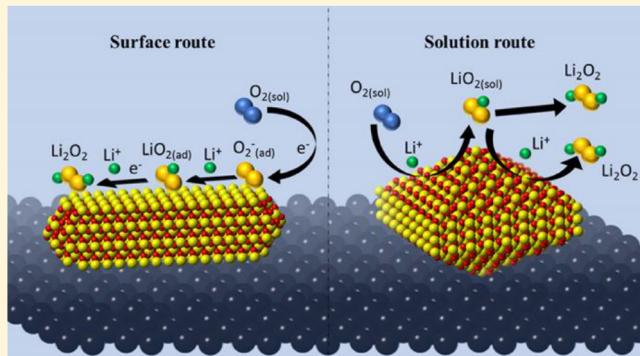


1 Tuning Li_2O_2 Formation Routes by Facet Engineering of MnO_2 Cathode Catalysts

3 Wentao Yao,^{1,†} Yifei Yuan,^{1,‡,§} Guoqiang Tan,^{1,§} Cong Liu,^{*,§} Meng Cheng,[‡] Vitaliy Yurkiv,^{*,‡}
 4 Xuanxuan Bi,[§] Fei Long,[†] Craig R. Friedrich,[†] Farzad Mashayek,[†] Khalil Amine,^{§,||} Jun Lu,^{*,§}
 5 and Reza Shahbazian-Yassar^{*,†,‡}

6 [†]Department of Mechanical Engineering-Engineering Mechanics, Michigan Technological University, Houghton, Michigan 49931,
 7 United States


8 [‡]Department of Mechanical and Industrial Engineering, The University of Illinois at Chicago, Chicago, Illinois 60607, United States

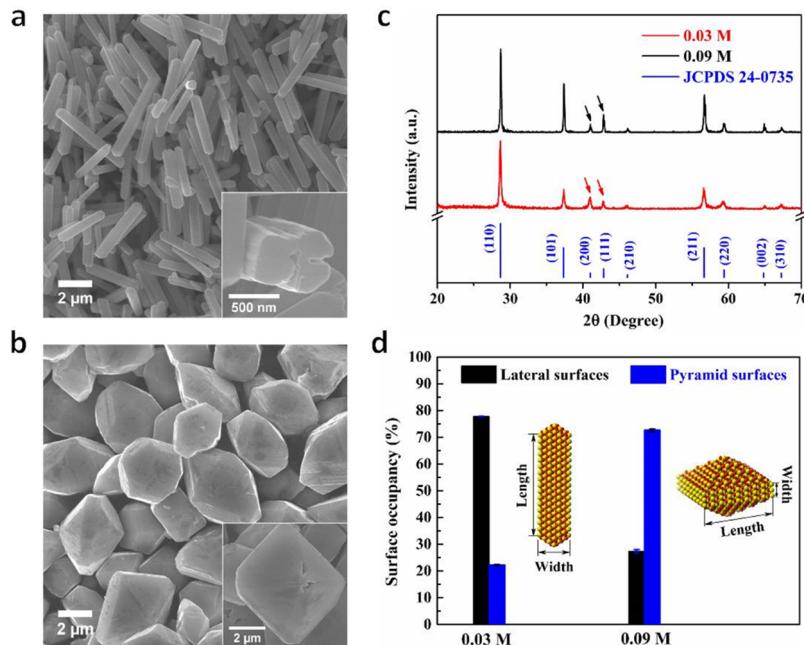
9 [§]Chemical Science and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439,
 10 United States

11 ^{||}Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia

12 Supporting Information

13 **ABSTRACT:** In lithium–oxygen batteries, the solubility of
 14 LiO_2 intermediates in the electrolyte regulates the formation
 15 routes of the Li_2O_2 discharge product. High-donor-number
 16 electrolytes with a high solubility of LiO_2 tend to promote the
 17 formation of Li_2O_2 large particles following the solution route,
 18 which eventually benefits the cell capacity and cycle life. Here,
 19 we propose that facet engineering of cathode catalysts could
 20 be another direction in tuning the formation routes of Li_2O_2 .
 21 In this work, β - MnO_2 crystals with high occupancies of {111} or {100} facets were adopted as cathode catalysts in $\text{Li}-\text{O}_2$ batteries with a tetra(ethylene)glycol dimethyl ether electrolyte. The {111}-dominated β - MnO_2 catalyzed the formation of the Li_2O_2 discharge product into large toroids following the solution routes, while {100}-dominated β - MnO_2 facilitated the formation of Li_2O_2 thin films through the surface routes. Further computational studies indicate that the different formation routes of Li_2O_2 could be related to different adsorption energies of LiO_2 on the two facets of β - MnO_2 . Our results demonstrate that facet engineering of cathode catalysts could be a new way to tune the formation route of Li_2O_2 in a low-donor-number electrolyte. We anticipate that this new finding would offer more choices for the design of lithium–oxygen batteries with high capacities and ultimately a long cycle life.

1. INTRODUCTION


31 Lithium–oxygen ($\text{Li}-\text{O}_2$) batteries, with their highest
 32 theoretical specific capacity (3623 $\text{Wh}\cdot\text{kg}^{-1}$), have received
 33 considerable attention over the past decade.^{1,2} The practical
 34 applications of $\text{Li}-\text{O}_2$ batteries, however, still face great
 35 challenges, such as lithium dendrite growth, electrolyte stability
 36 issues, and side reactions during the $\text{O}_2/\text{Li}_2\text{O}_2$ redox reaction
 37 at the cathode. While Li dendrite growth could be suppressed
 38 using a solid electrolyte or protective layers,^{3–5} reaching
 39 reversible $\text{O}_2/\text{Li}_2\text{O}_2$ redox reactions still requires a fundamen-
 40 tal understanding of the Li_2O_2 formation/evolution mecha-
 41 nism. The key route controlling the morphology of Li_2O_2 is the
 42 formation location of the LiO_2 intermediate: when the LiO_2
 43 intermediate is adsorbed on the cathode surface, Li_2O_2 thin
 44 films tend to form (surface routes); when LiO_2 dissolves in the
 45 electrolyte, large Li_2O_2 toroids can be generated (solution
 46 routes).⁶ Because of the insulating behavior of Li_2O_2 , toroid
 47 morphology was preferred to thin films in terms of increasing
 48 the capacity and cycle life of $\text{Li}-\text{O}_2$ batteries.⁷ The solubility of

Li O_2 is relatively high in high-donor-number (DN) electrolytes⁴⁹ because of the strong solvation of Li $^+$ -containing species;⁵⁰ therefore, the search for high-donor-number electrolytes was⁵¹ believed to be the future research direction for high-⁵² performance $\text{Li}-\text{O}_2$ batteries.^{6–8} However, strongly solvating⁵³ electrolytes are generally unstable toward the reactive O $^{2-}$ ⁵⁴ radical, which causes unwanted side reactions.⁸ The formation⁵⁵ location of LiO_2 intermediate, on the other hand, is also related⁵⁶ to its adsorption ability on the cathode surface, which might be⁵⁷ tuned using proper catalysts.⁵⁸

