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Abstract. The quantum random oracle model (QROM) has become
the standard model in which to prove the post-quantum security of
random-oracle-based constructions. Unfortunately, none of the known
proof techniques allow the reduction to record information about the ad-
versary’s queries, a crucial feature of many classical ROM proofs, including
all proofs of indifferentiability for hash function domain extension.
In this work, we give a new QROM proof technique that overcomes
this “recording barrier”. We do so by giving a new “compressed oracle”
which allows for efficient on-the-fly simulation of random oracles, roughly
analogous to the usual classical simulation. We then use this new technique
to give the first proof of quantum indifferentiability for the Merkle-
Damgård domain extender for hash functions. We also give a proof
of security for the Fujisaki-Okamoto transformation; previous proofs
required modifying the scheme to include an additional hash term. Given
the threat posed by quantum computers and the push toward quantum-
resistant cryptosystems, our work represents an important tool for efficient
post-quantum cryptosystems.

1 Introduction

The random oracle model [BR93] has proven to be a powerful tool for heuristically
proving the security of schemes that otherwise lacked a security proof. In the
random oracle model (ROM), a hash function H is modeled as a truly random
function that can only be evaluated by querying an oracle for H. A scheme is
secure in the ROM if it can be proven secure in this setting. Of course, random
oracles cannot be efficiently realized; in practice, the random oracle is replaced
with a concrete efficient hash function. The hope is that the ROM proof will
indicate security in the real world, provided there are no structural weaknesses
in the concrete hash function.

Meanwhile, given the looming threat of quantum computers [IBM17], there
has been considerable interest in analyzing schemes for so called “post-quantum”
security [NIS17, Son14, ATTU16, CBH+17, YAJ+17, CDG+17, CDG+15]. Many
of the proposed schemes are random oracle schemes; Boneh et al. [BDF+11] argue
that the right way of modeling the random oracle in the quantum setting is to use
the quantum random oracle model, or QROM. Such a model allows a quantum
attacker to query the random oracle on a quantum superposition of inputs. The
idea is that a real-world quantum attacker, who knows the code for the concrete



hash function, can evaluate the hash function in superposition in order to perform
tasks such as Grover search [Gro96] or collision finding [BHT98]. In order to
accurately capture such real-world attacks, it is crucial to model the random
oracle to allow for such superposition queries. The quantum random oracle model
has been used in a variety of subsequent works to prove the post-quantum security
of cryptosystems [BDF+11, Zha12b, Zha15, TU16, Eat17].

The Recording Barrier. Unfortunately, proving security in the quantum random
oracle model can be extremely difficult. Indeed, in the classical random oracle
model, one can copy down the adversary’s queries as a means to learning what
points the adversary is interested in. Many classical security proofs crucially
use this information in order to construct a new adversary which solves some
hard underlying problem, reaching a contradiction. In the quantum setting, such
copying is impossible by no-cloning. One can try to record some information
about the query, but this amounts to a measurement of the adversary’s query
state which can be detected by the adversary. A mischievous adversary may
refuse to continue if it detects such a measurement, rendering the adversary
useless for solving the underlying problem. Because of the difficulty in reading
an adversary’s query, it also becomes hard to adaptively program the random
oracle, another common classical proof technique.

This difficulty has led authors to develop new quantum-sound proof tech-
niques to replace classical techniques, such as Zhandry’s small-range distribu-
tions [Zha12a] or Targhi and Unruh’s extraction technique [TU16]. These proof
techniques choose the oracle from a careful distribution that allows for proofs to
go through. However, every such proof technique always chooses a classical oracle
at the beginning of the experiment, and leave the oracle essentially unchanged
through the entire execution. The inability to change the oracle seems inherent,
since if the proof gives the adversary different oracles during different queries,
this is potentially easily detectable (even by classical adversaries)1

Constraining the oracles to be fixed functions seems to limit what can be
proved using such non-recording techniques. For example, Dagdelen, Fischlin, and
Gagliardoni [DFG13] show that such natural proof techniques are likely incapable
of proving the security of Fiat-Shamir2. This leads to a natural question: Is it
possible to record information about an adversary’s quantum query without the
adversary detecting

Enter Indifferentiability. The random oracle model (quantum or otherwise)
assumes the adversary treats the hash function as a monolithic object. Unfortu-
nately, hash functions in practice are usually built from smaller building blocks,
called compression functions. If one is not careful, hash functions built in this way

1 The one exception we are aware of is Unruh’s adaptive programming [Unr15]. This
proof does change the oracle adaptively, but only inputs for which adversary’s queries
have only negligible “weight”. Thus, the change is not detectable. The following
discussion also applies to Unruh’s technique.

2 We note that if the underlying building blocks are strengthened, Fiat-Shamir was
proven secure by Unruh [Unr16]

2



are vulnerable to attacks such as length-extension attacks. Coron et al. [CDMP05]
show that a hash function built from a compression function can be as good as
a monolithic oracle in many settings if it satisfies a notion of indifferentiability,
due to Maurer, Renner, and Holenstein [MRH04]. Roughly, in indifferentiability,
an adversary A has oracle access to both h and H, and the adversary is trying
to distinguish two possible worlds. In the “real world”, h is a random function,
and H is built from h according to the hash function construction. In the “ideal
world”, H is a random function, and h is simulated so as to be consistent with H.
A hash function is indifferentiable from a random oracle if no efficient adversary
can distinguish the two worlds.

Coron et al.’s proof of indifferentiability for Merkle-Damgard requires the
simulator to remember the queries that the adversary has made. This is actually
inherent for any domain extender, by a simple counting argument discussed below.
In the quantum setting, such recording presents a serious issue, as recording a
query is equivalent (from the adversary’s point of view) to measuring the query.
As any measurement will disturb the quantum system, such measurement may
be detectable to the adversary. Note that in the case where A is interacting
with a truly random h, there is no measurement happening. Therefore, if such
a measurement can be detected, the adversary can distinguish the two cases,
breaking indifferentiability.

Example. To illustrate what might go wrong, we will use the simple example from
Coron et al. [CDMP05]. Here, we will actually assume access to two independent
compression functions h0, h1 : {0, 1}2n → {0, 1}n. We will define H : {0, 1}3n →
{0, 1}n as H(x, y) = h1(h0(x), y), where x ∈ {0, 1}2n, y ∈ {0, 1}n.

To argue that H is indifferentiable from a random oracle, Coron et al. use the
following simulator S, which has access to H, and tries to implement the oracles
h0, h1. S works as follows:

– S keeps databases D0, D1, which will contain tuples (x, y). Db containing
(x, y) means that S has set hb(x) = y.

– h0 is implemented on the fly: every query on x looks up (x, y) ∈ D0, and
returns y if it is found; if no such pair is found, a random y is chosen and
returned, and (x, y) is added to D0.

– By default, h1 is answered randomly on the fly as in h0. However, it needs
to make sure that h1(h0(x), y) always evaluates to H(x, y), else it is trivial
to distinguish the two worlds. Therefore, on a query (z, y), h1 will check if
there is a pair (x, z) in D0 for some x. If so, it will reasonably guess that the
adversary is trying to evaluate H(x, y), and respond by making a query to
H(x, y). Otherwise it will resort to the default simulation.

Note that by defining the simulator in this way, if the adversary ever tries to
evaluate H on (x, z) by first making a query x to h0 to get y, and then making a
query (y, z) to h1, the simulator will correctly set the output of h1 to H(x, z), so
that the adversary will get a result that is consistent with H. However, note that
it is crucial that S wrote down the queries made to h0, or else it will not know
which point to query H when simulating h1.
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Now consider a quantum adversary. A quantum query to, say, h0 will be the
following operation:

∑

x∈{0,1}2n,u∈{0,1}n

αx,u|x, u〉 7→
∑

x∈{0,1}2n,u∈{0,1}n

αx,u|x, u⊕ h0(x)〉

Now, imagine our simulator trying to answer queries to h0 in superposition.
For simplicity, suppose this is the first query to h0, so D0 is empty. The natural
approach is to just have S store its database D0 in superposition, performing a
map that may look like |x, u〉 7→ |x, u⊕ y〉 ⊗ |x, y〉, where y is chosen randomly,
and everything to the right of the ⊗ is the simulators state.

But now consider the following query by an adversary. It sets up the uniform
superposition

∑

x,u |x, u〉 and queries. In the case where h0 is a classical function,
then this state becomes

∑

x,u

|x, u⊕ h0(x)〉 =
∑

x,u

|x, u〉

Namely, the state is unaffected by making the query. In contrast, the simulated
query would result in

∑

x,u

|x, u⊕ y〉 ⊗ |x, y〉

Here, the adversary’s state is now entangled with the simulator’s. It is straight-
forward to detect this entanglement by applying the Quantum Fourier Transform
(QFT) to the adversary’s x registers, and then measuring the result. In the case
where the adversary is interacting with a random h0, the QFT will result in a 0.
In the simulated case, the QFT will result in a random string. These two cases
are therefore easily distinguishable.

