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The physico-chemical and mechanical properties of metallic (e.g., Au, Pt) nanoparticle complexes highly depend
on the order and the distribution of their atomic structure. While transmission electron microscopy (TEM)
provides the highest spatial resolution to an image of the nanoparticle’s atomic structure, it is time consuming
and cumbersome to estimate the atomic column height from the two-dimensional projected TEM images. With
continued progress of in-situ or operando TEM techniques in discovery of nanoscale science, it is paramount to
develop artificial intelligence approaches that can be integrated with real-time TEM imaging. In this work, we
present a modeling framework based upon deep learning approach (i.e., convolutional neural network — CNN)
for the detection of the atomic column heights in the experimental high-resolution transmission electron mi-
croscopy (HRTEM) images of gold nanoparticles of different sizes. For this purpose, we propose a method for the
generation of the training dataset based on the Wulff construction, in order to bring a physically realistic
treatment to the network’s learning process. Moreover, we introduce a model based on the regression scheme, as
a valid alternative to a classification approach reported in the prior literature. In addition to counting atoms in
verity of columns and nanoparticles, the model also provides insights concerning the experimental conditions
suitable for the appropriate identification of atomic column heights by the neural network. Thus, the developed
modeling approach establishes a basis for accelerated or ‘on-the-fly’ analysis of nanoparticles as well as a fra-

mework for extending deep learning models to broad applications in nanoscience.

1. Introduction

In recent years, deep neural networks (DNN) have shown state-of-
the-art capabilities for visual recognition tasks, including the classifi-
cation and the semantic segmentation of images [1]. One of the first
DNN usages applied to analyze the transmission electron microscopy
(TEM) for brain images segmentation is reported by Ciresan et al. [2],
paving the way for further applications in the material science area.
Semantic segmentation consists in the assignment of an object class
label to each pixel of the image given in input to the deep learning
model [3,4]. Such architectures are able to address a pixel-level fine
inference and represent the natural advancement of coarse prediction
networks like R-CNN, Fast R-CNN and Faster R-CNN designed for pro-
blems like bounding box object detection [5-7]. A further development
in the area of semantic segmentation, is represented by fully convolu-
tional networks (FCNs) [3]. The FCN is introduced as a reinterpretation
of the state-of-the-art classification networks such as AlexNet [8],
GoogleNet [9] and VGGNet [10] into fully convolutional networks for
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structured prediction problems. With the aim of tackling the limitations
of the state-of-the-art FCNs, Noh et al. [11] have proposed an in-
novative encoder-decoder architecture called Deconv-Net, where the
bilinear up-sampling of FCNs has been replaced by a symmetric se-
quence of deconvolution and unpooling layers. Based upon the encoder-
decoder principles, Ronneberger and co-workers have designed the U-
Net for biomedical image segmentation [12], obtaining an outstanding
performance in the 2015 ISBI competition for segmentation of neuronal
structures in electron microscopy images. Badrinarayanan et al. have
presented Seg-Net, an encoder-decoder network with an architecture
similar to Deconv-Net and U-net, but more efficient in terms of memory
requirements and computational cost [13].

In the field of materials engineering and materials chemistry, ma-
chine learning (ML) algorithms have been recently applied to predict a
variety of features such as the physical properties of self-assembled
materials [14], the interfacial thermal resistance between graphene and
hexagonal boron nitride [15] and the on-the-fly pattern recognition of
ferroelectric materials observed with an atomic force microscope [16].
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Machine learning techniques have been also applied to estimate the
interatomic potentials for lattice dynamics properties calculations [17],
the bandgaps of different polymers with high fidelity [18,19], and the
continuous cooling transformation (CCT) diagram for the heat treat-
ment process of steel at a microstructural level [20]. Zheng et al. [21]
developed a multi-channel deep convolutional network to predict the
formation enthalpy of several elpasolite compounds. In particular, deep
convolutional learning has become a powerful tool for the processing of
experimental images of micro and nanostructures. Such images are
obtained by scanning electron microscopy (SEM) [22-25], scanning
transmission electron microscopy (STEM) [26] and TEM [27]. As a
result, deep learning has become a promising tool for the classification
of composite materials microstructures and for the extraction of local
features such as defects, vacancies and chemical species. Azimi et al.
[22] used a CNN model for the classification of the microstructure of
low-carbon steel in SEM images. Other applications of CNN for the
analysis of SEM images are reported by De Cost et al. [23], Kondo et al.
[24] and Ling et al. [25], respectively for the classification of steel
based on their primary microconstituents, the characterization of
ceramic materials and for the featurization of SEM images of titanium,
steel and synthetic powder materials. Ziatdinov et al. [26] have applied
an encoder-decoder FCN on STEM images for studying the classification
of defects and their structural transformation in graphene layers,
characterized by the presence of vacancies and silicon (Si) dopants.

In the more recent work, Madsen et al. [27] have presented a
comprehensive deep learning method for the identification of atoms in
complex structures such as graphene layers with defects and metallic
nanoparticles in simulated and experimental HRTEM images. Their
deep learning model is developed to be stable to microscope parameters
and noise, which brings segmentation-type problems to the advanced
level enabling competition with the state-of-the-art experimental tech-
niques. The algorithm is also presented as a framework with the po-
tential of detecting the number of atoms in the individual columns of
metallic nanoparticles.