Effective cathode catalysts, including various precious⁵⁹ metals, metal oxides, and their composites, have shown the⁶⁰ ability to reduce the charge/discharge overpotential for $\text{Li}-\text{O}_2$ ⁶¹ batteries, although the role of the cathode catalyst varies in⁶² different electrolyte–cathode–catalyst systems.^{9–12} Carbo-⁶³ nate-based electrolytes tend to decompose in $\text{Li}-\text{O}_2$ ⁶⁴

Received: June 5, 2019

Published: July 23, 2019

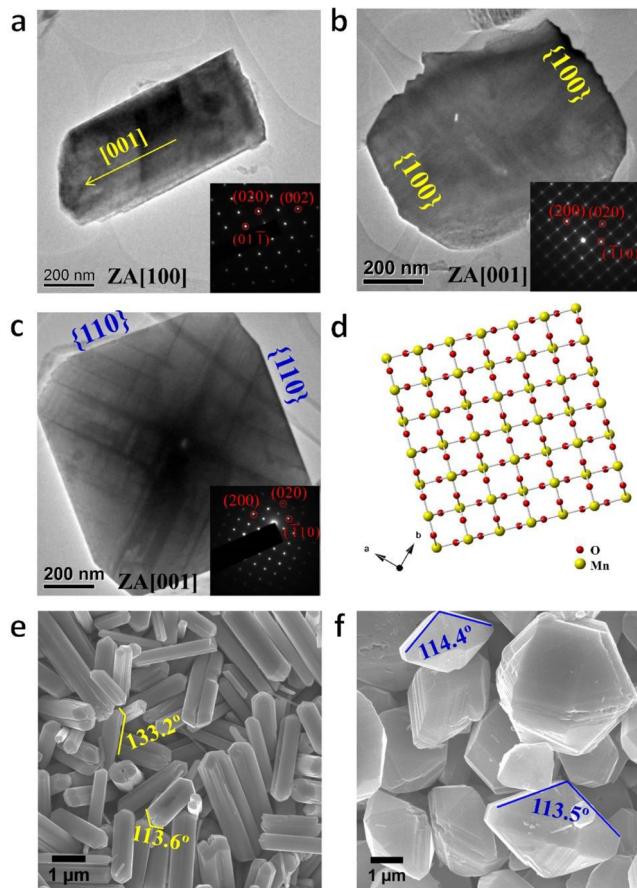
Figure 1. FE-SEM images of the β -MnO₂ crystals with (a) a bipyramidal prism and (b) an octahedron structure obtained with 0.03 and 0.09 M KCl, respectively. (c) XRD patterns of the β -MnO₂ crystals in agreement with standard JCPDS 24-0736. (d) Average occupancy of lateral and pyramidal surfaces in the two morphologies of β -MnO₂ crystals.

65 batteries.¹³ In a Li–O₂ cell using dimethoxyethane (DME) as
 66 the electrolyte solvent, McCloskey et al. found that metal and
 67 metal oxide catalysts were not effective for the oxygen
 68 evolution reaction (OER).¹⁴ Chen et al. also observed
 69 electrolyte decomposition of this electrolyte with the
 70 accumulation of Li₂CO₃ during cycling.¹⁵ More stable
 71 tetra(ethylene)glycol dimethyl ether (TEGDME) solvent was
 72 then developed with higher chemical inertia and low sensitivity
 73 to oxygen reduction species.¹⁶ Moreover, Wang et al.
 74 demonstrated that ruthenium was an effective cathode catalyst
 75 in reducing the charging overpotential in a solid-state Li–O₂
 76 cell with a lithium ion conductive glass–ceramics (LICGC)
 77 electrolyte, which implied that nonaqueous OER underwent a
 78 solid–solid interaction without liquid facilitators.¹⁷
 79 The exposed surfaces of the catalysts closely interact with
 80 the surrounding electrolytes, thus directly affecting the
 81 activation energies for the oxygen reduction or evolution
 82 reactions. Song et al. synthesized a Pt catalyst with high-index
 83 {411} crystal facets and reported enhanced oxygen reduction
 84 and evolution performance compared to those of the
 85 commercial Pt/C catalyst in Li–O₂ cells.¹⁸ Su et al. reported
 86 the effect of Co₃O₄ crystal facets in reducing the charge
 87 overpotential in Li–O₂ batteries, which followed {100} <
 88 {110} < {112} < {111}.¹⁹ Gao et al. found better catalytic
 89 performance of the {111} facets compared to that of the {001}
 90 facets of Co₃O₄ and attributed the results to the richer Co²⁺
 91 and more active sites on the {111} facets.²⁰ Lai et al.
 92 demonstrated higher OER activities in a Li–O₂ cell catalyzed
 93 with high-energy facets of Cr₂O₃ crystals.²¹ These reported
 94 works mainly focus on the facet effect of catalysts during the
 95 charging/OER process. The role of catalysts during discharg-
 96 ing, particularly the formation of Li₂O₂, has been poorly
 97 developed. Facet engineering of cathode catalysts holds the
 98 potential to adjust the adsorption of LiO₂ intermediates on the
 99 electrode surface, which in turn could control the morphology
 100 of Li₂O₂.

Earth-abundant MnO₂-based structures have received 101 considerable attention as the most favorable and nonprecious 102 catalysts in lithium–oxygen batteries.²² The effect of crystal 103 phases and morphologies on the catalytic properties of MnO₂ 104 has been broadly evaluated.^{22–26} The catalytic performance of 105 MnO₂ is greatly limited by its poor electron conductivity.¹⁰⁶ Therefore, previous studies mainly focused on improving the 107 conductivity of the MnO₂ catalyst through the introduction of 108 conductive substrates (such as graphene,^{27,28} carbon nano-¹⁰⁹ tubes,^{29,30} and Ni foam³¹) or doping with Pd,^{32,33} Pt,³⁴ or Ti.³⁵ 110 Although different crystal facets of MnO₂ were predicted to 111 have different catalytic performance with respect to oxygen 112 reduction and evolution reactions (ORR/OER) based on 113 density functional theory (DFT) simulations,^{36–39} the 114 controlled growth of MnO₂ crystals with tunable facets is 115 generally hard to realize at the experimental level and the role 116 of MnO₂ catalysts in O₂/Li₂O₂ redox reactions is still poorly 117 understood.¹¹⁸

