

∑
σ

P σ(|f |) , (B.27)

and finally

p = v
|2∆P σ(|f |)− |f |∆P σ ′(|f |)|∑

σ P
σ(|f |)

. (B.28)

Then using P σ ∝ Ωσ/f2 with Ωσ = constant, we obtain

p = 4 v
|
∑

λ λΩλ|∑
λ Ωλ

. (B.29)

The final result of [25], using
∑

λ Ωλ = ΩGW, can then be re-expressed as

(S)SNR = 4× 1012 v

∣∣∣∣∣∑
λ

λΩλ

∣∣∣∣∣
√

T

3 years
. (B.30)

To compare with our findings, we rewrite our result of eq. (3.31) as

SNR ' 7.4× 1013 v

∣∣∣∣∣∑
λ

λΩλ h
2

∣∣∣∣∣
√

T

3 years
' 3.6× 1013 v

∣∣∣∣∣∑
λ

λΩλ

∣∣∣∣∣
√

T

3 years
. (B.31)

To conclude, our result of eq. (B.31) is a factor of 10 larger than the result of [25] in eq. (B.30).

C Location and orientation of existing and forthcoming ground-based in-
terferometers

We take the Earth to be a perfect sphere of radius R = 6.371 · 103km. We consider a
Cartesian coordinate system with the origin located at the center of the Earth, and with the
z-axis going in the direction of the North Pole. The x-axis goes in the direction of the point
connecting the Earth Equator (latitude 0) and the Greenwich Meridian (longitude 0). The
y-axis is then determined by êy = êz× êx, and it is directed toward the point on the Equator
at 90◦E longitude.

In table 1 we provide the Cartesian coordinates (in the system that we have just defined)
for a set of three unit vectors for each detector. The first unit vector is the position ~xi of the
i-th detector divided by R (in practice, it is the unit-vector starting from the center of the
Earth and pointing toward the center of the detector; by center we mean the point common
to the two arms). The other two unit-vectors are the directions of each arm of the detector.
Therefore, they are unit-vectors starting from the center of the interferometer, and lying on
a plane that is tangent to the Earth at the point ~xi (ignoring the curvature of the Earth on
the scales of the interferometer arms).

Ref. [48] provides the location (latitude and longitude) of the LIGO Hanford, the LIGO
Livingston, and the Virgo detectors, together with the direction that the arms of these
detectors form with the North-South and East-West directions at that point on Earth. The
same values for the KAGRA detector can be found in ref. [49]. The values in table 1 are
obtained from these data using basic trigonometry, and they are more convenient for us, since
the unit-vectors in the table can be directly employed in our computations of section 4.
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LIGO Hanford
Central location {−0.338, −0.600, 0.725}

First Arm {−0.224, 0.799, 0.557}
Second Arm {−0.914, 0.0261,−0.405}

LIGO Livingston
Central location {−0.0116, −0.861, 0.508}

First Arm {−0.953, −0.144, −0.266}
Second Arm {0.302, −0.488, −0.819}

Virgo
Central location {0.712, 0.132, 0.690}

First Arm {−0.701, 0.201, 0.684}
Second Arm {−0.0485, −0.971, 0.236}

KAGRA
Central location {−0.591, 0.546, 0.594}

First Arm {−0.390, −0.838, 0.382}
Second Arm {0.706, −0.00580, 0.709}

Table 1. Cartesian coordinates of the unit-vectors specifying the positions of the interferometers and
the direction of their arms, in the coordinate system described in this appendix. For each detector,
the distinction between the “first” and “second” arm is purely arbitrary, and plays no relevance in
any computation.

D Analytics for ground-based interferometer overlap functions

In this appendix we derive the analytic results (4.7) and (4.8) given in the main text. Let us
start from the monopole response function (4.4), that we rewrite as

Mλ
ij (k) = Dab

i Dcd
j × Γab,cd,λ (κ, ŝij) , ΓMab,cd,λ (κ, ŝ) ≡

∫
dΩk

4π
eiκ k̂·ŝ eab,λ(k̂)ecd,λ(−k̂) .

(D.1)
The function Γ must be a rank 4 tensor, that is (separately) symmetric under the a↔ b and
the c↔ d interchange, as well as under ab↔ cd. These symmetries enforce the structure

ΓMabcd,λ (κ, ŝ) = Aλ (κ) δabδcd +Bλ (κ) (δacδbd + δadδbc)

+ Cλ (κ) (δabŝcŝd + δcdŝaŝb)

+Dλ (κ) (δacŝbŝd + δadŝbŝc + δbcŝaŝd + δbdŝaŝc)

+ Eλ (κ) ŝaŝbŝcŝd

+ Fλ (κ) (δacεbdeŝe + δadεbceŝe + δbcεadeŝe + δbdεaceŝe)

