
One-Shot Signatures and Applications to Hybrid
Quantum/Classical Authentication

Ryan Amos
rbamos@cs.princeton.edu

Princeton University
U.S.A.

Marios Georgiou
mgeorgiou@gradcenter.cuny.edu
City University of New York

U.S.A.

Aggelos Kiayias
akiayias@inf.ed.ac.uk

University of Edinburgh and IOHK
U.K.

Mark Zhandry
mzhandry@princeton.edu

Princeton University and NTT Research
U.S.A.

ABSTRACT

We define the notion of one-shot signatures, which are signatures

where any secret key can be used to sign only a single message, and

then self-destructs. While such signatures are of course impossible

classically, we construct one-shot signatures using quantum no-

cloning. In particular, we show that such signatures exist relative to

a classical oracle, which we can then heuristically obfuscate using

known indistinguishability obfuscation schemes.

We show that one-shot signatures have numerous applications

for hybrid quantum/classical cryptographic tasks, where all commu-

nication is required to be classical, but local quantum operations are

allowed. Applications include one-time signature tokens, quantum

money with classical communication, decentralized blockchain-less

cryptocurrency, signature schemes with unclonable secret keys,

non-interactive certifiable min-entropy, and more. We thus posi-

tion one-shot signatures as a powerful new building block for novel

quantum cryptographic protocols.

CCS CONCEPTS

• Security and privacy→Digital signatures; •Theory of com-

putation→ Cryptographic primitives; Cryptographic proto-

cols; • Hardware→ Quantum communication and cryptog-

raphy.

KEYWORDS

One-Shot Signatures, Quantum Money, Hybrid Quantum Cryptog-

raphy

ACM Reference Format:

Ryan Amos, Marios Georgiou, Aggelos Kiayias, and Mark Zhandry. 2020.

One-Shot Signatures and Applications to Hybrid Quantum/Classical Au-

thentication. In Proceedings of the 52nd Annual ACM SIGACT Symposium on

Theory of Computing (STOC ’20), June 22ś26, 2020, Chicago, IL, USA. ACM,

New York, NY, USA, 14 pages. https://doi.org/10.1145/3357713.3384304

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

STOC ’20, June 22ś26, 2020, Chicago, IL, USA

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-6979-4/20/06. . . $15.00
https://doi.org/10.1145/3357713.3384304

1 INTRODUCTION

Quantum computing and quantum information promise to reshape

the cryptographic landscape. In the near term, quantum computers

will be able to break much of the cryptography currently used to-

day [40], with the field of post-quantum cryptography developing

new alternative protocols. On the other hand, quantum cryptogra-

phy will leverage quantum communication to open new possibili-

ties such as information-theoretically secure key agreement [11],

physically unclonable money [43], and more.

Yet, even in a world full of quantum computers, classical cryp-

tosystems and communication will still play a fundamental role.

The unclonability of quantum data, for example, means that tasks

such as backing up a quantum hard drive or forwarding a quantum

email (while still keeping the original) will be impossible. Even in a

world where quantum computing is commonplace, it may be infea-

sible to run a quantum computer in many computing environments,

such as mobile or embedded devices. It may also be some time be-

fore our communication infrastructure is updated to support the

transfer of quantum data; besides, most data users will care about is

still classical, so it may seem as overkill to use quantum information

to send such data. With classical communication, however, most

of the exciting developments from quantum cryptography become

unusable. This then leads to the following natural question:

When exchanging only classical information, can local quantum

computing still offer advantages over purely classical systems.

In some cases, the answer is certainly negative. For example,

information-theoretic key agreement [11] is impossible with classi-

cal communication, even if local quantum operations are allowed.

Indeed, in quantum key distribution, security is only obtained be-

cause the honest parties can detect if the adversary is eavesdropping;

on the other hand, with classical communication, the adversary can

listen to the communication undetected. Another related example

is information-theoretic key recycling [19, 25, 38].

Hybrid quantum/classical cryptography. On the other hand, in

an emerging field that we will call hybrid quantum/classical cryp-

tography Ð or hybrid quantum cryptography for short Ð it has been

shown that local quantum operations can yield an advantage in

some settings. Recent work has shown how to attain certifiable

randomness expansion [12], which enables a classical client, for

whom generating true randomness is a notoriously difficult task,

255

STOC ’20, June 22ś26, 2020, Chicago, IL, USA Ryan Amos, Marios Georgiou, Aggelos Kiayias, and Mark Zhandry

to verifiably outsource the generation of random bits to a quan-

tum computer, which can generate random bits easily. This task is

closely related to the goal of quantum supremacy Ð demonstrating

that quantum computers can solve certain problems faster than

classical computers Ð which has recently gained much attention.

Certifiable randomness has also been extended to certifying arbi-

trary outsourced quantum operations, again using only a classical

client [33].

Given the importance of classical communication in a quantum

world, we anticipate such hybrid protocols to complement post-

quantum and quantum cryptography and become a third pillar of

active research at the intersection of cryptography and quantum

computing. Our goal in this work is therefore to provide new foun-

dational tools for this emerging area and develop novel applications.

1.1 Motivating Example: Signature Tokens

Consider the task of signature delegation: Alice wishes to allow

Bob to sign a single message on her behalf. Alice could just give

Bob her secret key, but this would allow Bob to sign any number of

messages. Alice instead wants to give Bob enough information to

ensure that Bob can subsequently sign a single arbitrary message,

without any further action on Alice’s part. Crucially, we want the

message to only be decided after Alice hands this information to

Bob.

Of course, this task is impossible in a purely classical world,

as Bob can re-use whatever information he learned from Alice to

sign any number of messages. One could hope that Alice could

provide Bob with a quantum signing token, which self-destructs

after signing a message. By quantum no-cloning Ð which says that

general unknown quantum states cannot be copied Ð Bob cannot

copy the token, and therefore can only sign a singlemessage. Indeed,

Ben-David and Sattath [10] show that such quantum signing tokens

are possible by building on ideas for public key quantum money [2].

No-cloning with only classical communication? But what if we

insist on classical communication between Alice and Bob1? How

can we leverage the power of no-cloning, when any information

Alice sends to Bob can be copied unrestrictedly? It would seem that

if Bob can derive a signing token from their communication, he

can simply copy the communication transcript to derive as many

distinct signing tokens as he would like.

The issue is actually very general, and is potentially problematic

in any hybrid quantum protocol. After all, quantum no-cloning

and related concepts can be seen as the foundation for essentially

all of the novel features in quantum protocols. But now, what if

we insist on only classical communication, relegating all quantum

operations to local computation? This means that any application of

no-cloning applies to states that the adversary constructed entirely

on his own. How can we guarantee no-cloning, if the adversary

controls the entire process used to generate the state in the first

place? Why can’t the adversary just run the same process twice,

generating two copies?

Perhaps surprisingly, we will demonstrate that with a single

classical back-and-forth between Alice and Bob, Alice can send Bob

a single-use quantum signature token. In doing so, we demonstrate

1We will not even allow shared entanglement, which could be used in teleportation.

how to overcome the difficulty outlined above and leverage no-

cloning in a setting where all communication is classical.

A Toy Example. How is this possible? To illustrate how classical

communication might be combined with local no-cloning, we recall

a basic scenario described by Zhandry [45], which also underlies

the recent developments in certifiable randomness/quantum com-

putation [12, 33]. Let 𝐻 be a many-to-one hash function that is

collision-resistant against quantum attacks. First, generate a uni-

form superposition of inputs. Next, compute the hash 𝐻 in super-

position and measure the result, obtaining a value 𝑦. The original

state collapses to the superposition
��𝜓𝑦

〉
of all pre-images 𝑥 of 𝑦.

Using the above procedure, it is easy to sample states
��𝜓𝑦

〉
. How-

ever, at the same time it is impossible to sample two copies of the

same
��𝜓𝑦

〉
, assuming the collision-resistance of 𝐻 . Indeed, assume

toward contradiction that it were possible to generate two identical

copies of
��𝜓𝑦

〉
. Then simply measure both copies; each measure-

ment will likely yield a different 𝑥 , resulting in two distinct values

mapping to the same 𝑦, a contradiction.

A First Attempt. As a first attempt at a signature delegation proto-

col, we have Bob sample a pair (
��𝜓𝑦

〉
, 𝑦), and send the classical value

𝑦 to Alice. Alice then signs 𝑦 using some standard post-quantum

signature scheme, sending the resulting signature 𝜎 back to Bob.

The result is that, with only classical communication between Alice

and Bob, Bob has arrived at a value (
��𝜓𝑦

〉
, 𝑦, 𝜎) that he cannot clone

(due to the collision resistance of 𝐻), nor can he sample on his own

(due to needing Alice’s signature on 𝑦).

Of course, we have to also describe how (
��𝜓𝑦

〉
, 𝑦, 𝜎) can be used

to sign a single message, but not two. For general hash functions 𝐻 ,

there is likely no meaningful way to accomplish this. For example, if

the hash function is collapsing [41], then having
��𝜓𝑦

〉
is essentially

no more useful than having a single classical pre-image 𝑥 . But of

course a classical pre-image 𝑥 cannot be used as a one-time signing

token, since it can be copied. Recent evidence suggests that typical

post-quantum hash functions are likely collapsing [32, 41].

Toward a solution, we observe that our protocol so far bears re-

semblance to the chameleon signatures of Krawczyk and Rabin [30].

Here, 𝐻 is replaced with a special type of hash function, called a

chameleon hash. In such a hash function, Bob knows a trapdoor 𝑇

which allows him to “openž the hash 𝑦 to any message𝑚′ of his
choosing. In particular, given 𝑦 and any message𝑚′, Bob can find

an 𝑟 ′ such that 𝐻 (𝑚′, 𝑟 ′) = 𝑦.

We immediately see that chameleon hashing provides a partial

solution to signature tokens. Indeed, Bob can choose the hashing

key 𝐻 together with a secret trapdoor 𝑇 , and send Alice any hash

𝑦, which Alice then signs using her signing key. To sign a message

𝑚, Bob can then use the trapdoor to open 𝑦 to any message 𝑚,

computing an 𝑟 such that 𝐻 (𝑚, 𝑟) = 𝑦. Finally, Bob can then output

(𝑚, 𝑟,𝑦, 𝜎) as the signature on𝑚. The recipient will verify Alice’s

signature on 𝑦 and that 𝐻 (𝑚, 𝑟) = 𝑦.

This certainly works for delegating signatures. It is also mimics

how signing authority is delegated in practice, where instead of

signing a hash, Alice would sign the a public key for Bob’s signature

scheme. But this standard delegation mechanism of course cannot

provide the one-time property we are looking for, as it is purely

classical. Indeed, unforgeability relies on the collision resistance of

256

One-Shot Signatures and Applications to Hybrid Quantum/Classical Authentication STOC ’20, June 22ś26, 2020, Chicago, IL, USA

𝐻 , which means Bob can break unforgeability using his trapdoor. In

particular, Bob can re-use his trapdoor as many times as he wishes,

opening 𝑦 to any number of messages of his choice.

Our Solution: one-shot chameleon hashing. To remedy this issue,

we imagine that Bob has a variant of chameleon hash functions,

where any given trapdoor can be used only a single time. Specif-

ically, we want that the hash function remains collision resistant

even to Bob. In more detail, we define a one-shot chameleon hash

function as a hash function 𝐻 with the following property: it is

possible to first sample a hash 𝑦 together with a one-time quantum

trapdoor |𝑇 ⟩. Then, after seeing a message𝑚, it is possible to use

the trapdoor |𝑇 ⟩ to sample 𝑟 such that 𝐻 (𝑚, 𝑟) = 𝑦. Importantly,

anyone can sample a 𝑦, |𝑇 ⟩ pair, and 𝐻 is collision resistant to ev-

eryone. This implies that once |𝑇 ⟩ is used to compute 𝑟 , it must

self-destruct, preventing further openings. This in particular im-

plies that |𝑇 ⟩ cannot be classical, else it could be copied as many

times as Bob would like.

Notice that all communication Ð namely 𝑦 and 𝜎 Ð is classical.

We also stress that we want 𝐻 to be a classical function. As such,

Bob’s quantum operations are entirely local. What’s more, Bob is

the only party that is running a quantum computer; Alice can be

purely classical.

Generalization: one-shot signatures. We can even abstract the

protocol above slightly, to work with a more general object called

one-shot signatures. Here, anyone with a quantum computer can

sample a classical public key pk, together with quantum secret key

|sk⟩. Given |sk⟩ and amessage𝑚, it is possible to compute a classical

signature 𝑟 on𝑚. Then anyone, knowing just the public key, can

verify signatures. For security, we require that it is infeasible to

compute a tuple (pk,𝑚0, 𝑟0,𝑚1, 𝑟1) such that𝑚0 ≠𝑚1, and 𝑟0 and

𝑟1 are valid signatures of𝑚0,𝑚1 respectively, with respect to the

public key pk. We see that one-shot chameleon hashing is just

a special case of one-shot signatures where verification simply

evaluates 𝐻 (𝑚, 𝑟), and checks that the result is pk.

