One-Shot Signatures and Applications to Hybrid
Quantum/Classical Authentication

Ryan Amos
rbamos@cs.princeton.edu
Princeton University
US.A.

Aggelos Kiayias
akiayias@inf.ed.ac.uk
University of Edinburgh and IOHK
UK.

ABSTRACT

We define the notion of one-shot signatures, which are signatures
where any secret key can be used to sign only a single message, and
then self-destructs. While such signatures are of course impossible
classically, we construct one-shot signatures using quantum no-
cloning. In particular, we show that such signatures exist relative to
a classical oracle, which we can then heuristically obfuscate using
known indistinguishability obfuscation schemes.

We show that one-shot signatures have numerous applications
for hybrid quantum/classical cryptographic tasks, where all commu-
nication is required to be classical, but local quantum operations are
allowed. Applications include one-time signature tokens, quantum
money with classical communication, decentralized blockchain-less
cryptocurrency, signature schemes with unclonable secret keys,
non-interactive certifiable min-entropy, and more. We thus posi-
tion one-shot signatures as a powerful new building block for novel
quantum cryptographic protocols.

CCS CONCEPTS

« Security and privacy — Digital signatures; « Theory of com-
putation — Cryptographic primitives; Cryptographic proto-
cols; - Hardware — Quantum communication and cryptog-
raphy.

KEYWORDS

One-Shot Signatures, Quantum Money, Hybrid Quantum Cryptog-
raphy

ACM Reference Format:

Ryan Amos, Marios Georgiou, Aggelos Kiayias, and Mark Zhandry. 2020.
One-Shot Signatures and Applications to Hybrid Quantum/Classical Au-
thentication. In Proceedings of the 52nd Annual ACM SIGACT Symposium on
Theory of Computing (STOC °20), June 22-26, 2020, Chicago, IL, USA. ACM,
New York, NY, USA, 14 pages. https://doi.org/10.1145/3357713.3384304

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

STOC °20, June 22-26, 2020, Chicago, IL, USA

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-6979-4/20/06. .. $15.00
https://doi.org/10.1145/3357713.3384304

255

Marios Georgiou
mgeorgiou@gradcenter.cuny.edu
City University of New York
US.A.

Mark Zhandry
mzhandry@princeton.edu
Princeton University and NTT Research
US.A.

1 INTRODUCTION

Quantum computing and quantum information promise to reshape
the cryptographic landscape. In the near term, quantum computers
will be able to break much of the cryptography currently used to-
day [40], with the field of post-quantum cryptography developing
new alternative protocols. On the other hand, quantum cryptogra-
phy will leverage quantum communication to open new possibili-
ties such as information-theoretically secure key agreement [11],
physically unclonable money [43], and more.

Yet, even in a world full of quantum computers, classical cryp-
tosystems and communication will still play a fundamental role.
The unclonability of quantum data, for example, means that tasks
such as backing up a quantum hard drive or forwarding a quantum
email (while still keeping the original) will be impossible. Even in a
world where quantum computing is commonplace, it may be infea-
sible to run a quantum computer in many computing environments,
such as mobile or embedded devices. It may also be some time be-
fore our communication infrastructure is updated to support the
transfer of quantum data; besides, most data users will care about is
still classical, so it may seem as overkill to use quantum information
to send such data. With classical communication, however, most
of the exciting developments from quantum cryptography become
unusable. This then leads to the following natural question:

When exchanging only classical information, can local quantum
computing still offer advantages over purely classical systems.

In some cases, the answer is certainly negative. For example,
information-theoretic key agreement [11] is impossible with classi-
cal communication, even if local quantum operations are allowed.
Indeed, in quantum key distribution, security is only obtained be-
cause the honest parties can detect if the adversary is eavesdropping;
on the other hand, with classical communication, the adversary can
listen to the communication undetected. Another related example
is information-theoretic key recycling [19, 25, 38].

Hybrid quantum/classical cryptography. On the other hand, in
an emerging field that we will call hybrid quantum/classical cryp-
tography — or hybrid quantum cryptography for short — it has been
shown that local quantum operations can yield an advantage in
some settings. Recent work has shown how to attain certifiable
randomness expansion [12], which enables a classical client, for
whom generating true randomness is a notoriously difficult task,

STOC 20, June 22-26, 2020, Chicago, IL, USA

to verifiably outsource the generation of random bits to a quan-
tum computer, which can generate random bits easily. This task is
closely related to the goal of quantum supremacy — demonstrating
that quantum computers can solve certain problems faster than
classical computers — which has recently gained much attention.
Certifiable randomness has also been extended to certifying arbi-
trary outsourced quantum operations, again using only a classical
client [33].

Given the importance of classical communication in a quantum
world, we anticipate such hybrid protocols to complement post-
quantum and quantum cryptography and become a third pillar of
active research at the intersection of cryptography and quantum
computing. Our goal in this work is therefore to provide new foun-
dational tools for this emerging area and develop novel applications.

1.1 Motivating Example: Signature Tokens

Consider the task of signature delegation: Alice wishes to allow
Bob to sign a single message on her behalf. Alice could just give
Bob her secret key, but this would allow Bob to sign any number of
messages. Alice instead wants to give Bob enough information to
ensure that Bob can subsequently sign a single arbitrary message,
without any further action on Alice’s part. Crucially, we want the
message to only be decided after Alice hands this information to
Bob.

Of course, this task is impossible in a purely classical world,
as Bob can re-use whatever information he learned from Alice to
sign any number of messages. One could hope that Alice could
provide Bob with a quantum signing token, which self-destructs
after signing a message. By quantum no-cloning — which says that
general unknown quantum states cannot be copied — Bob cannot
copy the token, and therefore can only sign a single message. Indeed,
Ben-David and Sattath [10] show that such quantum signing tokens
are possible by building on ideas for public key quantum money [2].

No-cloning with only classical communication? But what if we
insist on classical communication between Alice and Bob!? How
can we leverage the power of no-cloning, when any information
Alice sends to Bob can be copied unrestrictedly? It would seem that
if Bob can derive a signing token from their communication, he
can simply copy the communication transcript to derive as many
distinct signing tokens as he would like.

The issue is actually very general, and is potentially problematic
in any hybrid quantum protocol. After all, quantum no-cloning
and related concepts can be seen as the foundation for essentially
all of the novel features in quantum protocols. But now, what if
we insist on only classical communication, relegating all quantum
operations to local computation? This means that any application of
no-cloning applies to states that the adversary constructed entirely
on his own. How can we guarantee no-cloning, if the adversary
controls the entire process used to generate the state in the first
place? Why can’t the adversary just run the same process twice,
generating two copies?

Perhaps surprisingly, we will demonstrate that with a single
classical back-and-forth between Alice and Bob, Alice can send Bob
a single-use quantum signature token. In doing so, we demonstrate

!We will not even allow shared entanglement, which could be used in teleportation.

256

Ryan Amos, Marios Georgiou, Aggelos Kiayias, and Mark Zhandry

how to overcome the difficulty outlined above and leverage no-
cloning in a setting where all communication is classical.

A Toy Example. How is this possible? To illustrate how classical
communication might be combined with local no-cloning, we recall
a basic scenario described by Zhandry [45], which also underlies
the recent developments in certifiable randomness/quantum com-
putation [12, 33]. Let H be a many-to-one hash function that is
collision-resistant against quantum attacks. First, generate a uni-
form superposition of inputs. Next, compute the hash H in super-
position and measure the result, obtaining a value y. The original
state collapses to the superposition |(//y> of all pre-images x of y.

Using the above procedure, it is easy to sample states |lﬁy> How-
ever, at the same time it is impossible to sample two copies of the
same |¢y> assuming the collision-resistance of H. Indeed, assume
toward contradiction that it were possible to generate two identical
copies of ‘xﬁy> Then simply measure both copies; each measure-
ment will likely yield a different x, resulting in two distinct values
mapping to the same y, a contradiction.

A First Attempt. As a first attempt at a signature delegation proto-
col, we have Bob sample a pair (|¢y> ,y), and send the classical value
y to Alice. Alice then signs y using some standard post-quantum
signature scheme, sending the resulting signature o back to Bob.
The result is that, with only classical communication between Alice
and Bob, Bob has arrived at a value (|1,//y> , Y, 0) that he cannot clone
(due to the collision resistance of H), nor can he sample on his own
(due to needing Alice’s signature on y).

Of course, we have to also describe how (|¢y> ,y,0) can be used
to sign a single message, but not two. For general hash functions H,
there is likely no meaningful way to accomplish this. For example, if
the hash function is collapsing [41], then having |lﬁy> is essentially
no more useful than having a single classical pre-image x. But of
course a classical pre-image x cannot be used as a one-time signing
token, since it can be copied. Recent evidence suggests that typical
post-quantum hash functions are likely collapsing [32, 41].

Toward a solution, we observe that our protocol so far bears re-
semblance to the chameleon signatures of Krawczyk and Rabin [30].
Here, H is replaced with a special type of hash function, called a
chameleon hash. In such a hash function, Bob knows a trapdoor T
which allows him to “open” the hash y to any message m’ of his
choosing. In particular, given y and any message m’, Bob can find
an r’ such that H(m’,r’) = y.

We immediately see that chameleon hashing provides a partial
solution to signature tokens. Indeed, Bob can choose the hashing
key H together with a secret trapdoor T, and send Alice any hash
y, which Alice then signs using her signing key. To sign a message
m, Bob can then use the trapdoor to open y to any message m,
computing an r such that H(m, r) = y. Finally, Bob can then output
(m,r,y, 0) as the signature on m. The recipient will verify Alice’s
signature on y and that H(m,r) = y.

This certainly works for delegating signatures. It is also mimics
how signing authority is delegated in practice, where instead of
signing a hash, Alice would sign the a public key for Bob’s signature
scheme. But this standard delegation mechanism of course cannot
provide the one-time property we are looking for, as it is purely
classical. Indeed, unforgeability relies on the collision resistance of

One-Shot Signatures and Applications to Hybrid Quantum/Classical Authentication

H, which means Bob can break unforgeability using his trapdoor. In
particular, Bob can re-use his trapdoor as many times as he wishes,
opening y to any number of messages of his choice.

Our Solution: one-shot chameleon hashing. To remedy this issue,
we imagine that Bob has a variant of chameleon hash functions,
where any given trapdoor can be used only a single time. Specif-
ically, we want that the hash function remains collision resistant
even to Bob. In more detail, we define a one-shot chameleon hash
function as a hash function H with the following property: it is
possible to first sample a hash y together with a one-time quantum
trapdoor |T). Then, after seeing a message m, it is possible to use
the trapdoor |T) to sample r such that H(m, r) = y. Importantly,
anyone can sample a y, |T) pair, and H is collision resistant to ev-
eryone. This implies that once |T) is used to compute r, it must
self-destruct, preventing further openings. This in particular im-
plies that |T) cannot be classical, else it could be copied as many
times as Bob would like.

