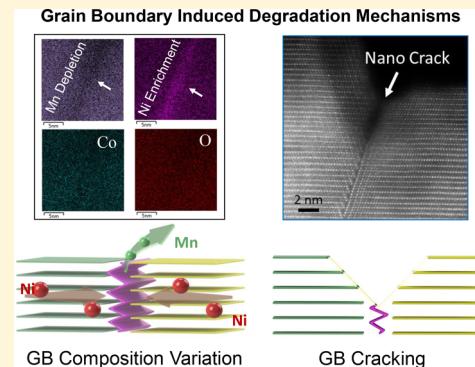


1 Revealing Grain-Boundary-Induced Degradation Mechanisms in Li- 2 Rich Cathode Materials

3 Soroosh Sharifi-Asl,[†] Vitaliy Yurkiv,[†] Arturo Gutierrez,[‡] Meng Cheng,[†]

4 Mahalingam Balasubramanian,[§] Farzad Mashayek,[†] Jason Croy,^{*,†} and Reza Shahbazian-Yassar^{*,†}


5 [†]Mechanical and Industrial Engineering Department, University of Illinois at Chicago, Chicago, Illinois 60607, United States

6 [‡]Chemical Science and Engineering, Argonne National Laboratory, Argonne, Illinois 60561, United States

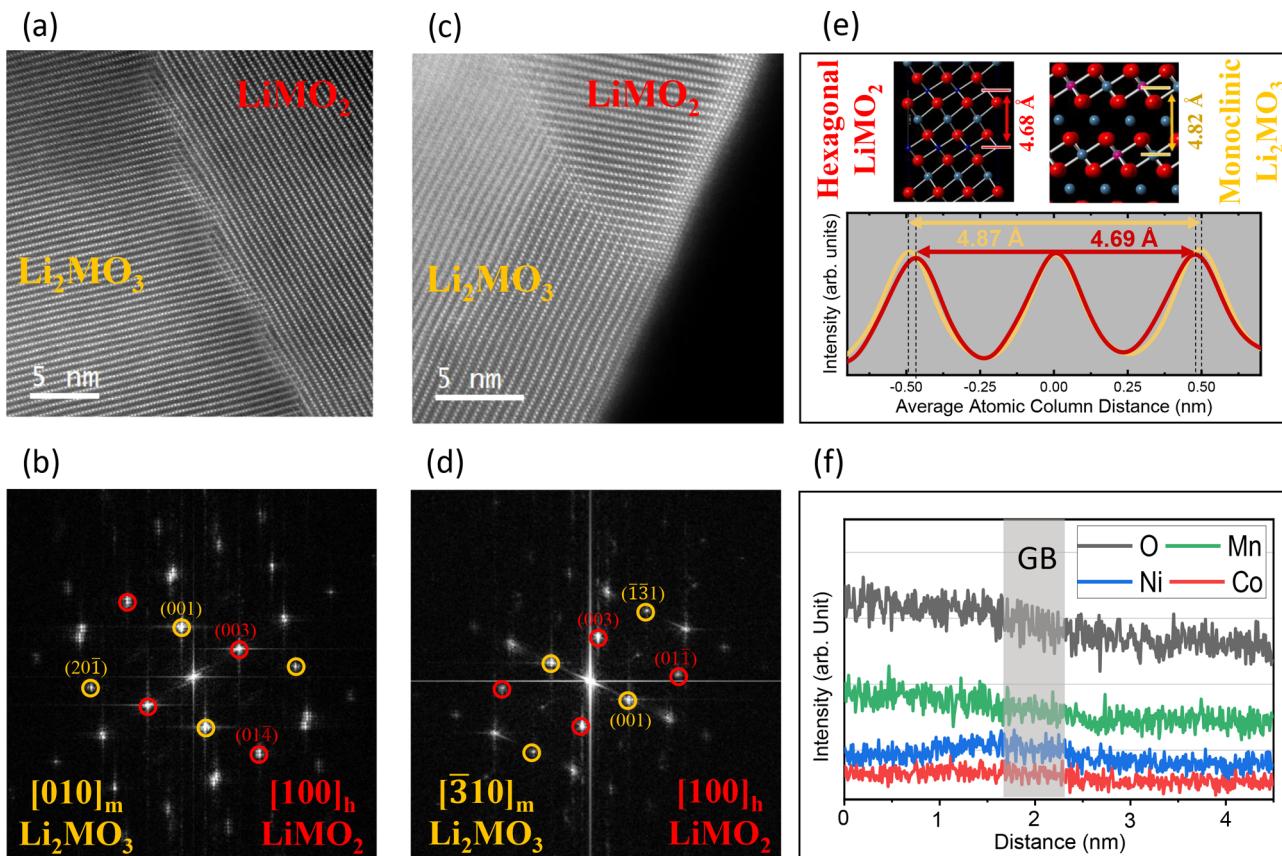
7 [§]Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60561, United States