At this point, it should be unobvious that one-shot signatures

can even exist. After all, one-shot signatures can be seen as an

extremely strong variant of the quantum no-cloning theorem. The

original no-cloning theorem dealt with truly unknown quantum

states, which were useless to anyone who did not know the states,

and therefore for whom no-cloning applied. Public key quantum

money [1] can be seen as a strengthening, where no-cloning still

holds even for parties that have the ability to verify the state. Even

this verifiable version of no-cloning has been notoriously difficult to

achieve. Quantum lightning is then a further strengthening, where

no-cloning holds even for parties that devised the original state

themselves; the only existing construction is that of Zhandry [45],

which is based on new ad hoc hardness assumptions.

One-shot signatures can then be interpreted as yet a further

strengthening of quantum lightning where the un-clonable state

has been endowed with the ability to sign a message. Given the

difficulty in even achieving the weaker forms of no-cloning, it is

natural to wonder whether one-shot signatures are even possible.

1.2 Our Results

In this work, we explore applications similar to the above, where

local quantum operations yield surprising new protocols with clas-

sical communication. Our central building blocks will be one-shot

signatures and one-shot chameleon hash functions. Our results are

as follows:

One-shot signatures and one-shot chameleon hash functions (Sec-

tions 2,3,4). As our first contribution, we give formal definitions for

one-shot signatures and one-shot chameleon hashing.

We also construct one-shot chameleon hashing, and hence one-

shot signatures. We observe that prior work essentially constructs

this object [5], but only relative to a quantum oracle, and there is

no known way to instantiate the oracle. We improve on this by

demonstrating a classical oracle (but query-able in superposition)

relative to which we can build one-shot chameleon hashing and

signatures. Even finding a plausible classical oracle to build one-

shot chameleon hashing exists is highly non-trivial. Our main idea

is to start from a hash function which is periodic. Such a func-

tion is certainly not collision resistant against quantum attacks

due to quantum period finding, but at least it is straightforward

to show that it gives rise to the chameleon property we need. We

then recursively divide the set of pre-images of each output into

another periodic function. Importantly, we choose different periods

for each set of pre-images to avoid the overall function becoming

periodic. In fact, we perform this recursive division several times,

each time using a different period for each set of pre-images. We

demonstrate that this recursive structure nevertheless preserves

the chameleon property. We prove that our one-shot chameleon

hashing is collision resistant relative to this oracle using a modi-

fication of the polynomial method. Our classical oracle can then

heuristically be obfuscated using post-quantum indistinguishability

obfuscation (e.g. [7]) to yield a plausible construction in the common

reference string model.

Signature delegation. We then turn to applications. Many of our

applications can be seen as applications of our signature delegation

mechanism above. We demonstrate that our signature delegation

protocol works, and can easily be delegated multiple times, with

Bob delegating to Charlie, who delegates to Dana, etc. The overall

signature is the entire signature chain from Alice to the final signer.

Budget Signatures (Section 4). We can also delegate to pairs of

public keys. Such delegation allows us, for example, to construct

budget signatures. Here, when signing a message, we specify a

budget 𝑏 > 0. Each public key will come with a total budget 𝐵, and

the security property is that Bob can sign any number of messages,

so long as the total budget remains less than 𝐵.

In our scheme, the public key for a total budget 𝐵 will simply be

the pair (pk, 𝐵) where pk is the public key for a one-shot signature.

To sign a message 𝑚 with budget 𝑏 at most the total budget 𝐵,

simply sign𝑚 using the one-shot secret key, using up the secret key.

Alternatively, one can delegate to two budget signature public keys

pk0, pk1 with budgets 𝐵0, 𝐵1 respectively, where 𝐵0 + 𝐵1 ≤ 𝐵. To

do so, simply sign the concatenation of the two public keys. Those

budget signatures can then be recursively used to sign with budgets

𝐵0, 𝐵1. When verifying the signature relative to pk0, additionally

verify the signature on pk0, pk1 relative to pk, as well as that 𝐵0 +

257

STOC ’20, June 22ś26, 2020, Chicago, IL, USA Ryan Amos, Marios Georgiou, Aggelos Kiayias, and Mark Zhandry

𝐵1 ≤ 𝐵. Since we know pk0 can only sign with budget up to 𝐵0 and

pk1 can only sign with budget up to 𝐵1, this verification guarantees

pk can only sign with budget total budget up to 𝐵0 + 𝐵1 ≤ 𝐵. In

typical usage, we imagine that to sign a message with budget 𝑏, we

will first invoke this delegation with 𝐵0 = 𝑏 and 𝐵1 = 𝐵 − 𝑏, and
then sign𝑚 with respect to pk0, using the secret key in the process.

Further messages are signed with respect to pk1.

Quantum money with classical communication (Section 5). One-

shot signatures readily yield public key quantum money, where the

mint has a public key that allows anyone to verify. Basically, the

quantum signing key |sk⟩ for a one-shot signature serves as the
quantum money state.

Using our signature delegationmechanism, we show how to send

quantum money using only classical messages. The mint’s public

key will be the public key for a classical post-quantum signature

scheme. To mint a banknote with value 𝑉 , the mint simply creates

a secret key/public key pair (|sk⟩ , pk) for a one-shot signature

scheme, and signs the pair (pk,𝑉) using it’s classical signature

scheme to get signature 𝜎 . Sending the note to someone simply

invokes our delegation procedure. By combining with our budget

signatures, our quantum money scheme is also infinitely divisible,

unlike existing constructions.

Decentralized blockchain-less cryptocurrency (Section 5.2). One-

shot signatures also immediately give rise to quantum lightning,

yielding the first construction with provable security relative to a

classical oracle. As explained by Zhandry [45], by combining with

a suitable proof of work, quantum lightning gives a decentralized

cryptocurrency, where the double-spend problem is solved using

no-cloning as opposed to a blockchain. Zhandry’s scheme, however,

requires quantum communication.

We combine our delegation scheme with proofs of work to give

blockchain-less cryptocurrency using only classical communication.

The basic idea is that, to mint a new note, the miner generates a

secret key/public key pair for a one-shot signature scheme. Then

the miner uses the public key as the challenge in a proof of work.

The completed proof of work and the key pair constitute the note.

Spending the note just involves our delegation mechanism, except

that for the first transaction, the miner appends the proof of work

to the message he signs. This construction can be seen also to offer

the first embodiment of a “reusable proof of workž [23] that does

not rely on a hardware assumption.

Ordered Signatures (Section 6). Here, when signing a message,

one also specifies a tag 𝑡 . The signing key allows for signing any

message, but the requirement is that messages can only be signed

in order of increasing 𝑡 . That is, once a message is signed at tag 𝑡0,

it then becomes impossible to sign a message at a “pastž tag 𝑡1 < 𝑡0.

Our construction is very simple: the public key will be the public

key for a one-shot signature scheme. To sign a message at tag 𝑡 ,

simply construct a new one-shot signature public key/secret key

pair (pk, |sk⟩), and delegate to the new public key. When signing to

delegate, sign the entire public key/tag/message triple. |sk⟩ becomes

the new secret key, and the signature consists of the entire signature

chain from the original public key to the latest public key. To verify,

simply verify the signature chain, as well as verify that the tags in

the chain occur in increasing order. The idea is that, by the one-

shot security of our signatures, the only way to produce a new

signature is to append to the signature chain. Therefore, once an

adversary produces a signature at tag 𝑡0, he has committed to all

the signatures he will produce at tags 𝑡1 < 𝑡0. If he tries to sign

a different message at 𝑡1, this will constitute a fork in the chain,

violating the one-shot security property.

Ordered signatures allow one to provably destroy their signing

key by signing a dummy message at time∞. Or one can at provably

update their key by dividing time into epochs, and signing a dummy

message at the end of an epoch to update to the next epoch.

Key-Evolving Signatures and Proof-of-Stake based Blockchains

(Section 6.1). Ordered signatures provide a first instantiation of key-

evolving signatures in the erasure model. A key-evolving signature

(KES), (see e.g., [24]) enables key updates at regular intervals (or per

message) so that a key exposure incident at a certain time cannot

compromise the unforgeability of past periods. Instantiating KES

classically is only possible assuming erasures, i.e., that the party is

capable of erasing its old private state after the update. Applying

ordered it is possible to obtain a KES in the non-erasure model, i.e.,

the setting where the adversary may have access to past states.

This observation circumvents a standard model impossibility re-

sult and solves an open question in Proof-of-Stake (PoS) blockchain

protocols, [6, 14], regarding their security in the non-erasure model:

in these protocols, in order to solve the problem of “long range at-

tacksž (see e.g., [13, 27]). key-evolving signatures are utilized to

ensure that corruption of past keys cannot provide any advantage

to an attacker that corrupts old keys that used to be associated with

a large percentage of stake but have since been depleted. In the

classical non-erasure model such corruption leads to a long range

attack that can break consistency (see e.g., [18] where this is stated

as a formal impossibility). Basing the proof-of-stake operation on

an ordered signature eliminates this attack vector and facilitates a

secure PoS blockchain in the non-erasure model.

Single-signer Signatures (Section 6.2). Here, the secret key is sub-

ject to quantum no-cloning, meaning that at any time, only a single

user is capable of signing with respect to a given public key. Our

ordered signatures readily give such single-signer signatures, by

simply having the tag 𝑡 be a counter, incremented with each sig-

nature. Security is proved as follows: toward contradiction, if one

could split a secret key into two states such that each state is in-

dependently capable of signing, then it is impossible to guarantee

any order between the signatures produced by each state, breaking

the underlying ordered signature.

Of course, this signing capability can be transferred by sending

over the quantum secret key; our signatures can also easily be

transferred with only classical communication, again using our

delegation mechanism.

We observe that single-signer signatures can be seen as yet a

further strengthening of quantum no-cloning. Whereas one-shot

signatures endow the unclonable state with the functionality of

signing messages, the functionality can only be used a single time

before the state self-destructs. Single-signer signatures instead give

the unclonable state the perpetual ability to sign an unlimited num-

ber of messages, but this ability cannot be split amongst two parties.

258

One-Shot Signatures and Applications to Hybrid Quantum/Classical Authentication STOC ’20, June 22ś26, 2020, Chicago, IL, USA

Delay Signatures (Section 6.3). Adding proofs of sequential work

(PoSW) to our ordered signature construction, we obtain what we

call delay signatures, where the signer must wait a certain amount

of time between signing messages.

As a potential application we imagine combining delay signa-

tures with our quantum money scheme. The result is that the mint

can only mint new currency at a certain rate. This would prevent

an untrusted government from paying debts by simply minting

unlimited money.

Proofs of quantumness (Section 7.1). One-shot signatures easily

give rise to a proof of quantumness: to prove quantumness, generate

a public key for a one-shot signature scheme, and send it to the

verifier. The verifier then chooses and sends back a randommessage.

Respond with a signature on the message. A simple rewinding

argument shows that any classical adversary that passes verification

can be used to sign two messages with respect to the same public

key, violating one-shot security.

Interestingly, our proofs of quantumnes are public coin, meaning

soundness holds even if the verifier’s random coins are public.

Such protocols can be made non-interactive using the Fiat-Shamir

heuristic. Prior protocols [12] are interactive and secret coin, and

there is no obvious way to turn them into non-interactive protocols.

Certifiable Randomness (Section 7.2). Our proofs of quantum-

ness also immediately give rise certifiable min-entropy, which is

again public coin and can be made non-interactive with Fiat-Shamir.

Again, prior protocols required multiple rounds2.

1.3 Related Literature

Comparing our primitives with classical primitives. Most of the

cryptographic notions in this work can be thought of as “one-shotž

versions of existing classical cryptographic primitives. One-shot

chameleon hash functions generalize the classic equivalent intro-

duced by Krawczyk and Rabin [30]. Our one-shot signatures are the

one-shot analogue of one-time signatures by Lamport [31] in the

sense that one not only is unwilling to generate a second signature

but also he is unable to. Our chain of delegations, our quantum

money scheme and our ordered signatures use components from

the Naor-Yung paradigm for building full-blown signatures out of

one-time signatures [37] and our budget signatures shares similari-

ties with Merkle signatures [35].

Quantum Query Complexity. Our query complexity lower bound

uses elements from Ambainis’s adversary method [4], as well as

techniques for building public-key quantum money by Aaronson

and Christiano [2] and tokens for digital signatures by Ben-David

and Sattath [10]. Our construction of equivocal hash functions

relative to a classical oracle extends the pick-one trick by Ambai-

nis et al. [5] and implies the existence of quantum lightning by

Zhandry [45]. Interestingly, unlike previous results, our collision

resistance lower bound is not based on the polynomial method [8].

The polynomial method works well in proving indistinguishability

between oracles but little can be done when it comes to search prob-

lems. Indeed, proving that a function is collision resistant through

2Though the prior protocols are able to achieve (statistically close to) uniform random-
ness. In contrast, as explained by Zhandry [45], any non-interactive protocol can never
achieve uniform randomness. Our protocol achieves super-logarithmic min-entropy.

indistinguishability from injective functions immediately implies

that it is collapsing!