Notice that all communication — namely y and o — is classical.
We also stress that we want H to be a classical function. As such,
Bob’s quantum operations are entirely local. What’s more, Bob is
the only party that is running a quantum computer; Alice can be
purely classical.

Generalization: one-shot signatures. We can even abstract the
protocol above slightly, to work with a more general object called
one-shot signatures. Here, anyone with a quantum computer can
sample a classical public key pk, together with quantum secret key
[sk). Given |sk) and a message m, it is possible to compute a classical
signature r on m. Then anyone, knowing just the public key, can
verify signatures. For security, we require that it is infeasible to
compute a tuple (pk, mg, ro, m1,r1) such that mg # my, and ry and
ry are valid signatures of mg, m;j respectively, with respect to the
public key pk. We see that one-shot chameleon hashing is just
a special case of one-shot signatures where verification simply
evaluates H(m, r), and checks that the result is pk.

At this point, it should be unobvious that one-shot signatures
can even exist. After all, one-shot signatures can be seen as an
extremely strong variant of the quantum no-cloning theorem. The
original no-cloning theorem dealt with truly unknown quantum
states, which were useless to anyone who did not know the states,
and therefore for whom no-cloning applied. Public key quantum
money [1] can be seen as a strengthening, where no-cloning still
holds even for parties that have the ability to verify the state. Even
this verifiable version of no-cloning has been notoriously difficult to
achieve. Quantum lightning is then a further strengthening, where
no-cloning holds even for parties that devised the original state
themselves; the only existing construction is that of Zhandry [45],
which is based on new ad hoc hardness assumptions.

One-shot signatures can then be interpreted as yet a further
strengthening of quantum lightning where the un-clonable state
has been endowed with the ability to sign a message. Given the
difficulty in even achieving the weaker forms of no-cloning, it is
natural to wonder whether one-shot signatures are even possible.

257

STOC 20, June 22-26, 2020, Chicago, IL, USA

1.2 Our Results

In this work, we explore applications similar to the above, where
local quantum operations yield surprising new protocols with clas-
sical communication. Our central building blocks will be one-shot
signatures and one-shot chameleon hash functions. Our results are
as follows:

One-shot signatures and one-shot chameleon hash functions (Sec-
tions 2,3,4). As our first contribution, we give formal definitions for
one-shot signatures and one-shot chameleon hashing.

We also construct one-shot chameleon hashing, and hence one-
shot signatures. We observe that prior work essentially constructs
this object [5], but only relative to a quantum oracle, and there is
no known way to instantiate the oracle. We improve on this by
demonstrating a classical oracle (but query-able in superposition)
relative to which we can build one-shot chameleon hashing and
signatures. Even finding a plausible classical oracle to build one-
shot chameleon hashing exists is highly non-trivial. Our main idea
is to start from a hash function which is periodic. Such a func-
tion is certainly not collision resistant against quantum attacks
due to quantum period finding, but at least it is straightforward
to show that it gives rise to the chameleon property we need. We
then recursively divide the set of pre-images of each output into
another periodic function. Importantly, we choose different periods
for each set of pre-images to avoid the overall function becoming
periodic. In fact, we perform this recursive division several times,
each time using a different period for each set of pre-images. We
demonstrate that this recursive structure nevertheless preserves
the chameleon property. We prove that our one-shot chameleon
hashing is collision resistant relative to this oracle using a modi-
fication of the polynomial method. Our classical oracle can then
heuristically be obfuscated using post-quantum indistinguishability
obfuscation (e.g. [7]) to yield a plausible construction in the common
reference string model.

Signature delegation. We then turn to applications. Many of our
applications can be seen as applications of our signature delegation
mechanism above. We demonstrate that our signature delegation
protocol works, and can easily be delegated multiple times, with
Bob delegating to Charlie, who delegates to Dana, etc. The overall
signature is the entire signature chain from Alice to the final signer.

Budget Signatures (Section 4). We can also delegate to pairs of
public keys. Such delegation allows us, for example, to construct
budget signatures. Here, when signing a message, we specify a
budget b > 0. Each public key will come with a total budget B, and
the security property is that Bob can sign any number of messages,
so long as the total budget remains less than B.

In our scheme, the public key for a total budget B will simply be
the pair (pk, B) where pk is the public key for a one-shot signature.
To sign a message m with budget b at most the total budget B,
simply sign m using the one-shot secret key, using up the secret key.
Alternatively, one can delegate to two budget signature public keys
pko, pk; with budgets By, By respectively, where By + By < B. To
do so, simply sign the concatenation of the two public keys. Those
budget signatures can then be recursively used to sign with budgets
By, B1. When verifying the signature relative to pk,, additionally
verify the signature on pk,, pk; relative to pk, as well as that By +

STOC 20, June 22-26, 2020, Chicago, IL, USA

By < B. Since we know pk, can only sign with budget up to By and
pk; can only sign with budget up to B, this verification guarantees
pk can only sign with budget total budget up to By + By < B.In
typical usage, we imagine that to sign a message with budget b, we
will first invoke this delegation with By = b and B; = B — b, and
then sign m with respect to pkg, using the secret key in the process.
Further messages are signed with respect to pk;.

Quantum money with classical communication (Section 5). One-
shot signatures readily yield public key quantum money, where the
mint has a public key that allows anyone to verify. Basically, the
quantum signing key |sk) for a one-shot signature serves as the
quantum money state.

Using our signature delegation mechanism, we show how to send
quantum money using only classical messages. The mint’s public
key will be the public key for a classical post-quantum signature
scheme. To mint a banknote with value V, the mint simply creates
a secret key/public key pair (|sk), pk) for a one-shot signature
scheme, and signs the pair (pk, V) using it’s classical signature
scheme to get signature 0. Sending the note to someone simply
invokes our delegation procedure. By combining with our budget
signatures, our quantum money scheme is also infinitely divisible,
unlike existing constructions.

Decentralized blockchain-less cryptocurrency (Section 5.2). One-
shot signatures also immediately give rise to quantum lightning,
yielding the first construction with provable security relative to a
classical oracle. As explained by Zhandry [45], by combining with
a suitable proof of work, quantum lightning gives a decentralized
cryptocurrency, where the double-spend problem is solved using
no-cloning as opposed to a blockchain. Zhandry’s scheme, however,
requires quantum communication.

We combine our delegation scheme with proofs of work to give
blockchain-less cryptocurrency using only classical communication.
The basic idea is that, to mint a new note, the miner generates a
secret key/public key pair for a one-shot signature scheme. Then
the miner uses the public key as the challenge in a proof of work.
The completed proof of work and the key pair constitute the note.
Spending the note just involves our delegation mechanism, except
that for the first transaction, the miner appends the proof of work
to the message he signs. This construction can be seen also to offer
the first embodiment of a “reusable proof of work” [23] that does
not rely on a hardware assumption.

Ordered Signatures (Section 6). Here, when signing a message,
one also specifies a tag t. The signing key allows for signing any
message, but the requirement is that messages can only be signed
in order of increasing t. That is, once a message is signed at tag to,
it then becomes impossible to sign a message at a “past” tag t; < to.

Our construction is very simple: the public key will be the public
key for a one-shot signature scheme. To sign a message at tag ¢,
simply construct a new one-shot signature public key/secret key
pair (pk, [sk)), and delegate to the new public key. When signing to
delegate, sign the entire public key/tag/message triple. |sk) becomes
the new secret key, and the signature consists of the entire signature
chain from the original public key to the latest public key. To verify,
simply verify the signature chain, as well as verify that the tags in

258

Ryan Amos, Marios Georgiou, Aggelos Kiayias, and Mark Zhandry

the chain occur in increasing order. The idea is that, by the one-
shot security of our signatures, the only way to produce a new
signature is to append to the signature chain. Therefore, once an
adversary produces a signature at tag tp, he has committed to all
the signatures he will produce at tags t; < to. If he tries to sign
a different message at 1, this will constitute a fork in the chain,
violating the one-shot security property.

Ordered signatures allow one to provably destroy their signing
key by signing a dummy message at time co. Or one can at provably
update their key by dividing time into epochs, and signing a dummy
message at the end of an epoch to update to the next epoch.

Key-Evolving Signatures and Proof-of-Stake based Blockchains
(Section 6.1). Ordered signatures provide a first instantiation of key-
evolving signatures in the erasure model. A key-evolving signature
(KES), (see e.g., [24]) enables key updates at regular intervals (or per
message) so that a key exposure incident at a certain time cannot
compromise the unforgeability of past periods. Instantiating KES
classically is only possible assuming erasures, i.e., that the party is
capable of erasing its old private state after the update. Applying
ordered it is possible to obtain a KES in the non-erasure model, i.e.,
the setting where the adversary may have access to past states.

This observation circumvents a standard model impossibility re-
sult and solves an open question in Proof-of-Stake (PoS) blockchain
protocols, [6, 14], regarding their security in the non-erasure model:
in these protocols, in order to solve the problem of “long range at-
tacks” (see e.g., [13, 27]). key-evolving signatures are utilized to
ensure that corruption of past keys cannot provide any advantage
to an attacker that corrupts old keys that used to be associated with
a large percentage of stake but have since been depleted. In the
classical non-erasure model such corruption leads to a long range
attack that can break consistency (see e.g., [18] where this is stated
as a formal impossibility). Basing the proof-of-stake operation on
an ordered signature eliminates this attack vector and facilitates a
secure PoS blockchain in the non-erasure model.

Single-signer Signatures (Section 6.2). Here, the secret key is sub-
ject to quantum no-cloning, meaning that at any time, only a single
user is capable of signing with respect to a given public key. Our
ordered signatures readily give such single-signer signatures, by
simply having the tag t be a counter, incremented with each sig-
nature. Security is proved as follows: toward contradiction, if one
could split a secret key into two states such that each state is in-
dependently capable of signing, then it is impossible to guarantee
any order between the signatures produced by each state, breaking
the underlying ordered signature.

Of course, this signing capability can be transferred by sending
over the quantum secret key; our signatures can also easily be
transferred with only classical communication, again using our
delegation mechanism.

We observe that single-signer signatures can be seen as yet a
further strengthening of quantum no-cloning. Whereas one-shot
signatures endow the unclonable state with the functionality of
signing messages, the functionality can only be used a single time
before the state self-destructs. Single-signer signatures instead give
the unclonable state the perpetual ability to sign an unlimited num-
ber of messages, but this ability cannot be split amongst two parties.

One-Shot Signatures and Applications to Hybrid Quantum/Classical Authentication

Delay Signatures (Section 6.3). Adding proofs of sequential work
(PoSW) to our ordered signature construction, we obtain what we
call delay signatures, where the signer must wait a certain amount
of time between signing messages.

As a potential application we imagine combining delay signa-
tures with our quantum money scheme. The result is that the mint
can only mint new currency at a certain rate. This would prevent
an untrusted government from paying debts by simply minting
unlimited money.