While the applicability of the model for the identification of atoms
has been proved in the experimental HRTEM images, the assessment of
atomic column heights remains a challenge. The concern of evaluating
the number of atoms in atomic columns via deep learning consists of the
difficulty in estimating the actual heights in experimental images (i.e.,
the ground truth) for validating the predictions of the neural network.
Atomic electron tomography (AET) is an efficient method to address the
problem of the localization of 3D atomic coordinates in non-crystalline
nano-systems. Pioneered and further developed AET based method by
Miao and co-workers [28-33] enables the determination of the atomic
column heights in experimental images at the sub-nanometer level.
Despite the tremendous success, the AET requires a non-trivial and
expensive experimental efforts to reconstruct the atomic structure ob-
served in the TEM images. The other challenge facing experimental
measurements is that nowadays, the in-situ/operando TEM imaging with
ultra-fast image capturing via new directive detection cameras [34],
allows to collect sequence of hundreds to thousands frames per second
of the observed atomic structures, resulting in gigabytes of data per
minute. However, the analysis of the resulting large dataset of images is
cumbersome with the traditional techniques, such as geometric phase
analysis (GPA) [35] and real phase approaches [36,37]. The main
disadvantage of the conventional methods consists in the difficulty of
investigating a significant amount of data in a reasonable time.

In order to tackle these challenges, in this work we propose two
models based upon regression and classification methods for the de-
tection of the atomic column heights in the experimental HRTEM
images. The regression-based model is a new implementation realized
in this work, whereas the classification scheme is an extension of the
method presented by Madsen et al. [27]. Additionally, our current
study involves a novel method for the generation of the training data set
based upon the Wulff construction [38], a method for the evaluation of
the equilibrium shape of a crystal in a separate phase, based on the
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concept of energy minimization during cluster’s formation. Finally,
both the regression-based and classification models are compared to
each other, providing a further boosting support to the application of
deep learning for the calculation of atomic column heights in the ex-
perimental HRTEM images of nanoparticles. Thus, besides the primary
objective of this work, which is the atomic column heights detection in
metallic nanoparticles, a supporting objective is to improve the model
fidelity and to implement it for physically realistic cases.

2. Problem statement

The application of noble metal based composite in nanocatalysis
and colloidal synthesis [39] has significantly increased the interest of
controlling the size of metallic nanoparticles (NPs) [40,41]. The size of
metal clusters is dictated by the distributions and the number of atoms
in the atomic columns (atomic column heights). The most straightfor-
ward approach to predict the heights of the atomic columns is to ana-
lyze simulated and experimental STEM images, where there is a linear
relationship between the intensity of the pixels and the number of
atoms in the columns. Statistical methods such as statistical parameter
estimation theory and other quantitative methods have been developed
to determine column heights from STEM images [42-44]. On the other
hand, the relationship between the pixel intensities in HRTEM images is
highly non-linear and sensitive to many parameters. The state-of-the-art
techniques to extract the features of the crystal structures from the
experimentally acquired HRTEM images include the installment of a
dedicated image corrector and the extraction of the exit wave function
from a focal series. These techniques are aiming to eliminate the in-
fluence of parameters such as defocus and aberrations to fully interpret
the HRTEM images. The focal series reconstruction is based on nu-
merical methods such as the paraboloid method (PAM), the maximum
likelihood (MAL) method [45,46] or the solution of the transport in-
tensity equation (TIE) [47]. In this context, Chen et al. [36] have de-
monstrated that a focal series from a single projection allows to re-
construct the 3D structures of crystalline systems by counting the
number of atoms in the atomic columns. However, these methods have
been applied to simulated HRTEM images only. The reconstruction of a
focal series in experiments requires the sample to be stable enough
during the acquisition of images and uses a complex algorithm for the
alignment and reconstruction of the images. Jia and co-workers [48]
have implemented a scheme for the determination of the 3D shape of a
nanocrystal from a single TEM image, based on the comparison be-
tween the intensities of the peaks in an experimental image of a MgO
crystal and the corresponding simulated peaks. However, the frame-
work has been applied on a well-defined layered structure, depicted
from a single surface orientation [0 O 1]. The applicability of the
method has not been demonstrated on more complex nanoparticles,
with several crystallographic directions. Alternatively, Park et al. [49]
have demonstrated that the 3D reconstruction of nanoparticles moving
in a graphene liquid cell could be addressed by depicting frames of
different surface orientations with TEM imaging. However, this method
is not applicable to nanoparticles bounded to a solid substrate. In order
to address these challenges, we have trained a deep learning model
based on the CNN, to predict one of the key factors in crystal structure,
the height of the atomic columns from experimentally acquired HRTEM
images at a single focal level. The main advantage of data driven
techniques such as neural networks, is the intrinsic independence from
the physics characterizing the problem under consideration, since the
learning process involves only the input data and the corresponding
ground truth of the target variable. For this reason, we have assumed
that a deep learning model does not require a focal series of HRTEM
images as input data, whereas a single image is sufficient if the ground
truth for the height of the atomic columns is available. Consequently,
the learning process has been implemented on simulated images of
atomic models of known ground truth, and in a successive step the
model has been applied to the experimental images to predict the
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height of the atomic columns. In our approach, the influence of para-
meters such as defocus and aberrations is minimized by the im-
plementation of a learning process based on random values of these
parameters, chosen in a range which covers the experimental condi-
tions.