Collapsing Hash Functions. The construction of equivocal hash

functions from standard assumptions is a highly non-trivial task

as shown by a line of works. Unruh [42] introduced the notion of

collapsing hash functions and proved that the random oracle is

collapsing. Since then, several works have proven that numerous

collision resistant hash functions from standard assumptions are

collapsing [17, 32, 41] and thus not equivocal.

Cryptocurrencies. Our decentralized cryptocurrency construc-

tion and its extensions share similarities with blockchain construc-

tions such as Bitcoin’s mining using proof of work [36] as well as

Ethereum’s concept of smart contracts [44]. Mining in the quan-

tum world has also gained attention in the recent years. Although

Grover’s algorithm can be used to obtain a quadratic speed-up over

classical computers for the problem of finding pre-images that map

to small hashes in the random oracle model (see e.g., [15]), Ag-

garwal et al. [3] have proven that there exist hash-functions with

smaller than quadratic speed-up.

Quantum Money. Quantum money, first introduced by Wies-

ner [43], has received a lot of attention the past decade with nu-

merous results in the secret-key setting, where the bank must be

involved in verification. Gavinsky [26] has proven that quantum

money where the coins are minimally entangled is possible in this

setting. Radian and Sattath [39] recently created a secret key quan-

tum money scheme where the minting algorithm is also classical;

they called this notion semi-quantum money. However, for their

protocol, spending themoney still involves sending a quantum state,

and verification requires the mint. Farhi et al. [21] have shown that

public-key quantum money where the verification is a projective

measurement onto a 1-dimensional subspace is impossible without

high entanglement. As a result, since one-shot signatures imply

such a quantum money definition, secret keys have to be highly

entangled.

One-time Memories. Signature delegation can be thought of as

the authentication analogue of decryption delegation, known in

the literature as one-time memories, introduced by Goldwasser et

al. [28]. These are memories that allow one to extract a single

secret out of them. Unlike signature delegation, one-time memories

are impossible even in the quantum world, and even relative to

a (quantum) oracle. This is because extraction is a deterministic

process and, hence, the information-disturbance tradeoff principle

implies that such an extraction does not collapse a quantum state.

Proof of Quantumness. Private coin proofs of quantumness out

of standard post-quantum assumptions have already been proposed

in the literature. Brakerski et al. [12] have proven that under the

LWE assumption, there is a private coin interactive protocol for

proof of quantumness.

Multi-device protocols. As a precursor to the more recent hy-

brid quantum protocols, Colbeck [16] proposed a setting where a

classical experimenter interacts with multiple potentially untrust-

worthy quantum devices, with the guarantee that the devices can-

not communicate. As in our protocols, all interaction is classical.

259

STOC ’20, June 22ś26, 2020, Chicago, IL, USA Ryan Amos, Marios Georgiou, Aggelos Kiayias, and Mark Zhandry

However, Colbeck’s protocol, in addition to requiring multiple non-

communicating devices, inherently relies on the quantum devices

having pre-shared entanglement in order to operate. Therefore, the

quantum part of the protocol is not truly local.

1.4 Notation

Below we will use calligraphic font to represent quantum algo-

rithms (e.g. Alg) and calligraphic font and/or the bracket notation

for (mixed) quantum states (e.g. sk for a quantum secret key or |𝜓 ⟩).
We will use standard math or sans serif font to represent classical

algorithms (e.g. 𝐴 or Alg) and classical variables (e.g. 𝑥 for a classi-

cal one-letter variable or pk for a classical public key). A function

𝑓 : Z→ R+ is called negligible if 𝑓 (𝑛) = 𝑜 (𝑛−𝑐) for any constant

𝑐 . We denote by 𝑥 ← 𝑆 the random variable 𝑥 generated by sam-

pling uniformly at random from the set 𝑆 . Similarly, we denote by

𝑥 ← 𝐷 the random variable 𝑥 generated by sampling according to

the distribution 𝐷 .

Common Reference String Model. As is the case with quantum

lightning [45], a common reference string is necessary for most of

the primitives we describe in this work. This is for the same reason

we require a common reference string in collision resistant hash

functions: for a fixed function there always exists an adversary that

knows a collision. In the definitions below we assume that this

common string is drawn uniformly at random. This is the ideal

scenario and does not require any public parameters generator.

In some cases, for example when the common reference string

describes an obfuscated algorithm, a parameters generator may be

necessary. In this case, this generator may hide a secret trapdoor

which it destroys after publishing the common reference string.

2 EQUIVOCAL COLLISION RESISTANT HASH

FUNCTIONS

In this section we define the new notion of equivocal collision-

resistant hash functions and we give a construction relative to a

classical oracle.

Definition 2.1 (Equivocal Hash-Functions). An equivocal hash

function family is a triple of algorithms (Gen, Eval,Equiv) with the

following syntax:

Gen (crs) : (ℎ, sk , 𝑝) takes as input a common reference string

crs and returns a hash value ℎ, a quantum secret key sk and

a description of a predicate 𝑝 .

Eval(crs, 𝑥) : ℎ takes as input a crs and a pre-image 𝑥 and

outputs a hash value ℎ.

Equiv (sk , 𝑏) : 𝑥 takes as input a quantum secret key sk and

a bit 𝑏 and returns a pre-image 𝑥 .

Correctness requires that the following holds with overwhelming

probability. If (ℎ, sk , 𝑝) ← Gen (crs) then for any bit 𝑏, it holds that

Eval(crs, 𝑥) = ℎ and 𝑝 (𝑥) = 𝑏, where 𝑥 ← Equiv (sk , 𝑏).

The definition states that a quantum algorithm (Gen,Equiv) can
sample an image ℎ, a secret “inversionž quantum key sk as well

as a predicate 𝑝 as a polynomial size circuit, and later on, given

any bit 𝑏, it can use this key to find a pre-image 𝑥 of ℎ such that

𝑝 (𝑥) = 𝑏. It is important to notice that if we also require collision

resistance, then quantumness is necessary. If the secret key were

classical, then by running Equiv twice with 𝑏 = 0 and 𝑏 = 1 we

could find a collision. In the quantum case, running Equiv can make

sk collapse and thus impossible to reuse.

Theorem 2.2. There exists an equivocal collision resistant hash

function relative to a classical oracle.

In section 2.1 we define our scheme relative to a classical oracle.

In sections 2.2 and 2.3 we prove the collision resistant and the

equivocal property respectively.

In the process of coming up with an equivocal collision resis-

tant hash function in the plain model, we note that it is enough

to come up with a function that breaks the unequivocal property

with an inverse polynomial probability. Given such a function 𝐻 ,

we can easily boost to high success probability by running it in-

dependently 𝑛 times. In particular, the function 𝐻𝑛 (𝑥1, . . . , 𝑥𝑛) =
(𝐻 (𝑥1), . . . , 𝐻 (𝑥𝑛)) is equivocal according to our definition. Let 𝐴

be an adversary that breaks property (2). By running 𝑛 times 𝐴 we

get values ℎ1, . . . , ℎ𝑛 and predicates 𝑝1, . . . , 𝑝𝑛 . We define our pred-

icate 𝑝 (𝑥1, . . . , 𝑥𝑛) as the majority of 𝑝𝑖 (𝑥𝑖). To equivocate to a bit

𝑏, we simply equivocate each individual hash to 𝑏. By invoking the

Chernoff bound and choosing 𝑛 large enough, we are guaranteed

that we get a pre-image 𝑥 = 𝑥1, . . . , 𝑥𝑛 such that 𝑝 (𝑥) = 𝑏 with

overwhelming probability.

An interesting question that arises is whether (2) implies (3);

namely, can we use a distinguisher against the collapsing property

to build an inverter that equivocates? Although searching solutions

looks like a harder task than just distinguishing two different states,

the above implications are not excluded.

2.1 Construction Relative to a Classical Oracle

In this section we define our function family relative to a classical

oracle. The oracle is a combination of two oracles 𝐻,𝐻⊥ where

𝐻 is the evaluation oracle and 𝐻⊥ is used to achieve equivocality.

In our construction, the space of 𝑛-bit inputs is partitioned into

2𝑛/2 affine spaces of dimension 𝑛/2. The oracle 𝐻 assigns a distinct

output to each space. Applying 𝐻 to a uniform superposition and

measuring yields a uniform superposition over one of the affine

subspaces. To achieve the equivocal property, a second oracle 𝐻⊥

is provided, which tests for membership in the spaces orthogonal

to the affine spaces in 𝐻 .

Before defining our construction we introduce some terminology.

For the 𝑛-dimensional space F𝑛2 , a 𝑑-ordered affine partition 𝑃 =

(𝐴𝑦)𝑦∈{0,1}𝑛−𝑑 is a list of 2𝑛−𝑑 pairwise disjoint affine subspaces of

dimension𝑑 . For an affine subspace𝐴, we denote𝐴⊥ the orthogonal
complement of the linear subspace corresponding to 𝐴.

Definition 2.3 (Affine partition function). Let 𝑃 = (𝐴𝑦)𝑦∈{0,1}𝑛/2
be an 𝑛/2-ordered affine partition. An affine partition function

(𝐻𝑃 , 𝐻
⊥
𝑃
) is defined as:

• 𝐻𝑃 : F𝑛2 → {0, 1}
𝑛/2 such that 𝐻𝑃 (𝑥) = 𝑦 if and only if

𝑥 ∈ 𝐴𝑦 ,

• 𝐻⊥
𝑃

: F𝑛2 × {0, 1}
𝑛/2 → {0, 1} such that 𝐻⊥

𝑃
(𝑥,𝑦) = 1 if and

only if 𝑥 ∈ 𝐴⊥𝑦 .
In other words, our function is parameterized by an ordered

partition of the whole 𝑛-dimensional input space into affine subp-

saces, each containing 2𝑛/2 points such that all points in the same

260

One-Shot Signatures and Applications to Hybrid Quantum/Classical Authentication STOC ’20, June 22ś26, 2020, Chicago, IL, USA

subspace𝐴𝑦 map to the same value 𝑦. Our claim is that there exists

an affine partition that requires exponentially many queries to find

a collision.

Theorem 2.4. An affine ordered partition 𝑃 = (𝐴𝑦)𝑦∈{0,1}𝑛/2
exists such that 𝐻𝑃 is an equivocal collision resistant hash function

relative to the oracle (𝐻𝑃 , 𝐻
⊥
𝑃
).

Notice that the above theorem claims worst-case hardness. We

prove the two parts of this theorem in the following two subsections.

In subsection 2.2 we prove our query complexity lower bound for

collisions and in subsection 2.3 we prove equivocality.

2.2 Collision Resistance

Our collision resistance lower bound uses a modification of the

inner-product adversary method [2, 4] and follows the lines of [10].

We devise a relation between hard-to-distinguish partitions and

we prove that any algorithm that finds a collision must end up

in states such that their average inner product (over the relation)

is a constant away from 1. The relation is picked in such a way

that the average inner product cannot decrease by more than an

exponentially small amount in each query.

We will use the following generalization of Ambainis’s [4] basic

adversary method. It combines the inner product adversary method

by Aaronson and Christiano [2] with Lemma 18 by Ben-David and

Sattath [10].

Theorem 2.5 (Adversary method for search problems). Let

𝑆 ⊂ {0, 1}𝑁 be a set of inputs of size 𝑁 , 𝑞 : 𝑆 → 𝑇 be a search

problem and let 𝑅 ⊂ 𝑆 × 𝑆 be a symmetric relation between inputs.

For any 𝑥 ∈ 𝑆 , let 𝑅𝑥 = {𝑦 ∈ 𝑆 : (𝑥,𝑦) ∈ 𝑅}. If
(1) (Hard-to-distinguish (𝑥,𝑦) pairs). For every 𝑥 appearing in 𝑅

and every 𝑖 : 𝑥𝑖 = 0, Pr𝑦←𝑅𝑥
[𝑦𝑖 = 1] ≤ 𝜀,

(2) (Distinguishing solutions 𝑠). For every 𝑥 appearing in 𝑅 and

every 𝑠 : 𝑠 ∈ 𝑞(𝑥), Pr𝑦←𝑅𝑥
[𝑠 ∈ 𝑞(𝑦)] ≤ 𝑐 ,

then any quantum algorithm that solves 𝑞 with an inverse polynomial

in log𝑁 probability must make at least Ω
(
1−
√
𝑐−𝑑√
𝜀

)
queries to the

input, where 𝑑 is a negligible function in log𝑁 .

Proof. Consider an input 𝑥 ∈ {0, 1}𝑁 and suppose that an algo-

rithm𝐴makes𝑇 queries; i.e.,𝐴 = 𝑈𝑇𝑂𝑥𝑈𝑇−1𝑂𝑥 · · ·𝑈1𝑂𝑥𝑈0, where

𝑈1, . . . ,𝑈𝑇 are arbitrary unitary transformations independent of 𝑥

and𝑂𝑥 |𝑖⟩ = (−1)𝑥𝑖 |𝑖⟩. Let
��𝜙𝑥𝑡 〉 , ��𝜓𝑥

𝑡

〉
be the states of the algorithm

before after the 𝑡 ’th query to𝑂𝑥 . In the beginning
��𝜓𝑥
1

〉
is the same

for all 𝑥 since 𝐴 has not made any query to 𝑂𝑥 . The final state of

the algorithm is
��𝜙𝑥
𝑇

〉
.