To remedy this issue, prior works in the quantum regime have abandoned
on-the-fly simulation, instead opting for stateless simulation. Here, the simulator
commits to a function to implement the oracle in the very beginning, and then
sticks with this implementation throughout the entire experiment. Moreover, the
simulator never records any information about the adversary’s query, lest the
adversary detect the entanglement with the simulator. This will certainly fix the
issue above, and by carefully choosing the right implementations prior works
have shown how to translate many classical results into the quantum setting.

However, for indifferentiability, choosing a single fixed function for h0 intro-
duces new problems. Now when the adversary makes a query to h1, the simulator
needs to decide if the query represents an attempt at evaluating H, and if so,
it must program the output of h1 accordingly. However, without knowing what
inputs the adversary has queried to h0, it seems impossible for the simulator
to determine which point the adversary is interested in. For example, if the
adversary queries h1 on (y, z), there will be roughly 2n possible x that gave rise
to this y (since h0 is compressing). Therefore, the simulator must choose from
one of 2n inputs of the form (x, z) on which to query H.

To make matters even more complicated, an adversary can submit the uniform
superposition

∑

x |x, 0〉, resulting in the state
∑

x |x, h0(x)〉, which causes it to
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“learn” y = h0(x). At this point, the simulator should be ready to respond to an h1

query on (y, z) by using x, meaning the simulator must be entangled with x. Then,
at some later time, the adversary can query again on the state

∑

x |x, h0(x)〉,
resulting in the original state

∑

x |x, 0〉 again. The adversary can test that it
received the correct state using the quantum Fourier transform. Therefore, after
this later query, the simulator must be un-entangled with x. Even more complex
strategies are possible, where the adversary can compute and un-compute h0 in
stages, so as to try to hide what it is doing from any potential simulator.

These issues are much more general than just the simple domain extender
above. Indeed, even classically domain extension with a stateless simulator is
impossible, by the following simple argument. Suppose there is a hash function
H : {0, 1}M → {0, 1}N built from a compression function h : {0, 1}m → {0, 1}n

as H = Ch for an oracle circuit C. Let L = M + log2 N, ` = m+ log2 n. Then
L, ` represent the logarithm of the size of the truth tables for H,h. Since we
are domain extending, we are interested in the case where L� `. Suppose even
L ≥ `+ 0.001.

Suppose toward contradiction that h can be simulated statelessly, which we
will represent as SimH (since the function can make H queries). Then h has a
truth table of size 2`. In the real world, H agrees with Ch on all inputs; therefore
in order for indifferentiability to hold, in the simulated world a uniformly random
H must agree with Ch = CSim

H

on an overwhelming fraction of inputs. But
this is clearly impossible, as it would allow us to compress the random truth
table of H: simply output the truth table for SimH , along with the ε fraction
of of input/output pairs where H and CSim

H

disagree. The total length of this
compressed truth table is 2` + (ε2M )(MN) = 2` + εN2L. As ε is negligible (and
therefore much smaller than 1/N) the compressed truth table will be smaller
than 2L, the size of the truth table for H. But since H is a random function its
truth table cannot be compressed, reaching a contradiction.

Therefore, any simulator for indifferentiability, regardless of the scheme, must
inherently store information about the adversary. But the existing QROM tech-
niques are utterly incapable of such recording. We therefore ask: Is indifferentiable
domain extension even possible?

1.1 This Work

In this work, perhaps surprisingly, we answer the question above in the affirmative.
Namely, we give a new compressed oracle technique, which allows for recording the
adversary’s queries in a way that the adversary can never detect. The intuition is
surprisingly simple: an adversary interacting with a random oracle can be thought
of as being entangled with a uniform superposition of oracles. As entanglement
is symmetric, if the adversary ever has any information about the oracle, the
oracle must also have information about the adversary. Therefore a simulator can
always record some information about the adversary, if done carefully.

We then use the technique to prove the indifferentiability of the Merkle-
Damgård construction. We believe our new technique will be of independent
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interest; for example our technique can be used to prove the security of the
Fujisaki-Okamoto transformation [FO99], and also gives very short proofs of
several quantum query lower bounds.

The Compressed Oracle Technique. In order to prove indifferentiability, we devise
a new way of analyzing quantum query algorithms

Consider an adversary interacting with an oracle h : {0, 1}m → {0, 1}n. It is
well established that the usual quantum oracle mapping |x, y〉 7→ |x, y ⊕ h(x)〉
is equivalent to the “phase” oracle, which maps |x, u〉 7→ (−1)u·h(x)|x, u〉 (we
discuss this equivalence in Section 3). For simplicity, in this introduction we will
focus on the phase oracle, which is without loss of generality.

Next, we note that the oracle h being chosen at random is equivalent (from
the adversary’s point of view) to h being in uniform superposition

∑

h |h〉. Indeed,
the superposition can be reduced to a random h by measuring, and measuring
the h registers (which is outside of A’s view) is undetectable to A. To put another
way, the superposition over h is a purification of the adversary’s mixed state.

Therefore, we will imagine the h oracle as containing
∑

h |h〉. When A makes
a query on

∑

x,u αx,u|x, u〉, the joint system of the adversary and oracle are

∑

x,u

αx,u|x, u〉 ⊗
∑

h

|h〉

The query introduces a phase term (−1)u·h(x), so the joint system becomes
∑

x,u

αx,u|x, u〉 ⊗
∑

h

|h〉(−1)u·h(x)

We normally think of the phase as being returned to the adversary, but the
phase really affects the entire system, so it is equivalent to think of the phase as
being added to the oracle’s state.

Now, we will think of h as a vector of length 2m × n by simply writing down
h’s truth table. We will think of each x, u pair as a point function Px,u which
outputs u on x and 0 elsewhere. Using our encoding of functions as vectors, we
can write u · h(x) as Px,u · h. We can therefore write the post-query state as

∑

x,u

αx,u|x, u〉 ⊗
∑

h

|h〉(−1)h·Px,u

In general, the state after making q queries can be written as
∑

x1,...,xq,u1,...,uq

αx1,...,xq,u1,...,uq
|ψx1,...,xq,u1,...,uq

〉 ⊗
∑

h

|h〉(−1)h·(Px1,u1
+···+Pxq,uq )

Next, notice that by applying the Quantum Fourier transform to h, the h
registers will now contain (Px1,u1

+ · · ·+ Pxq,uq
) mod 2. Working in the Fourier

domain, we see that each query simply adds Px,u (modulo 2) to the result. In
the Fourier domain, the initial state is 0.

Therefore, from A’s point of view, it is indistinguishable whether the oracle
for h is a random oracle, or it is implemented as follows:
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– The oracle keeps as state a vector D ∈ {0, 1}n×2m

, initially set to 0.
– On any oracle query, the oracle performs the map |x, u〉 ⊗ |D〉 7→ |x, u〉 ⊗
|D ⊕ P (x, u)〉

Thus, with this remarkably simple change in perspective, the oracle can
actually be implemented by recording and updating phase information about the
queries being in made.

We can now take this a couple steps further. Notice that after q queries, D is
non-zero on at most q inputs (since it is the sum of q point functions). Therefore,
we can store the database in an extremely compact form, namely the list of (x, y)
pairs where y = D(x) and y 6= 0. Notice that this allows us to efficiently simulate
a random oracle, without an a priori bound on the number of queries. Previously,
simulating an unbounded number of queries efficiently required computational
assumptions, and simulation was only computationally secure. In contrast, simu-
lating random oracles exactly required 2q-wise independent functions [Zha12b]
and hence required knowing q up front. We therefore believe this simulation will
have independent applications for the efficient simulation of quantum oracles.
We will call this the compressed Fourier oracle.

We can then take our compressed Fourier oracle, and convert it back into
a primal-domain oracle. Namely, for each (x, y) pair, we perform the QFT on
the y registers. The result is a superposition of databases of (x,w) pairs, where
w roughly represents h(x). For any pair not in the database, h(x) is implicitly
a uniform superposition of inputs independent of the adversary’s view. We call
this the compressed standard oracle. It intuitively represents what the adversary
knows about the function h: if (x, y) is in the database then the adversary “knows”
h(x) = y, and otherwise, the adversary “knows” nothing about h(x). In Section 3,
we show how to directly obtain the compressed standard oracle.

Applying Compressed Oracles to Indifferentiability. The compressed standard
oracle offers a simple way to keep track of the queries the adversary has made.
In particular, it tracks exactly the kind of information needed in the classical
indifferentiability proof above, namely whether or not a particular value has
been queried by the adversary, and what the value of the oracle at that point
is. We use this to give a quantum indifferentiability proof for Merkle-Damgård
construction using prefix-free encodings [CDMP05].

To illustrate our ideas, consider our simple example above with h0, h1 and
H. Our simulator will simulate h0 as in the compressed standard oracle, keeping
a (superposition over) lists D0 of (x, y) pairs. Next, our simulator must handle
h1 queries. When given a phase query |y, z〉, the simulator does the following.
If first looks for a pair (x, y′) in D0 with y′ = y. If one is found, it reasonably
guesses that the adversary is interested in computing H(x, z), and so it makes a
query on (x, z) to H. Otherwise, it is reasonable to guess that the adversary is
not trying to compute H on any input, since the adversary does not “know” any
inputs to h0 that would result in a query to h1 on (y, z).