Although much of the modeling approach described here could be
used for broad purposes associated with TEM and SEM images pro-
cessing, we focus in this paper on Au nanoparticles. Au nanoparticles
perfectly suit for model development, since they possess well-defined
structure and orientation for HRTEM experiments, thus can be used for
further model validation and improvements. The experimentation fol-
lows the standard procedure, where a TEM grid with standard gold
nanoparticle sample is mounted on a TEM holder, and 300 kV electron
beam is used to perform HRTEM imaging to acquire the atomic in-
formation of gold nanoparticles. The experimental HRTEM image is
then used as input to the CNN. The encoder-decoder CNN convolutes
and deconvolutes the input image with the aim of finding atomic col-
umns position and counting the number of atoms in each column.

3. Deep learning models

We have developed two encoder-decoder FCNs for the regression
and classification tasks. Both the models in this paper build on the
convolutional neural network presented by Madsen et al. [27] for the
recognition of the local structure in the HRTEM images. The detailed
description of the model and its architecture is given in the supple-
mentary information and only a brief summary is provided here. The
model relies on an encoder-decoder type of network, where the ex-
traction of the features is obtained through a sequence of convolutional
layers, followed by max-pooling layers [50] which reduce the size of
the input image. The appropriate number and type of filters are used.
The decoder (deconvolution) part aims to “restore” the image down-
sampled in the encoder part, using up-sampling layers and convolu-
tional layers with the same number of filters used in the encoder part.
Skipped connections between down-sampling and up-sampling layers
are also used to preserve spatial information between the encoder and
the decoder, as well as residual blocks to overcome the challenge of the
problem of the vanishing gradient. The implemented neural network is
represented in Fig. 1. While the original model [27] is built for a
classification task, our implementation extends capabilities of this
network by incorporating a regression-based procedure for the identi-
fication of the atomic column heights. The neural networks are built in
Keras [51], an open-source library for deep learning model develop-
ment.

3.1. Regression-based model

Although a standard segmentation problem is addressed with a
classification framework, the specific task of the prediction of the
heights of the atomic columns can be approached with a dedicated
pixel-level regression model. In regression schemes, the neural network
infers continuous values rather than probabilities of discrete classes. In
our approach, the integer values representative of the number of atoms
in the atomic columns are assigned only to the pixels located in the x
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and y positions of the peaks, while the other pixel values decrease
continuously from the center of the columns to the background. Having
this in mind, our regressive neural network reconstructs the map of the
column heights from the previously encoded and decoded features,
using a bi-linear up-sampling convolutional layer characterized by a
single 1x1 kernel [3] followed by a rectified linear activation function
(ReLU) [52-54]:

o (x) = max(x, 0) (€]

Eq. (1) shows the rectified linear activation function employed in
the last convolutional layer of the network to compute the heights of
the atomic columns in the pixel-wise regression model. The activation
function takes as input the pixel values x from the last layer of the CNN
and it outputs a minimum value of O (i.e., background), in order to
avoid the problem of predicting negative column heights which do not
have a physical meaning. As a result, to each pixel of the output image
is assigned the value o (x) of the inferred column height. Since a re-
gression approach is used to address a semantic segmentation problem
for predicting discrete values such as the atomic column heights at the
peak pixels, we refer to our approach as regression-based model.

3.2. Classification model

Following the state-of-the art approach, we have classified the
atomic columns of the nanoparticle according to the values of their
heights. Taking as input a HRTEM image of a given structure, the neural
network is able to return a pre-defined number of classification maps,
one of each corresponding to a column height to predict. To all the
pixels belonging to a single map is attributed the probability to belong
to a specific class of atomic column heights, including the background
class where no atoms are present. Taking into account the dimensions
and the shape of the nanoclusters observed in the experiments, we have
considered that a maximum column height of 15 atoms is sufficient for
our analysis. Thus, we aim to predict N = 16 output maps, where 1 map
is representative of the background, while the remaining 15 correspond
to different column heights in the structures we have processed. In this
framework, the bi-linear up-sampling convolutional layer in the end of
the neural network is characterized by 16 1x1 filters, one for each class
to be inferred. In particular, the activation function implemented to
compute the probabilities is the so-called softmax activation function:

e*e
N

ze @

o(x) =

The softmax activation function takes as input the pixel values x, in
the classification map c, and it outputs the probability for the portion of
the map represented by x,. to belong to the class c. The scored values are
normalized, so that in the final classification all the probabilities add to
1. This classification scheme follows the traditional implementation of
fully convolutional networks (FCNs) for semantic segmentation tasks
[3]. The classification model is presented here for the purpose of re-
producing the work of Madsen et al. [27] and extending it to our pro-
blem.