+Gλ (κ) (ŝaŝcεbdeŝe + ŝaŝdεbceŝe + ŝbŝcεadeŝe + ŝbŝdεaceŝe) , (D.2)

where our goal is to find the scalar functions Aλ (κ) , . . . , Gλ (κ). To obtain these functions,
we consider a set of independent contractions under which the angular integral of eq. (D.1)
becomes the integral of a scalar quantity, that can be immediately performed. Specifically,
we perform the following contractions on the left hand side of eq. (D.2),

pλ (κ) ≡ Γabcd,λδabδcd = 0 ,

qλ (κ) ≡ Γabcd,λ (δacδbd + δadδbc) = 2j0 (κ) ,

rλ (κ) ≡ Γabcd,λ (δabŝcŝd + δcdŝaŝb) = 0 ,
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ŝλ (κ) ≡ Γabcd,λ (δacŝbŝd + δadŝbŝc + δbcŝaŝd + δbdŝaŝc) =
4

κ
j1 (κ) ,

tλ (κ) ≡ Γabcd,λŝaŝbŝcŝd =
2

κ2
j2 (κ) ,

wλ (κ) ≡ Γabcd,λ (δacεbdeŝe + δadεbceŝe + δbcεadeŝe + δbdεaceŝe) = 4λj1 (κ) ,

zλ (κ) ≡ Γabcd,λ (ŝaŝcεbdeŝe + ŝaŝdεbceŝe + ŝbŝcεadeŝe + ŝbŝdεaceŝe) =
4λ

κ
j2 (κ) , (D.3)

where we have also given the result of the integration in terms of spherical Bessel functions.
Performing the same contractions on the right hand side of eq. (D.2), and equating the results
to the expressions that we have just found, we then obtain the system

9 6 6 4 1 0 0
6 24 4 16 2 0 0
6 4 8 8 2 0 0
4 16 8 24 4 0 0
1 2 2 4 1 0 0
0 0 0 0 0 40 8
0 0 0 0 0 8 8





Aλ
Bλ
Cλ
Dλ

Eλ
Fλ
Gλ


=



pλ
qλ
rλ
sλ
tλ
wλ
zλ


. (D.4)

This linear system is solved by

Aλ = −j1 (κ)

4κ
+

1 + κ2

4κ2
j2 (κ) , Bλ =

j1 (κ)

4κ
+

1− κ2

4κ2
j2 (κ) ,

Cλ =
j1 (κ)

4κ
− 5 + κ2

4κ2
j2 (κ) , Dλ =

j1 (κ)

4κ
− 5− κ2

4κ2
j2 (κ) ,

Eλ =
−7j1 (κ)

4κ
+

35− κ2

4κ2
j2 (κ) ,

Fλ = λ

[
j1 (κ)

8
− j2 (κ)

8κ

]
, Gλ = λ

[
−j1 (κ)

8
+ 5

j2 (κ)

8κ

]
. (D.5)

We have thus fully obtain the analytic expression for (D.2). Once we contract with the
detector functions Dab

i D
ab
j , the terms proportional to A (κ) and C (κ) do not contribute to

the response function (D.1) due to the fact that these operators are traceless. The remaining
terms give rise to the expression (4.7), upon the relabelling 2Bλ → fA, 4Dλ → fB, Eλ →
fC , 4Fλ → λ fD, 4Gλ → λ fE .

Let us now move to the dipole response function (4.4), that we rewrite as

Dλij (k) = Dab
i Dcd

j × ΓDab,cd,λ (κ, ŝij) , ΓDab,cd,λ (κ, ŝ, v̂) ≡ iv̂ ·
∫
dΩk

4π
eiκ k̂·ŝ eab,λ(k̂)ecd,λ(−k̂) .

(D.6)
A direct comparison between eqs. (D.1) and (D.6) shows that the function ΓD can be obtained
from a derivative of the function ΓM that we just computed

ΓDab,cd,λ (κ, ŝ, v̂) =

[
1

κ
v̂i

∂

∂si
Γ̃Mab,cd,λ (κ, ~s)

] ∣∣∣
s=1

(D.7)

Before differentiating, we need to promote the expression in eq. (D.2) to be a function
of a vector ~s of arbitrary magnitude. This can be immediately done from the result we
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obtained by noting (from the definition in eq. (D.1)) that the magnitude can be absorbed in
κ. Therefore, for example, the term proportional to C becomes

Γ̃Mab,cd,λ (κ, ~s) = · · ·+ Cλ (κ s)

(
δab ~sc ~sd + δcd ~sa ~sb

s2

)
+ . . . . (D.8)

Taking this into account, inserting the result (D.2)–(D.5) in eq. (D.7) leads to the analytic
expression for ΓDab,cd,λ (κ, ŝ, v̂). This expression, once contracted with Dab

i Dcd
j leads to the

result (4.8).
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