While the above appears to work, we need to make sure the simulator does
not disturb the compressed oracle. Unfortunately, some disturbance is necessary.
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Indeed, determining the value of h0(x) is a measurement in the primal domain.
On the other hand, the update procedure for the compressed oracles needs to
decide whether or not x belongs in the database, and this corresponds to a
measurement in the Fourier domain (since in the Fourier domain, h0(x) must
be non-zero). These two measurements do not commute, so by the uncertainty
principle it is impossible to perform both measurements perfectly.

Nonetheless, we show that the errors are small. Intuitively, we observe that
the simulator does not actually need to know the entire value of h0(x), just
whether or not it is equal to y. We call such information a “test”. Similarly, the
compressed oracle implementation just needs to know whether or not h0(x) is
equal to 0, but in the Fourier domain.

Now, these primal and Fourier tests still do not commute. Fortunately, they
“almost” commute, which we formalize in the full version [Zha18]. The intuition
is that, if a primal test of the form “is h0(x) = y” has a non-negligible chance
of succeeding, h0(x) must be very “far” from the uniform superposition. This
is because a uniform superposition puts an exponentially small weight on every
outcome. Recall that the uniform superposition maps to h0(x) = 0 in the Fourier
domain. Thus by being “far” from uniform, the Fourier domain test has a
negligibly-small chance of succeeding. Therefore, one of the two tests is always
“almost” determined, meaning the measurement negligibly affects the state. This
means that, no matter what initial state is, the two tests “almost” commute.

Thus, the simulator can perform these tests without perturbing the state
significantly. This shows that h0 queries are correctly simulated; we also need to
show that h1 queries are correctly simulated and consistent with H. The intuition
above suggests that h1 should be consistent with H, and indeed in Section 5 we
show this using a careful sequence of hybrids. Then in the full version [Zha18],
we use the same ideas to prove the indifferentiability of Merkle-Damgård.

The Power of Forgetting. Surprisingly, our simulator ends up strongly resembling
the classical simulator. It is natural to ask, therefore, how the simulator gets
around the difficulties outlined above.

First, notice that if we translate the query
∑

x,u |x, u〉 in our example to a
phase query, it becomes

∑

x |x, 0〉. This query has no effect on the oracle’s state.
This means the oracle remains un-entangled with the adversary, as desired.

Second, a query
∑

x |x, 0〉 becomes
∑

x,u |x, u〉 for a phase query. Consider
applying the query to the compressed Fourier oracle. The joint quantum system
of the adversary and simulator becomes

∑

x,u 6=0

|x, u〉|{(x, u)}〉+
∑

x

|x, 0〉|{}〉

A similar expression holds for the compressed standard oracle. Note that the
simulator can clearly tell (whp) that the adversary has queried on x. Later, when
the adversary queries on the same state a second time, (x, u) will get mapped
to (x, 0), and will hence be removed from the database. Thus, after this later
query, the database contains no information about x. Hence, the adversary is
un-entangled with x, and so it’s tests will output the correct value.
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Ultimately then, the key difference between our simulator and the natural
quantum analog of the classical simulator is that our simulator must be ready to
forget some of the oracle points it simulated previously. By implementing h0 as a
compressed oracle, it will forget exactly when it needs to so that the adversary
can never detect that it is interacting with a simulated oracle.

Other results We expect our compressed oracle technique will have applications
beyond indifferentiability. Here, we list two additional sets of results we are able
to obtain using our technique:

Post-quantum security of Fujisaki-Okamoto. The Fujisaki-Okamoto transforma-
tion [FO99] transforms a weak public key encryption scheme into a public key
encryption scheme that is secure against chosen ciphertext attacks, in the random
oracle model. Unfortunately, the classical proof does not work in quantum random
oracle model, owing to similar issues with indifferentiability proofs. Namely, in
one step of the proof, the reduction looks at the queries made by the adversary in
order to decrypt chosen ciphertext queries. This is crucial to allow the reduction
to simulate the view of the adversary without requiring the secret decryption
key. But in the quantum setting, it is no longer straightforward to read the
adversary’s queries without disrupting its state.

Targhi and Unruh [TU16] previously modified the transformation by including
an additional random oracle hash in the ciphertext. In the proof, the hash function
is set to be injective, and the reduction can invert the hash in order to decrypt.

In the full version [Zha18], we show how to adapt our compressed oracle
technique to prove the security of the original transform without the extra hash.
In addition, we show security against even quantum chosen ciphertext queries,
thus proving security in the stronger model of Boneh and Zhandry [BZ13]. We note
that recently, Jiang et al. [JZC+18] proved the security of the FO transformation
when used as a key encapsulation mechanism. Their proof is tight, whereas ours
is somewhat loose. On the other hand, we note that their proof does not apply if
FO is used directly as an encryption scheme, and does not apply in the case of
quantum chosen ciphertext queries.

Simple Quantum Query Complexity Lower Bounds. We also show that our
compressed oracles can be used to give very simple and optimal quantum query
complexity lower bounds for problems for random functions, such as pre-image
search, collision finding, and more generally k-SUM.

Our proof strategy is roughly as follows. First, since intuitively the adversary
has no knowledge of values of h outside of D, except with very small probability
any successful algorithm will output points in D. Therefore it suffices to bound
the number of queries required to get D to contain a pre-image/collision/k-sum.

For pre-image search, we re-prove the optimal lower bound of Ω(2n/2) queries
of [BBBV97], but for random functions; note that pre-image search for random
functions and worst-case functions is equivalent using simple reductions. The
proof appears superficially similar to [BBBV97]: we show that each query can
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increase the “amplitude” on “good” databases by a small O(2−n/2) amount. After
q queries, this amplitude becomes O(q/2n/2), which we then square to get the
probability of a “good” database. The proof is only slightly over a page once the
compressed oracle formalism has been given.

We then re-prove the optimal collision lower bound of Ω(2n/3) queries for
random functions, matching the worst case bound [AS04] and the more recent
average case bound [Zha15]. Remarkably, our proof involves only a few lines
of modification to the pre-image lower bound. We show that the amplitude on
“good” databases increases by O(

√
q × 2n/2) for each query, where the extra

√
q

intuitively comes from the fact that the database has size at most q, giving q
opportunities for a collision every time a new entry is added to the database3.

In contrast to our very simple extension, the prior collision bounds involved
very different techniques and were much more complicated. Also note that prior
works could not prove directly that finding collisions were hard. Instead, they show
that distinguishing a function with many collisions from an injective function
was hard. This then only works directly for expanding functions, which are of
little interest to cryptographers. Zhandry [Zha15] shows for random functions a
reduction from expanding functions to compressing functions, giving the desired
lower bound for compressing functions. Our proof, in contrast, works directly
with functions of arbitrary domain and range. These features suggests that our
proof technique is fundamentally different than those of prior works.

By generalizing our collision bound slightly, we can obtain an Ω(2n/(k+1))
lower bound for finding a set of distinct points x1, . . . , xk such that

∑

i H(xi) = 0.
This bound is tight as long as n ≤ km by adapting the collision-finding algorithm
of [BHT98] to this problem. Again, our proof is obtained by modifying just a
few lines of the pre-image search proof.

1.2 Related Works

Ristenpart, Shacham, and Shrimpton [RSS11] shows that indifferentiability is
insufficient for replacing a concrete hash function with a random oracle in
the setting of multi-stage games. Nonetheless, Mittelbach [Mit14] shows that
indifferentiability can still be useful in these settings. Exploring the quantum
analogs of these results is an interesting direction for future research.
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3 and the square root comes from the fact that the norm of the sum of q unit vectors
of disjoint support is

√

q
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2 Preliminaries

Distinguishing quantum states. The density matrix captures all statistical infor-
mation about a mixed state. That is, if two states have the same density matrix,
then they are perfectly indistinguishable.

For density matrices ρ, ρ′ that are not identical, we define the trace distance as
T (ρ, ρ′) = 1

2

∑

i |λi|, where λi are the eigenvalues of ρ−ρ′. The trace distance cap-
tures the maximum distinguishing advantage amongst all possible measurements
of the state.

We will need the following Theorem of Bennett et al. (which we have slightly
improved, see full version [Zha18] for the improved proof):

Lemma 1 ([BBBV97]). Let |φ〉 and |ψ〉 be quantum states with Euclidean
distance ε. Then T (|φ〉〈φ|, |ψ〉〈ψ|) = ε

√

1− ε2/4 ≤ ε.
We will also need the following relaxation of commuting operations:

Definition 1. Let U0, U1 be unitaries over the same quantum system. We say
that U0, U1 ε-almost commute if, for any initial state ρ, the images of ρ under
U0U1 and U1U0 are at most ε-far in trace distance.

3 Oracle Variations

Here, we describe several oracle variations. The oracles will all be equivalent; the
only difference is that the oracle registers and/or the query registers are encoded
in different ways between queries. We start with the usual quantum random
oracle, which comes in two flavors that we call the standard oracle and phase
oracle. Then we will give our compressed standard and phase oracles.