Proofs of quantumness (Section 7.1). One-shot signatures easily
give rise to a proof of quantumness: to prove quantumness, generate
a public key for a one-shot signature scheme, and send it to the
verifier. The verifier then chooses and sends back a random message.
Respond with a signature on the message. A simple rewinding
argument shows that any classical adversary that passes verification
can be used to sign two messages with respect to the same public
key, violating one-shot security.

Interestingly, our proofs of quantumnes are public coin, meaning
soundness holds even if the verifier’s random coins are public.
Such protocols can be made non-interactive using the Fiat-Shamir
heuristic. Prior protocols [12] are interactive and secret coin, and
there is no obvious way to turn them into non-interactive protocols.

Certifiable Randomness (Section 7.2). Our proofs of quantum-
ness also immediately give rise certifiable min-entropy, which is
again public coin and can be made non-interactive with Fiat-Shamir.
Again, prior protocols required multiple rounds?.

1.3 Related Literature

Comparing our primitives with classical primitives. Most of the
cryptographic notions in this work can be thought of as “one-shot”
versions of existing classical cryptographic primitives. One-shot
chameleon hash functions generalize the classic equivalent intro-
duced by Krawczyk and Rabin [30]. Our one-shot signatures are the
one-shot analogue of one-time signatures by Lamport [31] in the
sense that one not only is unwilling to generate a second signature
but also he is unable to. Our chain of delegations, our quantum
money scheme and our ordered signatures use components from
the Naor-Yung paradigm for building full-blown signatures out of
one-time signatures [37] and our budget signatures shares similari-
ties with Merkle signatures [35].

Quantum Query Complexity. Our query complexity lower bound
uses elements from Ambainis’s adversary method [4], as well as
techniques for building public-key quantum money by Aaronson
and Christiano [2] and tokens for digital signatures by Ben-David
and Sattath [10]. Our construction of equivocal hash functions
relative to a classical oracle extends the pick-one trick by Ambai-
nis et al. [5] and implies the existence of quantum lightning by
Zhandry [45]. Interestingly, unlike previous results, our collision
resistance lower bound is not based on the polynomial method [8].
The polynomial method works well in proving indistinguishability
between oracles but little can be done when it comes to search prob-
lems. Indeed, proving that a function is collision resistant through

2Though the prior protocols are able to achieve (statistically close to) uniform random-
ness. In contrast, as explained by Zhandry [45], any non-interactive protocol can never
achieve uniform randomness. Our protocol achieves super-logarithmic min-entropy.

259

STOC 20, June 22-26, 2020, Chicago, IL, USA

indistinguishability from injective functions immediately implies
that it is collapsing!

Collapsing Hash Functions. The construction of equivocal hash
functions from standard assumptions is a highly non-trivial task
as shown by a line of works. Unruh [42] introduced the notion of
collapsing hash functions and proved that the random oracle is
collapsing. Since then, several works have proven that numerous
collision resistant hash functions from standard assumptions are
collapsing [17, 32, 41] and thus not equivocal.

Cryptocurrencies. Our decentralized cryptocurrency construc-
tion and its extensions share similarities with blockchain construc-
tions such as Bitcoin’s mining using proof of work [36] as well as
Ethereum’s concept of smart contracts [44]. Mining in the quan-
tum world has also gained attention in the recent years. Although
Grover’s algorithm can be used to obtain a quadratic speed-up over
classical computers for the problem of finding pre-images that map
to small hashes in the random oracle model (see e.g., [15]), Ag-
garwal et al. [3] have proven that there exist hash-functions with
smaller than quadratic speed-up.

Quantum Money. Quantum money, first introduced by Wies-
ner [43], has received a lot of attention the past decade with nu-
merous results in the secret-key setting, where the bank must be
involved in verification. Gavinsky [26] has proven that quantum
money where the coins are minimally entangled is possible in this
setting. Radian and Sattath [39] recently created a secret key quan-
tum money scheme where the minting algorithm is also classical;
they called this notion semi-quantum money. However, for their
protocol, spending the money still involves sending a quantum state,
and verification requires the mint. Farhi et al. [21] have shown that
public-key quantum money where the verification is a projective
measurement onto a 1-dimensional subspace is impossible without
high entanglement. As a result, since one-shot signatures imply
such a quantum money definition, secret keys have to be highly
entangled.

One-time Memories. Signature delegation can be thought of as
the authentication analogue of decryption delegation, known in
the literature as one-time memories, introduced by Goldwasser et
al. [28]. These are memories that allow one to extract a single
secret out of them. Unlike signature delegation, one-time memories
are impossible even in the quantum world, and even relative to
a (quantum) oracle. This is because extraction is a deterministic
process and, hence, the information-disturbance tradeoff principle
implies that such an extraction does not collapse a quantum state.

Proof of Quantumness. Private coin proofs of quantumness out
of standard post-quantum assumptions have already been proposed
in the literature. Brakerski et al. [12] have proven that under the
LWE assumption, there is a private coin interactive protocol for
proof of quantumness.

Multi-device protocols. As a precursor to the more recent hy-
brid quantum protocols, Colbeck [16] proposed a setting where a
classical experimenter interacts with multiple potentially untrust-
worthy quantum devices, with the guarantee that the devices can-
not communicate. As in our protocols, all interaction is classical.

STOC 20, June 22-26, 2020, Chicago, IL, USA

However, Colbeck’s protocol, in addition to requiring multiple non-
communicating devices, inherently relies on the quantum devices
having pre-shared entanglement in order to operate. Therefore, the
quantum part of the protocol is not truly local.

1.4 Notation

Below we will use calligraphic font to represent quantum algo-
rithms (e.g. Afy) and calligraphic font and/or the bracket notation
for (mixed) quantum states (e.g. sk for a quantum secret key or [/)).
We will use standard math or sans serif font to represent classical
algorithms (e.g. A or Alg) and classical variables (e.g. x for a classi-
cal one-letter variable or pk for a classical public key). A function
f :Z — R" is called negligible if f(n) = 0(n™) for any constant
c. We denote by x «— S the random variable x generated by sam-
pling uniformly at random from the set S. Similarly, we denote by
x « D the random variable x generated by sampling according to
the distribution D.

Common Reference String Model. As is the case with quantum
lightning [45], a common reference string is necessary for most of
the primitives we describe in this work. This is for the same reason
we require a common reference string in collision resistant hash
functions: for a fixed function there always exists an adversary that
knows a collision. In the definitions below we assume that this
common string is drawn uniformly at random. This is the ideal
scenario and does not require any public parameters generator.
In some cases, for example when the common reference string
describes an obfuscated algorithm, a parameters generator may be
necessary. In this case, this generator may hide a secret trapdoor
which it destroys after publishing the common reference string.

2 EQUIVOCAL COLLISION RESISTANT HASH
FUNCTIONS

In this section we define the new notion of equivocal collision-
resistant hash functions and we give a construction relative to a
classical oracle.

Definition 2.1 (Equivocal Hash-Functions). An equivocal hash
function family is a triple of algorithms (Gen, Eval, Equiv) with the
following syntax:

Gen(crs) : (h, sk, p) takes as input a common reference string
crs and returns a hash value h, a quantum secret key sk and
a description of a predicate p.

Eval(crs, x) : h takes as input a crs and a pre-image x and
outputs a hash value h.

Tquiv(sk, b) : x takes as input a quantum secret key sk and
a bit b and returns a pre-image x.

Correctness requires that the following holds with overwhelming
probability. If (h, sk, p) < Gen(crs) then for any bit b, it holds that
Eval(crs,x) = hand p(x) = b, where x « Equiv(sk, b).

The definition states that a quantum algorithm (Gen, Equiv) can
sample an image h, a secret “inversion” quantum key sk as well
as a predicate p as a polynomial size circuit, and later on, given
any bit b, it can use this key to find a pre-image x of h such that
p(x) = b. It is important to notice that if we also require collision
resistance, then quantumness is necessary. If the secret key were

260

Ryan Amos, Marios Georgiou, Aggelos Kiayias, and Mark Zhandry

classical, then by running Equiv twice with b = 0 and b = 1 we
could find a collision. In the quantum case, running Equiv can make
sk collapse and thus impossible to reuse.

THEOREM 2.2. There exists an equivocal collision resistant hash
function relative to a classical oracle.

In section 2.1 we define our scheme relative to a classical oracle.
In sections 2.2 and 2.3 we prove the collision resistant and the
equivocal property respectively.

In the process of coming up with an equivocal collision resis-
tant hash function in the plain model, we note that it is enough
to come up with a function that breaks the unequivocal property
with an inverse polynomial probability. Given such a function H,
we can easily boost to high success probability by running it in-
dependently n times. In particular, the function H" (xy,...,x5) =
(H(x1),...,H(xp)) is equivocal according to our definition. Let A
be an adversary that breaks property (2). By running n times A we
get values hy, ..., h, and predicates py, ..., pp. We define our pred-
icate p(x1,...,xn) as the majority of p;(x;). To equivocate to a bit
b, we simply equivocate each individual hash to b. By invoking the
Chernoff bound and choosing n large enough, we are guaranteed
that we get a pre-image x = xi,..., X, such that p(x) = b with
overwhelming probability.

An interesting question that arises is whether (2) implies (3);
namely, can we use a distinguisher against the collapsing property
to build an inverter that equivocates? Although searching solutions
looks like a harder task than just distinguishing two different states,
the above implications are not excluded.

2.1 Construction Relative to a Classical Oracle

In this section we define our function family relative to a classical
oracle. The oracle is a combination of two oracles H, H- where
H is the evaluation oracle and H* is used to achieve equivocality.
In our construction, the space of n-bit inputs is partitioned into
2"/2 affine spaces of dimension n/2. The oracle H assigns a distinct
output to each space. Applying H to a uniform superposition and
measuring yields a uniform superposition over one of the affine
subspaces. To achieve the equivocal property, a second oracle H+
is provided, which tests for membership in the spaces orthogonal
to the affine spaces in H.

Before defining our construction we introduce some terminology.
For the n-dimensional space F?, a d-ordered affine partition P =
(Ay)ye{oyl}n—d is a list of 274 pairwise disjoint affine subspaces of
dimension d. For an affine subspace A, we denote A+ the orthogonal
complement of the linear subspace corresponding to A.

Definition 2.3 (Affine partition function). Let P = (Ay)ye{o,l}"/z
be an n/2-ordered affine partition. An affine partition function
(Hp, Hlﬁ) is defined as:

e Hp : F} — {0, 1}"2 such that Hp(x) = y if and only if
X € Ay,

. HIJ; : Fy x {0, 1}"/2 — {0, 1} such that HIJ;(x, y) = 1if and
only if x € AJy',

In other words, our function is parameterized by an ordered
partition of the whole n-dimensional input space into affine subp-
saces, each containing 2n/2 points such that all points in the same

One-Shot Signatures and Applications to Hybrid Quantum/Classical Authentication

subspace Ay map to the same value y. Our claim is that there exists
an affine partition that requires exponentially many queries to find
a collision.