In this article, β -MnO₂ crystals with high occupancies of 119 {111} or {100} facets were successfully synthesized and 120 adopted to demonstrate the role of surface engineering in 121 tuning the catalytic activities of MnO₂ crystals in Li–O₂¹²² batteries. Both {100} and {111} facets of β -MnO₂ crystals¹²³ were found to reduce the charge/discharge overpotentials¹²⁴ of the Li–O₂ batteries compared to the pure carbon cathode. For¹²⁵ the formation of Li₂O₂ in the low-donor-number TEGDME¹²⁶ electrolyte, the {111} facets of β -MnO₂ facilitated the solution¹²⁷ routes to forming Li₂O₂ toroids, while the {100} facets favored¹²⁸ the surface routes with the formation of Li₂O₂ thin films. The¹²⁹ trend in calculated adsorption energies of the LiO₂¹³⁰ intermediate on the {111} and {100} facets of β -MnO₂¹³¹ further supported our experimental observation.¹³²

2. EXPERIMENTAL METHODS


The detailed experimental methods are provided in the Supporting¹³³ Information.¹³⁴

3. RESULTS AND DISCUSSION

¹³⁵ β -MnO₂ crystals were synthesized on the basis of the redox reaction between MnO₄⁻ and Mn²⁺. The morphology was controlled by varying the concentration of KCl in the precursor solution. The obtained crystals with 0.03 and 0.09 M KCl showed bipyramidal prism and octahedron shapes, respectively (Figure 1a,b). The phase of the crystals was confirmed to be β -MnO₂ on the basis of their powder X-ray diffraction (XRD) patterns (Figure 1c). The corresponding XRD patterns were in good agreement with standard JCPDS 24-0735 with lattice parameters $a = b = 4.399$ Å and $c = 2.874$ Å. Following the morphology change from bipyramidal prism to octahedron, the ratio of integrated XRD peak intensity $I_{(111)}/I_{(200)}$ increased from 0.514 to 2.001, with a clear change in peak intensities (indicated by the arrows in Figure 1c).

Statistical analysis was performed to show the change in exposed surfaces from the bipyramidal prism to the octahedron morphology. The length and width of the prism were measured on the basis of SEM images and analyzed specifically (Figure 1d). The bipyramidal prism morphology had a prism length of close to 3.11 ± 0.34 μ m and a prism width of around 0.36 ± 0.04 μ m, and the octahedron structure had a prism length of around 0.67 ± 0.08 μ m and a prism width of around 2.78 ± 0.27 μ m. The distributions of these dimensions are summarized in the Supporting Information (Figure S1). The occupancy of lateral surfaces and pyramidal surfaces was calculated on the basis of the geometric surface areas of each crystal facet in a single-crystalline particle using the averaged prism length and prism width (Figure 1d). The detailed method is provided in the Supporting Information (Figure S2). The occupancy of lateral surfaces is close to 78% in the bipyramidal prism structure, and the occupancy of pyramidal surfaces is close to 73% in the octahedron structure. More attention, therefore, was drawn to the index of the lateral surfaces in the bipyramidal prism structure and the pyramidal surfaces in the octahedron structure.

The surfaces of the bipyramidal prism and the octahedron morphologies were identified by combining high-resolution transmission electron microscopy (HR-TEM), cross-section analysis, and scanning electron microscopy (SEM) analysis. The growth direction of the β -MnO₂ crystal was confirmed to be along the [001] tunnel direction on the basis of the selected-area electron diffraction (SAED) pattern obtained from the [100] zone axis (Figure 2a). To identify the lateral surfaces of the bipyramidal prism structure, cross-sectional samples were prepared by ultramicrotomy. The lateral surfaces of the bipyramidal prism were confirmed to be the {100} surfaces based on the SAED pattern acquired from the [001] tunnel axis (Figure 2b). The lateral surfaces of the octahedron were confirmed to be the {110} surfaces based on the SAED pattern obtained from the same [001] zone axis (Figure 2c). The evolution of lateral surfaces from {100} to {110} is consistent with our previous studies⁴⁰ and is due to the higher surface energy of {100} facets (0.94 J/m²) compared to that of {110} facets (0.62 J/m²).³⁸ Figure 2d shows the atom model of the β -MnO₂ crystal with {110} lateral surfaces viewed along the tunnel direction. To confirm that the pyramidal surfaces in the bipyramidal prism and the octahedron structures belong to the {111} facets, interplanar angles were measured in the SEM images (Figure 2e,f) and compared with theoretical values, following our previous methods.⁴¹ The interplanar angle between the pyramidal surfaces and {110} facets and the

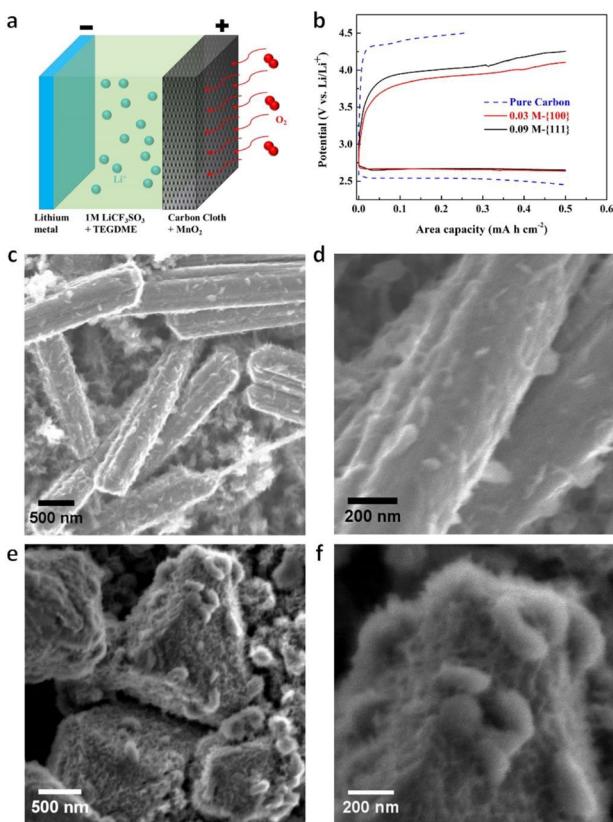
Figure 2. Identification of the lateral and pyramidal surfaces of the two β -MnO₂ morphologies combining TEM, SEM, and cross-section analysis. (a) β -MnO₂ bipyramidal prism structure viewed along the [100] zone axis. The inset panel gives the corresponding SAED pattern. (b) β -MnO₂ bipyramidal prism cross-section sample viewed along the [001] tunnel direction. The inset SAED pattern confirms the lateral surfaces to be the {100} facets. (c) β -MnO₂ octahedra viewed along the [001] tunnel direction. The inset SAED pattern indicates that the lateral surfaces belong to {110} facets. (d) Simulated atom model showing the structure of β -MnO₂ viewed along the [001] direction with {110} as the lateral surfaces. Representative interplanar angle measurements performed in β -MnO₂ (e) bipyramidal prism and (f) octahedron structures.