CNN Output

Detected
atomic column heights

Fig. 1. Illustration of workflow followed for atomic column heights identification. The experimental HRTEM image is the input to the CNN, where convolution and

deconvolution occur, and the output is the identified atomic column heights.
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3.3. Generation of the training and test datasets

The training and the test of the convolutional neural network has
been performed on simulated TEM images of computer-generated na-
noparticles, which have a high level of fidelity to the structures ob-
served in experiments. The nanoparticles are artificially created using
the Wulff construction, a method for the evaluation of the equilibrium
shape of a crystal in a separate phase, based on the concept of energy
minimization during particle’s formation. The Atomistic Tool Kit (ATK)
[55] plugin “Wulff Constructor” is used, which creates a nanoparticle
with a given radius and surface energies in the main crystallographic
directions. The energies of the Au surfaces are taken from Ref. [56] and
are listed in Table S1 together with work function for each surface
considered. Performing Wulff constructions in ATK, it is possible to
create a training set of images of a particular nanoparticle varying size
and shape. Since the surface energies listed in Table S1 are evaluated
from the first principle DFT calculations and experimental measure-
ments, the sizes and shapes of the resultant nanoparticles are thermo-
dynamically consistent with the ones observed in HRTEM experiments.
During the training process, the neural network learns how to evaluate
the column heights of the nanoparticles generated through the physi-
cally realistic Wulff construction, resulting in a significant improvement
of the reliability of the method’s application to experimental images.
The rotation of a particle leads to the exposure of a particular surface
orientation (e.g., [1 1 0], [1 1 1] etc.), resulting in different values of
column heights (Fig. 2). Depending upon the purpose, particles with
different surfaces access could be mixed or used separately in the
training processes. It should be noted that the Wulff construction does
not take into account edge and vertex energies, which could have an
influence on the shape of the nanoparticle during the HRTEM experi-
ments. Moreover, using only one source for the generation of the
training data, may lead to a bias towards a specific shape and/or or-
ientation. For these two reasons, we have also incorporated a random
insertion of atoms at the surfaces of the ideal structure generated
through the Wulff construction. In this way, the training data set of
simulated images contains a broad variety of nanoparticles suited for
the training of the CNN. In particular, the random insertion of atoms at
the surfaces allows to generate nanoparticles that are all different in
size, shape, and number of atoms in each column, which is beneficial
for avoiding redundancy among the samples.

The simulated structures are generated through the atomic simula-
tion environment (ASE) [57], a python library for atomistic simula-
tions. The corresponding simulated TEM images are created using the
QSTEM code [58], through a python interface to ASE [27]. In principle,
the model artificially reproduces the TEM’s process to form an image of

Ground truth

Different access planes

Waulff construction
of Au cluster
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Table 1

List of the microscope parameter ranges used to train the network.
Microscope Parameter Range
Defocus / A [—250, —150]
3rd-order aberration / um [—20, 20]
First order astigmatism magnitude /A [0, 50]
First order astigmatism angle [0, 2xt]
Focal spread / A [20,40]
Electron dose / e /A% [110? 1:10°)
c1(MTF) [0, 0.01]
c2(MTF) [0.5, 0.6]
c3(MTF) [2,3]
Blur [0, 2.0]

Sampling, A/pixel [0.250, 0.265]

an observed structure, by simulating the contrast transfer function
(CTF) and the modular transfer function (MTF) of the microscope. In
order to take into account the variation of imaging conditions, which is
always present in the experimental analysis, the microscope parameters
such as defocus, spherical aberration and electron dose are randomly
picked in a pre-defined range of values which are consistent with the
experimental conditions. The variation of the microscope parameters
allows us to take into account several effects, including the substrate
and the tilt of the electron beam from a perfect zone axis. The values of
the microscope parameters are listed in Table 1. The training dataset
contains simulated images generated with one focal level, but the single
defocus value for each image is taken randomly in a range including the
experimental baseline. In addition, the generation of the images is
performed on-the-fly at each step of the learning process, allowing a
structure to be simulated with multiple defocus at different iterations.
In this way, the model learns to predict the column heights of a given
structure for a broad variation of the defocus values, providing an in-
direct incorporation of the focal series extraction. The neural network is
invariant to the size of the input image, under the constraint that it
could be divided by 2", where n is the number of max pooling layers in
the network (in our architecture n = 3). The size of the experimental
images is 512x512 pixels representing an area of 132 * A A, where A
is a random number in the range between 0 and 4 A, resulting in a
resolution which lies in a range between 0.250 and 0.265 A/pixel.
The ground truth is generated using a superposition of Gaussian
distributions, centered in the positions of atoms. The choice of the va-
lues of the width of the Gaussian is particularly important since it has a
significant impact on the assignment of a column to the background.
Besides, in the ground truth for the regression-based model we have
assigned to each pixel the value of the heights of the atomic columns.

Fig. 2. Example of generation of the training data
set using the Wulff construction of Au. Left — the
4 nm particle obtained during the Wulff construc-
tion using parameters from Table 1; middle panel —
different access planes and the corresponding
ground truth obtained by rotating the nanoparticle;
right - the simulated TEM image of a particle shown
on the left.

Simulated TEM
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Fig. 3. Comparison between the ground truth and the prediction of atomic column heights using the regression-based (a) and classification (b) models on simulated
HRTEM image. The classification model describes the probability of a column belonging to a certain class with a scale ranging from zero to one.