THEOREM 2.4. An affine ordered partition P = (Ay)ye{o’l}n/Z
exists such that Hp is an equivocal collision resistant hash function
relative to the oracle (Hp, H}J;).

Notice that the above theorem claims worst-case hardness. We
prove the two parts of this theorem in the following two subsections.
In subsection 2.2 we prove our query complexity lower bound for
collisions and in subsection 2.3 we prove equivocality.

2.2 Collision Resistance

Our collision resistance lower bound uses a modification of the
inner-product adversary method [2, 4] and follows the lines of [10].
We devise a relation between hard-to-distinguish partitions and
we prove that any algorithm that finds a collision must end up
in states such that their average inner product (over the relation)
is a constant away from 1. The relation is picked in such a way
that the average inner product cannot decrease by more than an
exponentially small amount in each query.

We will use the following generalization of Ambainis’s [4] basic
adversary method. It combines the inner product adversary method
by Aaronson and Christiano [2] with Lemma 18 by Ben-David and
Sattath [10].

THEOREM 2.5 (ADVERSARY METHOD FOR SEARCH PROBLEMS). Let
S c {0,1}N be a set of inputs of size N, q : S — T be a search
problem and let R C S X S be a symmetric relation between inputs.
Foranyx € S,letRy ={y €S :(x,y) € R}. If

(1) (Hard-to-distinguish (x,y) pairs). For every x appearing in R
and everyi:x;j =0,Pryc g [yi =1] < ¢,
(2) (Distinguishing solutions s). For every x appearing in R and
everys:s € q(x), Pryc g [s € q(y)] <c,
then any quantum algorithm that solves q with an inverse polynomial
1—c—d
Ve

inlog N probability must make at least Q () queries to the

input, where d is a negligible function inlog N.

Proor. Consider an input x € {0,1}N and suppose that an algo-
rithm A makes T queries; i.e., A = UrOxUr—1Ox - - - U1 OxUp, where
Ui, ..., Ur are arbitrary unitary transformations independent of x
and Oy i) = (—1)% |i). Let |¢;‘> , |1//f> be the states of the algorithm
before after the t’th query to Ox. In the beginning |¢f) is the same
for all x since A has not made any query to Ox. The final state of
the algorithm is |¢§>

Consider the progress measure p; = E(y, ;) r [|<¢;‘|¢ty>” and
observe that p; = 1. We will prove that condition 1 implies that a
single query cannot decrease the progress measure too much and
condition 2 implies that anyone that finds a solution with good
probability after T queries should end up having a progress pr at
least a constant less than 1.

We begin by proving that p;—; — p; < 4+/e. The proof in a
more general setting, where the oracles can be reflections across
subspaces, first appeared in [2] but we include it here for complete-
ness.

261

STOC 20, June 22-26, 2020, Chicago, IL, USA

Write

|¢f> = Z ;i

i€[N]

2
where };c[n] ‘a;‘i| = 1 and notice that

IEACHAL

i€[N]

(o7l =

After we query Ox our new state becomes

)= D) el o) - 3wl [o)
i2=0 i1
and thus
<¢f|¢ty> ‘//t|¢t =2 Z atl t1<¢t1 >
X #Y;

Moreover, by the triangle inequality, we have that

oElo) = 1w lv) < KgFlol) = il
< 2i:;yi ‘af’inazi‘

LEMMA 2.6 (SMALL PROGRESS [2]). If for every x appearing in R
and every i : x; = 0,Pry g [y; = 1] < ¢, thenp;—1 — py < 4Ve.

ProoFr. See full version of the paper. O

We continue by showing that any algorithm that finds a solution
with constant probability should achieve pr that is a constant away
from 1. The following Lemma is a trivial generalization of Lemma 18
by Ben-David and Sattath [10].

LEMMA 2.7. Let R be a symmetric relation between inputs x €
{0,1}N and let q : {0,1}N — {o, 1}000eN) pe g search problem.
Suppose that an algorithm computes q with probability at least 1 — d
after T queries. If maxy seq(x) Pry—r, [s € q(y)] < c, then

pr < \/E+2‘/E.

Proor. See full version of the paper. O

By combining the above lemmata 2.6 and 2.7, we conclude that
any algorithm that finds a solution with probability at least 1 — d,
1—+c—2Vd

A

It remains to show that any algorithm that succeeds with prob-
ability at least 1/p(n), where n = log N, for some polynomial p,
can be turned into an algorithm that succeeds with probability
close to 1. Indeed, by running our algorithm p(n)q(n) times, where
q(n) is a polynomial, we get a winning probability of 1 — (1 —
l/p(n))P(”)q(") ~ 1 -9 which is exponentially close to 1.
Notice that the repetition reduces the lower bound by a polynomial
factor of p(n)q(n). This concludes the proof of theorem 2.5. o

has to make at least Q () queries to the input.

Equipped with theorem 2.5, we can derive the first part of theo-
rem 2.4; i.e., the existence of a partition that is collision resistant.

THEOREM 2.8. An affine ordered partition P = (Ay)ye{o’l}n/z
exists such that Hp is a collision resistant hash function relative to
the oracle (Hp, HIJ;).

STOC 20, June 22-26, 2020, Chicago, IL, USA

ProoF. In our case, S = 32 x {0, l}FgXZn/Z, where 3 = {0, 1}"/2
is the range of Hp, T = F}) X F}} and the search problem is defined
as col(Hp,H}J;) ={(a,b) : Hp(a) = Hp(b) A a # b}.

Define the relation R such that ((Hp, Hf;), (Ho, Hé)) € Rif and

only if for each y € {0, l}”/z, dim(AZ N Ag) = n/2 — 1, where
P= (Alg;)ye{o,l}"/z' Fix an image y and a point p € Alg. It holds that

‘AP\AQ‘ gn/2-1 1

<

Q

P €A = ,

Q(_YRP[P gl= IF"\AZ‘ on _onjz = gnj2
2

and, therefore, ¢ = 1/2"/2. Moreover, any collision p # q € AZ
forms a one-dimensional affine subspace C = {p,q} < Al;. We can
see that the probability Prge g, [C < Ag] equals to the probability
that {0, g + p} belongs to the linear subspace Ag + p. We have that

(O Q
Q{IirRP[C <Ayl= PrRP[{O,p+q} <Ay +p]
n/2-1
L 1
(n/2) on/2 _1 T 2°
n/2-1/9
where() Hl -0 1_ — is the Gaussian binomial coefficient

that counts the number of k-dimensional linear subspaces in]Fg
Therefore, we get that ¢ = 1/2.

By invoking theorem 2.5 with ¢ = 1/2"2 and ¢ = 1/2, we get
that any algorithm that finds a collision with an inverse polynomial
probability has to make Q (2"/4(.29 - d(n))) queries, where d is
negligible.

|

2.3 Equivocality

In this subsection we prove the equivocal property. We define our
algorithms Gen, Equiv as follows. Gen first prepares the uniform

-n/2

superposition over all inputs |¢) = 2 > x ey |x), then evaluates

the oracle to get the state |/) = 27n/2 >« |x) |[Hp(x)), measures the
second register and gets |Ay> =/ erAy |x) |y) for a uniformly

random y. |Ay> corresponds to the secret quantum key sk and y is
the corresponding image. Now, given sk and any bit b, the goal of
Equiv is to find a pre-image x € Ay such that x1, the first bit of x,
equals b.

Of course, for such an algorithm to work correctly it should be
the case that Ay contains both x’s that start with 0 and x’s that
start with 1. Since our complexity lower bound is for a worst case
partition, it could be the case that all x’s in the same affine subspace
start with the same bit. To overcome this, we note that if (Hp, H, IJ;)
is an affine partition function that is collision resistant, then for any
full-rank linear transformation f, the function (Hp’, H }J;,), where
P’ = (Aly)yE{O,l}"/z and A; = {f(x) : x € Ay} is also a collision
resistant affine partition function. By applying a random linear
transformation f, we retrieve a random affine subspace A. As long
as one of the basis vectors in the corresponding linear subspace has
1 in its first coordinate, half of the elements in the linear subpspace
will start with 0. The probability that a random subspace does not

262

Ryan Amos, Marios Georgiou, Aggelos Kiayias, and Mark Zhandry

have a vector starting with 1 is 27"/2 since it has to be the case that

none of the n/2 basis vectors starts with 1.

THEOREM 2.9 (EQUIVOCALITY). There is an affine ordered partition
P such that Hp is an equivocal collision resistant hash function relative
to the oracle (Hp, HIJ;).

Proor. Fix a P such that Hp is collision resistant and apply a
random full-rank linear transformation on it. It suffices to show
that given |Ay> and y as well as access to the oracle H3, we can
find an x such that x € Ay and x1, the first bit of x, starts with the
bit of our choice. Let Ay, = {x € Ay : x; = b} and notice that
Ay is an affine subspace parallel to A, ;. We first condition on
IAysol = |Ay,1| since the probability of the event not happening is
negligible. Our goal now is to run Grover’s search algorithm in
order to transform our state |Ay> into the state |Ay,b>-

We would like to implement the following two oracles:

(1) Op = 2 Loz, -p |xXx| I and
(2) Uy =2|A,XAy| ~ 1 = F (2|a } 44| - 1) . where F is the
quantum Fourier Transform over F which is equivalent to

the n-qubit Hadamard gate.

The oracle Op, can be implemented locally by running on super-
position a classical function that accepts inputs that start with b
and rejects otherwise. However, notice that in our case we do not
have access to the quantum oracle 2 |AJ' ><AJ" — I but instead to

the classical oracle H (hy) =2 erAi |xXx| — I that accepts all
vectors in the orthogonal subspace and not just their uniform super-
position. We claim that this oracle is enough to implement Grover’s
algorithm. To see this, notice that Grover’s algorithm runs on the
2-dimensional subspace spanned by |Ay,0> , ‘Ay,l). It is therefore,
enough to implement an oracle that accepts the state |+) = |Ay> =
\/Li(iAy,()) + iAyJ)) and rejects the state |-) = \/ié (|Ay’0> - |Ay’1>).
Let Ay = Sy +t for some translation t. Moreover let Ay g = Syo+a
and Ay = Sy +b such that a; + by = 1 since both are translations
of the same linear subpspace and their first bit differs. We have:

FH (- y)F |+) = FHp (- y) — n/4 D (=D)

x€Ay

P ,4 DD)

x€Ay

= I+)

and

FHE (. y)F |-) = FHE (- 3) —= (F|Ayo) - F|4y1))

\/_

= FHp (~y) D, U

2(n+3) /4
xEA;O\AZj

1
=F o Z —(=1)* @) |x)

x GA;O \Ay

-1=)-

One-Shot Signatures and Applications to Hybrid Quantum/Classical Authentication

Moreover, since we know the number of pre-images that start
with the desired bit, we can calculate the exact number of iterations
in order to find a correct solution with probability 1. O

3 ONE-SHOT CHAMELEON HASH
FUNCTIONS

In our setting, we require a family of hash functions, indexed by a
common reference string crs. This is to deal with trivial adversaries
that always know a collision of a hash function. Second, we would
like the image h to be sampled together with a quantum inversion
key sk, which can be used later, to find randomness r for any input
x. Formally, we have

Definition 3.1 (One-Shot Chameleon Hash Functions). A one-shot
chameleon hash function is a tuple of algorithms (Gen, Eval, Inv)
with the following syntax:

Gen(crs) : (h, sk) takes as input a common reference string
crs and outputs a hash value h together with a quantum
secret key sk,

Eval(crs, x, r) : h takes as input a common reference string
crs, an input x and randomness r and outputs a hash h,
Inv(sk,x) : r takes as input a secret key sk and an x and
outputs randomness r.