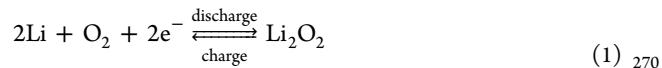
diagonal slant angle of the pyramidal surfaces were obtained and compared to the theoretical values of 132.7 and 113.6° , respectively.⁴¹ Representative measurements performed on both morphologies are shown in Figure 2e,f.

On the basis of our previous work,⁴⁰⁻⁴³ it should be emphasized that the identification of lateral surfaces for nanowires is reliable only on the basis of the TEM image and the SAED pattern obtained from their growth direction, in our case, the [001] tunnel direction. Using SAED patterns acquired from the lateral zone axis to identify lateral facets would be misleading because TEM images are projected images and the random selection of the lateral zone axis (tilting the nanowire) will greatly affect the lateral atoms or lattice distances observed in the TEM images. As shown in Figure S3, β -MnO₂ with {100} lateral facets viewed from [100], [110], and [210] lateral zone axes gives completely different arrangements of lateral Mn atoms and lattice spacings.

The effect of crystal facets on the catalytic activities of β -MnO₂ as the cathode catalyst for lithium–oxygen batteries was

215 then evaluated. Figure 3a shows the components of the
216 assembled Li–O₂ cell. The nonaqueous TEGDME electrolyte



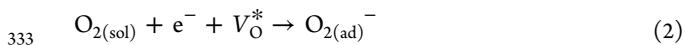

Figure 3. (a) Schematic image showing the structure of the Swagelok-type Li–O₂ cell. (b) First cycle charge–discharge curves of the Li–O₂ cells composed of pure carbon, the β -MnO₂ bipyramidal prism (0.03 M, {100}), and the β -MnO₂ octahedron (0.09 M, {111}) cathode, respectively. SEM images showing the morphologies of the discharge products on the surface of (c, d) the β -MnO₂ bipyramidal prism and (e, f) the octahedron.

217 was used because of its excellent stability toward highly
218 reactive oxygen radical anion O₂[–].⁴⁴ Our previous work also
219 confirmed the stability of the TEGDME electrolyte upon
220 cycling and the reversibility of Li₂O₂ formation–dissolution in
221 the presence of the MnO₂ catalysts.⁴⁵ Figure 3b shows the first
222 charge–discharge cycle of the Li–O₂ cells catalyzed with
223 different β -MnO₂ catalysts. The capacity-limited charge–
224 discharge method was adopted to avoid electrolyte decom-
225 position and improve the rechargeability of the Li–O₂ cell.⁴⁵
226 The area capacity was limited to 0.5 mA h cm^{–2} for all of the
227 cells. A constant discharge and charge current of 0.05 mA cm^{–2}
228 were used. The calculated gravimetric current density was
229 0.023 and 0.025 mA/g for the {100} and {111} structures,
230 respectively. Note that this calculation is based on the mass of
231 the active materials. The two morphologies of β -MnO₂ crystals
232 clearly reduced both the charging and discharging over-
233 potentials of the cell (Figure 3b). The {100} and {111} facets
234 showed comparable catalytic performance during the battery
235 discharge, with a discharge plateau at 2.66 V vs Li⁺/Li. The
236 discharge overpotential was reduced by ~0.11 V compared to
237 the bare carbon cathode. During charging, the Li–O₂ cell
238 catalyzed by the {100} facets had a relatively lower charging
239 potential (3.85–4.10 V) compared to that of the {111} facets

(3.95–4.25 V), resulting in round-trip efficiencies ~69 and 240
~67%, respectively. The charge potential was clearly reduced 241
compared to that of the Li–O₂ cell with a pure carbon cathode 242
(4.33–4.49 V). Similar phenomena were observed for the 243
second and third cycles (Figure S4). On the basis of our 244
previous experiences, the electrochemical performance of the 245
Li–O₂ cells could be further improved using Al₂O₃ coatings or 246
a smaller particle size of the catalysts.^{45–47} These methods 247
were not developed in this work in order to minimize 248
unwanted influencing factors and maintain comparable surface 249
areas for the two catalysts.²⁵⁰

Brunauer–Emmett–Teller (BET) analysis was used to 251
examine the surface areas of the two morphologies of β - 252
MnO₂ (Figure S5). The surface areas were found to be 1.33 253
and 3.7 m²/g for the bipyramidal prism and the octahedron 254
morphologies, respectively. The relatively high surface area of 255
the octahedron morphology (rich in {111} facets) did not offer 256
better catalytic performance in reducing the charge over- 257
potential. This demonstrates that the crystal facets effect is 258
more crucial in regulating the charge/discharge overpotential. 259
To understand the role of β -MnO₂ crystal facets during the 260
charge–discharge process, the discharge products were further 261
examined using SEM after the initial discharge. The discharge 262
product catalyzed by the {100} facets of β -MnO₂ (the 263
bipyramidal prism) showed a thin-film morphology (Figure 264
3c,d), whereas the discharge product catalyzed by the {111} 265
facets (octahedron structure) showed a toroidal morphology 266
(Figure 3e,f).²⁶⁷

The ideal electrochemical reaction on the cathode side 268
follows eq 1:²⁶⁹



The oxygen reduction to Li₂O₂ at low overpotentials follows 271
two mechanisms: the solution mechanism, where Li₂O₂ forms 272
mainly in the solution as large particles or toroids, and the 273
surface mechanism, where Li₂O₂ forms as thin films on the 274
surface of the cathode.⁴⁸ The formation mechanism of Li₂O₂ 275
was found to be governed by the competition between the 276
LiO₂ solubility in the battery electrolyte and the adsorption of 277
the LiO₂ intermediate on the electrode surfaces.^{6,7} The 278
solubility of LiO₂ in the electrolyte can be increased using 279
solvent molecules with high donor numbers.⁴⁹ A highly 280
dissolved LiO₂ intermediate in the electrolyte can facilitate 281
the solution mechanism for the growth of Li₂O₂ into large 282
particles.⁶²⁸³

The TEGDME electrolyte used here has a relatively low 284
donor number (16.6).⁵⁰ The solubility of the LiO₂ 285
intermediate would be low in this electrolyte.⁶ Therefore, the 286
surface mechanism would have dominated the formation of 287
Li₂O₂ on the basis of the current theory. However, our 288
observation shows that, while the Li₂O₂ formation on the β - 289
MnO₂ bipyramidal prism followed the surface mechanism, the 290
solution mechanism was surprisingly dominant on the cathode 291
loaded with β -MnO₂ octahedrons ({111} facets). The reason 292
could be related to the competition between the LiO₂ 293
solubility in the electrolyte and its adsorption on different 294
crystal facets of β -MnO₂. With the same electrolyte, the 295
solubility of LiO₂ should be consistent in the two Li–O₂ cells.²⁹⁶ Therefore, the appearance of the solution mechanism might be 297
related to the different adsorption energies of the LiO₂ 298
intermediate on the {111} and {100} facets of β -MnO₂.²⁹⁹