Consider the progress measure 𝑝𝑡 = E(𝑥,𝑦)←𝑅

[��〈𝜙𝑥𝑡 ��𝜙𝑦
𝑡

〉��] and
observe that 𝑝1 = 1. We will prove that condition 1 implies that a

single query cannot decrease the progress measure too much and

condition 2 implies that anyone that finds a solution with good

probability after 𝑇 queries should end up having a progress 𝑝𝑇 at

least a constant less than 1.

We begin by proving that 𝑝𝑡−1 − 𝑝𝑡 ≤ 4
√
𝜀. The proof in a

more general setting, where the oracles can be reflections across

subspaces, first appeared in [2] but we include it here for complete-

ness.

Write ��𝜙𝑥𝑡 〉 = ∑
𝑖∈[𝑁]

𝛼𝑥𝑡,𝑖 |𝑖⟩
���𝜙𝑥𝑡,𝑖 〉

where
∑
𝑖∈[𝑁]

���𝛼𝑥𝑡,𝑖
���2 = 1 and notice that

〈
𝜙𝑥𝑡

��𝜙𝑦
𝑡

〉
=

∑
𝑖∈[𝑁]

𝛼𝑥𝑡,𝑖𝛼
𝑦
𝑡,𝑖

〈
𝜙𝑥𝑡,𝑖

���𝜙𝑦
𝑡,𝑖

〉
.

After we query 𝑂𝑥 our new state becomes��𝜓𝑥
𝑡

〉
=

∑
𝑖:𝑥𝑖=0

𝛼𝑥𝑡,𝑖 |𝑖⟩
���𝜙𝑥𝑡,𝑖 〉 − ∑

𝑖:𝑥𝑖=1

𝛼𝑥𝑡,𝑖 |𝑖⟩
���𝜙𝑥𝑡,𝑖 〉

and thus〈
𝜙𝑥𝑡

��𝜙𝑦
𝑡

〉
−
〈
𝜓𝑥
𝑡

��𝜓𝑦
𝑡

〉
= 2

∑
𝑖:𝑥𝑖≠𝑦𝑖

𝛼𝑥𝑡,𝑖𝛼
𝑦
𝑡,𝑖

〈
𝜙𝑥𝑡,𝑖

���𝜙𝑦
𝑡,𝑖

〉
.

Moreover, by the triangle inequality, we have that��〈𝜙𝑥𝑡 ��𝜙𝑦
𝑡

〉�� − ��〈𝜓𝑥
𝑡

��𝜓𝑦
𝑡

〉�� ≤ ��〈𝜙𝑥𝑡 ��𝜙𝑦
𝑡

〉
−
〈
𝜓𝑥
𝑡

��𝜓𝑦
𝑡

〉��
≤ 2

∑
𝑖:𝑥𝑖≠𝑦𝑖

���𝛼𝑥𝑡,𝑖
������𝛼𝑦𝑡,𝑖

���
Lemma 2.6 (Small progress [2]). If for every 𝑥 appearing in 𝑅

and every 𝑖 : 𝑥𝑖 = 0, Pr𝑦←𝑅𝑥
[𝑦𝑖 = 1] ≤ 𝜀, then 𝑝𝑡−1 − 𝑝𝑡 ≤ 4

√
𝜀.

Proof. See full version of the paper. □

We continue by showing that any algorithm that finds a solution

with constant probability should achieve 𝑝𝑇 that is a constant away

from 1. The following Lemma is a trivial generalization of Lemma 18

by Ben-David and Sattath [10].

Lemma 2.7. Let 𝑅 be a symmetric relation between inputs 𝑥 ∈
{0, 1}𝑁 and let 𝑞 : {0, 1}𝑁 → {0, 1}𝑂 (log𝑁) be a search problem.

Suppose that an algorithm computes 𝑞 with probability at least 1 − 𝑑
after 𝑇 queries. If max𝑥,𝑠∈𝑞 (𝑥) Pr𝑦←𝑅𝑥

[𝑠 ∈ 𝑞(𝑦)] ≤ 𝑐 , then

𝑝𝑇 ≤
√
𝑐 + 2
√
𝑑.

Proof. See full version of the paper. □

By combining the above lemmata 2.6 and 2.7, we conclude that

any algorithm that finds a solution with probability at least 1 − 𝑑 ,

has to make at least Ω

(
1−
√
𝑐−2
√
𝑑√

𝜀

)
queries to the input.

It remains to show that any algorithm that succeeds with prob-

ability at least 1/𝑝 (𝑛), where 𝑛 = log𝑁 , for some polynomial 𝑝 ,

can be turned into an algorithm that succeeds with probability

close to 1. Indeed, by running our algorithm 𝑝 (𝑛)𝑞(𝑛) times, where

𝑞(𝑛) is a polynomial, we get a winning probability of 1 − (1 −
1/𝑝 (𝑛))𝑝 (𝑛)𝑞 (𝑛) ≈ 1 − 𝑒−𝑞 (𝑛) which is exponentially close to 1.

Notice that the repetition reduces the lower bound by a polynomial

factor of 𝑝 (𝑛)𝑞(𝑛). This concludes the proof of theorem 2.5. □

Equipped with theorem 2.5, we can derive the first part of theo-

rem 2.4; i.e., the existence of a partition that is collision resistant.

Theorem 2.8. An affine ordered partition 𝑃 = (𝐴𝑦)𝑦∈{0,1}𝑛/2
exists such that 𝐻𝑃 is a collision resistant hash function relative to

the oracle (𝐻𝑃 , 𝐻
⊥
𝑃
).

261

STOC ’20, June 22ś26, 2020, Chicago, IL, USA Ryan Amos, Marios Georgiou, Aggelos Kiayias, and Mark Zhandry

Proof. In our case, 𝑆 = Σ
F
𝑛
2 × {0, 1}F𝑛2 ×2𝑛/2 , where Σ = {0, 1}𝑛/2

is the range of 𝐻𝑃 , 𝑇 = F
𝑛
2 × F

𝑛
2 and the search problem is defined

as col(𝐻𝑃 , 𝐻
⊥
𝑃
) = {(𝑎, 𝑏) : 𝐻𝑃 (𝑎) = 𝐻𝑃 (𝑏) ∧ 𝑎 ≠ 𝑏}.

Define the relation 𝑅 such that ((𝐻𝑃 , 𝐻
⊥
𝑃
), (𝐻𝑄 , 𝐻

⊥
𝑄
)) ∈ 𝑅 if and

only if for each 𝑦 ∈ {0, 1}𝑛/2, dim(𝐴𝑃
𝑦 ∩ 𝐴

𝑄
𝑦) = 𝑛/2 − 1, where

𝑃 = (𝐴𝑃
𝑦)𝑦∈{0,1}𝑛/2 . Fix an image 𝑦 and a point 𝑝 ∈ 𝐴𝑃

𝑦 . It holds that

Pr
𝑄←𝑅𝑃

[𝑝 ∈ 𝐴𝑄
𝑦] =

���𝐴𝑃
𝑦\𝐴

𝑄
𝑦

������F𝑛2 \𝐴𝑃
𝑦

��� =
2𝑛/2−1

2𝑛 − 2𝑛/2
≤ 1

2𝑛/2
,

and, therefore, 𝜀 = 1/2𝑛/2. Moreover, any collision 𝑝 ≠ 𝑞 ∈ 𝐴𝑃
𝑦

forms a one-dimensional affine subspace 𝐶 = {𝑝, 𝑞} ≤ 𝐴𝑃
𝑦 . We can

see that the probability Pr𝑞←𝑅𝑃
[𝐶 ≤ 𝐴

𝑄
𝑦] equals to the probability

that {0, 𝑞 + 𝑝} belongs to the linear subspace 𝐴
𝑄
𝑦 + 𝑝 . We have that

Pr
𝑄←𝑅𝑃

[𝐶 ≤ 𝐴
𝑄
𝑦] = Pr

𝑄←𝑅𝑃

[{0, 𝑝 + 𝑞} ≤ 𝐴
𝑄
𝑦 + 𝑝]

=

(𝑛/2−1
𝑛/2−2

)
2(𝑛/2

𝑛/2−1
)
2

=
2𝑛/2−1 − 1
2𝑛/2 − 1

≤ 1

2
,

where
(𝑛
𝑘

)
𝑞
=
∏𝑘−1

𝑖=0
1−𝑞𝑛−𝑖
1−𝑞𝑘−𝑖 is the Gaussian binomial coefficient

that counts the number of 𝑘-dimensional linear subspaces in F𝑛𝑞 .

Therefore, we get that 𝑐 = 1/2.
By invoking theorem 2.5 with 𝜀 = 1/2𝑛/2 and 𝑐 = 1/2, we get

that any algorithm that finds a collision with an inverse polynomial

probability has to make Ω

(
2𝑛/4 (.29 − 𝑑 (𝑛))

)
queries, where 𝑑 is

negligible.

□

2.3 Equivocality

In this subsection we prove the equivocal property. We define our

algorithms Gen,Equiv as follows. Gen first prepares the uniform

superposition over all inputs |𝜙⟩ = 2−𝑛/2
∑
𝑥 ∈F𝑛2 |𝑥⟩, then evaluates

the oracle to get the state |𝜓 ⟩ = 2−𝑛/2
∑
𝑥 |𝑥⟩ |𝐻𝑃 (𝑥)⟩, measures the

second register and gets
��𝐴𝑦

〉
= 2−𝑛/4

∑
𝑥 ∈𝐴𝑦

|𝑥⟩ |𝑦⟩ for a uniformly

random 𝑦.
��𝐴𝑦

〉
corresponds to the secret quantum key sk and 𝑦 is

the corresponding image. Now, given sk and any bit 𝑏, the goal of

Equiv is to find a pre-image 𝑥 ∈ 𝐴𝑦 such that 𝑥1, the first bit of 𝑥 ,

equals 𝑏.

Of course, for such an algorithm to work correctly it should be

the case that 𝐴𝑦 contains both 𝑥 ’s that start with 0 and 𝑥 ’s that

start with 1. Since our complexity lower bound is for a worst case

partition, it could be the case that all 𝑥 ’s in the same affine subspace

start with the same bit. To overcome this, we note that if (𝐻𝑃 , 𝐻
⊥
𝑃
)

is an affine partition function that is collision resistant, then for any

full-rank linear transformation 𝑓 , the function (𝐻𝑃 ′, 𝐻
⊥
𝑃 ′), where

𝑃 ′ = (𝐴′𝑦)𝑦∈{0,1}𝑛/2 and 𝐴′𝑦 = {𝑓 (𝑥) : 𝑥 ∈ 𝐴𝑦} is also a collision

resistant affine partition function. By applying a random linear

transformation 𝑓 , we retrieve a random affine subspace 𝐴. As long

as one of the basis vectors in the corresponding linear subspace has

1 in its first coordinate, half of the elements in the linear subpspace

will start with 0. The probability that a random subspace does not

have a vector starting with 1 is 2−𝑛/2 since it has to be the case that
none of the 𝑛/2 basis vectors starts with 1.

Theorem 2.9 (Eqivocality). There is an affine ordered partition

𝑃 such that𝐻𝑃 is an equivocal collision resistant hash function relative

to the oracle (𝐻𝑃 , 𝐻
⊥
𝑃
).

Proof. Fix a 𝑃 such that 𝐻𝑃 is collision resistant and apply a

random full-rank linear transformation on it. It suffices to show

that given
��𝐴𝑦

〉
and 𝑦 as well as access to the oracle 𝐻⊥

𝑃
, we can

find an 𝑥 such that 𝑥 ∈ 𝐴𝑦 and 𝑥1, the first bit of 𝑥 , starts with the

bit of our choice. Let 𝐴𝑦,𝑏 = {𝑥 ∈ 𝐴𝑦 : 𝑥1 = 𝑏} and notice that

𝐴𝑦,0 is an affine subspace parallel to 𝐴𝑦,1. We first condition on��𝐴𝑦,0

�� = ��𝐴𝑦,1

�� since the probability of the event not happening is

negligible. Our goal now is to run Grover’s search algorithm in

order to transform our state
��𝐴𝑦

〉
into the state

��𝐴𝑦,𝑏

〉
.

We would like to implement the following two oracles:

(1) 𝑂𝑏 = 2
∑
𝑥 :𝑥1=𝑏 |𝑥⟩⟨𝑥 | − 𝐼 and

(2) 𝑈𝑦 = 2
��𝐴𝑦

〉〈
𝐴𝑦

�� − 𝐼 = 𝐹
(
2
���𝐴⊥𝑦 〉〈𝐴⊥𝑦 ��� − 𝐼) 𝐹 , where 𝐹 is the

quantum Fourier Transform over F𝑛2 which is equivalent to

the 𝑛-qubit Hadamard gate.