Standard Oracle. Here, the oracle H : {0, 1}m → {0, 1}n is represented as its
truth table: a vector of size 2m where each component is an n-bit string.

The oracle takes as input a state consisting of three sets of registers: m-
qubit x registers representing inputs to the function, n-qubit y registers for
writing the response, and n2m-qubit H registers containing the truth table
of the actual function. The x, y registers come from the adversary, and the
H registers are the oracle’s state, which is hidden from the adversary accept
by making queries. On basis states |x, y〉 ⊗ |H〉, the oracle performs the map
|x, y〉 ⊗ |H〉 7→ |x, y ⊕H(x)〉 ⊗ |H〉

For initialization, the oracle H will be initialized to the uniform superposition
over all H: 1√

2m×2n

∑

H |H〉. We will call this oracle StO.
The only difference between StO and the usual quantum random oracle model

is that, in the usual model, H starts out as a uniformly chosen random function
rather than a superposition (that is, the H registers are the completely mixed
state). We will call the oracle with this different initialization StO′.

Lemma 2. StO and StO′ are perfectly indistinguishable. That is, for any adver-
sary A making oracle queries, let AStO() and AStO

′

() denote the algorithm inter-
facing with StO and StO′, respectively. Then Pr[AStO() = 1] = Pr[AStO

′

() = 1]

11



Proof. This can be seen by tracing out the oracle registers. The mixed state of
the adversary in both cases will be identical. ut

Thus, our initialization is equivalent to H being a uniformly random oracle.

Phase Oracle. We will also consider the well-known phase model of oracle queries.
This model technically offers a different interface to the adversary, but can be
mapped to the original oracle by simple Hadamard operations.

The oracle takes as input a state consisting of three sets of registers: x registers
representing inputs to the function, z phase registers, and H registers containing
the truth table of the actual function. On basis states |x, y〉 ⊗ |H〉, it performs
the map |x, z〉 ⊗ |H〉 7→ (−1)y·H(x)|x, z〉 ⊗ |H〉.

For initialization, H is the uniform superposition as before. We will call this
oracle PhO. Analogous to the above, this is equivalent to the case where H is
uniformly random. The following Lemma is implicit in much of the literature on
quantum-accessible oracles:

Lemma 3. For any adversary A making queries to StO, let B be the adversary
that is identical to A, except it performs the Hadamard transformation H⊗n

to the response registers before and after each query. Then Pr[AStO() = 1] =
Pr[BPhO() = 1]

Compressed Standard Oracles. We now define our compressed standard oracles.
The intuition for our compressed standard oracle is the following. Let |τ〉 be the
uniform superposition. In the standard (uncompressed) oracle, suppose for each
of the 2m output registers, we perform the computation mapping |τ〉 7→ |τ〉|1〉
and |φ〉 7→ |φ〉|0〉 for any |φ〉 orthogonal to |τ〉. In other words, this computation
tests whether or not the state of the output registers is 0 in the Fourier basis. We
will write the output of the computation in some auxiliary space. Now the state
of the oracle is a superposition over truth tables, and a superposition over vectors
in {0, 1}2m

containing the output of the tests. A straightforward exercise (and
a consequence of our analysis below) shows that if we perform these tests after
q queries, all vectors in the test vector superposition have at most q positions
containing a 0. The reason is, roughly, if we do the tests before any queries the
vector will be identically 1 since we had a uniform superposition (which is 0 in
the Fourier basis). Then, each query affects only one position of the superposition,
increasing the number of 0’s by at most 1.

Also notice that anywhere the vector contains a 1, the corresponding truth
table component contains exactly the uniform superposition |τ〉. Anywhere the
vector contains a 0, the corresponding truth table component contains a state
that is guaranteed to be orthogonal to |τ〉.

What we can do then is compress this overall state. We will simply write
down all the positions where the test vector contained a 0, and keep track of the
truth table component for that position. Everywhere else we can simply ignore
since we know what the truth table contains. The result is a (superposition over)
database consisting of at most q input/output pairs.

12



In more detail, a database D will be a collection of (x, y) pairs, where
(x, y) ∈ D means the function has been specified to have value y on input x. We
will write D(x) = y in this case. If, for an input x there is no pair (x, y) ∈ D,
then we will write D(x) = ⊥, indicating that the function has not been specified.
We will maintain that a database D only contains at most one pair for a given x.

Concretely, if we have an upper bound t on the number of specified points, a
database D will be represented an element of the set St, where S = ({0, 1}m ∪
{⊥})×{0, 1}n. Each value in S is an (x, y) pair; if x 6= ⊥ the pair means D(x) = y,
and x = ⊥ means the pair is unused. For x1 < x2 < · · · < x` and y1, . . . , y`, the
database representing that input xi has been set to yi for i ∈ [`], with all other
points unspecified, will be represented as:

((x1, y1), (x2, y2), . . . , (x`, y`), (⊥, 0n), . . . , (⊥, 0n))

where the number of (⊥, 0n) pairs is equal to t− `.
After query q, the state of the oracle will be a superposition of databases in

this form, using the upper bound t = q. So initially the state is empty. We will
maintain several invariants:

– For any database in the support of the superposition, for any (x, y) pair
where x = ⊥, we have that y = 0n. All (⊥, 0n) pairs are at the end of the list.

– For any database in the support of the superposition, if (x, y) occurs before
(x′, y′), it must be that x < x′.

– For any of the ` positions that have been specified, the y registers are in a
state that is orthogonal to the uniform superposition |τ〉 (indicating that in
the Fourier domain, the registers do not contain 0).

We also need to describe several procedures on databases. Let |D| be the
number of pairs (x, y) ∈ D for x 6= ⊥. For a database D with |D| < t and
D(x) = ⊥, write D ∪ (x, y) to be the new database obtained by adding the pair
(x, y) to D, inserting in the appropriate spot to maintain the ordering of the x
values. Since |D| was originally less than t, there will be at least one (⊥, 0n) pair,
which is deleted. Therefore, the overall number of pairs (including ⊥s) in D and
D ∪ {(x, y)} are the same.

Before describing how to process a query, we need to describe a local de-
compression procedure StdDecompx which acts on databases. This is a unitary
operation. It suffices to describe its action on a set of orthonormal states. Let t
be the current upper bound on the number of set points.

– For D such that D(x) = ⊥ and |D| < t,

StdDecompx|D〉 =
1√
2n

∑

y

|D ∪ (x, y)〉

That is, StdDecompx inserts into D the pair (x, |τ〉). This corresponds to
decompressing the value of the database at position x

13



– For D such that D(x) = ⊥ and |D| = t, StdDecompx|D〉 = |D〉. This means,
if there is no room to expand for decompression, StdDecompx does nothing.
Note that these states are illegal and StdDecompx will never by applied to
such states.

– For a D′ such that D′(x) = ⊥ and |D′| < t,

StdDecompx

(

∑

y

(−1)z·y|D′ ∪ (x, y)〉〉
)

=
∑

y

(−1)z·y|D′ ∪ (x, y)〉〉 for z 6= 0

StdDecompx

(

1√
2n

∑

y

|D′ ∪ (x, y)〉〉
)

= |D′〉

In other words, if D already is specified on x, and moreover if the corre-
sponding y registers are in a state orthogonal to |τ〉 (meaning they do not
contain 0 in the Fourier domain), then there is no need to decompress and
StdDecompx is the identity. On the other hand, if D is specified at x and the
corresponding y registers are in the state |τ〉, StdDecompx will remove x and
the y register superposition from D.

Note that the left-hand sides of last two cases form an orthonormal basis for
the span of |D〉 such that D(x) 6= ⊥. The left-hand sides of the first two cases
form an orthonormal basis for the remaining D. Thus, StdDecompx is defined on
an orthonormal basis, which by linearity defines it on all states. The right-hand
sides are the same basis states just in a different order. As such, this operation
maps orthogonal states to orthogonal states, and is therefore unitary. Note that
StdDecompx is actually an involution, as applying it twice results in the identity.
Let StdDecomp be the related unitary operating on a quantum system over
x, y,D states, defined by it’s action on the computational basis states as:

|x, y〉 ⊗ |D〉 = |x, y〉 ⊗ StdDecompx|D〉
In other words, in superposition it applies StdDecompx to |D〉, where x is

taken from the x registers.
For some additional notation, we will take y ⊕ ⊥ = y and y · ⊥ = 0. Let

Increase be theprocedure which initializes a new register |(⊥, 0n)〉 and appends
it to the end. In other words, Increase|x, y〉 ⊗ |D〉 = |x, y〉 ⊗ |D〉|(⊥, 0n)〉, where
|D〉|(⊥, 0n)〉 is interpreted as a database computing the same partial function as
D, but with the upper bound on number of points increased by 1.