300 Further investigations were carried out on the adsorption
 301 energies of LiO_2 on the two facets using DFT calculations. To
 302 provide the first approximation of the interaction between
 303 MnO_2 surfaces and LiO_2 , we considered the LiO_2 molecule in
 304 the calculations. Solvent effects were taken into account^{51–53}
 305 on the basis of an implicit solvation model developed by
 306 Hennig and co-workers.⁵⁴ Several binding conformations of
 307 LiO_2 on each surface were considered; however, only a few of
 308 them were determined to be energetically favorable in the
 309 TEGDME electrolyte (Figures S6 and S7). In general, the
 310 adsorption energies of LiO_2 on the $\{100\}$ surfaces are more
 311 negative than those on the $\{111\}$ surfaces, which indicates
 312 stronger binding in the case of $\{100\}$ surfaces. This is because
 313 both the lithium and oxygen atoms bind with appropriate
 314 atoms within the $\{100\}$ $\beta\text{-MnO}_2$ surfaces (Figure S6), whereas
 315 in the case of $\{111\}$ surfaces, either oxygen or lithium (Figure
 316 S7) atoms create a bond with an appropriate surface atom. The
 317 stronger interaction between the LiO_2 intermediate and the
 318 $\{100\}$ surface compared to the $\{111\}$ surface could promote
 319 the capture of the LiO_2 intermediate, facilitating the surface
 320 mechanism of Li_2O_2 thin film formation on the $\{100\}$ surfaces.
 321 On the other hand, the weaker adsorption energies of LiO_2 on
 322 the $\{111\}$ facets may indicate the suppression of the
 323 adsorption of LiO_2 intermediates to the cathode surface and
 324 thus may facilitate the solution mechanism for forming Li_2O_2
 325 toroids.

326 On the other hand, the adsorption of the LiO_2 intermediate
 327 could be affected by the presence of vacancies on the electrode
 328 surface. Oxygen radical anion O_2^- is needed for the generation
 329 of the LiO_2 intermediate. The formation of O_2^- follows eq 2,
 330 where O_2 molecules are adsorbed in the vacancies (V_{O}^*) on
 331 the electrode surfaces and require one electron to form O_2^-
 332 anions.⁵⁵

334 Previous DFT calculations have reported that the formation
 335 energies of oxygen vacancies on the $\{100\}$ and $\{111\}$ facets of
 336 $\beta\text{-MnO}_2$ are 1.13 and 1.41 eV, respectively.³⁸ The lower
 337 oxygen vacancy formation energy on $\{100\}$ facets would
 338 promote the adsorption of dissolved O_2 molecules and the
 339 formation of O_2^- anions. This in return would affect the
 340 adsorption of the LiO_2 intermediate.

341 To better illustrate the role of different crystal facets of $\beta\text{-}$
 342 MnO_2 during the formation of Li_2O_2 , the reaction processes
 343 are further summarized and shown in Figure 4. The LiO_2
 344 intermediate prefers to absorb on the $\{100\}$ facets. The
 345 adsorbed LiO_2 then follows a second electron reduction or
 346 direct disproportionate to generate Li_2O_2 thin films. The $\{111\}$
 347 facets of $\beta\text{-MnO}_2$, however, facilitate a solution-based
 348 mechanism, where LiO_2 is mainly dissolved in the electrolyte.
 349 The dissolved LiO_2 then follows a direct disproportionate or a
 350 second electron reduction to form large Li_2O_2 toroids.

351 During the oxidation of Li_2O_2 , the oxidation of thin film
 352 Li_2O_2 is generally facile and the decomposition of large Li_2O_2
 353 particles is a challenge because the large particles are generally
 354 remote from the surface of current collectors and the oxidation
 355 of Li_2O_2 has been reported to be controlled by electron
 356 conduction.^{56,57} This explains our observation that a higher
 357 charging overpotential was observed in the $\text{Li}-\text{O}_2$ cell
 358 catalyzed by $\{111\}$ surfaces of $\beta\text{-MnO}_2$, where Li_2O_2 toroids
 359 were formed.

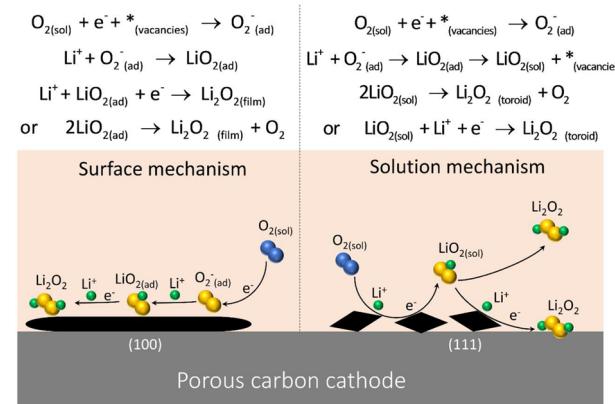


Figure 4. Proposed Li_2O_2 formation mechanisms on the carbon cathode catalyzed by $\beta\text{-MnO}_2$ bipyramidal prism (0.03 M, $\{100\}$) and octahedron (0.09 M, $\{111\}$) crystals.

4. CONCLUSIONS

We successfully realized solution-based Li_2O_2 formation in the low-donor-number TEGDME electrolyte by facet engineering of the $\beta\text{-MnO}_2$ cathode catalysts. $\beta\text{-MnO}_2$ crystals with highly exposed $\{100\}$ and $\{111\}$ facets showed clear improvements in reducing the charge and discharge overpotential compared to the bare carbon cathode. The $\{111\}$ facets of $\beta\text{-MnO}_2$ facilitated the solution mechanism for the formation of Li_2O_2 toroids; the $\{100\}$ facets, however, catalyzed the surface mechanism for the generation of detrimental Li_2O_2 thin films. The different formation mechanism was due to different adsorption energies of the LiO_2 intermediate on the $\{100\}$ and $\{111\}$ facets. Our findings indicate that the search for high-donor-number electrolytes may not be the only choice for high-performance lithium–oxygen batteries. Facet engineering of the cathode catalysts would offer more choices for the selection of stable electrolytes for $\text{Li}-\text{O}_2$ cells without sacrificing the cell capacity or cycle life. The facet engineering of MnO_2 crystals shall also bring about new findings for their applications in various energy storage devices and catalysis reactions.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.9b05992.