The oracle 𝑂𝑏 can be implemented locally by running on super-

position a classical function that accepts inputs that start with 𝑏

and rejects otherwise. However, notice that in our case we do not

have access to the quantum oracle 2
���𝐴⊥𝑦 〉〈𝐴⊥𝑦 ��� − 𝐼 but instead to

the classical oracle 𝐻⊥
𝑃
(·, 𝑦) = 2

∑
𝑥 ∈𝐴⊥𝑦 |𝑥⟩⟨𝑥 | − 𝐼 that accepts all

vectors in the orthogonal subspace and not just their uniform super-

position. We claim that this oracle is enough to implement Grover’s

algorithm. To see this, notice that Grover’s algorithm runs on the

2-dimensional subspace spanned by
��𝐴𝑦,0

〉
,
��𝐴𝑦,1

〉
. It is therefore,

enough to implement an oracle that accepts the state |+⟩ =
��𝐴𝑦

〉
=

1√
2
(
��𝐴𝑦,0

〉
+
��𝐴𝑦,1

〉
) and rejects the state |−⟩ = 1√

2
(
��𝐴𝑦,0

〉
−
��𝐴𝑦,1

〉
).

Let 𝐴𝑦 = 𝑆𝑦 + 𝑡 for some translation 𝑡 . Moreover let 𝐴𝑦,0 = 𝑆𝑦,0 + 𝑎
and 𝐴𝑦,1 = 𝑆𝑦,0 +𝑏 such that 𝑎1 +𝑏1 = 1 since both are translations

of the same linear subpspace and their first bit differs. We have:

𝐹𝐻⊥𝑃 (·, 𝑦)𝐹 |+⟩ = 𝐹𝐻⊥𝑃 (·, 𝑦)
1

2𝑛/4

∑
𝑥 ∈𝐴⊥𝑦

(−1)𝑡𝑥 |𝑥⟩

= 𝐹
1

2𝑛/4

∑
𝑥 ∈𝐴⊥𝑦

(−1)𝑡𝑥 |𝑥⟩

= |+⟩

and

𝐹𝐻⊥𝑃 (·, 𝑦)𝐹 |−⟩ = 𝐹𝐻⊥𝑃 (·, 𝑦)
1
√
2
(𝐹

��𝐴𝑦,0

〉
− 𝐹

��𝐴𝑦,1

〉
)

= 𝐹𝐻⊥𝑃 (·, 𝑦)
1

2(𝑛+3)/4
©­­«

∑
𝑥 ∈𝐴⊥𝑦,0\𝐴⊥𝑦

(−1)𝑥 (𝑎+𝑏) |𝑥⟩
ª®®¬

= 𝐹
1

2(𝑛+3)/4
©­­«

∑
𝑥 ∈𝐴⊥𝑦,0\𝐴⊥𝑦

−(−1)𝑥 (𝑎+𝑏) |𝑥⟩
ª®®¬

= − |−⟩ .

262

One-Shot Signatures and Applications to Hybrid Quantum/Classical Authentication STOC ’20, June 22ś26, 2020, Chicago, IL, USA

Moreover, since we know the number of pre-images that start

with the desired bit, we can calculate the exact number of iterations

in order to find a correct solution with probability 1. □

3 ONE-SHOT CHAMELEON HASH

FUNCTIONS

In our setting, we require a family of hash functions, indexed by a

common reference string crs. This is to deal with trivial adversaries

that always know a collision of a hash function. Second, we would

like the image ℎ to be sampled together with a quantum inversion

key sk , which can be used later, to find randomness 𝑟 for any input

𝑥 . Formally, we have

Definition 3.1 (One-Shot Chameleon Hash Functions). A one-shot

chameleon hash function is a tuple of algorithms (Gen, Eval, Inv)
with the following syntax:

Gen (crs) : (ℎ, sk) takes as input a common reference string

crs and outputs a hash value ℎ together with a quantum

secret key sk ,

Eval(crs, 𝑥, 𝑟) : ℎ takes as input a common reference string

crs, an input 𝑥 and randomness 𝑟 and outputs a hash ℎ,

Inv (sk , 𝑥) : 𝑟 takes as input a secret key sk and an 𝑥 and

outputs randomness 𝑟 .

Correctness. The following holds with overwhelming probability

over crs and the randomness of Gen and Inv . If (ℎ, sk) ← Gen (crs)
then for any input 𝑥 , we have Eval(crs, 𝑥, Inv (sk , 𝑥)) = ℎ.

Collision Resistance. For any polynomial quantum adversary A ,

there is a negligible function 𝜀 such that

Pr

[
Eval(crs, 𝑥0, 𝑟0) =
Eval(crs, 𝑥1, 𝑟1)

���� crs← {0, 1}𝑛
{(𝑥0, 𝑟0), (𝑥1, 𝑟1)} ← A (crs)

]
≤ 𝜀 (𝑛) .

Theorem 3.2. One-shot chameleon hash functions exist if and

only if equivocal collision-resistant hash functions exist.

Proof. The only if part is straightforward by setting the in-

put length |𝑥 | = 1 to be a single bit and defining the predicate

as 𝑝 (𝑥, 𝑟) = 𝑥 . For the opposite direction, we first define our

chameleon hash function (Gen, Eval, Inv) for messages of one bit.

Let (𝐸.Gen, 𝐸.Eval, 𝐸.Equiv) be an equivocal CRHF. Define

Gen (crs): Run (ℎ′, sk , 𝑝) ← 𝐸.Gen (crs), set ℎ = (ℎ′, 𝑝, 0) and
return (ℎ, sk).
Eval(crs, (𝑝, 𝑏), 𝑟): Return (𝐸.Eval(crs, 𝑟), 𝑝, 𝑝 (𝑟) ⊕ 𝑏)
Inv (sk , (𝑝, 𝑏)): Run 𝑟 ← 𝐸.Equiv (sk , 𝑏) and return 𝑟

Correctness is implied by the correctness of the equivocal CRHF.

For security, suppose that there exists an algorithm A and a

non-negligible function 𝑒 such that

Pr[A wins] = Pr[Eval(crs, (𝑝0, 𝑏0), 𝑟0) = Eval(crs, (𝑝1, 𝑏1), 𝑟1)]
= Pr[𝐸.Eval(crs, 𝑟0) = 𝐸.Eval(crs, 𝑟1) ∧ 𝑟0 ≠ 𝑟1],

where the probability is over crs and {(𝑝0, 𝑏0, 𝑟0), (𝑝1, 𝑏1, 𝑟1)} ←
A (crs). An adversary who just runs {(𝑝0, 𝑏0, 𝑟0), (𝑝1, 𝑏1, 𝑟1)} ←
A (crs) and returns (𝑟0, 𝑟1) can also find a collision in the equivocal

hash function with probability 𝑒 (𝑛).
Using parallel repetition, we can get one-shot chameleon hash

functions for longer messages. □

3.1 Signature Delegation

As illustrated in the introduction, one-shot signatures give rise to

delegation of authentication where Alice can delegate Bob to sign a

single message. The idea is to use the hash-then-sign paradigm [9]

where in our case, the hash will be a one-shot chameleon hash.

Let 𝑆 ′ = (Gen′, Sign′,Ver′) be a standard signature scheme with

existential unforgeability under chosenmessage attacks (EUF-CMA)

and let𝐶 = (Gen, Eval, Inv) be a one-shot chameleon hash function.

We define a signature scheme 𝑆 = (Gen, Sign,Ver) as:

Gen(1𝑛) : Run (pk, sk) ← Gen′(1𝑛) and output (pk, sk).
Sign(crs, sk,𝑚) : Pick a random 𝑟 and then compute ℎ ←
Eval(crs,𝑚, 𝑟) and 𝜎 ← Sign′(sk, ℎ). Return (𝜎, 𝑟).
Ver(crs, pk,𝑚, (𝜎, 𝑟)) : Compute ℎ ← Eval(crs,𝑚, 𝑟) and re-

turn Ver′(pk, ℎ, 𝜎).

It is easy to see that the correctness of 𝑆 is implied by the correctness

of 𝑆 ′ and𝐶 . Moreover, 𝑆 is EUF-CMA as long as 𝑆 is also EUF-CMA

and𝐶 is secure. Indeed if an adversary could create a new signature

after querying a signing oracle, then one could use this adversary

to break either the one-shot chameleon hashing or the original

signature 𝑆 ′.

Delegation. Now suppose that Alice, who owns a classical com-

puter, possesses a key pair (pk, sk) for 𝑆 and she wishes to delegate

Bob to sign a single message. To do this, Alice and Bob run the

following 2-message protocol.

Bob runs (ℎ, sk) ← Gen (crs) and sends ℎ to Alice.

Alice runs 𝜎 ← Sign′(sk, ℎ) and sends 𝜎 to Bob.

Now Bob possesses a quantum key sk that he can use together

with 𝜎 to sign any message𝑚 of his choice. To do this, Bob runs

𝑟 ← Inv (sk ,𝑚) and returns (𝜎, 𝑟) as the signature of 𝑚. By the

correctness of 𝑆 ′ and 𝐶 we get that Bob’s signature is accepted by

Ver. Moreover, if a malicious Bob could come up with more than 𝑘

signatures after running the above protocol 𝑘 times, then he could

also break 𝑆 or 𝐶 .

4 ONE-SHOT SIGNATURES AND BUDGET

SIGNATURES

A one-shot signature scheme has the property that no one can

create a public key together with two valid signatures.

Definition 4.1 (One-Shot Signatures). A one-shot signature is a

tuple of algorithms (Gen, Sign,Ver) with the following syntax:

Gen (crs) : (pk, sk) takes a common reference string crs and

outputs a classical public key pk and a quantum secret key

sk .

Sign (sk ,𝑚) : 𝜎 takes a secret key sk and a message𝑚 and

outputs a signature 𝜎 .

Ver(crs, pk,𝑚, 𝜎) : 𝑏 takes a common reference string crs, a

public key pk, a message𝑚 and a signature 𝜎 and outputs a

bit 𝑏.

Correctness. The following holds with overwhelming probability.

If (pk, sk) ← Gen (crs) then Ver(crs, pk,𝑚, Sign (sk ,𝑚)) = 1 for any

message𝑚.

263

STOC ’20, June 22ś26, 2020, Chicago, IL, USA Ryan Amos, Marios Georgiou, Aggelos Kiayias, and Mark Zhandry

Security. For any quantum polynomial time algorithm A there is

a negligible function 𝜀 such that

Pr

[
Ver(crs, pk,𝑚0, 𝜎0)
Ver(crs, pk,𝑚1, 𝜎1)

���� crs← {0, 1}𝑛
(pk, {(𝑚𝑏 , 𝜎𝑏)}𝑏) ← A (crs)

]
≤ 𝜀 (𝑛).

One-shot chameleon hashing gives a direct way to build one-shot

signatures:

Theorem 4.2. One-shot signatures exist if one-shot chameleon

hash functions exist.

Proof. Let (𝐶.Gen,𝐶.Eval,𝐶.Inv) be a one-shot chameleon hash

function.We define our signature scheme (Gen, Sign,Ver) as follows.
Gen (crs) runs (ℎ, sk) ← 𝐶.Gen (crs) and returns pk = ℎ as the pub-

lic key and sk as the secret key. Sign (sk ,𝑚) runs 𝑟 ← 𝐶.Inv (sk ,𝑚)
and returns 𝜎 = 𝑟 as the signature. Ver(crs, pk,𝑚, 𝜎) runs ℎ′ =
𝐶.Eval(crs,𝑚, 𝜎) and accepts only if ℎ′ = pk. Correctness and secu-

rity are implied immediately from the correctness and the security

of the underlying chameleon hash function. □

One-shot signatures are a specific case of a more flexible notion

which we call budget signatures. In a budget signature scheme, a

public key has an initial budget 𝛽 and each signature has a cost

𝑐 ≤ 𝛽 . One can use their secret key to sign messages until the

budget is exhausted. Security requires than no adversary can come

up with signatures whose total cost exceeds the budget.

Definition 4.3 (Budget Signatures). A budget signature scheme is

a tuple of algorithms (Gen, Sign,Ver) with the following syntax:

Gen (crs, 𝛽) : (pk, sk) takes a common reference string crs

and a budget 𝛽 and outputs a classical public key pk with

budget pk.budget and a quantum secret key sk with budget

sk .budget.

Sign (sk ,𝑚, 𝑐) : (sk ′, 𝜎) takes a secret key sk , a message𝑚

and a cost 𝑐 > 0 and outputs an updated secret key sk ′ and
a signature 𝜎 .

Ver(crs, pk,𝑚, 𝜎, 𝑐) : 𝑏 takes a common reference string crs,

a public key pk, a message𝑚, a signature 𝜎 and a cost 𝑐 and

outputs a bit 𝑏.

Correctness. The following hold with overwhelming probabil-

ity. If (pk, sk) ← Gen (crs, 𝛽), then pk.budget = sk .budget = 𝛽 .

Moreover, if sk .budget ≥ 𝑐 and (sk ′, 𝜎) ← Sign (sk ,𝑚, 𝑐) then
Ver(crs, pk,𝑚, 𝜎, 𝑐) = 1 and sk ′.budget = sk .budget − 𝑐 .

Security. For any quantum polynomial time algorithm A the

following probability is negligible

Pr

[
∀𝑖,Ver(crs, pk,𝑚𝑖 , 𝜎𝑖 , 𝑐𝑖)∑

𝑖 𝑐𝑖 > pk.budget

���� crs← {0, 1}𝑛
(pk, {(𝑚𝑖 , 𝜎𝑖 , 𝑐𝑖)}) ← A (crs)

]
.