8 Supporting Information

9 **ABSTRACT:** Despite their high energy densities, Li- and Mn-rich, layered–
10 layered, $x\text{Li}_2\text{MnO}_3\cdot(1-x)\text{LiTMO}_2$ (TM = Ni, Mn, Co) (LMR-NMC)
11 cathodes require further development in order to overcome issues related to
12 bulk and surface instabilities such as Mn dissolution, impedance rise, and
13 voltage fade. One promising strategy to modify LMR-NMC properties has
14 been the incorporation of spinel-type, local domains to create “layered–
15 layered–spinel” cathodes. However, precise control of local structure and
16 composition, as well as subsequent characterization of such materials, is
17 challenging and elucidating structure–property relationships is not trivial.
18 Therefore, detailed studies of atomic structures within these materials are still
19 critical to their development. Herein, aberration corrected-scanning trans-
20 mission electron microscopy (AC-STEM) is utilized to study atomic structures,
21 prior to and subsequent to electrochemical cycling, of LMR-NMC materials
22 having integrated spinel-type components. The results demonstrate that
23 strained grain boundaries with various atomic configurations, including spinel-type structures, can exist. These high energy
24 boundaries appear to induce cracking and promote dissolution of Mn by increasing the contact surface area to electrolyte as well
25 as migration of Ni during cycling, thereby accelerating performance degradation. These results present insights into the
26 important role that local structures can play in the macroscopic degradation of the cathode structures and reiterate the
27 complexity of how synthesis and composition affect structure–electrochemical property relationships of advanced cathode
28 designs.

29 **KEYWORDS:** Li-ion battery, Li-rich cathodes, layered oxide cathodes, structural degradation, grain boundary, STEM/EELS

30 **L**ayered, LiTMO_2 -type cathode-oxides are the dominant
31 positive electrodes in commercial Li-ion battery (LIB)
32 technologies. Such materials have been aggressively developed
33 and are now nearing the point of intrinsic limitation, thereby
34 hindering further advancements.¹ Li-rich, LMR-NMC cath-
35 odes, that can deliver capacities between 250–300 mAh g^{-1} , are
36 considered promising options for the next generation of
37 LIBs.^{2,3} However, the practical application of Li-rich materials
38 has been challenging due to several phenomena that are unique
39 to these oxides, namely, voltage fade, hysteresis, and
40 impedance at low states of charge (SOC).^{4–9} The mechanisms
41 behind these phenomena are unique to these oxides because of
42 the complexity of their local structures, and recent works have
43 made progress with respect to understanding in this
44 regard.^{6,10,11} However, as with all cathode-oxides, macroscopic
45 phenomena can also play a critical role in performance. For
46 example, cracking and disintegration of secondary macro-
47 particles, which are agglomerates of primary cathode grains,
48 have been correlated with severe capacity degradation.¹² It has
49 been demonstrated that the lithiation/delithiation process