Let CStO′,CPhsO′ be unitaries defined on the computational basis states as

CStO′|x, y〉 ⊗ |D〉 = |x, y ⊕D(x)〉 ⊗ |D〉
CPhsO′|x, y〉 ⊗ |D〉 = (−1)y·D(x)|x, y〉 ⊗ |D〉

Finally, we describe the CStO and CPhsO oracles:

CStO = StdDecomp ◦ CStO′ ◦ StdDecomp ◦ Increase

CPhsO = StdDecomp ◦ CPhsO′ ◦ StdDecomp ◦ Increase

14



In other words, increase the bound on the number of specified points, then
uncompress at x (which is ensured to have enough space since we increased the
bound), apply the query (which is ensured to be specified since we decompressed),
and then re-compress.

Lemma 4. CStO and StO are perfectly indistinguishable. CPhsO and PhO are
perfectly indistinguishable. That is, for any adversary A, we have Pr[ACStO() =
1] = Pr[AStO() = 1], and for any adversary B, we have Pr[BCPhsO() = 1] =
Pr[APhO() = 1].

Proof. We prove the case for CStO and StO, the other case being almost identical.
We prove security through a sequence of hybrids.

Hybrid 0. In this case, the adversary interacts with StO. That is, the oracle’s
database is initialized to the uniform superposition over all H, and each query
performs the unitary mapping |x, y〉 ⊗ |H〉 7→ |x, y ⊕H(x)〉 ⊗ |H〉.

Hybrid 1. In this hybrid, we use a slightly different way of representing the
function H. Instead of writing H as a truth table, we represent it as a complete
database D = ((0, H(0)), (1, H(1)), . . . , (2m − 1, H(2m − 1))). Here, the upper
bound on the number of determined points is exactly 2m. The oracle’s state
starts out as

1√
2n2m

∑

H

|((0, H(0)), (1, H(1)), . . . , (2m − 1, H(2m − 1)))〉

The update procedure for each query is simply CStO′, meaning that each query
maps |x, y〉 ⊗ |((0, H(0)), (1, H(1)), . . . , (2m − 1, H(2m − 1)))〉 to |x, y ⊕H(x)〉 ⊗
|((0, H(0)), (1, H(1)), . . . , (2m − 1, H(2m − 1)))〉.

Hybrid 1 is identical to Hybrid 0, except that we have inserted the input
points 1, . . . , 2m − 1 into the oracle’s state, which has no effect on the adversary.

Hybrid 2. Next, introduce a global decompression procedure StdDecomp′, which
applies StdDecompx for all x in the domain, one at a time from 0 up to 2m − 1.

We observe that when the upper bound on determined points is 2m, then
StdDecompx commutes with StdDecompx′ for any x, x′. This readily follows from
the fact that when the upper bound is t = 2m, D(x) = ⊥ implies |D| < t.

In Hybrid 2, the oracle starts out as the empty database with upper bound
2m. Then, each query is implemented as StdDecomp′ ◦ CStO′ ◦ StdDecomp′.

Notice that StdDecomp′ only affects the oracle’s registers and therefore com-
mutes with the any computation on the adversary’s side. Also notice that between
each two queries, StdDecomp′ is applied twice and that it is an involution. There-
fore the two applications cancel out. At the beginning, StdDecomp′ is applied to
an empty database, which maps it to the uniform superposition

1√
2n2m

∑

H

|((0, H(0)), (1, H(1)), . . . , (2m − 1, H(2m − 1)))〉

before the first application of CStO′. Therefore, this hybrid is perfectly indistin-
guishable from Hybrid 1.
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Hybrid 3. This hybrid applies StdDecomp ◦ CStO′ ◦ StdDecomp for each query.
To prove indistinguishability from Hybrid 2, consider a database D with

upper bound 2m but where |D| = ` for some ` ≤ 2m. Notice that for any D′ in
the support of StdDecompx′ |D〉, D′(x) = D(x) for all x 6= x′. This means

CStO′ ◦ StdDecompx′ (|x, y〉 ⊗ |D〉) = StdDecompx′ (|x, y ⊕D(x)〉 ⊗ |D〉)
= StdDecompx′ ◦ CStO′(|x, y〉 ⊗ |D〉)

In other words, when the query register contains x 6= x′, StdDecompx′ and
CStO′ commute. Therefore,

StdDecomp′ ◦ CStO′ ◦ StdDecomp′(|x, y〉 ⊗ |D〉)
= StdDecompx ◦ CStO′ ◦ StdDecompx(|x, y〉 ⊗ |D〉)
= StdDecomp ◦ CStO′ ◦ StdDecomp(|x, y〉 ⊗ |D〉)

This shows that Hybrid 2 and Hybrid 3 are identical.

Hybrid 4. Finally, this hybrid is the compressed standard oracle: the oracle’s
state starts out empty, and CStO is applied for each query.

To prove equivalence, first notice that for any x, y,D, StdDecomp ◦ CStO′ ◦
StdDecomp(|x, y〉 ⊗ |D〉) has support on databases D′ such that |D′| ≤ |D|+ 1.
Indeed, all D′ are defined on the same inputs except for possibly the input x.

This means that after q queries in Hybrid 3, the oracle’s registers only have
support on D containing at most q defined points; the remaining ≥ 2m− q points
are all (⊥, 0n). Therefore, we can discard all but the first q pairs in D, without
affecting the adversary’s state. The result is identical to Hybrid 4. ut

In the full version [Zha18], we give several more oracle variations; while not
used in this work, they may be useful in other settings. These variations also
provide an alternative way to arrive at the compressed standard oracles.

3.1 A Useful Lemma

Here, we provide a lemma which relates the adversary’s knowledge of an oracle
output to the probability that point appears in the compressed oracle database.
This lemma is proved in the full version [Zha18], and follows from a straightforward
(albeit delicate) analysis off the action of CStO.

Lemma 5. Consider a quantum algorithm A making queries to a random oracle
H and outputting tuples (x1, . . . , xk, y1, . . . , yk, z). Let R be a collection of such
tuples. Suppose with probability p, A outputs a tuple such that (1) the tuple is in
R and (2) H(xi) = yi for all i. Now consider running A with the oracle CStO,
and suppose the database D is measured after A produces its output. Let p′ be
the probability that (1) the tuple is in R, and (2) D(xi) = yi for all i (and in
particular D(xi) 6= ⊥). Then

√
p ≤ √p′ +

√

k/2n
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4 Quantum Query Bounds Using Compressed Oracles

In this section, we re-prove several known query complexity lower bounds, as well
as provide some new bounds. All these bounds follow from simple applications of
our compressed oracles.

4.1 Optimality of Grover Search

Here, we re-prove that the quadratic speed-up of Grover search is optimal.
Specifically, we prove that for a random function H : {0, 1}m → {0, 1}n, any
q query algorithm has a success probability of at most O(q2/2n) for finding a
pre-image of 0n (or any fixed value).

Theorem 1. For any adversary making q queries to CStO or CPhsO and an
arbitrary number of database read queries, if the database D is measured after
the q queries, the probability it contains a pair of the form (x, 0n) is at most
O(q2/2n).

Proof. Let 0n ∈ D mean that D contains a pair of the form (x, 0n). The com-
pressed oracle’s database starts out empty, so the probability 0n ∈ D is zero.
We will show that the probability cannot rise too much with each query. We
consider compressed phase queries, CPhsO. Compressed standard queries are
handled analogously. Consider the joint state of the adversary and oracle just
before the qth CPhsO query:

|ψ〉 =
∑

x,y,z,D

αx,y,z,D|x, y, z〉 ⊗ |D〉

Where D represents the compressed phase oracle, x, y as the query registers,
and z as the adversary’s private storage. Define P as the projection onto the span
of basis states |x, y, z〉 ⊗ |D〉 such that 0n ∈ D. Our goal will be to relate the
norms of P |ψ〉 (the magnitude before the query) to P ·CPhsO|ψ〉 (the magnitude
after the query).

Define projections Q onto states such that (1) 0n /∈ D (meaning the database
does not yet contain 0n), (2) y 6= 0 (meaning CPhsO will affect D), and (3)
D(x) = ⊥ (meaning D has not yet been specified at x). Define projection R onto
states such that 0n /∈ D, y 6= 0 and D(x) 6= ⊥; projection S onto states such that
0n /∈ D, y = 0. Then P +Q+R+ S = I.

Consider Q|ψ〉. CPhsO maps basis states |x, y, z〉⊗ |D〉 in the support of Q|ψ〉
to |x, y, z〉 ⊗ 1√

2n

∑

w(−1)y·w|D ∪ (x,w)〉. Since 0n /∈ D, applying P to this state

will yield |x, y, z〉⊗ 1√
2n
|D∪ (x, 0n)〉. Notice that the images of the different basis

states are orthogonal. Therefore, ‖P · CPhsO ·Q|ψ〉‖ = 1√
2n
‖Q|ψ〉‖.