It is easy to see that by modifying Ver to additionally check

whether pk.budget = 𝑐 , we immediately get one-shot signatures.

4.1 Budget Signatures

We get budget signatures from one-shot signatures by applying a

variant of the Merkle signature scheme [35]. Our public key will be

the pair (pk, 𝛽) where pk is an one-shot signature public key and 𝛽 is
the initial budget. To sign a message𝑚 with a signature of cost 𝑐 , we

first pick two pairs (pk𝑐 , sk 𝑐) ← Gen (crs) and (pk𝛽−𝑐 , sk 𝛽−𝑐) ←
Gen (crs) and we generate 𝜎 = Sign (sk , (pk𝑐 , 𝑐, pk𝛽−𝑐 , 𝛽 − 𝑐)). This

signature indicates that 𝑐 budget has been given to pk𝑐 and the

rest to pk𝛽−𝑐 . We then derive 𝜎 = Sign (sk 𝑐 ,𝑚) and we return

(pk𝑐 , pk𝛽−𝑐 , 𝜎) as the signature of𝑚. To verify the signature, we

also need to verify that the budgets of the two keys sum to 𝛽 . The

details appear in the full version of the paper.

5 QUANTUM LIGHTNING AND QUANTUM

MONEY

Definition 5.1 (Quantum Money with Classical Communication).

A quantum money scheme with classical communication is a pair

of interactive quantum algorithms (S ,R) as well as a generation
algorithm Gen with the following syntax:

Gen (crs) : (pk, coin) takes as input a common string crs and

outputs a quantum coin coin and a public key pk.

⟨S (coin),R (crs, pk)⟩R : (coin ′, 𝑏) is a classical protocol be-
tween S and R where at the end R outputs a quantum coin

coin ′ and a bit 𝑏.

To simplify notation we define two functions Coin,Ver as:

Coin (crs, pk, coin) = coin ′ and Ver (crs, pk, coin) = 𝑏 if and

only if ⟨S (coin),R (crs, pk)⟩R = (coin ′, 𝑏).

Correctness. If (coin, pk) ← Gen (crs) then Ver (crs, pk, coin) = 1

with overwhelming probability. Moreover, if Ver (crs, pk, coin) = 1

then Ver (crs, pk, Coin (crs, pk, coin)) = 1 with overwhelming proba-

bility.

Security. For an adversary B with input state s interacting with

two honest receivers in an arbitrary way, let
〈
B (s),R 2 (crs, pk)

〉
R 2

be the two outputs bits of the two receivers. For any polynomial

time quantum adversaries A,B , there is a negligible function 𝜀 such

that

Pr

[〈
B (s),R 2 (crs, pk)

〉
R 2 = (1, 1)

���� crs← {0, 1}𝑛
(pk, s) ← A (crs)

]
≤ 𝜀 (𝑛) .

Notice that the above definition generalizes the notion of quan-

tum money. Indeed, if we allow quantum communication in the

above protocol, then we can essentially get a single message pro-

tocol where the sender sends the coin to the receiver. Moreover,

notice that interaction is necessary for sending a coin through a

classical channel. Otherwise, one could simply copy the classical

information and send it to multiple recipients.

5.1 Construction

We use our signature delegation mechanism to build our quan-

tum money scheme. Intuitively, our coin will consist of a list of

pairs (pk1, 𝜎1), . . . , (pk𝑛−1, 𝜎𝑛−1) together with the pair (pk𝑛, sk 𝑛).
To send our coin to someone, we first receive from them a new

public key pk𝑛+1. We then use our quantum secret key to gen-

erate a signature 𝜎𝑛+1 ← Sign (sk 𝑛+1, pk𝑛+1) and we send the list

(pk1, 𝜎1), . . . , (pk𝑛, 𝜎𝑛). To verify, the receiver checks that pk1 = pk

and that all signatures in the list are valid.

Let (Gen, Sign,Ver) be a one-shot signature. We define our quan-

tum money scheme (Gen ′, S ,R) as follows.
Gen ′(crs): run (pk, sk) ← Gen (crs). Set coin = (pk, sk) and
return (pk, coin).

264

One-Shot Signatures and Applications to Hybrid Quantum/Classical Authentication STOC ’20, June 22ś26, 2020, Chicago, IL, USA

S (coin): Parse coin = [(pk𝑖 , 𝜎𝑖)]𝑖∈[𝑘−1] , (pk𝑘 , sk 𝑘). Receive
pk from R . Generate 𝜎𝑘 ← Sign (sk 𝑘 , pk) and, finally, send
[(pk𝑖 , 𝜎𝑖)]𝑖∈[𝑘] to R .

R (crs, pk′): Generate (pk, sk) ← Gen (crs) and send pk to S .

Receive [(pk𝑖 , 𝜎𝑖)]𝑖∈[𝑘] from S . Assert that pk1 = pk′ and
Ver(crs, pk𝑖 , pk𝑖+1, 𝜎𝑖) = 1 for all 𝑖 ∈ [𝑘 −1], where pk𝑘 = pk

and set 𝑏 = 1. Else 𝑏 = 0. Set coin = [(pk𝑖 , 𝜎𝑖)]𝑖∈[𝑘] , (pk, sk).
Return (coin, 𝑏).

Clearly the above scheme is correct. For security, suppose there

is an adversary that can interact with two honest receivers and can

convince them with respect to the same public key pk. This implies

that the receivers sent pk𝑘+1, pk
′
𝑘+1 such that pk𝑘+1 ≠ pk′

𝑘+1 with
overwhelming probability and the adversary replied with classical

messages [(pk𝑖 , 𝜎𝑖)]𝑖∈[𝑘] , [(pk′𝑖 , 𝜎 ′𝑖)]𝑖∈[𝑘′] , such that pk1 = pk′1 =
pk and all signatures are valid. Therefore, there exists an 𝑖 ∈ [𝑘 − 1]
such that pk𝑖 = pk′𝑖 but pk𝑖+1 ≠ pk′𝑖+1. Thus, the adversary has

been able to create two signatures for the same public key, breaking

the security of one-shot signatures. In the blockchain terminology,

the adversary has been able to come up with a fork in the chain of

signatures.

Full scheme and value of a coin. The above definition and con-

struction are a “mini-schemež version of a quantum money scheme,

and the most essential tool in building quantum money. As shown

in [2], a trusted mint can then use a classical post-quantum signa-

ture scheme to sign the public key of the coin. Using our budget sig-

natures we can get additional flexibility from our quantum money

scheme. Now the mint instead of signing pk, it can sign the pair

(pk,𝑉) to mint a coin of value 𝑉 . We can then view such a coin as

a budget signature with total budget𝑉 . One can spend any fraction

of 𝑉 by simply signing the receivers’ public keys with different

costs.

5.2 Decentralized Cryptocurrency

As already argued by Zhandry [45], there is a way of getting decen-

tralized blockchain-less cryptocurrencies by combining quantum

lightning with proofs of work. One-shot signatures are a special

case of quantum lightning. Indeed, the secret key sk of a one-shot

signature can be used as a bolt. To verify the bolt, we just need to

pick two messages𝑚0 ≠ 𝑚1 and then sign the first but without

measuring in the end. Then run the verification algorithm to verify

that the signature is valid. If this is the case, measuring the output

bit will not disturb the state and thus we can rewind, sign the sec-

ond message, again without measuring and subsequently, verify

the signature. Finally, we rewind again to retrieve the initial sk .

The idea behind building a decentralized cryptocurrency out

of quantum lightning is to consider a bolt (pk, bolt) valid only if

𝐻 (pk) (or just pk) is small; e.g. starting with at least 𝑘 zeros. Thus,

a user will have to spend a considerable amount of computational

power in order to come up with such a bolt. However, using quan-

tum lightning we can only transfer a coin quantumly. By replacing

quantum lightning with one-shot signatures we can achieve a cryp-

tocurrency that can also be transferred classically. Indeed, the only

difference between a full blown quantum money scheme from a

decentralized cryptocurrency scheme is the way we verify the first

public key pk1 in the list of public-key, signature pairs: in a quantum

money scheme we want a signature of pk1 under the mint’s public

key, whereas in a decentralized cryptocurrency we want that pk1 is

considerably small. Arguably, as explained by Zhandry [45], such a

decentralized cryptocurrency would suffer from huge inflation as

technology improves.

6 ORDERED SIGNATURES

In an ordered signature scheme, every message is signed with re-

spect to a tag 𝑡 . Unlikely one-shot signatures, we will allow the

signer to sign any number of messages with associated tags. How-

ever, security sill insist that the tags signed must be in increasing

order. That is, once the signer signs a message relative to tag 𝑡 , it

will become impossible to sign a message relative to a tag 𝑡 ′ < 𝑡 .

We will model security as follows. Consider a signing adver-

sary S and a receiver adversary R . Here, S will send valid mes-

sage/tag/signature (𝑚, 𝑡, 𝜎) triples to R . At the end of the interac-

tion, R outputs a bit 𝑏.

We will consider a special class of adversaries, called ordered

signers, which only outputs signed messages where the tags are in

increasing order. To formalize the fact that an adversary can sign a

message and keep it for later, we have S additionally interacts with

a database 𝐷 , where:

• 𝐷 stores triples (𝑚, 𝑡, 𝜎). 𝐷 is initially empty.

• S has arbitrary read access to 𝐷 .

• S can write a triple to 𝐷 only if (1) the signature is valid, and

(2) the tag 𝑡 is larger than any tag already present in 𝐷 .

• S can only send messages to R if they are in 𝐷 .

Definition 6.1 (Ordered Signatures). An ordered signature scheme

is a tuple of algorithms (Gen, Sign,Ver) with the following syntax:

Gen (crs) : (pk, sk) takes a common reference string crs and

outputs a classical public key pk and a quantum secret key

sk .

Sign (sk ,𝑚, 𝑡) : (sk ′, 𝜎) takes a secret key sk , a message𝑚,

and tag 𝑡 , and outputs an updated secret key sk ′ and a sig-

nature 𝜎 .

Ver(crs, pk,𝑚, 𝑡, 𝜎) : 𝑏 takes a common reference string crs,

a public key pk, a message𝑚, a tag 𝑡 , and a signature 𝜎 and

outputs a bit 𝑏.

Correctness. For any sequence (𝑚1, 𝑡1), . . . , (𝑚𝑛, 𝑡𝑛) such that

𝑡1 < · · · < 𝑡𝑛 , the following hold with overwhelming probability.

Let (pk, sk 0) ← Gen (crs). Then for 𝑖 = 1, . . . , 𝑛, let (sk 𝑖 , 𝜎𝑖) ←
Sign (sk 𝑖−1,𝑚𝑖 , 𝑡𝑖). Then we have that Ver(crs, pk,𝑚𝑖 , 𝑡𝑖 , 𝜎) = 1 for

all 𝑖 .

Security. For any quantum polynomial time signing adversary S

and any quantum polynomial time receiver adversary R , there is an

ordered signing adversary S ′ such that R has negligible advantage

in distinguishing S from S ′.

We construct our ordered signatures using a chain of keys and

signatures, similar to signature delegation. A signature includes

the entire chain, and we leave open the problem of creating more

succinct signatures, for example using composable SNARKs. The

high-level idea is to generate a length-increasing chain of signatures,

where each signature signs the tuple (pk′,𝑚, 𝑡) where 𝑡 is the tag
and pk′ is the new public key. To verify the signature one has to

265

STOC ’20, June 22ś26, 2020, Chicago, IL, USA Ryan Amos, Marios Georgiou, Aggelos Kiayias, and Mark Zhandry

additionally check that the tags in the chain appear in increasing

order.

6.1 Key Evolving Signatures and Proof of Stake

Blockchains

We first recall the definition of key-evolving signatures. There are

a few variants; for simplicity we will focus on the simplest variant

which is called forward-secure signatures, (for a summary of related

definitions, see [34]). A forward-secure signatures is comprised of

four algorithms, (Gen,Upd, Sign,Ver)
The algorithm Gen produces sk0, while the update function

Upd(sk𝑖) : sk𝑖+1, for any 𝑖 ≥ 0 transitions the key to the next

period. The unforgeability property of a forward-secure signature

postulates that a complete key-exposure at period 𝑖 ≥ 0 maintains

the unforgeability of messages in any period 𝑖 ′ < 𝑖 .

Constructing a forward-secure signature scheme given an or-

dered signature (Gen ′, Sign ′,Ver′) is described below. Note we as-

sume, without loss of generality, that 0 belongs to the message

space of the signing algorithm Sign ′.