Full experimental details and additional experimental data (PDF)

AUTHOR INFORMATION

Corresponding Authors

*congliu@anl.gov

*vyurkiv@uic.edu

*junlu@anl.gov

*rsyassar@uic.edu

ORCID

Wentao Yao: 0000-0003-1653-769X

Cong Liu: 0000-0002-2145-5034

Vitaliy Yurkiv: 0000-0002-3407-891X

Fei Long: 0000-0002-5245-6961

Farzad Mashayek: 0000-0003-1187-4937

Khalil Amine: 0000-0001-9206-3719

399 Jun Lu: 0000-0003-0858-8577

400 Reza Shahbazian-Yassar: 0000-0002-7744-4780

401 **Author Contributions**402 ¹These authors contributed equally to this work.403 **Notes**

404 The authors declare no competing financial interest.

405 ■ **ACKNOWLEDGMENTS**

406 R.S.-Y. acknowledges financial support from the National
 407 Science Foundation (no. DMR-1620901). W.Y. acknowledges
 408 Multi-Scale Technologies Institute at Michigan Technological
 409 University. Partial funding for Y.Y. from Argonne National
 410 Laboratory under subcontract no. 4J-30361 is acknowledged.
 411 J.L. and K.A. gratefully acknowledge support from the U.S.
 412 Department of Energy (DOE), Office of Energy Efficiency and
 413 Renewable Energy, Vehicle Technologies Office. Argonne
 414 National Laboratory is operated for the DOE Office of Science
 415 by UChicago Argonne, LLC, under contract no. DE-AC02-
 416 06CH11357. DFT calculations were performed using the
 417 computational resources provided by the Laboratory Comput-
 418 ing Resource Center (LCRC) at Argonne National Laboratory.
 419 This work made use of the JEOL JEMARM200CF in the
 420 Electron Microscopy Service (Research Resources Center,
 421 UIC). The acquisition of the UIC JEOL JEM-ARM200CF was
 422 supported by an MRI-R2 grant from the National Science
 423 Foundation (no. DMR-0959470).

424 ■ **REFERENCES**

- (1) Ogasawara, T.; Débart, A.; Holzapfel, M.; Novák, P.; Bruce, P. G. Rechargeable Li_2O_2 electrode for lithium batteries. *J. Am. Chem. Soc.* **2006**, *128* (4), 1390–1393.
- (2) Lu, J.; Li, L.; Park, J.-B.; Sun, Y.-K.; Wu, F.; Amine, K. Aprotic and aqueous $\text{Li}-\text{O}_2$ batteries. *Chem. Rev.* **2014**, *114* (11), 5611–5640.
- (3) Yang, C.; Fu, K.; Zhang, Y.; Hitz, E.; Hu, L. Protected lithium-metal anodes in batteries: From liquid to solid. *Adv. Mater.* **2017**, *29* (36), 1701169.
- (4) Li, N.-W.; Yin, Y.-X.; Yang, C.-P.; Guo, Y.-G. An artificial solid electrolyte interphase layer for stable lithium metal anodes. *Adv. Mater.* **2016**, *28* (9), 1853–1858.
- (5) Wu, M.; Wen, Z.; Liu, Y.; Wang, X.; Huang, L. Electrochemical behaviors of a Li_3N modified Li metal electrode in secondary lithium batteries. *J. Power Sources* **2011**, *196* (19), 8091–8097.
- (6) Johnson, L.; Li, C.; Liu, Z.; Chen, Y.; Freunberger, S. A.; Ashok, P. C.; Praveen, B. B.; Dholakia, K.; Tarascon, J.-M.; Bruce, P. G. The role of LiO_2 solubility in O_2 reduction in aprotic solvents and its consequences for $\text{Li}-\text{O}_2$ batteries. *Nat. Chem.* **2014**, *6* (12), 1091–1099.
- (7) Aetukuri, N. B.; McCloskey, B. D.; García, J. M.; Krupp, L. E.; Viswanathan, V.; Luntz, A. C. Solvating additives drive solution-mediated electrochemistry and enhance toroid growth in non-aqueous $\text{Li}-\text{O}_2$ batteries. *Nat. Chem.* **2015**, *7* (1), 50–56.
- (8) Gao, X.; Chen, Y.; Johnson, L.; Bruce, P. G. Promoting solution phase discharge in $\text{Li}-\text{O}_2$ batteries containing weakly solvating electrolyte solutions. *Nat. Mater.* **2016**, *15* (8), 882–888.
- (9) Tian, N.; Zhou, Z. Y.; Yu, N. F.; Wang, L. Y.; Sun, S. G. Direct electrodeposition of tetrahedrahedral Pd nanocrystals with high-index facets and high catalytic activity for ethanol electrooxidation. *J. Am. Chem. Soc.* **2010**, *132* (22), 7580–7581.
- (10) Zhang, L.; Chen, D.; Jiang, Z.; Zhang, J.; Xie, S.; Kuang, Q.; Xie, Z.; Zheng, L. Facile syntheses and enhanced electrocatalytic activities of Pt nanocrystals with $\{h\bar{k}k\}$ high-index surfaces. *Nano Res.* **2012**, *5* (3), 181–189.
- (11) Zhang, Q.; Wang, H. Facet-dependent catalytic activities of Au nanoparticles enclosed by high-index facets. *ACS Catal.* **2014**, *4* (11), 4027–4033.