Since the generation of the ground truth is performed through a
Gaussian distribution, the integer and discrete values representative of
the number of atoms are located in the pixels corresponding to peaks
(i.e., peaks of the Gaussian distribution), while the pixel values from the
centers of the columns to the background decrease smoothly to zero. In
this way, it is possible to create a ground truth of continuous values
suitable for the application of the regression-based model. Concerning
the classification model, the ground truth consists of a series of classi-
fication maps where a probability of 1 is assigned to the columns be-
longing to that specific height’s class and 0 to the other columns and the
background. Also, in this configuration, the highest value of 1 is as-
signed to pixels representative of the peaks, while the other pixel values
exhibit a smooth decrease towards to zero at the background.

3.4. Models training

The models have been trained on 8000 simulated images of gold
nanoparticle with the same sizes of the different structures observed in
the experiments. As mentioned in the previous section, a maximum
value of 15 atoms is consistent with the dimensions of the nanoparticles
observed in the experimental images. In addition, the well-established
technique called data augmentation has been applied to enrich the
features of the training dataset. Data augmentation is a popular pro-
cedure in deep learning frameworks for image processing, which in-
volves symmetry operations like mirroring, flipping, rotating and
translating on the training images with the aim of reducing overfitting
[8,9].

During each training iteration, the network learns how to estimate
the column heights by the minimization of a loss function, which is
different according to the model we have employed. For the purpose of
regression, we have used the root mean squared error (rmse) loss

function, typically implemented for regression [51] tasks. It should be
noted that the root mean squared error loss function is applied at a
pixel-level, and not only to the pixels corresponding to the peaks.
Thereby, the proposed scheme follows a standard regression procedure
at the pixel level during the learning process. On the other hand, we
have applied the categorical cross-entropy [51] loss function for the
classification problem. In both cases, the loss function has been reg-
ularized through the weight decay regularization [59], which is bene-
ficial for the performance of the network since it prevents the weights
to reproduce meaningful results. The model has been trained through
the minibatch gradient descent (MGD) [60], using the adaptive root
mean square propagation (RMSPROP) as optimizer [61]. In order to
assess the correctness of the training process, the training and test
learning curves are evaluated as in all deep learning frameworks. We
have developed our own dedicated implementation for evaluating the
accuracy of the model. For each of the 8000 structures in the training
set, we have calculated the deviation of the predicted height from the
value in the ground truth for each column, in order to quantify the
errors in the predictions. We have evaluated the performance of the
models on each image as the proportion of the number of columns
predicted with the correct height. Then, we have considered the
average of the results among all the generated structures, to estimate
the performance on the whole training. Following this procedure, we
have been able to provide a physically realistic evaluation of the re-
liability of the adopted framework, rather than using the standard
metric provided by Keras [51] which assess a pure one-to-one com-
parison between the pixel values in the prediction and the ground truth.
There are two reasons why for the regression-based model we have
considered the proportion of the correctly predicted heights rather than
the standard R? score used for regression purposes. First, the knowledge
of the correctly predicted columns rather than a pure statistical
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parameter like the R score, which lacks a physical interpretation, is
more appealing for the experimentalist community. In addition, even if
at a pixel level the values vary continuously as described in previous
sections, the atomic column heights are integer and discrete values.
Thus, the proportion of the correctly predicted peak values is a more
suitable metric compared to the R* score. The learning curve represents
the trend of the accuracy of the model for each iteration of the learning
process (epoch). Based on the results we have obtained, the regression-
based model performs more accurately at the 18th epoch with an ac-
curacy around 93%, while the classification network provides the
highest value around 85% after 23 iterations. The results are provided
in Fig. S4.

4. Results and discussion
4.1. Prediction on the simulated images

After training on 8000 images, we have tested the regression-based
and classification neural networks using the model trained until epochs
18th and 23rd respectively, on 2000 simulated images. The procedure
for the generation of the test set is identical to the one implemented for
the generation of the training set. We have studied the performance of
the model using the same metric adopted in the training step, based on
the proportion of the correctly predicted columns in the entire nano-
particle. Fig. 3 illustrates the performance on a structure providing an
accuracy which follows the results obtained in the learning curve.

Among the 75 columns of the structures shown in Fig. 3, the re-
gression-based model correctly predicts 70 columns, leading to an ac-
curacy of 93.3%. On the other hand, the classification model shows
several errors for class 4 and 5, and one atom mismatch for class 2 and
6. Along with 65 columns predicted with the correct height, the overall
accuracy is found to be 86.6%. Since we use random values of all the
parameters for the generation of the training and test set, it is not
straightforward to estimate a priori the best combination of parameters
which could lead to a high accuracy. For this reason, we have per-
formed a sensitivity analysis to identify the most influencing para-
meters. It should be noted that such a parametric study is not performed
to fine-tune the model’s performance towards an optimal configuration,
but it is needed to estimate the performance in the application to the
experimental images. The true values of the atomic column heights are
not available from the experimental images, however information
about the adopted microscope parameters is known from the experi-
mentalists. Thus, evaluating the model’s performance on the simulated
test images varying the microscope parameters provides quantitative
insights about the quality of the results obtained from the experimental
images. The results are provided in supplementary information. As can
be seen from Fig. S5, the defocus and the dose have the highest sensi-
tivity, especially the lower bound of those values. Fig. 4 shows some
prediction results varying the identified most sensitive parameters.
Based upon this analysis, we have identified that the defocus value of
around —200 A together with the dose values higher than 10* e~ /A2
provide the most accurate performing network.