Gen (crs): given the common reference string crs, it runs

Gen ′(crs) to obtain the classical public key pk′ and the quan-
tum secret key sk ′. Subsequently it sets pk = pk′ and sk =

(sk ′, 0, 0).
Sign (sk ,𝑚): Parse sk = (sk ′, 𝑖, 𝑗), run Sign ′(sk ′,𝑚, (𝑖, 𝑗 + 1))
to obtain the updated secret key sk ′′ and the signature 𝜎 ′.
Subsequently, update the forward-secure secret-key to sk =

(sk ′′, 𝑖, 𝑗 + 1) and return the signature 𝜎 = (𝜎 ′, 𝑖, 𝑗 + 1).
Upd(sk): Parses sk = (sk ′, 𝑖, 𝑗), run Sign ′(sk ′, 0, (𝑖 + 1, 0))
to obtain the updated secret key sk ′′ and the signature 𝜎 ′.
Subsequently, update the forward-secure secret-key to sk =

(sk ′′, 𝑖 + 1, 0).
Ver(crs, pk,𝑚, 𝑖, 𝜎): Parse 𝜎 = (𝜎 ′, 𝑖 ′, 𝑗 ′) and then return

Ver′(crs, pk,𝑚, 𝑖 ′, 𝑗 ′, 𝜎 ′) = 1 and 𝑖 = 𝑖 ′, where Ver′ validates
the lexicographic ordering over the pairs (𝑖, 𝑗).

Theorem 6.2. The forward-secure signature (Gen,Upd, Sign,Ver)
defined above is unforgeable if the underlying (Gen′, Sign ′,Ver′) is a
secure ordered signature.

Proof. The proof follows easily from the lexicographic ordering

over the pairs (𝑖, 𝑗) and the security of the underlying signature.

In particular consider any compromise at epoch 𝑖 and the issue

of an additional message associated with tag (𝑖 ′, 𝑗) for 𝑖 ′ < 𝑖 in

the underlying ordered signature. Given that tag (𝑖, 0) > (𝑖 ′, 𝑗) is
already signed (as the security experiment has advanced to epoch

𝑖) we obtain directly an attack against the underlying ordered sig-

nature. □

Based on the above, the application of ordered signatures in the

Proof-of-Stake (PoS) blockchain setting follows relatively simply.

In a PoS protocol, participants that maintain the blockchain issue

protocol messages (e.g., blocks of transactions) that are signed by a

signature key associated to the account of the issuer. The signature

is connected to the particular round of the protocol execution and

this is an essential part of verification. Security in PoS protocols is

argued, among other conditions, under an assumption on the total

stake controlled by the adversary [6, 14, 29]. In a long range attack,

see e.g., [13, 27], the adversary corrupts an old address that used to

possess a high amount of stake, but at the current point of the exe-

cution its stake is depleted or is much less than the bound imposed

on the adversary. Subsequently, the adversary, who now controls

a high amount of stake at some past point of the execution, takes

advantage of way the PoS protocol operates to simulate a “fakež

but otherwise legitimate protocol execution that leads to failure of

consistency in the view of a participant that joins the protocol exe-

cution at that moment. To mitigate this attack PoS systems either

introduce setup assumptions [18, 29], or require secure erasures

[6, 14] and employ some type of key-evolving signature. Solving

this problem in the erasure model, where it is impossible to erase

past protocol states and these become available when a participant

is corrupted by the adversary, is deemed impossible (cf. [18] for a

formalisation of this impossibility statement). It is easy to see that

using an ordered signature key as part of the public-key of each

participant in the PoS system and then using the current round

as the tag in the underlying ordered signature would easily solve

the problem and circumvent the impossibility. A corruption of an

account at a round 𝑟 , would still make it infeasible to reissue a sig-

nature with a tag 𝑡 ′ < 𝑡 and hence produce an alternative protocol

execution is infeasible under the security of the underlying ordered

signature.

6.2 Provably Secret Signing Keys

Definition 6.3 (Single Signer Security). A signature scheme is

single signer secure if for any quantum polynomial time adversaries

A,A0,A1, and for any efficiently sampleable distributions 𝐷0, 𝐷1

with super-logarithmic min-entropy over the message space, there

is a negligible function 𝜀 such that

Pr



Ver(crs, pk,𝑚0, 𝜎0) = 1

Ver(crs, pk,𝑚1, 𝜎1) = 1

������������

crs← {0, 1}𝑛
(pk, sk 0, sk 1) ← A (crs)

𝑚0 ← 𝐷0

𝑚1 ← 𝐷1

𝜎0 ← A0 (sk 0,𝑚0)
𝜎1 ← A1 (sk 1,𝑚1)


≤ 𝜀 (𝑛),

where sk 0, sk 1 can potentially be entangled.

The above definition aims to capture a particular type of attacks

that we call splitting attacks. In such an attack, one may try to split

a secret key into two secret keys that potentially sign different sets

of messages; for example sk 0 may sign messages that begin with 0

and sk 1 may sign messages that begin with 1.

Theorem 6.4 (Ordered Signatures to Single Signers). Single

signer signatures exist if ordered signatures exist.

6.3 From Ordered Signatures to Delayed

Signatures

Definition 6.5 (𝛿-Delay Signatures). A delay signature scheme is

a tuple of algorithms (Gen, Sign,Ver) with the following syntax:

Gen (crs) : (pk, sk) takes a common reference string crs and

outputs a classical public key pk and a quantum secret key

sk .

Sign (sk ,𝑚, rd, fd) : (sk ′, 𝜎) takes a secret key sk , a message

𝑚, a reverse delay rd, and a forward delay fd and outputs an

updated secret key sk ′ and a signature 𝜎 .

266

One-Shot Signatures and Applications to Hybrid Quantum/Classical Authentication STOC ’20, June 22ś26, 2020, Chicago, IL, USA

Ver(crs, pk,𝑚, rd, fd, 𝜎) : 𝑏 takes a common reference string

crs, a public key pk, a message𝑚, a reverse delay rd, and a

forward delay fd and a signature 𝜎 and outputs a bit 𝑏.

Correctness. For any sequence (𝑚1, rd1, fd1), . . . , (𝑚𝑛, rd𝑛, fd𝑛),
the following holds with overwhelming probability. Let (pk, sk 0) ←
Gen (crs). Then for 𝑖 ∈ [𝑛], let (sk 𝑖 , 𝜎𝑖) ← Sign (sk 𝑖−1,𝑚𝑖 , rd𝑖 , fd𝑖).
Then we have that Ver(crs, pk,𝑚𝑖 , rd𝑖 , fd𝑖 , 𝜎) = 1 for all 𝑖 .

𝛿-Delay. For any wall-clock time delta 𝑇 , any pair of delays

(rd1, fd1), (rd2, fd2), any efficiently sampleable distributions 𝐷0, 𝐷1

with super-logarithmic min-entropy over the message space, and

any quantum polynomial time adversaries A = (A1,A2,A3), when
the wall-clock time delta between the start of A2 and the completion

of A3 is at most (1 − 𝛿)𝑇 , the following probability is negligible,

Pr



Ver(crs, pk,𝑚0, rd0, fd0, 𝜎0)
Ver(crs, pk,𝑚1, rd1, fd1, 𝜎1)

������������

crs← {0, 1}𝑛
(pk, sk 0) ← A1 (crs)

𝑚0 ← 𝐷0

𝑚1 ← 𝐷1

𝜎0 ← A2 (sk 0,𝑚0, rd0, fd0)
𝜎1 ← A3 (sk 1,𝑚1, rd1, fd1)


.

We build our delay signatures on ordered signatures and the

incremental proof of sequential work of Dottling et al.[20]. Here

we impose that the signer runs a proof of sequential work in the

background that has to be included as part of the signature. To

verify the signature one has also to verify the corresponding proof

of work.

7 PROOFS OF QUANTUMNESS AND

MIN-ENTROPY

In this section we show that one-shot signatures can be used to cre-

ate public-coin interactive proofs of quantumness and min-entropy.

7.1 Proofs of Quantumness

For interactive (possibly quantum) algorithms 𝑃,𝑉 , let ⟨𝑃,𝑉 ⟩ be
the output of 𝑉 after interacting with 𝑃 .

Definition 7.1. A public-coin interactive proof of quantumness is

a pair of interactive algorithms (P ,V), where P is quantum and V

is classical. P and V run a classical multi-round protocol in which,

at each round, Ver picks a random message𝑚 ← {0, 1}𝑛 and sends

it to P .

Correctness. ⟨P (crs),V(crs)⟩ = 1 with overwhelming probability

over crs and the randomness of P .

Security. For any classical polynomial time adversary 𝑃∗, there
is a negligible function 𝜀 such that

Pr
[
⟨𝑃∗ (crs),V(crs)⟩ = 1

��crs← {0, 1}𝑛] ≤ 𝜀 (𝑛).

Theorem 7.2. A 3-message public-coin interactive proof of quan-

tumness exists if one-shot signatures exist.

In the construction, the prover first commits to a public key.

Upon receiving a random message from the verifier, he signs it

using the one-shot key and sends back the signature. To turn this

protocol into non-interactive it is sufficient to invoke the classical

Fiat-Shamir transformation [22].

Theorem 7.3. A publicly verifiable non-interactive proof of quan-

tumness exists in the random oracle model if one-shot signatures

exist.

7.2 Certifiable Min-Entropy

Similarly to a proof of quantumness, a proof of min-entropy is a

protocol between a prover and a verifier at the end of which, the

verifier outputs a string 𝑟 of 𝑛 bits together with a bit 𝑏. Correctness

requires that at the end of the protocol the entropy of 𝑟 is 𝑛. Security

states that if the verifier accepts (𝑏 = 1) then 𝑟 has to have super-

logarithmic min-entropy. For a random variable 𝑟 of 𝑛 bits, the min-

entropy of 𝑟 is defined as 𝐻min (𝑟) = − logmax𝑥 ∈{0,1}𝑛 Pr[𝑥 = 𝑟].

Definition 7.4. A public-coin interactive proof of min-entropy is

a pair of interactive algorithms (P ,V), where P is quantum and V

is classical. P and V run a classical multi-round protocol in which,

at each round, Ver picks a random message𝑚 ← {0, 1}𝑛 and sends

it to P .

Correctness. ⟨P (crs),V(crs)⟩ = (1, 𝑟) and𝐻min (𝑟) = 𝑛 with over-

whelming probability over crs and the randomness of P .

Security. For any quantum polynomial time adversary P ∗ and
for any polynomial 𝑝 , there is a negligible function 𝜀 such that

Pr

[
⟨P ∗ (crs),V(crs)⟩ = (1, 𝑟)

𝐻min (𝑟) ≤ log 𝑝 (𝑛)

����crs← {0, 1}𝑛
]
≤ 𝜀 (𝑛) .

The protocol is almost identical to the protocol for proof of

quantumness. The only difference is that the verifier also outputs

the public key of the prover as the source of randomness.

Theorem 7.5. A 3-message public-coin interactive proof of min-

entropy exists if one-shot signatures exist.

ACKNOWLEDGEMENTS

We thank the anonymous reviewers for their helpful remarks and

comments. The second author is supported by the National Science

Foundation (NSF), under Grant 40D03-00-01. The third author was

partly supported by EU Project No. 780477, PRIVILEDGE and EU

Project No. 780108, FENTEC. The fourth author is supported by an

NSF CAREER award.

REFERENCES
[1] Scott Aaronson. 2009. Quantum Copy-Protection and Quantum Money. In

Proceedings of the 2009 24th Annual IEEE Conference on Computational Com-
plexity (CCC ’09). IEEE Computer Society, Washington, DC, USA, 229ś242.
https://doi.org/10.1109/CCC.2009.42

[2] Scott Aaronson and Paul Christiano. 2013. Quantum Money from Hidden Sub-
spaces. Theory of Computing 9, 349ś401. https://doi.org/10.4086/toc.2013.
v009a009

[3] Divesh Aggarwal, Gavin K Brennen, Troy Lee, Miklos Santha, and Marco
Tomamichel. 2017. Quantum attacks on Bitcoin, and how to protect against
them. arXiv preprint arXiv:1710.10377 (2017).

[4] Andris Ambainis. 2002. Quantum lower bounds by quantum arguments. J.
Comput. System Sci. 64, 4 (2002), 750ś767.

[5] Andris Ambainis, Ansis Rosmanis, and Dominique Unruh. 2014. Quantum At-
tacks on Classical Proof Systems: The Hardness of Quantum Rewinding. In
55th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2014,
Philadelphia, PA, USA, October 18-21, 2014. IEEE Computer Society, 474ś483.
https://doi.org/10.1109/FOCS.2014.57

[6] Christian Badertscher, Peter Gazi, Aggelos Kiayias, Alexander Russell, and Vassilis
Zikas. 2018. Ouroboros Genesis: Composable Proof-of-Stake Blockchains with
Dynamic Availability. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, CCS 2018, Toronto, ON, Canada, October

267

STOC ’20, June 22ś26, 2020, Chicago, IL, USA Ryan Amos, Marios Georgiou, Aggelos Kiayias, and Mark Zhandry

15-19, 2018, David Lie, Mohammad Mannan, Michael Backes, and XiaoFengWang
(Eds.). ACM, 913ś930. https://doi.org/10.1145/3243734.3243848

[7] James Bartusek, Jiaxin Guan, Fermi Ma, and Mark Zhandry. 2018. Return of
GGH15: Provable Security Against Zeroizing Attacks. In Theory of Cryptography,
Amos Beimel and Stefan Dziembowski (Eds.). Springer International Publishing,
Cham, 544ś574.