Correctness. The following holds with overwhelming probability
over crs and the randomness of Ger and Inv. If (h, sK) < Gen(crs)
then for any input x, we have Eval(crs, x, Inv(sk, x)) = h.

Collision Resistance. For any polynomial quantum adversary 4,
there is a negligible function ¢ such that

crs « {0,1}"

{(x0,70), (x1,71)} « A(crs)

Eval(crs, xo,r0) =
Eval(crs, x1,71)

Pr < e(n).
THEOREM 3.2. One-shot chameleon hash functions exist if and
only if equivocal collision-resistant hash functions exist.

Proor. The only if part is straightforward by setting the in-
put length |x| = 1 to be a single bit and defining the predicate
as p(x,r) = x. For the opposite direction, we first define our
chameleon hash function (Gen, Eval, Inv) for messages of one bit.
Let (E.Gen, E.Eval, E.Equiv) be an equivocal CRHF. Define

Gen(crs): Run (b, sk, p) « E.Gen(crs), set h = (h’, p,0) and
return (h, sK).

Eval(crs, (p,b), r): Return (E.Eval(crs, r), p, p(r) @ b)
Inv(sk, (p, b)): Run r « E.Equiv(sk, b) and return r

Correctness is implied by the correctness of the equivocal CRHF.
For security, suppose that there exists an algorithm 4 and a
non-negligible function e such that

Pr[A4 wins] = Pr[Eval(crs, (po, bo), ro) = Eval(crs, (p1, b1),71)]
= Pr[E.Eval(crs,rg) = E.Eval(crs,r1) Arg # r1],

where the probability is over crs and {(po, bo, r0), (p1,b1,71)} —
A(crs). An adversary who just runs {(po, bo, r0), (p1,b1,71)} <
A4(crs) and returns (rp, r1) can also find a collision in the equivocal
hash function with probability e(n).

Using parallel repetition, we can get one-shot chameleon hash
functions for longer messages. O

263

STOC 20, June 22-26, 2020, Chicago, IL, USA

3.1 Signature Delegation

As illustrated in the introduction, one-shot signatures give rise to
delegation of authentication where Alice can delegate Bob to sign a
single message. The idea is to use the hash-then-sign paradigm [9]
where in our case, the hash will be a one-shot chameleon hash.

Let S” = (Gen’, Sign’, Ver’) be a standard signature scheme with
existential unforgeability under chosen message attacks (EUF-CMA)
and let C = (Gen, Eval, Inv) be a one-shot chameleon hash function.
We define a signature scheme S = (Gen, Sign, Ver) as:

Gen(1™) : Run (pk, sk) « Gen’(1™) and output (pk, sk).
Sign(crs, sk, m) : Pick a random r and then compute h «
Eval(crs, m,r) and o « Sign’(sk, h). Return (o, r).

Ver(crs, pk,m, (o,r)) : Compute h « Eval(crs, m,r) and re-
turn Ver’(pk, h, o).

It is easy to see that the correctness of S is implied by the correctness
of §” and C. Moreover, S is EUF-CMA as long as S is also EUF-CMA
and C is secure. Indeed if an adversary could create a new signature
after querying a signing oracle, then one could use this adversary
to break either the one-shot chameleon hashing or the original
signature S’.

Delegation. Now suppose that Alice, who owns a classical com-
puter, possesses a key pair (pk, sk) for S and she wishes to delegate
Bob to sign a single message. To do this, Alice and Bob run the
following 2-message protocol.

Bob runs (h, sk) < Gen(crs) and sends h to Alice.
Alice runs o « Sign’(sk, h) and sends o to Bob.

Now Bob possesses a quantum key sk that he can use together
with o to sign any message m of his choice. To do this, Bob runs
r « Inv(sk,m) and returns (o, r) as the signature of m. By the
correctness of S” and C we get that Bob’s signature is accepted by
Ver. Moreover, if a malicious Bob could come up with more than k
signatures after running the above protocol k times, then he could
also break S or C.

4 ONE-SHOT SIGNATURES AND BUDGET
SIGNATURES

A one-shot signature scheme has the property that no one can
create a public key together with two valid signatures.

Definition 4.1 (One-Shot Signatures). A one-shot signature is a
tuple of algorithms (Gen, Sign, Ver) with the following syntax:

Gen(crs) : (pk, sk) takes a common reference string crs and
outputs a classical public key pk and a quantum secret key
sK.

Sign(sk, m) : o takes a secret key sk and a message m and
outputs a signature o.

Ver(crs, pk,m, o) : b takes a common reference string crs, a
public key pk, a message m and a signature o and outputs a
bit b.

Correctness. The following holds with overwhelming probability.
If (pk, sk) < Gen(crs) then Ver(crs, pk, m, Sign(sk, m)) = 1 for any
message m.

STOC 20, June 22-26, 2020, Chicago, IL, USA

Security. For any quantum polynomial time algorithm 4 there is
a negligible function ¢ such that

Ver(crs, pk, mg, 0p)

. crs «— {0, 1}"
Ver(crs, pk, m1, o1)

(pk, {(mp, 0p) }p) — A(crs)

One-shot chameleon hashing gives a direct way to build one-shot
signatures:

< e(n).

THEOREM 4.2. One-shot signatures exist if one-shot chameleon
hash functions exist.

ProOF. Let (C.Gen, C.Eval, C.Inv) be a one-shot chameleon hash
function. We define our signature scheme (Gen, Sign, Ver) as follows.
Gen(crs) runs (h, sk) « C.Gen(crs) and returns pk = h as the pub-
lic key and sk as the secret key. Sign(sk, m) runs r < C.Inv(sk, m)
and returns o = r as the signature. Ver(crs, pk,m, o) runs b’ =
C.Eval(crs, m, o) and accepts only if A’ = pk. Correctness and secu-
rity are implied immediately from the correctness and the security
of the underlying chameleon hash function. O

One-shot signatures are a specific case of a more flexible notion
which we call budget signatures. In a budget signature scheme, a
public key has an initial budget § and each signature has a cost
¢ < f. One can use their secret key to sign messages until the
budget is exhausted. Security requires than no adversary can come
up with signatures whose total cost exceeds the budget.

Definition 4.3 (Budget Signatures). A budget signature scheme is
a tuple of algorithms (Gen, Sign, Ver) with the following syntax:

Gen(crs, f) : (pk, sk) takes a common reference string crs
and a budget § and outputs a classical public key pk with
budget pk.budget and a quantum secret key sk with budget
sk.budget.

Sign(sk, m,c) : (sk’,0) takes a secret key sk, a message m
and a cost ¢ > 0 and outputs an updated secret key sk’ and
a signature o.

Ver(crs, pk, m, o, ¢) : b takes a common reference string crs,
a public key pk, a message m, a signature o and a cost c and
outputs a bit b.

Correctness. The following hold with overwhelming probabil-
ity. If (pk,sk) <« Gen(crs,), then pk.budget = sk.budget = f.
Moreover, if sk.budget > ¢ and (sk/,0) «— Sign(sk, m,c) then
Ver(crs, pk, m, 0,¢) = 1 and sk’.budget = sk.budget — c.

Security. For any quantum polynomial time algorithm 4 the
following probability is negligible
Vi, Ver(crs, pk, mj, o, c;)
>ici > pk.budget

crs « {0,1}"
(pk, {(mi, 01, ¢i)}) < A(crs) |
It is easy to see that by modifying Ver to additionally check
whether pk.budget = ¢, we immediately get one-shot signatures.

Pr

4.1 Budget Signatures

We get budget signatures from one-shot signatures by applying a
variant of the Merkle signature scheme [35]. Our public key will be
the pair (pk, f) where pk is an one-shot signature public key and f is
the initial budget. To sign a message m with a signature of cost c, we
first pick two pairs (pke, sk¢) < Gen(crs) and (pkg_c, sKp—c) <
Gen(crs) and we generate o = Sign(sk, (pk,, ¢, pkﬁ_c, B —c)). This

264

Ryan Amos, Marios Georgiou, Aggelos Kiayias, and Mark Zhandry

signature indicates that ¢ budget has been given to pk,. and the
rest to pkg_.. We then derive o = Sign(sk., m) and we return
(pkc. pkg_, 0) as the signature of m. To verify the signature, we
also need to verify that the budgets of the two keys sum to f. The
details appear in the full version of the paper.

5 QUANTUM LIGHTNING AND QUANTUM
MONEY

Definition 5.1 (Quantum Money with Classical Communication).
A quantum money scheme with classical communication is a pair
of interactive quantum algorithms (S, ®) as well as a generation
algorithm Gen with the following syntax:

Gen(crs) : (pk, coin) takes as input a common string crs and
outputs a quantum coin coin and a public key pk.

(S (coin), R (crs, pk))g : (coin’,) is a classical protocol be-
tween S and R where at the end R outputs a quantum coin
coin’ and a bit b.

To simplify notation we define two functions Coin, Ver as:
Coin(crs, pk, coin) = coin” and Ver(crs, pk, coin) = b if and
only if (S(coin), R (crs, pk))g = (coin’, b).

Correctness. If (coin, pk) < Gen(crs) then Ver(crs, pk, coin) = 1
with overwhelming probability. Moreover, if Ver(crs, pk, coin) = 1
then Ver(crs, pk, Coin(crs, pk, coin)) = 1 with overwhelming proba-
bility.

Security. For an adversary B with input state s interacting with
two honest receivers in an arbitrary way, let <fB(5), R2(crs, pk)) %2
be the two outputs bits of the two receivers. For any polynomial
time quantum adversaries 4, B, there is a negligible function ¢ such
that

crs «— {0,1}"

(pk, s) « A(crs) < e(n).

Pr (a;(s),xz(crs,pk»RZ =(1,1)
Notice that the above definition generalizes the notion of quan-
tum money. Indeed, if we allow quantum communication in the
above protocol, then we can essentially get a single message pro-
tocol where the sender sends the coin to the receiver. Moreover,
notice that interaction is necessary for sending a coin through a
classical channel. Otherwise, one could simply copy the classical
information and send it to multiple recipients.