For basis vectors in the support of R, we must have D(x) /∈ {⊥, 0n}. Let D′

be the database with x removed, and write D = D′ ∪ (x,w) for w = D(x). Then
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some algebraic manipulations show that CPhsO|x, y, z〉 ⊗ |D′ ∪ (x,w)〉 is:

|x, y, z〉 ⊗
(

(−1)y·w
(

|D′ ∪ (x,w)〉+
1√
2n
|D′〉

)

+
1

2n

∑

y′

(1− (−1)y·w − (−1)y·y′

)|D′ ∪ (x, y′)〉
)

Then P · CPhsO|x, y, z〉 ⊗ |D′ ∪ (x,w)〉 = −(−1)y·w

2n |x, y, z〉 ⊗ |D′ ∪ (x, 0n)〉. Write
R|ψ〉 =

∑

x,y,z,D′,w αx,y,z,D′,w|x, y, z〉 ⊗ |D′ ∪ (x,w)〉. Then ‖P · CPhsO ·R|ψ〉‖2

is equal to:

1

4n

∑

x,y,z,D′

‖
∑

w

αx,y,z,D′,w(−1)y·w‖2 ≤ 1

2n

∑

x,y,z,D′,w

‖αx,y,z,D′,w‖2 =
1

2n
‖R|ψ〉‖2

Finally, ‖P · CPhsO · P |ψ〉‖ ≤ ‖P |ψ〉‖ and CPhsO · S|ψ〉 = S|ψ〉. Putting it
all together, we have that ‖P · CPhsO|ψ〉‖ ≤ ‖P |ψ〉‖+ 1√

2n
(‖Q|ψ〉‖+ ‖R|ψ〉‖) ≤

‖P |ψ〉‖+ 1√
2n

.
Therefore, after q queries, we have that the projection onto D containing a

zero has norm at most q/
√

2n. Now, the probability the database in |ψ〉 contains

a 0n is just the square of this norm, which is at most q2

2n . ut
The following is obtained by combining Theorem 1 with Lemma 5:

Corollary 1. After making q quantum queries to a random oracle, the probability
of finding a pre-image of 0n is at most O(q2/2n).

Proof. We will assume the adversary always makes a final query on it’s output
x, and outputs (x,H(x)). This comes at the cost of at most 1 query, so it does
not affect the asymptotic result. Then we can use the relation R(x, y) which
accepts if and only if y = 0n. In the second experiment of Lemma 5, the only way
for the adversary to win is to have the database contain a pre-image of 0n. As
such, Theorem 1 shows p′ = O(q2/2n). Then Lemma 5 shows that p = O(q2/2n),
which is exactly the probability the adversary outputs a pre-image of 0n when
interacting with the real random oracle.

4.2 Collision Lower Bound

Theorem 2. For any adversary making q queries to CStO or CPhsO and an
arbitrary number of database read queries, if the database D is measured after
the q queries, the resulting database will contain a collision with probability at
most O(q3/2n)

Proof. The proof involves changing just a few lines of the proof of Theorem 1.
We define P to project onto databases D containing a collision, and re-define
Q,R, S accordingly. Write Q|ψ〉 =

∑

x,y,z,D αx,y,z,D|x, y, z〉 ⊗ |D〉. Then

P · CPhsO ·Q|ψ〉 =
∑

x,y,z,D

αx,y,z,D|x, y, z〉 ⊗
1√
2n

∑

w∈D

|D ∪ (x,w)〉
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We can write this as the 1√
2n

∑

i |φi〉, where |φi〉 is the partial sum which sets

w to be the ith element in D (provided it exists). The |φi〉 are orthogonal, and
satisfy ‖|φi〉‖ ≤ ‖Q|ψ〉‖. Moreover, after q queries D has size at most q, and so
there are at most q of the |φi〉. Therefore, ‖P · CPhsO ·Q|ψ〉‖ ≤

√

q/2n‖Q|ψ〉‖.
By a similar argument, ‖P ·CPhsO·R|ψ〉‖ ≤

√

q/2n‖R|ψ〉‖. Putting everything
together, this shows that the norm of P |ψ〉 increases by at most

√

q/2n with
each query. Therefore, after q queries, the total norm is at most

√

q3/2n, giving
a probability of q3/2n. ut

Corollary 2. After making q quantum queries to a random oracle, the probability
of finding a collision is at most O(q3/2n).

4.3 More General Settings

We can easily generalize even further. Let R be a relation on `-tuples over {0, 1}n.
Say that R is satisfied on a database D if D contains ` distinct pairs (xi, yi) such
that R(y1, . . . , y`) = 1. Let k(q) be the maximum number of y that can be added
to an unsatisfied database of size at most q − 1 to make it satisfied.

Theorem 3. For any adversary making q queries to CStO or CPhsO and an
arbitrary number of database read queries, if the database D is measured after
the q queries, the resulting database will be satisfied with probability at most
O(q2k(q)/2n).

For the k-sum problem, there are at most
(

q
k−1

)

incomplete tuples that can

be completed by adding a new point. As such, k(q) ≤
(

q
k−1

)

≤ qk−1. This gives:

Corollary 3. After making q quantum queries to a random oracle, the probability
of finding k distinct inputs xi such that

∑

i H(xi) = 0n is at most O(qk+1/2n).

5 Indifferentiability of A Simple Domain Extender

5.1 Definitions

Let h : {0, 1}m → {0, 1}n be a random oracle, and let Ch : {0, 1}M → {0, 1}N

be a polynomial-sized stateless classical circuit that makes oracle queries to h.

Definition 2. Let H : {0, 1}M → {0, 1}N be a random function. A stateful
quantum polynomial-time simulator SimH : {0, 1}m → {0, 1}n is indifferentiable
for C if, for any polynomial-time distinguisher D making queries to h,H,

|Pr[Dh,Ch

() = 1]− Pr[DSim
H ,H() = 1]| < negl

Definition 3. Ch is quantum indifferentiable from a random oracle if there
exists an indifferentiable simulator Sim for C.
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Intuitively, in the “real” world, h is a random function and H is set to be
Ch. Ch is indifferentiable if this real world is indistinguishable from an “ideal”
world, where H is a random function, and h is set to be Simh for some efficient
simulator Sim.

In order to help us prove indifferentiability of a simulator Sim, we introduce
two weaker requirements. The first is indistinguishability, a weakened version of
indifferentiability where the distinguisher is not allowed any queries to H:

Definition 4. A simulator Sim is indistinguishable if, for any polynomial-time
distinguisher D making queries to h,

|Pr[Dh() = 1]− Pr[DSim
H

() = 1]| < negl

Next, we introduce the notion of consistency. Here, we set h to be simulated
by SimH , and we ask the adversary to distinguish honest evaluations of H from
evaluations of Ch (where again h is still simulated by SimH).

Definition 5. A simulator Sim is consistent if, for any polynomial-time distin-
guisher D making queries to h,H, if H is simulated by SimH , then

|Pr[DSim
H ,H() = 1]− Pr[DSim

H ,CSim
H

() = 1]| < negl

Lemma 6. Any consistent and indistinguishable simulator is indifferentiable.

The proof of Lemma 6 is straightforward, and proved in the full version [Zha18].
Finally, it is straightforward to adapt the definitions and Lemma 6 to handle

the case of many random compression functions h1, . . . , h`. In this case, C makes
queries to h1, . . . , h`, D has quantum oracle access to h1, . . . , h` and H, while S
makes quantum queries to H and simulates h1, . . . , h`.

5.2 A Simple Domain Extender

We now consider a simple domain extender. Let h1 : {0, 1}m → {0, 1}n, h2 :
{0, 1}n × {0, 1}` → {0, 1}n be two functions. Let Ch1,h2(x1, x2) = h2(h1(x1), x2)

Theorem 4. If h1, h2 are random oracles, the simple domain extender C is
indifferentiable from a random oracle.

Coron et al. [CDMP05] show that the indifferentiability of C is sufficient to
prove the indifferentiability of Merkle-Damgård for a particular choice of prefix-
free encoding (see paper for details). That part of the paper translates immediately
to the quantum setting, so Theorem 4 then shows quantum indifferentiability for
the same prefix free encoding. In the full version [Zha18], we show more generally
that Merkle-Damgård is indifferentiable for any choice of prefix-free encoding. All
the main ideas for the full proof are already contained in the proof of Theorem 4
below, just the details get a bit more complicated in the more general setting.
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5.3 Our Simulator

Before describing our simulator, we need some terminology. For a database D of
input/output pairs, a collision is two pairs (x1, y1), (x2, y2) ∈ D,x1 6= x2 such
that y1 = y2. For an input (y, x2) ∈ {0, 1}n × {0, 1}`, a completion in D is a pair
(x1, y) ∈ D. For such a completion, we will call w = (x1, x2) the associated input.

We define a classical procedure FindInput. FindInput takes as input x ∈
{0, 1}n × {0, 1}`, and a database D. It parses x as (y, x2) ∈ {0, 1}n × {0, 1}`.
Then, it looks for a completion (x1, y) ∈ D. If found, it will take, say, the
completion with the smallest x1 value, and output (b = 1, w = (x1, x2)). If no
completion is found, it will output (b = 0, w = 0m+`). Note that for the output
values in D, FindInput only needs to apply an equality check on those values,
testing if they contain y. By applying such an equality check to each output
register, it can compute b and w. Looking forward, when we implement FindInput

in superposition, this means FindInput only touches the output registers of D by
making a computational basis test.