- (12) Lee, H. E.; Yang, K. D.; Yoon, S. M.; Ahn, H. Y.; Lee, Y. Y.; Chang, H.; Jeong, D. H.; Lee, Y. S.; Kim, M. Y.; Nam, K. T. Concave rhombic dodecahedral Au nanocatalyst with multiple high-index facets for CO_2 reduction. *ACS Nano* **2015**, *9* (8), 8384–8393.
- (13) Freunberger, S. A.; Chen, Y.; Peng, Z.; Griffin, J. M.; Hardwick, L. J.; Bardé, F.; Novák, P.; Bruce, P. G. Reactions in the rechargeable lithium- O_2 battery with alkyl carbonate electrolytes. *J. Am. Chem. Soc.* **2011**, *133* (20), 8040–8047.
- (14) McCloskey, B. D.; Scheffler, R.; Speidel, A.; Bethune, D. S.; Shelby, R. M.; Luntz, A. C. On the efficacy of electrocatalysis in nonaqueous $\text{Li}-\text{O}_2$ batteries. *J. Am. Chem. Soc.* **2011**, *133* (45), 18038–18041.
- (15) Chen, Y.; Freunberger, S. A.; Peng, Z.; Bardé, F.; Bruce, P. G. Li- O_2 battery with a dimethylformamide electrolyte. *J. Am. Chem. Soc.* **2012**, *134* (18), 7952–7957.
- (16) Jung, H.-G.; Hassoun, J.; Park, J.-B.; Sun, Y.-K.; Scrosati, B. An improved high-performance lithium-air battery. *Nat. Chem.* **2012**, *4* (7), 579–585.
- (17) Wang, Y.; Liang, Z.; Zou, Q.; Cong, G.; Lu, Y.-C. Mechanistic insights into catalyst-assisted nonaqueous oxygen evolution reaction in lithium-oxygen batteries. *J. Phys. Chem. C* **2016**, *120* (12), 6459–6466.
- (18) Song, K.; Jung, J.; Park, M.; Park, H.; Kim, H.-J.; Choi, S.-I.; Yang, J.; Kang, K.; Han, Y.-K.; Kang, Y.-M. Anisotropic surface modulation of Pt catalysts for highly reversible $\text{Li}-\text{O}_2$ batteries: High index facet as a critical descriptor. *ACS Catal.* **2018**, *8* (10), 9006–9015.
- (19) Su, D.; Dou, S.; Wang, G. Single crystalline Co_3O_4 nanocrystals exposed with different crystal planes for $\text{Li}-\text{O}_2$ batteries. *Sci. Rep.* **2015**, *4*, 5767.
- (20) Gao, R.; Zhu, J.; Xiao, X.; Hu, Z.; Liu, J.; Liu, X. Facet-dependent electrocatalytic performance of Co_3O_4 for rechargeable $\text{Li}-\text{O}_2$ battery. *J. Phys. Chem. C* **2015**, *119* (9), 4516–4523.
- (21) Lai, N.-C.; Cong, G.; Liang, Z.; Lu, Y.-C. A highly active oxygen evolution catalyst for lithium-oxygen batteries enabled by high-surface-energy facets. *Joule* **2018**, *2* (8), 1511–1521.
- (22) Débart, A.; Paterson, A. J.; Bao, J.; Bruce, P. G. $\alpha\text{-MnO}_2$ nanowires: A catalyst for the O_2 electrode in rechargeable lithium batteries. *Angew. Chem.* **2008**, *120* (24), 4597–4600.
- (23) Truong, T. T.; Liu, Y.; Ren, Y.; Trahey, L.; Sun, Y. Morphological and crystalline evolution of nanostructured MnO_2 and its application in lithium-air batteries. *ACS Nano* **2012**, *6* (9), 503–504.
- (24) Thapa, A. K.; Hidaka, Y.; Hagiwara, H.; Ida, S.; Ishihara, T. Mesoporous $\beta\text{-MnO}_2$ air electrode modified with Pd for rechargeability in lithium-air battery. *J. Electrochem. Soc.* **2011**, *158* (12), A1483–A1489.
- (25) Ida, S.; Thapa, A. K.; Hidaka, Y.; Okamoto, Y.; Matsuka, M.; Hagiwara, H.; Ishihara, T. Manganese oxide with a card-house-like structure reassembled from nanosheets for rechargeable Li-air battery. *J. Power Sources* **2012**, *203*, 159–164.
- (26) Song, K.; Jung, J.; Heo, Y.-U.; Lee, Y. C.; Cho, K.; Kang, Y.-M. $\alpha\text{-MnO}_2$ nanowire catalysts with ultra-high capacity and extremely low overpotential in lithium-air batteries through tailored surface arrangement. *Phys. Chem. Chem. Phys.* **2013**, *15* (46), 20075–20079.
- (27) Cao, Y.; Wei, Z.; He, J.; Zang, J.; Zhang, Q.; Zheng, M.; Dong, Q. $\alpha\text{-MnO}_2$ nanorods grown in situ on graphene as catalysts for $\text{Li}-\text{O}_2$ batteries with excellent electrochemical performance. *Energy Environ. Sci.* **2012**, *5* (12), 9765–9768.
- (28) Yang, Y.; Shi, M.; Li, Y.-S.; Fu, Z.-W. MnO_2 -graphene composite air electrode for rechargeable Li-air batteries. *J. Electrochem. Soc.* **2012**, *159* (12), A1917–A1921.
- (29) Li, J.; Wang, N.; Zhao, Y.; Ding, Y.; Guan, L. MnO_2 nanoflakes coated on multi-walled carbon nanotubes for rechargeable lithium-air batteries. *Electrochim. Commun.* **2011**, *13* (7), 698–700.
- (30) Zhang, G.; Zheng, J.; Liang, R.; Zhang, C.; Wang, B.; Au, M.; Hendrickson, M.; Plichta, E. $\alpha\text{-MnO}_2$ /carbon nanotube/carbon nanofiber composite catalytic air electrodes for rechargeable lithium-air batteries. *J. Electrochim. Soc.* **2011**, *158* (7), A822–A827.

531 (31) Hu, X.; Han, X.; Hu, Y.; Cheng, F.; Chen, J. ϵ -MnO₂
532 nanostructures directly grown on Ni foam: A cathode catalyst for
533 rechargeable Li-O₂ batteries. *Nanoscale* **2014**, *6* (7), 3522–3525.

534 (32) Thapa, A. K.; Saimen, K.; Ishihara, T. Pd/MnO₂ air electrode
535 catalyst for rechargeable lithium/air battery. *Electrochem. Solid-State*
536 *Lett.* **2010**, *13* (11), A165–A167.

537 (33) Thapa, A. K.; Ishihara, T. Mesoporous α -MnO₂/Pd catalyst air
538 electrode for rechargeable lithium-air battery. *J. Power Sources* **2011**,
539 *196* (16), 7016–7020.

540 (34) Liu, J.; Younesi, R.; Gustafsson, T.; Edström, K.; Zhu, J. Pt/ α -
541 MnO₂ nanotube: A highly active electrocatalyst for Li-O₂ battery.
542 *Nano Energy* **2014**, *10*, 19–27.

543 (35) Jin, L.; Xu, L.; Morein, C.; Chen, C. h.; Lai, M.; Dharmarathna,
544 S.; Dobley, A.; Suib, S. L. Titanium containing γ -MnO₂ (TM) hollow
545 spheres: One-step synthesis and catalytic activities in Li/air batteries
546 and oxidative chemical reactions. *Adv. Funct. Mater.* **2010**, *20* (19),
547 3373–3382.

548 (36) Kakizaki, H.; Ooka, H.; Hayashi, T.; Yamaguchi, A.; Bonnet-
549 Mercier, N.; Hashimoto, K.; Nakamura, R. Evidence that crystal facet
550 orientation dictates oxygen evolution intermediates on rutile
551 manganese oxide. *Adv. Funct. Mater.* **2018**, *28* (24), 1706319.

552 (37) Chen, C.; Xu, K.; Ji, X.; Miao, L.; Jiang, J. Promoted
553 electrochemical performance of β -MnO₂ through surface engineering.
554 *ACS Appl. Mater. Interfaces* **2017**, *9* (17), 15176–15181.

555 (38) Tompsett, D. A.; Parker, S. C.; Islam, M. S. Rutile (β)-MnO₂
556 surfaces and vacancy formation for high electrochemical and catalytic
557 performance. *J. Am. Chem. Soc.* **2014**, *136* (4), 1418–1426.