Fig. 4 shows an example of HRTEM images simulated with different
values of the microscope parameters and the resulting performances in
the form of a deviation from the ground truth by number of atoms. In
particular, Fig. 4a, b illustrate the accuracy of 60% and 76% using the
highest (=150 /o\) and the lowest (—250 [o\) values of defocus, respec-
tively. Fig. 4c, d show the comparison between different dose values
while keeping the same defocus. The defocus value of —200 A shows
the best performance in the box and whiskers plot of Fig. S5, thus it is of
interest to study the accuracy at this level. As can be seen, increasing
the dose and keeping defocus at —200 A, the highest accuracy of 1 is
achieved.
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4.2. k-fold forward cross-validation

In order to further investigate the capabilities of our model, we have
performed an extrapolation analysis to verify if the neural network is
capable of predicting nanoparticles characterized by sizes not included
in the training domain. This is an important objective towards the ap-
plication to the experimental HRTEM images for which the size of the
nanoparticles is not well-known. Figs. Sla-b and S2a-b in the
Supplementary Information illustrate statistical distributions of the
nanoparticles in the training and test based on their size. Column
heights equal to 1, 4, 5, 6, 7 and 8 are the most frequent both in the
training and test dataset (Fig. Sla-b) while the highest columns (11 to
15 atoms) are the least represented. This is reasonable considering the
structure of the simulated nanoparticles. For example, columns with
heights 4 and 5 are present in nanoparticles where the maximum height
is 6, 7 or 8. In addition, nanoparticles with a maximum height between
11 and 15 include a large number of columns with height 6, 7 and 8 but
also columns with height 4 and 5. Columns with height 1 are frequent
because they can be found at the edges of nanoparticles of any size. The
highest columns are less frequent because they represent the maximum
number of atoms that can be found in the columns of the largest sam-
ples, and spherical shape nanoparticles cannot have many columns with
a size equal to the maximum. However, the average column height is
more or less uniform, around 150 and 40 samples per average height in
the training and test datasets, respectively (Fig. S2a-b). This means that
each different value of the average column height appears in more or
less the same number of samples, and the only exceptions are the lowest
and highest columns, which represent the tails of the distribution.

In this section, we present the application of an innovative tech-
nique which has been recently applied in materials exploration using
machine learning models. Xiong et al. [19] presented a method called k-
fold forward cross-validation (kFCV), for which the dataset is partitioned
into k folds of equal size containing samples with ascending/descending
values of a target property. Then the cross-validation is performed in k-
1 steps, where at the first step fold 1 is used for training and fold 2 for
validation, at the second step folds 1 and 2 are used for training and
fold 3 for validation, etc. The performance of the kFCV is evaluated
using a specific metric called exploration accuracy, which is calculated
as the proportion of the samples in the validation set predicted correctly
in the range of the same fold. This method is promising to provide
superior extrapolation capabilities to a machine learning model with
respect to a traditional k-fold cross-validation for predicting materials
with property values outside the training domain. We have applied a 5-
folds FCV to our dataset using the regression-based model, where each
fold has been created by sorting the nanoparticles according to the
average atomic column height, calculated as the sum of the atomic
column heights in a sample divided by the number of columns in each
sample and approximated to one floating point. The overall procedure
is illustrated in Fig. 5.

The 5 folds are characterized by the following ranges of the average
column height values: [2.2, 3.5], [3.6, 4.4], [4.5, 5.4], [5.5, 6.3] and
[6.4, 8.3]. The extrapolation performance of the 5-folds FCV has been
evaluated through the exploration accuracy, which is reported in the
Table 2. Since at each step the model needs to be re-trained, the ex-
ploration accuracy has been evaluated at each epoch of the learning
process. The learning curves for each step are shown in Fig. S3 of
Supplementary Information. The learning curves show that the most
accurate results are reported for the initial epochs (epoch 2 in step 1,
epoch 4 in step 2, epoch 2 in step 3 and epoch 3 in step 4), with values
between 75% and 81%. The values are summarized in the Table 2.

The values of the exploration accuracy tend to slightly decrease in
successive steps of the 5-folds FCV, when nanoparticles with larger sizes
are used for validation. However, the overall results of the exploration
accuracy display that our model has satisfactory exploration cap-
abilities and improvements towards extrapolation could further en-
hance the prediction of average column heights not included in the
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Defocus =-150 A
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Fig. 4. Examples of model predictions on the si-
mulated HRTEM images generated with different
values of the defocus and the electron dose. (a)
demonstrates the less accurate results obtained with
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Accuracy = 60% Accuracy = 76% Accuracy = 93%

training domain.