We are now ready to describe our simulator. Sim will keep a (superposition
over) database Da, which represents the simulation of the random oracle ha

that it will update according to the CStO update procedure. Da is originally
empty. It will also have a private random oracle hb. For concreteness, hb will
be implemented using another instance of CStO, but it will be notationally
convenient to treat hb as being a uniformly random function.

On h1 queries, Sim makes a query to ha, performing the appropriate CStO

update procedure to Da. On h2 queries, Sim performs a unitary operation with
the following action on basis states:

|x, y〉 ⊗ |Da〉 7→
{

|x, y ⊕ hb(x)〉 ⊗ |Da〉 if FindInput(x,Da) = (0, 0m+`)

|x, y ⊕H(w)〉 ⊗ |Da〉 if FindInput(x,Da) = (1, w)

This unitary is straightforward to implement with a single query to each of
hb and H, and is detailed in the full version [Zha18].

In the next three subsections, we prove that our simulator is indifferentiable.
In Section 5.4, we prove a useful commutativity lemma. Then in Sections 5.5
and 5.6, we prove the indistinguishability and consistency, respectively, of Sim.
By Lemma 6, this proves that Sim is indifferentiable, proving Theorem 4.

5.4 The Almost Commutativity of StdDecomp and FindInput

Lemma 7. Consider a quantum system over x,D, x′, z. The following two uni-
taries O(1/

√
2n)-almost commute:

– StdDecomp, acting on the x,D registers.
– FindInput, taking as input the D,x′ registers and XORing the output into z.

The intuition is that, for StdDecomp to have any effect, either (1) D(x) = ⊥ or
(2) D(x) is in uniform superposition; StdDecomp will simply toggle between the
two cases. Now, a uniform superposition puts a weight of 1/

√
2n on each possible
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y value. Since there is only a single possible y value for D(x) that matches x′,
it is exponentially unlikely that FindInput will find a match at input x in Case
(2). On the other hand, it will never find a match at input x in Case (1). Hence,
there is an exponentially small error between the action of FindInput on these
two cases. We prove the lemma formally in the full version [Zha18].

5.5 Indistinguishability

Lemma 8. Sim is indistinguishable. In particular, for any distinguisher D mak-
ing at most q queries to h1, h2,

|Pr[Dh1,h2() = 1]− Pr[DSim
H

() = 1]| < O(q2/
√

2n)

Proof. Recall that in the ideal world where h1, h2 are simulated by SimH , h1

is implemented by a CStO oracle on database Da. By applying Lemma 4, we
can think of the simulator’s other oracle hb as another instance of CStO for a
database Db. Additionally, H can be simulated with yet another instance of
CStO for a database E. Similarly, in the real world, h1, h2 will be implemented
by independent instances of CStO with databases Da, Db. Note that, in either
case, h1 is implemented by a CStO oracle on database Da. Therefore, the only
difference between the two cases is how h2 is implemented.

We define a classical encoding procedure Encode for pairs Da, Db of databases.
Intuitively, Encode will scan the values ((z, x2), y) in Db, seeing if any of the
(z, x2) values correspond to a completion in Da. If so, such a completion will
have an associated input w. Encode will reasonably guess that such a completion
corresponds to an evaluation of H(w) = Ch1,h2(w). Therefore, Encode will remove
the value ((z, x2), y) inDb, and add the pair (w, y) to a new database E, intuitively
representing the oracle H. In more detail, Encode does the following:

– For each pair ((z, x2), y) ∈ Db, run FindInput((z, x2), Da) = (b, w). If b = 1,
re-label the pair to (w, y)

– Remove all re-labeled pairs Db (which are easily identifiable since the input
will be larger) and place them in a new database E.

We define the following Decode procedure, which operates on triples Da, Db, E:

– Merge the databases Db, E
– For each pair (w, y) that was previously in E, where w = (x1, x2), evaluate
z = Da(x1). Re-label (w, y) to ((z, x2), y). If z = ⊥ or if the input (z, x2) was
already in the database, output ⊥ and abort.

Note that Encode,Decode are independent of the order elements are processed.
It also follows from the descriptions above that Decode(Encode(Da, Db)) =
(Da, Db). Therefore, Encode can be implemented in superposition, giving the
unitary that maps |Da, Db〉 to |Encode(Da, Db)〉. Also note that Encode(∅, ∅) =
(∅, ∅, ∅).
With this notation in hand, we are now ready to prove security: consider a
potential distinguisher D. We prove security through a sequence of hybrids.
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Hybrid 0. This is the real world, where h1, h2 are random oracles. Let p0 be the
probability D outputs 1 in this case.

Hybrid 1. This is still the real world, but we add an abort condition. Namely,
after any query to h1, we measure if the database ha contains a collision; if so, we
immediately abort and stop the simulation. Let p1 be the probability D outputs
1 in Hybrid 1.

Lemma 9. |p1 − p0| ≤ O(
√

q3/2n)

Proof. First, suppose that before the ith query to h1, the superposition over
ha has support only on databases containing no collisions. Let |ψ〉 be the joint
state of the adversary and simulator just after the query to h1. Then write
|ψ〉 = |ψ0〉 + |ψ1〉 where |ψ0〉 is the projection onto states where ha has no
collisions, and |ψ1〉 is the projection onto states where ha contains at least one
collision. Following the proof of Theorem 2, we know that ‖|ψ1〉‖ ≤

√

i/2n.
Therefore, if we let |ψq〉 be the joint state after the qth query in Hybrid

0 and |φq〉 the joint state in Hybrid 2, we would have that ‖|ψq〉 − |φq〉‖ ≤
∑q

i=0

√

i/2n ≤ O(
√

q3/2n). By Lemma 1, this means that |p1−p0| ≤ O(
√

q3/2n)
as desired. ut

Hybrid 2. In this hybrid, there are three databases Da, Db, E, initialized to
|∅, ∅, ∅〉. Each query is answered in the following way:

– Apply Decode to the Da, Db, E registers. Measure if Decode gives ⊥, in which
case abort. Otherwise, there are now just two database registers Da, Db.

– Answer an h1 (resp. h2) query by applying the CStO update procedure to
Da (resp. Db).

– Apply Encode to Da, Db.
– Apply the collision check to the database Da.

Let p2 be the probability D outputs 1 in Hybrid 2.

Lemma 10. p1 = p0

Proof. We start with Hybrid 1. First, by Lemma 4, we can implement Da, Db

in Hybrid 1 as independent instances of CStO. Now, between all the queries
insert Encode followed by Decode. Also insert the two procedures before the first
query. Now each query is preceded by a Decode and followed by a collision check
and an Encode. Note that Encode,Decode do not affect the database Da, and
so commute with the collision check. Therefore, we can swap the order of the
collision check and Encode that follow each query.

By merging the Decode, query, Encode and collision check operations together,
we get exactly the update procedure of Hybrid 2. All that’s left is an initial
Encode procedure at the very beginning, which produces |∅, ∅, ∅〉 as the database
state, just as in Hybrid 2. ut
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Hybrid 3. This hybrid is the ideal world, where h1, h2 queries are answered by
Sim, except that we will have the abort condition if a collision in ha is ever found.
In other words, instead of decoding, applying the query, and then encoding, in
Hybrid 3 we act directly on the encoded state using the algorithms specified
by Sim. For h1 queries, the difference from Hybrid 2 is just that the queries
are made directly to ha, instead of Decode, then ha query, then Encode. For h2

queries, the differences appear more substantial. h2 queries, on superpositions
over x, y,Da, Db, E, can be summarized as follows:

1. Compute the unitary mapping |x, y,Da, Db, E〉 7→ |x, y,Da, Db, E, (b, w) =
FindInput(x,Da)〉

2. In superposition, apply the following conditional procedures:
3. Conditioned on b = 0,

(a) Apply StdDecomp to uncompress Db at x.
(b) Apply in superposition the map

|x, y,Da, Db, E, b, w〉 7→ |x, y ⊕Db(x), Da, Db, E, b, w〉

(c) Apply StdDecomp to re-compress Db at x.
4. Conditioned on b = 1,

(a) Apply StdDecomp to uncompress E at w.
(b) Apply in superposition the map

|x, y,Da, Db, E, b, w〉 7→ |x, y ⊕ E(w), Da, Db, E, b, w〉

(c) Apply StdDecomp to re-compress E at w.
5. Uncompute (b, w) by running FindInput(x,Da) in superposition again.

Let p3 be the probability D outputs 1 in this hybrid.

Lemma 11. |p3 − p2| ≤ O(q2/
√

2n).

Proof. We start with the very last query, and gradually change the queries
one-by-one from how they were answered in Hybrid 2 to Hybrid 3.