[8] Robert Beals, Harry Buhrman, Richard Cleve, Michele Mosca, and Ronald DeWolf.
2001. Quantum lower bounds by polynomials. Journal of the ACM (JACM) 48, 4
(2001), 778ś797.

[9] Mihir Bellare and Phillip Rogaway. 1996. The Exact Security of Digital Sig-
natures - HOw to Sign with RSA and Rabin. In Advances in Cryptology - EU-
ROCRYPT ’96, International Conference on the Theory and Application of Cryp-
tographic Techniques, Saragossa, Spain, May 12-16, 1996, Proceeding (Lecture
Notes in Computer Science), Ueli M. Maurer (Ed.), Vol. 1070. Springer, 399ś416.
https://doi.org/10.1007/3-540-68339-9_34

[10] Shalev Ben-David and Or Sattath. 2017. Quantum Tokens for Digital Signatures.
IACR Cryptology ePrint Archive 2017 (2017), 94. http://eprint.iacr.org/2017/094

[11] Charles H. Bennett and Gilles Brassard. 2014. Quantum cryptography: Public
key distribution and coin tossing. Theor. Comput. Sci. 560, 7ś11. https://doi.org/
10.1016/j.tcs.2014.05.025

[12] Zvika Brakerski, Paul Christiano, Urmila Mahadev, Umesh V. Vazirani, and
Thomas Vidick. 2018. A Cryptographic Test of Quantumness and Certifi-
able Randomness from a Single Quantum Device. In 59th IEEE Annual Sym-
posium on Foundations of Computer Science, FOCS 2018, Paris, France, Octo-
ber 7-9, 2018, Mikkel Thorup (Ed.). IEEE Computer Society, 320ś331. https:
//doi.org/10.1109/FOCS.2018.00038

[13] Vitalik Buterin. 2014. Long-Range Attacks: The Serious Problem With Adaptive
Proof of Work. https://blog.ethereum.org/2014/05/15/long-range-attacks-the-
serious-problem-with-adaptive-proof-of-work/.

[14] Jing Chen and Silvio Micali. 2019. Algorand: A secure and efficient distributed
ledger. Theor. Comput. Sci. 777 (2019), 155ś183. https://doi.org/10.1016/j.tcs.2019.
02.001

[15] Alexandru Cojocaru, Juan A. Garay, Aggelos Kiayias, Fang Song, and Petros
Wallden. 2019. The Bitcoin Backbone Protocol Against Quantum Adversaries.
IACR Cryptology ePrint Archive 2019 (2019), 1150. https://eprint.iacr.org/2019/
1150

[16] Roger Colbeck. 2009. Quantum and relativistic protocols for secure multi-party
computation. arXiv preprint arXiv:0911.3814 (2009).

[17] Jan Czajkowski, Leon Groot Bruinderink, Andreas Hülsing, Christian Schaffner,
and Dominique Unruh. 2018. Post-quantum Security of the Sponge Construction.
In Post-Quantum Cryptography - 9th International Conference, PQCrypto 2018,
Fort Lauderdale, FL, USA, April 9-11, 2018, Proceedings (Lecture Notes in Computer
Science), Tanja Lange and Rainer Steinwandt (Eds.), Vol. 10786. Springer, 185ś204.
https://doi.org/10.1007/978-3-319-79063-3_9

[18] Phil Daian, Rafael Pass, and Elaine Shi. 2019. Snow White: Robustly Reconfig-
urable Consensus and Applications to Provably Secure Proof of Stake. In Financial
Cryptography and Data Security - 23rd International Conference, FC 2019, Frigate
Bay, St. Kitts and Nevis, February 18-22, 2019, Revised Selected Papers (Lecture Notes
in Computer Science), Ian Goldberg and Tyler Moore (Eds.), Vol. 11598. Springer,
23ś41. https://doi.org/10.1007/978-3-030-32101-7_2

[19] Ivan Damgård, Thomas Brochmann Pedersen, and Louis Salvail. 2005. AQuantum
Cipher with Near Optimal Key-recycling. In Proceedings of the 25th Annual
International Conference on Advances in Cryptology (Santa Barbara, California)
(CRYPTO’05). Springer-Verlag, Berlin, Heidelberg, 494ś510.

[20] Nico Döttling, Russell W. F. Lai, and Giulio Malavolta. 2019. Incremental Proofs
of Sequential Work. In Advances in Cryptology - EUROCRYPT 2019 - 38th Annual
International Conference on the Theory and Applications of Cryptographic Tech-
niques, Darmstadt, Germany, May 19-23, 2019, Proceedings, Part II (Lecture Notes
in Computer Science), Yuval Ishai and Vincent Rijmen (Eds.), Vol. 11477. Springer,
292ś323. https://doi.org/10.1007/978-3-030-17656-3_11

[21] Edward Farhi, David Gosset, Avinatan Hassidim, Andrew Lutomirski, Daniel
Nagaj, and Peter Shor. 2010. Quantum state restoration and single-copy tomog-
raphy for ground states of hamiltonians. Physical review letters 105, 19 (2010),
190503.

[22] Amos Fiat and Adi Shamir. 1986. How to Prove Yourself: Practical Solutions
to Identification and Signature Problems. In Advances in Cryptology - CRYPTO
’86, Santa Barbara, California, USA, 1986, Proceedings (Lecture Notes in Computer
Science), Andrew M. Odlyzko (Ed.), Vol. 263. Springer, 186ś194. https://doi.org/
10.1007/3-540-47721-7_12

[23] Hal Finney. 2004. Reusable Proofs of Work. https://web.archive.org/web/
20071222072154/http://rpow.net/.

[24] Matthew K. Franklin. 2006. A survey of key evolving cryptosystems. Int. J. Secur.
Networks 1, 1/2 (2006), 46ś53. https://doi.org/10.1504/IJSN.2006.010822

[25] Sumegha Garg, Henry Yuen, and Mark Zhandry. 2017. New Security Notions
and Feasibility Results for Authentication of Quantum Data. In Advances in

Cryptology ś CRYPTO 2017, Jonathan Katz and Hovav Shacham (Eds.). Springer
International Publishing, Cham, 342ś371.

[26] Dmitry Gavinsky. 2012. Quantum Money with Classical Verification. In Pro-
ceedings of the 27th Conference on Computational Complexity, CCC 2012, Porto,
Portugal, June 26-29, 2012. IEEE Computer Society, 42ś52. https://doi.org/10.
1109/CCC.2012.10

[27] Peter Gazi, Aggelos Kiayias, and Alexander Russell. 2018. Stake-Bleeding At-
tacks on Proof-of-Stake Blockchains. In Crypto Valley Conference on Blockchain
Technology, CVCBT 2018, Zug, Switzerland, June 20-22, 2018. IEEE, 85ś92. https:
//doi.org/10.1109/CVCBT.2018.00015

[28] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. 2008. One-Time
Programs. In Advances in Cryptology - CRYPTO 2008, 28th Annual International
Cryptology Conference, Santa Barbara, CA, USA, August 17-21, 2008. Proceedings
(Lecture Notes in Computer Science), David A. Wagner (Ed.), Vol. 5157. Springer,
39ś56. https://doi.org/10.1007/978-3-540-85174-5_3

[29] Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov. 2016.
Ouroboros: A Provably Secure Proof-of-Stake Blockchain Protocol. Cryptology
ePrint Archive, Report 2016/889. http://eprint.iacr.org/2016/889.

[30] Hugo Mario Krawczyk and Tal D Rabin. 2000. Chameleon hashing and signatures.
US Patent 6,108,783.

[31] Leslie Lamport. 1979. Constructing digital signatures from a one-way function.
Technical Report. Technical Report CSL-98, SRI International Palo Alto.

[32] Qipeng Liu and Mark Zhandry. 2019. Revisiting Post-quantum Fiat-Shamir. In
Advances in Cryptology - CRYPTO 2019 - 39th Annual International Cryptology Con-
ference, Santa Barbara, CA, USA, August 18-22, 2019, Proceedings, Part II (Lecture
Notes in Computer Science), Alexandra Boldyreva and Daniele Micciancio (Eds.),
Vol. 11693. Springer, 326ś355. https://doi.org/10.1007/978-3-030-26951-7_12

[33] Urmila Mahadev. 2018. Classical Verification of Quantum Computations. In 59th
IEEE Annual Symposium on Foundations of Computer Science, FOCS 2018, Paris,
France, October 7-9, 2018, Mikkel Thorup (Ed.). IEEE Computer Society, 259ś267.
https://doi.org/10.1109/FOCS.2018.00033

[34] Tal Malkin, Satoshi Obana, and Moti Yung. 2004. The Hierarchy of Key Evolving
Signatures and a Characterization of Proxy Signatures. In Advances in Cryptology
- EUROCRYPT 2004, International Conference on the Theory and Applications of
Cryptographic Techniques, Interlaken, Switzerland, May 2-6, 2004, Proceedings
(Lecture Notes in Computer Science), Christian Cachin and Jan Camenisch (Eds.),
Vol. 3027. Springer, 306ś322. https://doi.org/10.1007/978-3-540-24676-3_19

[35] Ralph C. Merkle. 1989. A Certified Digital Signature. In Advances in Cryptology -
CRYPTO ’89, 9th Annual International Cryptology Conference, Santa Barbara, Cali-
fornia, USA, August 20-24, 1989, Proceedings (Lecture Notes in Computer Science),
Gilles Brassard (Ed.), Vol. 435. Springer, 218ś238. https://doi.org/10.1007/0-387-
34805-0_21

[36] Satoshi Nakamoto et al. 2008. Bitcoin: A peer-to-peer electronic cash system.
(2008).

[37] Moni Naor and Moti Yung. 1989. Universal One-Way Hash Functions and their
Cryptographic Applications. In Proceedings of the 21st Annual ACM Symposium on
Theory of Computing, May 14-17, 1989, Seattle, Washigton, USA, David S. Johnson
(Ed.). ACM, 33ś43. https://doi.org/10.1145/73007.73011

[38] Jonathan Oppenheim and Michał Horodecki. 2005. How to reuse a one-time
pad and other notes on authentication, encryption, and protection of quantum
information. Physical Review A 72, 4 (2005), 042309.

[39] Roy Radian and Or Sattath. 2019. Semi-Quantum Money. In Proceedings of the
1st ACM Conference on Advances in Financial Technologies, AFT 2019, Zurich,
Switzerland, October 21-23, 2019. ACM, 132ś146. https://doi.org/10.1145/3318041.
3355462

[40] Peter W. Shor. 1997. Polynomial-Time Algorithms for Prime Factorization and
Discrete Logarithms on a Quantum Computer. SIAM J. Comput. 26, 5 (Oct. 1997),
1484ś1509. https://doi.org/10.1137/S0097539795293172

[41] Dominique Unruh. 2016. Collapse-Binding Quantum Commitments Without
RandomOracles. InAdvances in Cryptology - ASIACRYPT 2016 - 22nd International
Conference on the Theory and Application of Cryptology and Information Security,
Hanoi, Vietnam, December 4-8, 2016, Proceedings, Part II (Lecture Notes in Computer
Science), Jung Hee Cheon and Tsuyoshi Takagi (Eds.), Vol. 10032. 166ś195. https:
//doi.org/10.1007/978-3-662-53890-6_6

[42] Dominique Unruh. 2016. Computationally Binding Quantum Commitments. In
Advances in Cryptology - EUROCRYPT 2016 - 35th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Vienna, Austria,
May 8-12, 2016, Proceedings, Part II (Lecture Notes in Computer Science), Marc
Fischlin and Jean-Sébastien Coron (Eds.), Vol. 9666. Springer, 497ś527. https:
//doi.org/10.1007/978-3-662-49896-5_18

[43] Stephen Wiesner. 1983. Conjugate coding. ACM Sigact News 15, 1 (1983), 78ś88.
[44] GavinWood et al. 2014. Ethereum: A secure decentralised generalised transaction

ledger. Ethereum project yellow paper 151, 2014 (2014), 1ś32.
[45] Mark Zhandry. 2019. Quantum lightning never strikes the same state twice. In

Annual International Conference on the Theory and Applications of Cryptographic
Techniques. Springer, 408ś438.

268

	Abstract
	1 Introduction
	1.1 Motivating Example: Signature Tokens
	1.2 Our Results
	1.3 Related Literature
	1.4 Notation

	2 Equivocal Collision Resistant Hash Functions
	2.1 Construction Relative to a Classical Oracle
	2.2 Collision Resistance
	2.3 Equivocality

	3 One-shot Chameleon Hash Functions
	3.1 Signature Delegation

	4 One-shot Signatures and Budget Signatures
	4.1 Budget Signatures

	5 Quantum Lightning and Quantum Money
	5.1 Construction
	5.2 Decentralized Cryptocurrency

	6 Ordered Signatures
	6.1 Key Evolving Signatures and Proof of Stake Blockchains
	6.2 Provably Secret Signing Keys
	6.3 From Ordered Signatures to Delayed Signatures

	7 Proofs of Quantumness and Min-Entropy
	7.1 Proofs of Quantumness
	7.2 Certifiable Min-Entropy

	References