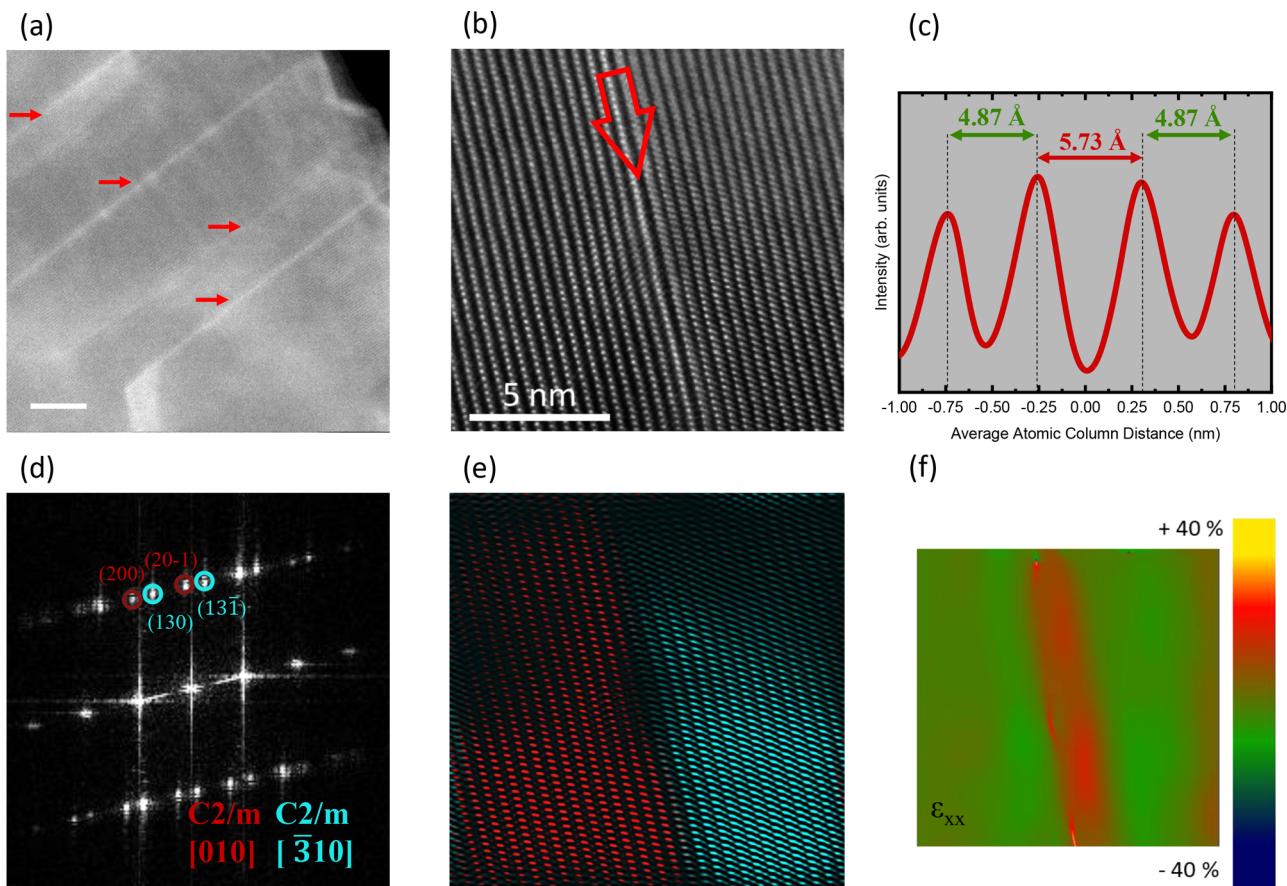

50 induces contraction/expansion of the crystal structure, which 51
51 leads to large strain in the primary particles and promotes the 52
52 disintegration and cracking of secondary particles.¹³ In 53
53 addition, surface degradation such as layered-to-spinel-to- 54
54 disordered rock-salt transformations, as well as transition metal 55
55 migration/dissolution, have been observed in virtually all 56
56 conventional, layered oxides.^{14–18}

57 In LMR-NMC cathodes, it has been shown that even a small 58
58 concentration of local defects can greatly influence the 59
59 macroscopic electrochemical properties of cathode electro- 60
60 des.^{19,20} However, to what extent the atomic-scale structure 61
61 can affect properties such as particle cracking/disintegration, in 62
62 complex LMR-NMC-based particles, is not well-understood. 63
63 Recent work, using operando X-ray tomography, has reported 64
64 that charging LMR-NMCs induces a high extent of defects, 65
65 consistent with previous findings, which is not observed in 66