For h1 queries, we observe that it suffices to swap the order of Encode and CStO.
Indeed, suppose we move the final Encode to come before CStO. The previous
query ended with an Encode, and now the current query begins with Decode

then Encode. Since Decode ◦ Encode is the identity, all thee of these operations
collapse into a single Encode, which we keep at the end of the previous query. The
result is that the current query is just a direct call to CStO, as in Hybrid 3. Then
it remains to show that we can swap the order of Encode and CStO. For this,
notice that Encode only interacts with Da through FindInput. As such, all steps
in Encode,CStO commute except for the two StdDecomp operations in CStO and
the FindInput operation in Encode for each entry in Db (plus another FindInput

operation when un-computing the scratch-space of Encode in order to implement
in superposition). By Lemma 7, these ≤ 4q operations each O(1/

√
2n)-almost

commute, meaning Encode and CStO O(q/
√

2n)-almost commute.
For h2 queries, fix an x,Da and suppose Da contains no collisions as guaran-

teed. There are two cases:
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– FindInput(x,Da) = (0, 0m+`). Then in Hybrid 2, decoding/encoding does not
affect the labeling for an (x, z) pair in Db. As such, Hybrid 2 will uncompress
Db at x, apply the map |x, y,Da, Db, E〉 7→ |x, y ⊕ Db(x), Da, Db, E〉 and
then re-compress Db at x, for these x,Da.

– FindInput(x,Da) = (1, w). Then in Hybrid 2, by the collision-freeness of
Da, decoding will re-label a (w, z) ∈ E (if present) to (x, z) ∈ Db. The
effect of Hybrid 2 in this case will be to uncompress E at w, apply the map
|x, y,Da, Db, E〉 7→ |x, y ⊕ E(x), Da, Db, E〉, and then re-compress E at w.

In either case, answering h2 queries in Hybrid 2 and 3 act identically. Therefore,
this change introduces no error.

After q h1 or h2 queries, the total error between Hybrid 1 and Hybrid 2 is at
most O(q2/

√
2n). ut

Hybrid 4. This is the ideal world, where we remove the abort condition from
Hybrid 3. Let p4 be the probability D outputs 1 in Hybrid 4. By an almost
identical proof to that of Lemma 9, we have:

Lemma 12. |p4 − p3| ≤ O(
√

q3/2n)

Summing up, we have that |p0 − p4| < O(q2/
√

2n), proving Lemma 8. ut

5.6 Consistency

Lemma 13. Sim is consistent. In particular, for any distinguisher D making at
most q quantum queries to h1, h2, H,

|Pr[DSim
H ,H() = 1]− Pr[DSim

H ,CSim
H

() = 1]| < O(
√

q3/2n)

In other words, h1, h2 are simulated as SimH , and the adversary cannot
distinguish between H and Ch1,h2 .

Proof. We first work out how H queries are answered using Ch1,h2 , when we
simulate h1, h2 using SimH . The input registers will be labeled with x = (x1, x2),
and the output registers labeled with y.

1. First, make an h1 query on the x1 registers, writing the output to some new
registers initialized to z = 0n. Since we are implementing h1 using CStO, this
is accomplished using the following steps:
(a) Apply StdDecomp to un-compress Da at x1

(b) Evaluate the map |x1, z, x2, y〉 ⊗ |Da〉 7→ |x1, z ⊕Da(x1), x2, y〉 ⊗ |Da〉,
where z is the new register that was initialized to 0.

(c) Re-compress Da at x1 by applying StdDecomp again.
2. Next, make an h2 query on input (z, x2) (where z where the registers created

previously) with output registers y. This has the effect of mapping to:

|x1, z, x2, y ⊕ hb(x)〉 ⊗ |Da〉 if FindInput((z, x2), Da) = (0, 0m+`)

|x1, z, x2, y ⊕H(w)〉 ⊗ |Da〉 if FindInput(z, x2), Da) = (1, w)
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3. Finally, make another h1 query to un-compute the value of z. This is accom-
plished in the following steps:
(a) Apply StdDecomp to un-compress Da at x1

(b) Evaluate the map |x1, z, x2, y〉 ⊗ |Da〉 7→ |x1, z ⊕Da(x1), x2, y〉 ⊗ |Da〉.
(c) Re-compress Da at x1 by applying StdDecomp again.
(d) Then discard the z registers.

Let D be a potential distinguisher. We consider the following hybrids:

Hybrid 0. In this hybrid, H queries are answered using Ch1,h2 , as worked out
above. Let p0 be the probability D outputs 1.

Hybrid 1. This hybrid is identical to Hybrid 0, except that Steps 1c and 3a are
removed. Let p1 be the probability D outputs 1 in this hybrid.

Lemma 14. |p1 − p0| < O(q/
√

2n).

Proof. Since Steps 1c and 3a are inverses of each other, Hybrid 1 is equivalent to
moving Step 3a up to occur just after Step 1c. Note that Step 2 only interacts
with Da through two applications of FindInput (one for computing, one for
un-computing), which in turn O(1/

√
2n)-almost commutes with Step 1c. By

Lemma 7, each query to H therefore creates an error O(1/
√

2n), yielding a total
error of O(q/

√
2n). ut

Hybrid 2. This hybrid is identical to Hybrid 2, except that after each query we
measure if the database Da contains a collision. If so, we abort and stop the
simulation. Let p2 be the probability D outputs 1 in this hybrid. By an almost
identical proof to that of Lemma 9, we have:

Lemma 15. |p2 − p1| < O(
√

q3/2n)

Hybrid 3. This hybrid is identical to Hybrid 2 as outlined above, except that:

– Steps 1c and 3a are removed (as in Hybrid 1 and 2)
– The operation in Step 2 is replaced with

|x1, z, x2, y〉 ⊗ |Da〉 7→ |x1, z, x2, y ⊕H(x1, x2)〉 ⊗ |Da〉

In other words Hybrid 3 is identical to Hybrid 2, except that we change Step 2.
Let p3 be the probability D outputs 1 in this hybrid.

Lemma 16. p3 = p2.

Proof. In either hybrid, since we do not apply the Steps 1c and 3a, Da is
guaranteed to contain the pair (x1, z), where z is the same as in Step 2. Therefore,
in Hybrid 2, FindInput((z, x2), Da) is guaranteed to find a completion. Moreover,
for Da that contain no collisions, FindInput((z, x2), Da) will find exactly the
completion (x1, z). In this case, w = (x1, x2), and Hybrid 2 will make a query to
H on (x1, x2). The end result is that for Da containing no collisions, Step 2 is
identical in both Hybrids. Since the collision check guarantees no collisions in
Da, this shows that the two hybrids are identical. ut

26



Hybrid 4. In this hybrid, H queries are made directly to H, but we still have the
abort condition. Let p4 be the probability D outputs 1 in this hybrid.

Lemma 17. p4 = p3

Proof. In Hybrid 3, what remains of Steps 1 and 3 are exact inverses of each
other and moreover commute with the new Step 2 from Hybrid 3. Therefore, we
can remove Steps 1 and 3 altogether without affecting how oracle queries are
answered. The result is identical to Hybrid 4. ut
Hybrid 5. This hybrid has H queries made directly to H, but without the abort
condition. Let p5 be the probability D outputs 1 in this hybrid. By an almost
identical proof to that of Lemma 9, we have:

Lemma 18. |p5 − p4| < O(
√

q3/2n)

Overall then |p0 − p5| < O(
√

q3/2n), finishing the proof of Lemma 13. ut

6 Fujisaki Okamoto CCA-Secure Encryption

Here, we summarize our results on the Fujisaki-Okamoto transformation [FO99].
The transformation starts with a symmetric key encryption scheme (EncS ,DecS)
and a public key encryption scheme (GenP ,EncP ,DecP ). Assuming only mild secu-
rity properties of these two schemes (which are much easier to obtain than strong
CCA security), the conversion produces a new public key scheme (Gen,Enc,Dec)
which is secure against chosen ciphertext attacks. Let G,H are two random
oracles, where G outputs keys for EncS and H outputs the random coins used by
EncP . The scheme is as follows:

– Gen = GenP .
– Enc(pk,m) chooses a random δ ∈ {0, 1}n, and computes d← EncS(H(δ),m).

Then it computes c← EncP (pk, δ;G(δ, d)), and outputs (c, d)
– Dec(sk, (c, d)) first computes δ′ ← DecP (sk, c). Then it checks that c =

EncP (pk, δ′;G(δ′, d)); if not, output ⊥. Finally it computes and outputs
m′ ← DecS(H(δ′), d)

The main difficulty in the classical proof of security is allowing the reduction
to answer decryption queries. The key idea is that, in order for the adversary to
generate a valid ciphertext, it must have queried the oracles on δ. The reduction
will simulate G,H on the fly by keeping track of tables of input/output pairs.
When a chosen ciphertext query comes in, it will scan the tables looking for a δ
that “explains” the ciphertext.

In the quantum setting, we run into a similar recording barrier as in the
indifferentiability setting. Our key observation is that the output values of the
G,H tables are only used for set membership tests. Just like equality tests used in
our indifferentiability simulator, set membership tests in the primal and Fourier
domain very nearly commute. As such, we can use our compressed oracles to
mimic the classical proof following our techniques. Our reduction can even handle
chosen ciphertext queries on quantum superpositions of ciphertexts. In the full
version [Zha18], we prove the following theorem:
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Theorem 5. If (EncS ,DecS) is one-time secure and (Gen,EncP ,DecP ) is well-
spread and one-way secure, then (Gen,Enc,Dec) is quantum CCA secure in the
quantum random oracle model.
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