5.1 Construction

We use our signature delegation mechanism to build our quan-
tum money scheme. Intuitively, our coin will consist of a list of
pairs (pky, o1), . .., (pk,_1, on—1) together with the pair (pk,, sk,,).
To send our coin to someone, we first receive from them a new
public key pk,,,;. We then use our quantum secret key to gen-
erate a signature op41 < Sign(sK,.1, pk,4;) and we send the list
(pky, 01), ..., (pky,, on). To verify, the receiver checks that pk; = pk
and that all signatures in the list are valid.

Let (Gen, Sign, Ver) be a one-shot signature. We define our quan-
tum money scheme (Gen’, S, R) as follows.

Gen’(crs): run (pk, sk) < Gen(crs). Set coin = (pk, sk) and
return (pk, coin).

One-Shot Signatures and Applications to Hybrid Quantum/Classical Authentication

S(coin): Parse coin = [(pk;, 0i)]ie[k-1]> (Pkg> sKi)- Receive
pk from R. Generate o} « Sign(sKx, pk) and, finally, send
[(pk;, 01)]ic[k] to R.

R (crs, pk’): Generate (pk, sk) « Gen(crs) and send pk to S.
Receive [(pk;, 0i)];ek] from S. Assert that pk; = pk’ and
Ver(crs, pk;, pk; 1, 0i) = 1foralli € [k—1], where pk; = pk
and set b = 1. Else b = 0. Set coin = [(pk;, 01)];c (k] (Pk, sK).
Return (coin, b).

Clearly the above scheme is correct. For security, suppose there
is an adversary that can interact with two honest receivers and can
convince them with respect to the same public key pk. This implies
that the receivers sent pk, pk;,; such that pky,; # pk;, with
overwhelming probability and the adversary replied with classical
messages [(pk;, i) liek]> [(pk}, o)) lie[x’]> such that pk; = pk] =
pk and all signatures are valid. Therefore, there exists ani € [k —1]
such that pk; = pk] but pk;,; # pkj,,. Thus, the adversary has
been able to create two signatures for the same public key, breaking
the security of one-shot signatures. In the blockchain terminology,
the adversary has been able to come up with a fork in the chain of
signatures.

Full scheme and value of a coin. The above definition and con-
struction are a “mini-scheme” version of a quantum money scheme,
and the most essential tool in building quantum money. As shown
in [2], a trusted mint can then use a classical post-quantum signa-
ture scheme to sign the public key of the coin. Using our budget sig-
natures we can get additional flexibility from our quantum money
scheme. Now the mint instead of signing pk, it can sign the pair
(pk, V) to mint a coin of value V. We can then view such a coin as
a budget signature with total budget V. One can spend any fraction
of V by simply signing the receivers’ public keys with different
costs.

5.2 Decentralized Cryptocurrency

As already argued by Zhandry [45], there is a way of getting decen-
tralized blockchain-less cryptocurrencies by combining quantum
lightning with proofs of work. One-shot signatures are a special
case of quantum lightning. Indeed, the secret key sk of a one-shot
signature can be used as a bolt. To verify the bolt, we just need to
pick two messages mo # m; and then sign the first but without
measuring in the end. Then run the verification algorithm to verify
that the signature is valid. If this is the case, measuring the output
bit will not disturb the state and thus we can rewind, sign the sec-
ond message, again without measuring and subsequently, verify
the signature. Finally, we rewind again to retrieve the initial sk.
The idea behind building a decentralized cryptocurrency out
of quantum lightning is to consider a bolt (pk, foft) valid only if
H(pk) (or just pk) is small; e.g. starting with at least k zeros. Thus,
a user will have to spend a considerable amount of computational
power in order to come up with such a bolt. However, using quan-
tum lightning we can only transfer a coin quantumly. By replacing
quantum lightning with one-shot signatures we can achieve a cryp-
tocurrency that can also be transferred classically. Indeed, the only
difference between a full blown quantum money scheme from a
decentralized cryptocurrency scheme is the way we verify the first
public key pk; in the list of public-key, signature pairs: in a quantum
money scheme we want a signature of pk; under the mint’s public

265

STOC 20, June 22-26, 2020, Chicago, IL, USA

key, whereas in a decentralized cryptocurrency we want that pk is
considerably small. Arguably, as explained by Zhandry [45], such a
decentralized cryptocurrency would suffer from huge inflation as
technology improves.

6 ORDERED SIGNATURES

In an ordered signature scheme, every message is signed with re-
spect to a tag t. Unlikely one-shot signatures, we will allow the
signer to sign any number of messages with associated tags. How-
ever, security sill insist that the tags signed must be in increasing
order. That is, once the signer signs a message relative to tag t, it
will become impossible to sign a message relative to a tag t’ < t.

We will model security as follows. Consider a signing adver-
sary S and a receiver adversary K. Here, S will send valid mes-
sage/tag/signature (m, t, o) triples to K. At the end of the interac-
tion, R outputs a bit b.

We will consider a special class of adversaries, called ordered
signers, which only outputs signed messages where the tags are in
increasing order. To formalize the fact that an adversary can sign a
message and keep it for later, we have § additionally interacts with
a database D, where:

e D stores triples (m, t,0). D is initially empty.

e § has arbitrary read access to D.

e S can write a triple to D only if (1) the signature is valid, and
(2) the tag ¢ is larger than any tag already present in D.

e 5 can only send messages to R _ if they are in D.

Definition 6.1 (Ordered Signatures). An ordered signature scheme
is a tuple of algorithms (Gen, Sign, Ver) with the following syntax:

Gen(crs) : (pk, sk) takes a common reference string crs and
outputs a classical public key pk and a quantum secret key
sK.

Sign(sk, m,t) : (s, o) takes a secret key sk, a message m,
and tag t, and outputs an updated secret key sk’ and a sig-
nature o.

Ver(crs, pk,m, t, o) : b takes a common reference string crs,
a public key pk, a message m, a tag ¢, and a signature o and
outputs a bit b.

Correctness. For any sequence (mq,t1), ..., (mp,ty) such that
t] < -+ < ty, the following hold with overwhelming probability.
Let (pk,sky) < Gen(crs). Then for i = 1,...,n, let (sk;,0i) «—
Sign(sk;_q, mi, t;). Then we have that Ver(crs, pk, m;, t;, o) = 1 for
all i.

Security. For any quantum polynomial time signing adversary S
and any quantum polynomial time receiver adversary &, there is an
ordered signing adversary S’ such that ® has negligible advantage
in distinguishing § from §’.

We construct our ordered signatures using a chain of keys and
signatures, similar to signature delegation. A signature includes
the entire chain, and we leave open the problem of creating more
succinct signatures, for example using composable SNARKs. The
high-level idea is to generate a length-increasing chain of signatures,
where each signature signs the tuple (pk’, m, t) where ¢ is the tag
and pk’ is the new public key. To verify the signature one has to

STOC 20, June 22-26, 2020, Chicago, IL, USA

additionally check that the tags in the chain appear in increasing
order.

6.1 Key Evolving Signatures and Proof of Stake
Blockchains

We first recall the definition of key-evolving signatures. There are
a few variants; for simplicity we will focus on the simplest variant
which is called forward-secure signatures, (for a summary of related
definitions, see [34]). A forward-secure signatures is comprised of
four algorithms, (Gen, Upd, Sign, Ver)

The algorithm Gen produces sk, while the update function
Upd(sk;) : skjt1, for any i > 0 transitions the key to the next
period. The unforgeability property of a forward-secure signature
postulates that a complete key-exposure at period i > 0 maintains
the unforgeability of messages in any period i’ < i.

Constructing a forward-secure signature scheme given an or-
dered signature (Gen', Sign’, Ver’) is described below. Note we as-
sume, without loss of generality, that 0 belongs to the message
space of the signing algorithm Sign’.

Gen(crs): given the common reference string crs, it runs
Gen’ (crs) to obtain the classical public key pk” and the quan-
tum secret key sk’. Subsequently it sets pk = pk” and sk =
(sk’,0,0).

Sign(sk, m): Parse sk. = (sk’, 1,), run Sign’ (s€/, m, (i, j + 1))
to obtain the updated secret key sk’ and the signature o”.
Subsequently, update the forward-secure secret-key to sk =
(sk”,i, j + 1) and return the signature o = (¢’, 1, j + 1).
Upd(sk): Parses sk. = (sk/, i, j), run Sign’(sk’, 0, (i + 1,0))
to obtain the updated secret key sk’ and the signature o”’.
Subsequently, update the forward-secure secret-key to sk =
(sk”,i+1,0).

Ver(crs, pk,m,i,0): Parse ¢ = (¢’,i’,j’) and then return
Ver’ (crs, pk,m,i’, j’,6’) = 1 and i = i’, where Ver’ validates
the lexicographic ordering over the pairs (i, j).

THEOREM 6.2. The forward-secure signature (Gen, Upd, Sign, Ver)
defined above is unforgeable if the underlying (Gen’, Sign’, Ver’) is a
secure ordered signature.

Proor. The proof follows easily from the lexicographic ordering
over the pairs (i, j) and the security of the underlying signature.
In particular consider any compromise at epoch i and the issue
of an additional message associated with tag (i’, j) for i’ < i in
the underlying ordered signature. Given that tag (i,0) > (i’, j) is
already signed (as the security experiment has advanced to epoch
i) we obtain directly an attack against the underlying ordered sig-
nature. O

Based on the above, the application of ordered signatures in the
Proof-of-Stake (PoS) blockchain setting follows relatively simply.
In a PoS protocol, participants that maintain the blockchain issue
protocol messages (e.g., blocks of transactions) that are signed by a
signature key associated to the account of the issuer. The signature
is connected to the particular round of the protocol execution and
this is an essential part of verification. Security in PoS protocols is
argued, among other conditions, under an assumption on the total
stake controlled by the adversary [6, 14, 29]. In a long range attack,

266

Ryan Amos, Marios Georgiou, Aggelos Kiayias, and Mark Zhandry

see e.g., [13, 27], the adversary corrupts an old address that used to
possess a high amount of stake, but at the current point of the exe-
cution its stake is depleted or is much less than the bound imposed
on the adversary. Subsequently, the adversary, who now controls
a high amount of stake at some past point of the execution, takes
advantage of way the PoS protocol operates to simulate a “fake”
but otherwise legitimate protocol execution that leads to failure of
consistency in the view of a participant that joins the protocol exe-
cution at that moment. To mitigate this attack PoS systems either
introduce setup assumptions [18, 29], or require secure erasures
[6, 14] and employ some type of key-evolving signature. Solving
this problem in the erasure model, where it is impossible to erase
past protocol states and these become available when a participant
is corrupted by the adversary, is deemed impossible (cf. [18] for a
formalisation of this impossibility statement). It is easy to see that
using an ordered signature key as part of the public-key of each
participant in the PoS system and then using the current round
as the tag in the underlying ordered signature would easily solve
the problem and circumvent the impossibility. A corruption of an
account at a round r, would still make it infeasible to reissue a sig-
nature with a tag ¢’ < t and hence produce an alternative protocol
execution is infeasible under the security of the underlying ordered
signature.