4.3. Regression-based model applied to experimental HRTEM images

We first applied the regression-based CNN trained until epoch 18th
to evaluate the atomic column heights in the Au nanoparticle with the
relatively small size of about 2.8 nm (Fig. 6a). The experimental image
together with the zoom-in is shown on the left; the middle picture de-
picts the model predictions, and the picture on the right illustrates
plotted column heights with the contour map on the bottom plane. The
model predicts atomic columns with heights from 1 to 6, where the
highest columns are located in the center of (1 1 0) plane and radially
decrease towards outside. This picture is used for visualization purposes
only for eye guide of column heights distribution. As it is mentioned
above, the quantitative evaluation of CNN predictions is not straight-
forward due to the lack of experimentally measured heights; however,
based upon several qualitative trends we can evaluate the correctness of
our predictions. In particular, considering the size of the nanoparticle
(i.e., 2.8 nm) and the visible zone access (i.e., [1 1 0]), following the
Wulff’s construction the maximum column heights for such a nano-
particle could be 7. Our model predicts many columns with a height of

Nanoparticles sorted by average column height:

the lowest dose. (b) illustrates how the lowest
bound of the defocus range leads to a non-accurate
prediction even in the case of a high dose. (c) and
(d) show comparison between two dose values
keeping both the defocus at —200 A

H
510413

Accuracy = 100%

Table 2
Exploration accuracy at each step of the 5-fold FCV.

step 1 FCV step 2 FCV step 3 FCV step 4 FCV

Exploration Accuracy 81% 78% 76% 75%

6 in the center of the nanocluster. Taking into account the non-ideal
experimental conditions and the influence of the substrate, it is rea-
sonable to assume slightly smaller nanoparticles respect to the ideal
configuration of the Wulff’s construction.

We have investigated also a bigger nanoparticle with a size of
3.9 nm (Fig. 6b). Most of the columns in the center and the upper-left
corner of the nanoparticle have heights equal to 10. Similar to the
previous case, the column heights gradually decrease towards outside.
As mentioned above, an important objective of the current study is to
understand the model’s limitations. A somewhat weak prediction is
noticed in the upper-right corner, where a merging of two columns is
present in three pairs of peaks. Since the prediction for all the other
columns does not exhibit such merging, a potential source for this lack
of precision could be the presence of noise in the experimental image in

Fig. 5. 5-folds forward cross-validation for atomic
column height exploration. The nanoparticles have

[5.5,6.3]

> been sorted considering the average height as the

target variable and then they have been divided into
5 equally sized folds characterized by certain
threshold values. The exploration ability has been
tested on the validation set at each step.

[6.4,8.3]

X

Average
column height [22,3.5] [3.644] [4.554]
range:
(\g (& i
Step 2 Training Training Validation
Step 3 Training Training Training
Step 4 Training Training Training

Fold 1

Fold 2

Fold 3

Training

Fold 4

Validation

Fold 5
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Fig. 6. CNN predictions of the atomic column heights on the HRTEM experimental image with the nanoparticle size of 2.8 nm (a), 3.9 nm (b) and 4 nm (c).

the corresponding locations of the peaks. This is a good illustration of
the limitation of the model, which also provides an insight into the
quality of the experimental image needed for an accurate evaluation of
the CNN. It is worth mentioning that although most of the predicted
columns are relatively high, our model is capable of also identifying
small columns of heights 1 and 2 in the same nanoparticle.

Continuing the exploration of the model’s predictive capabilities, we
have applied the CNN to a relatively big nanoparticle with differently
oriented surfaces (Fig. 6¢). In particular, the change in orientation is
shown by a black line in the enlarged picture on the left, suggesting the
existence of twins. Applying the CNN, we are able to identify most of
the columns and their heights revealing the maximum height of 11, as
well as the twining in the particle. However, the majority of columns
have heights between 8 and 10 as could be expected for this nano-
particle size.

We next present the framework for the reconstruction of a nano-
particle with different surface orientations using a sequence of three
consequent HRTEM images (Fig. 7). The prediction of the column
height is tightly related to the intensities of the pixels in the TEM image,
which depend on the orientation of the electron beam of the microscope
at the moment of the acquisition. For this reason, a column depicted
from a certain orientation could bias the model to an incorrect pre-
diction of the column heights. However, considering the predictions on
the HRTEM images obtained from slightly tilted angles off the zone
axis, it allows to discard the heights with a non-physical meaning given
their position in the nanocluster. This is particular evident in the dif-
ferent predictions we have obtained applying the CNN on a HRTEM
image of a cluster acquired from three orientations (Fig. 7). Combining

the information of all the predictions (middle panel of Fig. 7a), it is
possible to reconstruct a 3D structure of the nanoparticle (right panel of
Fig. 7a). In the analyzed structure there are six sets with different
number of columns, where column height 5 is the most populated.

4.4. Classification model applied to experimental HRTEM images

As previously discussed, in addition to a regressive network, we
have also implemented a model based on the classification scheme.
Although this model has been presented in prior literature [27] as a
promising framework for the prediction of column heights in simulated
TEM images, the applicability of this method on the experimental
images is still missing. The contribution we present in this work consists
of the improvement of the existing algorithm for the evaluation of the
heights of the atomic columns also in the structures observed in the
experiments. For the sake of comparison, we have applied the classifi-
cation network trained until epoch 23rd on the HRTEM experimental
image reporting the 3.9 nm cluster analyzed in the previous section.
The probability scale for each predicted classification map in this image
is between 0 and 1. For each column, we have assigned the heights
considering the maximum probability among all the predicted classes,
and then we have reconstructed the final representation of the structure
(Fig. 8).