558 (39) Tompsett, D. A.; Parker, S. C.; Islam, M. S. Surface properties
559 of α -MnO₂: Relevance to catalytic and supercapacitor behaviour. *J.*
560 *Mater. Chem. A* **2014**, *2* (37), 15509–15518.

561 (40) Yao, W.; Yuan, Y.; Asayesh-Ardakani, H.; Huang, Z.; Long, F.;
562 Friedrich, C. R.; Amine, K.; Lu, J.; Shahbazian-Yassar, R. Energy-
563 driven surface evolution in beta-MnO₂ structures. *Nano Res.* **2018**, *11*
564 (1), 206–215.

565 (41) Yao, W.; Odegard, G. M.; Huang, Z.; Yuan, Y.; Asayesh-
566 Ardakani, H.; Sharifi-Asl, S.; Cheng, M.; Song, B.; Deivanayagam, R.;
567 Long, F.; Friedrich, C. R.; Amine, K.; Lu, J.; Shahbazian-Yassar, R.
568 Cations controlled growth of β -MnO₂ crystals with tunable facets for
569 electrochemical energy storage. *Nano Energy* **2018**, *48*, 301–311.

570 (42) Yuan, Y.; Wood, S. M.; He, K.; Yao, W.; Tompsett, D.; Lu, J.;
571 Nie, A.; Islam, M. S.; Shahbazian-Yassar, R. Atomistic insights into the
572 oriented attachment of tunnel-based oxide nanostructures. *ACS Nano*
573 **2016**, *10* (1), 539–548.

574 (43) Yuan, Y.; Liu, C.; Byles, B. W.; Yao, W.; Song, B.; Cheng, M.;
575 Huang, Z.; Amine, K.; Pomerantseva, E.; Shahbazian-Yassar, R.; Lu, J.
576 Ordering heterogeneity of [MnO₆] octahedra in tunnel-structured
577 MnO₂ and its influence on ion storage. *Joule* **2019**, *3* (2), 471–484.

578 (44) Jung, H.-G.; Hassoun, J.; Park, J.-B.; Sun, Y.-K.; Scrosati, B. An
579 improved high-performance lithium-air battery. *Nat. Chem.* **2012**, *4*
580 (7), 579–585.

581 (45) Qin, Y.; Lu, J.; Du, P.; Chen, Z.; Ren, Y.; Wu, T.; Miller, J. T.;
582 Wen, J.; Miller, D. J.; Zhang, Z.; Amine, K. In situ fabrication of
583 porous-carbon-supported α -MnO₂ nanorods at room temperature:
584 Application for rechargeable Li-O₂ batteries. *Energy Environ. Sci.* **2013**,
585 *6* (2), 519–531.

586 (46) Lu, J.; Cheng, L.; Lau, K. C.; Tyo, E.; Luo, X.; Wen, J.; Miller,
587 D.; Assary, R. S.; Wang, H.-H.; Redfern, P.; Wu, H.; Park, J.-B.; Sun,
588 Y.-K.; Vajda, S.; Amine, K.; Curtiss, L. A. Effect of the size-selective
589 silver clusters on lithium peroxide morphology in lithium-oxygen
590 batteries. *Nat. Commun.* **2014**, *5*, 4895.

591 (47) Lu, J.; Lei, Y.; Lau, K. C.; Luo, X.; Du, P.; Wen, J.; Assary, R. S.;
592 Das, U.; Miller, D. J.; Elam, J. W.; Albishri, H. M.; El-Hady, D. A.;
593 Sun, Y.-K.; Curtiss, L. A.; Amine, K. A nanostructured cathode
594 architecture for low charge overpotential in lithium-oxygen batteries.
595 *Nat. Commun.* **2013**, *4*, 2383.

596 (48) Adams, B. D.; Radtke, C.; Black, R.; Trudeau, M. L.; Zaghib,
597 K.; Nazar, L. F. Current density dependence of peroxide formation in
598 the Li-O₂ battery and its effect on charge. *Energy Environ. Sci.* **2013**, *6*
599 (6), 1772–1778.

600 (49) Kwabi, D. G.; Bryantsev, V. S.; Batcho, T. P.; Itkis, D. M.;
601 Thompson, C. V.; Shao-Horn, Y. Experimental and computational
602 analysis of the solvent-dependent O₂/Li⁺-O₂[–] redox couple: Standard
603 potentials, coupling strength, and implications for lithium-oxygen
604 batteries. *Angew. Chem., Int. Ed.* **2016**, *55* (9), 3129–3134.

605 (50) Abraham, K. M. Electrolyte-directed reactions of the oxygen
606 electrode in lithium-air batteries. *J. Electrochem. Soc.* **2015**, *162* (2),
607 A3021–A3031.

608 (51) Bokas, V. J.; Kim, H. W.; Sengpiel, R.; Knudsen, K.; Voss, J.;
609 McCloskey, B. D.; Luntz, A. C. Combining experiment and theory to
610 unravel the mechanism of two-electron oxygen reduction at a selective
611 and active co-catalyst. *ACS Catal.* **2018**, *8* (12), 11940–11951.

612 (52) Kulkarni, A.; Siahrostami, S.; Patel, A.; Nørskov, J. K. Understanding
613 catalytic activity trends in the oxygen reduction reaction. *Chem. Rev.* **2018**, *118* (5),
614 2302–2312.

615 (53) Bagger, A.; Arnarson, L.; Hansen, M. H.; Spohr, E.; Rossmeisl,
616 J. Electrochemical co reduction: A property of the electrochemical
617 interface. *J. Am. Chem. Soc.* **2019**, *141* (4), 1506–1514.

618 (54) Mathew, K.; Sundararaman, R.; Letchworth-Weaver, K.; Arias,
619 T. A.; Hennig, R. G. Implicit solvation model for density-functional
620 study of nanocrystal surfaces and reaction pathways. *J. Chem. Phys.* **2020**
621 *140* (8), 084106.

622 (55) Hummelshøj, J. S.; Blomqvist, J.; Datta, S.; Vegge, T.;
623 Rossmeisl, J.; Thygesen, K. S.; Luntz, A. C.; Jacobsen, K. W.;
624 Nørskov, J. K. Communications: Elementary oxygen electrode
625 reactions in the aprotic Li-air battery. *J. Chem. Phys.* **2010**, *132* (7),
626 071101.

627 (56) Aurbach, D.; McCloskey, B. D.; Nazar, L. F.; Bruce, P. G. Advances
628 in understanding mechanisms underpinning lithium-air
629 batteries. *Nat. Energy* **2016**, *1* (9), 16128.

630 (57) He, K.; Bi, X.; Yuan, Y.; Foroozan, T.; Song, B.; Amine, K.; Lu,
631 J.; Shahbazian-Yassar, R. Operando liquid cell electron microscopy of
632 discharge and charge kinetics in lithium-oxygen batteries. *Nano Energy* **2018**, *49*,
633 338–345.