6.2 Provably Secret Signing Keys

Definition 6.3 (Single Signer Security). A signature scheme is
single signer secure if for any quantum polynomial time adversaries
4, 4y, 41, and for any efficiently sampleable distributions Dy, Dy
with super-logarithmic min-entropy over the message space, there
is a negligible function ¢ such that

crs « {0,1}"
(pk, skg» sK;) — A(crs)

Ver(crs, pk, mg, 09) = 1 mgy «— Dy < e(n),
Ver(crs, pk,my,01) =1 my < Dy

00 < Ay (5K, mo)
o1 «— A1(skq, m1)

where sk, sk; can potentially be entangled.

The above definition aims to capture a particular type of attacks
that we call splitting attacks. In such an attack, one may try to split
a secret key into two secret keys that potentially sign different sets
of messages; for example sk, may sign messages that begin with 0
and s ; may sign messages that begin with 1.

THEOREM 6.4 (ORDERED SIGNATURES TO SINGLE SIGNERS). Single
signer signatures exist if ordered signatures exist.

6.3 From Ordered Signatures to Delayed
Signatures

Definition 6.5 (5-Delay Signatures). A delay signature scheme is
a tuple of algorithms (Gen, Sign, Ver) with the following syntax:

Gen(crs) : (pk, sk) takes a common reference string crs and
outputs a classical public key pk and a quantum secret key
sK.
Sign(sk, m, rd, fd) : (sk’, o) takes a secret key sk, a message
m, a reverse delay rd, and a forward delay fd and outputs an
updated secret key sk and a signature o.

One-Shot Signatures and Applications to Hybrid Quantum/Classical Authentication

Ver(crs, pk, m,rd, fd, o) : b takes a common reference string
crs, a public key pk, a message m, a reverse delay rd, and a
forward delay fd and a signature o and outputs a bit b.

Correctness. For any sequence (my, rdy, fdy), ..., (mp, rdy, fdy,),
the following holds with overwhelming probability. Let (pk, skg) «
Gen(crs). Then for i € [n], let (sk;, 01) « Sign(sK;_1, mi, rd;, fd;).
Then we have that Ver(crs, pk, m;, rd;, fd;, 0) = 1 for all i.

d-Delay. For any wall-clock time delta T, any pair of delays
(rdy, fdy1), (rdz, fd2), any efficiently sampleable distributions Dy, D1
with super-logarithmic min-entropy over the message space, and
any quantum polynomial time adversaries 4 = (4, 42, 43), when
the wall-clock time delta between the start of 4, and the completion
of 43 is at most (1 — §)T, the following probability is negligible,

crs «— {0,1}"

(pk, k) — A1 (crs)

Ver(crs, pk, mo, rdo, fdo, 09) mo < Do
Ver(crs, pk, my, rdy, fdy, 1) my < Dy

00 < A2(sk, mo, rdo, fdo)
o1 — ﬂ3(£&1, my, l’dl,fdl)

We build our delay signatures on ordered signatures and the
incremental proof of sequential work of Dottling et al.[20]. Here
we impose that the signer runs a proof of sequential work in the
background that has to be included as part of the signature. To
verify the signature one has also to verify the corresponding proof
of work.

7 PROOFS OF QUANTUMNESS AND
MIN-ENTROPY

In this section we show that one-shot signatures can be used to cre-
ate public-coin interactive proofs of quantumness and min-entropy.

7.1 Proofs of Quantumness

For interactive (possibly quantum) algorithms P, V, let (P, V) be
the output of V after interacting with P.

Definition 7.1. A public-coin interactive proof of quantumness is
a pair of interactive algorithms (2, V), where 2 is quantum and V
is classical. # and V run a classical multi-round protocol in which,
at each round, Ver picks a random message m « {0, 1}" and sends
it to P.

Correctness. (P(crs), V(crs)) = 1 with overwhelming probability
over crs and the randomness of P.

Security. For any classical polynomial time adversary P, there
is a negligible function ¢ such that

Pr [(P*(crs), V(crs)) = 1|crs — {0,1}"] < e(n).

THEOREM 7.2. A 3-message public-coin interactive proof of quan-
tumness exists if one-shot signatures exist.

In the construction, the prover first commits to a public key.
Upon receiving a random message from the verifier, he signs it
using the one-shot key and sends back the signature. To turn this
protocol into non-interactive it is sufficient to invoke the classical
Fiat-Shamir transformation [22].

267

STOC 20, June 22-26, 2020, Chicago, IL, USA

THEOREM 7.3. A publicly verifiable non-interactive proof of quan-
tumness exists in the random oracle model if one-shot signatures
exist.

7.2 Certifiable Min-Entropy

Similarly to a proof of quantumness, a proof of min-entropy is a
protocol between a prover and a verifier at the end of which, the
verifier outputs a string r of n bits together with a bit b. Correctness
requires that at the end of the protocol the entropy of r is n. Security
states that if the verifier accepts (b = 1) then r has to have super-
logarithmic min-entropy. For a random variable r of n bits, the min-
entropy of r is defined as Hyin(r) = —log max,e (g 1}n Pr[x =r].

Definition 7.4. A public-coin interactive proof of min-entropy is
a pair of interactive algorithms (2, V), where 2 is quantum and V
is classical. 2 and V run a classical multi-round protocol in which,
at each round, Ver picks a random message m « {0, 1}"* and sends
it to .

Correctness. {(crs),V(crs)) = (1,r) and Hyj, (r) = n with over-
whelming probability over crs and the randomness of 2.

Security. For any quantum polynomial time adversary ?* and
for any polynomial p, there is a negligible function ¢ such that

(P*(crs),V(crs)) = (1,r)
Hmin(r) < logP(”)
The protocol is almost identical to the protocol for proof of

quantumness. The only difference is that the verifier also outputs
the public key of the prover as the source of randomness.

Pr

crs « {0, 1}"] < &(n).

THEOREM 7.5. A 3-message public-coin interactive proof of min-
entropy exists if one-shot signatures exist.

ACKNOWLEDGEMENTS

We thank the anonymous reviewers for their helpful remarks and
comments. The second author is supported by the National Science
Foundation (NSF), under Grant 40D03-00-01. The third author was
partly supported by EU Project No. 780477, PRIVILEDGE and EU
Project No. 780108, FENTEC. The fourth author is supported by an
NSF CAREER award.

REFERENCES

[1] Scott Aaronson. 2009. Quantum Copy-Protection and Quantum Money. In
Proceedings of the 2009 24th Annual IEEE Conference on Computational Com-
plexity (CCC °09). IEEE Computer Society, Washington, DC, USA, 229-242.
https://doi.org/10.1109/CCC.2009.42

Scott Aaronson and Paul Christiano. 2013. Quantum Money from Hidden Sub-
spaces. Theory of Computing 9, 349-401. https://doi.org/10.4086/toc.2013.
v009a009

Divesh Aggarwal, Gavin K Brennen, Troy Lee, Miklos Santha, and Marco
Tomamichel. 2017. Quantum attacks on Bitcoin, and how to protect against
them. arXiv preprint arXiv:1710.10377 (2017).

Andris Ambainis. 2002. Quantum lower bounds by quantum arguments. J.
Comput. System Sci. 64, 4 (2002), 750-767.

Andris Ambainis, Ansis Rosmanis, and Dominique Unruh. 2014. Quantum At-
tacks on Classical Proof Systems: The Hardness of Quantum Rewinding. In
55th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2014,
Philadelphia, PA, USA, October 18-21, 2014. IEEE Computer Society, 474-483.
https://doi.org/10.1109/FOCS.2014.57

Christian Badertscher, Peter Gazi, Aggelos Kiayias, Alexander Russell, and Vassilis
Zikas. 2018. Ouroboros Genesis: Composable Proof-of-Stake Blockchains with
Dynamic Availability. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, CCS 2018, Toronto, ON, Canada, October

[2

G

STOC 20, June 22-26, 2020, Chicago, IL, USA

[7

[

8

=

=

[10]

[11

[12]

[13]

[14]

[15

[16

=
=

(18]

[19]

[20]

[21

[22]

[23]

[24

[25]

15-19, 2018, David Lie, Mohammad Mannan, Michael Backes, and XiaoFeng Wang
(Eds.). ACM, 913-930. https://doi.org/10.1145/3243734.3243848

James Bartusek, Jiaxin Guan, Fermi Ma, and Mark Zhandry. 2018. Return of
GGH15: Provable Security Against Zeroizing Attacks. In Theory of Cryptography,
Amos Beimel and Stefan Dziembowski (Eds.). Springer International Publishing,
Cham, 544-574.

Robert Beals, Harry Buhrman, Richard Cleve, Michele Mosca, and Ronald De Wolf.
2001. Quantum lower bounds by polynomials. Journal of the ACM (JACM) 48, 4
(2001), 778-797.

Mihir Bellare and Phillip Rogaway. 1996. The Exact Security of Digital Sig-
natures - HOw to Sign with RSA and Rabin. In Advances in Cryptology - EU-
ROCRYPT ’96, International Conference on the Theory and Application of Cryp-
tographic Techniques, Saragossa, Spain, May 12-16, 1996, Proceeding (Lecture
Notes in Computer Science), Ueli M. Maurer (Ed.), Vol. 1070. Springer, 399-416.
https://doi.org/10.1007/3-540-68339-9_34

Shalev Ben-David and Or Sattath. 2017. Quantum Tokens for Digital Signatures.
IACR Cryptology ePrint Archive 2017 (2017), 94. http://eprint.iacr.org/2017/094
Charles H. Bennett and Gilles Brassard. 2014. Quantum cryptography: Public
key distribution and coin tossing. Theor. Comput. Sci. 560, 7-11. https://doi.org/
10.1016/j.tcs.2014.05.025

Zvika Brakerski, Paul Christiano, Urmila Mahadev, Umesh V. Vazirani, and
Thomas Vidick. 2018. A Cryptographic Test of Quantumness and Certifi-
able Randomness from a Single Quantum Device. In 59th IEEE Annual Sym-
posium on Foundations of Computer Science, FOCS 2018, Paris, France, Octo-
ber 7-9, 2018, Mikkel Thorup (Ed.). IEEE Computer Society, 320-331. https:
//doi.org/10.1109/FOCS.2018.00038

Vitalik Buterin. 2014. Long-Range Attacks: The Serious Problem With Adaptive
Proof of Work. https://blog.ethereum.org/2014/05/15/long-range-attacks-the-
serious-problem-with-adaptive-proof-of-work/.