4.5. Comparison of the regression-based and classification networks

In the previous two sections, we have presented the evaluation of
the atomic column heights in both the simulated and the experimental
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Fig. 7. A framework to reconstruct a nanoparticle from a set of HRTEM experimental images. Right — sequence of three HRTEM images with an enlargement showing
a nanoparticle of interest; middle — CNN predictions of the corresponding nanoparticle; right — 3D reconstructed nanoparticle showing 2D and perspective views. The
3D structure is created from the superposition of all the predictions shown in the middle panel (a). Illustration of each separate set of column heights for the

reconstructed nanoparticle (b).

HRTEM images using the regression-based and classification models.
The objective is to understand the scatter between the predictions of the
models on the same nanoparticle and the strategies to improve the
predictions. We have first analyzed and compared the predictions on a
simulated TEM, and we have found that our regressive network is more
accurate than the classification network (Fig. 3). In this example we
have illustrated, it is shown how the regression-based CNN fails to
predict the correct height of two columns, whereas the classification
CNN misclassifies a total of six columns. It would not be possible to
investigate separately the results for all the samples in the training and
test set; however, following the accuracy curve for training and test set

CNN predictions

Experimental HRTEM image

(Fig. S4) the regression-based model provides about 10% more accurate
predictive capabilities than the classification model. Comparing the
predictions on the experimental images (Figs. 6b and 8), we have
concluded that both the models calculate values of the column heights
which are physically realistic in terms of the shape and the size of the
nanoparticles observed in the experiments. However, given the higher
accuracy on the simulated images, we have considered that the pre-
diction of the regression-based model is more reliable. A detailed
comparison between the predictions of both models on the same ex-
perimental image shows few differences, however with an average
deviation of just 1 atom. A further improvement of the present

Fig. 8. CNN predictions of the atomic column
heights applying classification model on the HRTEM
experimental image with the nanoparticle size of
3.9 nm (left picture). All results of CNN prediction
(middle picture) are shown in terms of probability
of a column belonging to a certain class. The ob-
tained atomic column heights are shown in the right
picture.

o N b O 0 =
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framework could help in the future to eliminate the small discrepancies
between the heights predicted by the two models, and to confirm how
this deep learning approach is beneficial for the estimation of the
atomic column heights. However, this will require detailed experi-
mental data with known column heights (i.e., experimental ground
truth).

5. Conclusions

A significant progress in metallic nanoparticle research would be
possible through accurate atomic column heights determination. The
detection of the heights of the atomic columns is far from being
achievable under realistic operating conditions. In this paper, we have
presented two deep learning models to address this task in experimental
HRTEM images. The first model is a regression-based convolutional
neural networks, and it is presented in this work for the first time. On
the other hand, the second model is based on a classification method
proposed in a previous report [27] for the calculation of the heights of
the atomic columns in the simulated TEM images. In order to design a
deep learning framework applicable also to experimental images of
gold nanoclusters, we have employed the Wulff construction of nano-
particles as an innovative method for the generation of a dataset of
physically realistic structures. Different experimental HRTEM images
have been used to validate the models. In particular, Au nanoparticles
with varying sizes have been considered. Comparing the predictions of
the regression-based and classification models, it is shown that the re-
gression-based type algorithm performs more accurately on the simu-
lated images. In addition, the results presented in this work provide
potentially useful quantitative insights concerning the experimental
requirements and operating conditions that can be valuable for the
development of future deep learning algorithms. In particular, our
analysis is capable to identify the range of values of the experimental
parameters involved in the HRTEM experiments that allows a deep
learning model to accurately predict the atomic column heights (cf.,
Fig. 4). Performing an extrapolation analysis using a 5-folds forward
cross-validation, we have demonstrated that the regression-based
model has satisfactory capabilities in exploring nanoparticles char-
acterized by an average size not included in the training dataset. Al-
though our models are capable of predicting column heights in different
nanoparticles, the evaluation of the predictions on a particular structure
requires detailed experimental information about the height of each
column (i.e., ground truth). Thus, there is a great necessity to measure
experimentally those structural details, which will significantly im-
prove the predictive capabilities of the models. The atomic electron
tomography (AET) method is of great promise for these purposes,
however this type of analysis is beyond the primary scope of this report.
Although the present work is motivated primarily by nanoparticles
research, the framework is general and easily extendable to other na-
noscience research related to TEM and SEM, such as catalysis, crystal-
lography, and phase evolution analysis that would greatly facilitate the
electron microscopy studies.

6. Data availability

The raw data required to reproduce these findings are available to
download from [https://github.com/mragon2/-UIC-MIE-ESCM-ML/
tree/master/ML_ColumnHeights].

The processed data required to reproduce these findings are avail-
able to download from [https://github.com/mragon2/-UIC-MIE-ESCM-
ML/tree/master/ML_ColumnHeights].
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