Jing Chen and Silvio Micali. 2019. Algorand: A secure and efficient distributed
ledger. Theor. Comput. Sci. 777 (2019), 155-183. https://doi.org/10.1016/j.tcs.2019.
02.001

Alexandru Cojocaru, Juan A. Garay, Aggelos Kiayias, Fang Song, and Petros
Wallden. 2019. The Bitcoin Backbone Protocol Against Quantum Adversaries.
IACR Cryptology ePrint Archive 2019 (2019), 1150. https://eprint.iacr.org/2019/
1150

Roger Colbeck. 2009. Quantum and relativistic protocols for secure multi-party
computation. arXiv preprint arXiv:0911.3814 (2009).

Jan Czajkowski, Leon Groot Bruinderink, Andreas Hiilsing, Christian Schaffner,
and Dominique Unruh. 2018. Post-quantum Security of the Sponge Construction.
In Post-Quantum Cryptography - 9th International Conference, PQCrypto 2018,
Fort Lauderdale, FL, USA, April 9-11, 2018, Proceedings (Lecture Notes in Computer
Science), Tanja Lange and Rainer Steinwandt (Eds.), Vol. 10786. Springer, 185-204.
https://doi.org/10.1007/978-3-319-79063-3_9

Phil Daian, Rafael Pass, and Elaine Shi. 2019. Snow White: Robustly Reconfig-
urable Consensus and Applications to Provably Secure Proof of Stake. In Financial
Cryptography and Data Security - 23rd International Conference, FC 2019, Frigate
Bay, St. Kitts and Nevis, February 18-22, 2019, Revised Selected Papers (Lecture Notes
in Computer Science), lan Goldberg and Tyler Moore (Eds.), Vol. 11598. Springer,
23-41. https://doi.org/10.1007/978-3-030-32101-7_2

Ivan Damgard, Thomas Brochmann Pedersen, and Louis Salvail. 2005. A Quantum
Cipher with Near Optimal Key-recycling. In Proceedings of the 25th Annual
International Conference on Advances in Cryptology (Santa Barbara, California)
(CRYPTO’05). Springer-Verlag, Berlin, Heidelberg, 494-510.

Nico Déttling, Russell W. F. Lai, and Giulio Malavolta. 2019. Incremental Proofs
of Sequential Work. In Advances in Cryptology - EUROCRYPT 2019 - 38th Annual
International Conference on the Theory and Applications of Cryptographic Tech-
niques, Darmstadt, Germany, May 19-23, 2019, Proceedings, Part I (Lecture Notes
in Computer Science), Yuval Ishai and Vincent Rijmen (Eds.), Vol. 11477. Springer,
292-323. https://doi.org/10.1007/978-3-030-17656-3_11

Edward Farhi, David Gosset, Avinatan Hassidim, Andrew Lutomirski, Daniel
Nagaj, and Peter Shor. 2010. Quantum state restoration and single-copy tomog-
raphy for ground states of hamiltonians. Physical review letters 105, 19 (2010),
190503.

Amos Fiat and Adi Shamir. 1986. How to Prove Yourself: Practical Solutions
to Identification and Signature Problems. In Advances in Cryptology - CRYPTO
’86, Santa Barbara, California, USA, 1986, Proceedings (Lecture Notes in Computer
Science), Andrew M. Odlyzko (Ed.), Vol. 263. Springer, 186-194. https://doi.org/
10.1007/3-540-47721-7_12

Hal Finney. 2004. Reusable Proofs of Work. https://web.archive.org/web/
20071222072154/http://rpow.net/.

Matthew K. Franklin. 2006. A survey of key evolving cryptosystems. Int. . Secur.
Networks 1, 1/2 (2006), 46-53. https://doi.org/10.1504/IJSN.2006.010822
Sumegha Garg, Henry Yuen, and Mark Zhandry. 2017. New Security Notions
and Feasibility Results for Authentication of Quantum Data. In Advances in

268

[27

[28

[29

[30

[31

[32

[33

[35

[38

[39

[40

[42

]

]

]

]

]

Ryan Amos, Marios Georgiou, Aggelos Kiayias, and Mark Zhandry

Cryptology — CRYPTO 2017, Jonathan Katz and Hovav Shacham (Eds.). Springer

International Publishing, Cham, 342-371.
Dmitry Gavinsky. 2012. Quantum Money with Classical Verification. In Pro-

ceedings of the 27th Conference on Computational Complexity, CCC 2012, Porto,
Portugal, June 26-29, 2012. IEEE Computer Society, 42-52. https://doi.org/10.
1109/CCC.2012.10

Peter Gazi, Aggelos Kiayias, and Alexander Russell. 2018. Stake-Bleeding At-
tacks on Proof-of-Stake Blockchains. In Crypto Valley Conference on Blockchain
Technology, CVCBT 2018, Zug, Switzerland, June 20-22, 2018. IEEE, 85-92. https:
//doi.org/10.1109/CVCBT.2018.00015

Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. 2008. One-Time
Programs. In Advances in Cryptology - CRYPTO 2008, 28th Annual International
Cryptology Conference, Santa Barbara, CA, USA, August 17-21, 2008. Proceedings
(Lecture Notes in Computer Science), David A. Wagner (Ed.), Vol. 5157. Springer,
39-56. https://doi.org/10.1007/978-3-540-85174-5_3

Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov. 2016.
Ouroboros: A Provably Secure Proof-of-Stake Blockchain Protocol. Cryptology
ePrint Archive, Report 2016/889. http://eprint.iacr.org/2016/889.

Hugo Mario Krawczyk and Tal D Rabin. 2000. Chameleon hashing and signatures.
US Patent 6,108,783.

Leslie Lamport. 1979. Constructing digital signatures from a one-way function.
Technical Report. Technical Report CSL-98, SRI International Palo Alto.
Qipeng Liu and Mark Zhandry. 2019. Revisiting Post-quantum Fiat-Shamir. In
Advances in Cryptology - CRYPTO 2019 - 39th Annual International Cryptology Con-
ference, Santa Barbara, CA, USA, August 18-22, 2019, Proceedings, Part II (Lecture
Notes in Computer Science), Alexandra Boldyreva and Daniele Micciancio (Eds.),
Vol. 11693. Springer, 326-355. https://doi.org/10.1007/978-3-030-26951-7_12
Urmila Mahadev. 2018. Classical Verification of Quantum Computations. In 59th
IEEE Annual Symposium on Foundations of Computer Science, FOCS 2018, Paris,
France, October 7-9, 2018, Mikkel Thorup (Ed.). IEEE Computer Society, 259-267.
https://doi.org/10.1109/FOCS.2018.00033

Tal Malkin, Satoshi Obana, and Moti Yung. 2004. The Hierarchy of Key Evolving
Signatures and a Characterization of Proxy Signatures. In Advances in Cryptology
- EUROCRYPT 2004, International Conference on the Theory and Applications of
Cryptographic Techniques, Interlaken, Switzerland, May 2-6, 2004, Proceedings
(Lecture Notes in Computer Science), Christian Cachin and Jan Camenisch (Eds.),
Vol. 3027. Springer, 306-322. https://doi.org/10.1007/978-3-540-24676-3_19
Ralph C. Merkle. 1989. A Certified Digital Signature. In Advances in Cryptology -
CRYPTO °89, 9th Annual International Cryptology Conference, Santa Barbara, Cali-
fornia, USA, August 20-24, 1989, Proceedings (Lecture Notes in Computer Science),
Gilles Brassard (Ed.), Vol. 435. Springer, 218-238. https://doi.org/10.1007/0-387-
34805-0_21

Satoshi Nakamoto et al. 2008. Bitcoin: A peer-to-peer electronic cash system.
(2008).

Moni Naor and Moti Yung. 1989. Universal One-Way Hash Functions and their
Cryptographic Applications. In Proceedings of the 21st Annual ACM Symposium on
Theory of Computing, May 14-17, 1989, Seattle, Washigton, USA, David S. Johnson
(Ed.). ACM, 33-43. https://doi.org/10.1145/73007.73011

Jonathan Oppenheim and Michat Horodecki. 2005. How to reuse a one-time
pad and other notes on authentication, encryption, and protection of quantum
information. Physical Review A 72, 4 (2005), 042309.

Roy Radian and Or Sattath. 2019. Semi-Quantum Money. In Proceedings of the
1st ACM Conference on Advances in Financial Technologies, AFT 2019, Zurich,
Switzerland, October 21-23, 2019. ACM, 132-146. https://doi.org/10.1145/3318041.
3355462

Peter W. Shor. 1997. Polynomial-Time Algorithms for Prime Factorization and
Discrete Logarithms on a Quantum Computer. SIAM J. Comput. 26, 5 (Oct. 1997),
1484-1509. https://doi.org/10.1137/S0097539795293172

Dominique Unruh. 2016. Collapse-Binding Quantum Commitments Without
Random Oracles. In Advances in Cryptology - ASIACRYPT 2016 - 22nd International
Conference on the Theory and Application of Cryptology and Information Security,
Hanoi, Vietnam, December 4-8, 2016, Proceedings, Part II (Lecture Notes in Computer
Science), Jung Hee Cheon and Tsuyoshi Takagi (Eds.), Vol. 10032. 166-195. https:
//doi.org/10.1007/978-3-662-53890-6_6

Dominique Unruh. 2016. Computationally Binding Quantum Commitments. In
Advances in Cryptology - EUROCRYPT 2016 - 35th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Vienna, Austria,
May 8-12, 2016, Proceedings, Part II (Lecture Notes in Computer Science), Marc
Fischlin and Jean-Sébastien Coron (Eds.), Vol. 9666. Springer, 497-527. https:
//doi.org/10.1007/978-3-662-49896-5_18

Stephen Wiesner. 1983. Conjugate coding. ACM Sigact News 15, 1 (1983), 78-88.
Gavin Wood et al. 2014. Ethereum: A secure decentralised generalised transaction
ledger. Ethereum project yellow paper 151, 2014 (2014), 1-32.

Mark Zhandry. 2019. Quantum lightning never strikes the same state twice. In
Annual International Conference on the Theory and Applications of Cryptographic
Techniques. Springer, 408-438.

	Abstract
	1 Introduction
	1.1 Motivating Example: Signature Tokens
	1.2 Our Results
	1.3 Related Literature
	1.4 Notation

	2 Equivocal Collision Resistant Hash Functions
	2.1 Construction Relative to a Classical Oracle
	2.2 Collision Resistance
	2.3 Equivocality

	3 One-shot Chameleon Hash Functions
	3.1 Signature Delegation

	4 One-shot Signatures and Budget Signatures
	4.1 Budget Signatures

	5 Quantum Lightning and Quantum Money
	5.1 Construction
	5.2 Decentralized Cryptocurrency

	6 Ordered Signatures
	6.1 Key Evolving Signatures and Proof of Stake Blockchains
	6.2 Provably Secret Signing Keys
	6.3 From Ordered Signatures to Delayed Signatures

	7 Proofs of Quantumness and Min-Entropy
	7.1 Proofs of Quantumness
	7.2 Certifiable Min-Entropy

	References