Received: November 8, 2019

Revised: December 22, 2019

Published: December 23, 2019

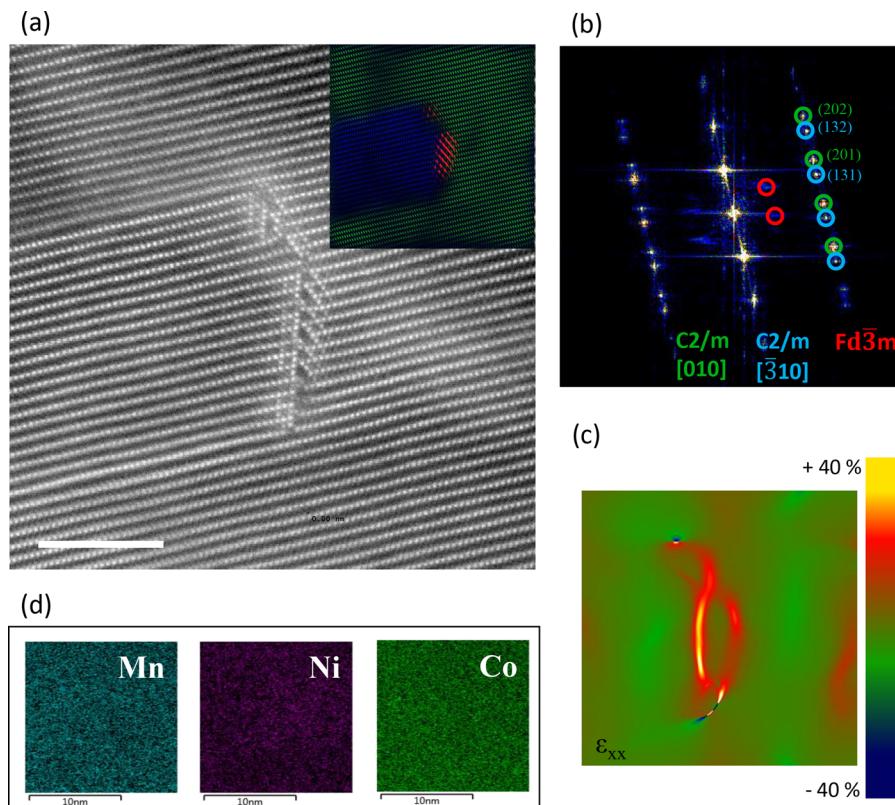

Figure 1. (a–d) Atomic resolution HAADF images and the corresponding FFT patterns from the core of an LMR-NMC particle showing a boundary between two layered phases. FFT analysis reveals that the observed layered phases shown in panels a and c correspond to the $[010]$ and $[\bar{3}10]$ projections of the monoclinic Li_2MO_3 phase and the $[100]$ projection of the hexagonal LiMO_2 phase, respectively. (e) Line profile analysis from the interlayer distances observed in part a. Yellow and red profiles correspond to the monoclinic and hexagonal phases, respectively. The plot illustrates a 0.2 Å increase in the interlayer distance in the monoclinic-labeled phase compared to the hexagonal phase, which is in accordance with the atomic models shown above. (f) The EDS line scan taken across a $\text{LiMO}_2/\text{Li}_2\text{MnO}_3$ grain boundary shown in Figure S3.

conventional cathodes such as $\text{Li}(\text{Ni}_x\text{Co}_y\text{Al}_{1-x-y})\text{O}_2$ (NCA).²¹ In that work, the authors hypothesize that the lower Young's modulus of the Li-rich materials²¹ is the underlying cause for defect formation/activity, although an atomic-scale analysis that explains such results is still lacking. Furthermore, though the pristine structure of LMR-NMCs has been the subject of extensive study and debate,^{21–30} the atomic arrangement of the phase boundaries in these structures and how those boundaries change during cycling have not been thoroughly investigated. Herein, we have used aberration corrected-scanning transmission electron microscopy (AC-STEM) to investigate the atomic structure and chemistry of a Li-rich, layered–layered–spinel material before and after electrochemical cycling. Our findings directly indicate that the primary cathode particles are composed of distinct, randomly oriented nanograins of hexagonal LiMO_2 and monoclinic Li_2MO_3 structures ($\text{TM} = \text{Co, Ni, and Mn}$). Hence, high concentrations of phase/grain boundaries were detected in the structures of these cathodes. Based on the geometrical phase analysis (GPA), such phase boundaries are highly strained, which can cause cracking and disintegration of particles during repeated electrochemical cycling. In addition, chemical analysis, through electron dispersive spectroscopy (EDS) and electron energy loss spectroscopy (EELS), suggests a uniform composition across the boundaries in the pristine samples. However, Mn depletion and Ni enrichment were detected in the boundaries

of cycled samples. Additionally, crack initiation was observed in the phase boundaries after extended cycling, which implies that grain/phase boundaries play a detrimental role in the structural stability of the Li-rich cathode materials. Finally, density function theory (DFT) investigations were conducted in order to better understand the underlying reasons for composition variation of the grain boundaries.

Results. The details of sample synthesis, basic characterization, and electrochemical tests are provided in the Supporting Information. TEM analysis has been carried out on the surface and the core of cathode particles to study their atomic structure. The individual nanoparticles, separated by means of ultrasonication and dispersed on the TEM grids, are thin enough at the surface and core areas to be electron transparent (Figure S2). High-angle annular dark field imaging (HAADF), which is a Z-contrast imaging technique³¹ and is capable of detecting transition metal atoms (but cannot distinguish between Mn, Ni, and Co with very close atomic numbers), has been used as the primary imaging technique in this research. In addition, low-angle annular dark field (LAADF) imaging, that is principally used for defect imaging,³² is used as a complementary technique to HAADF.

By examining the pristine cathode samples, it was realized that the primary particles are composed of layered-structured grains with varied orientations with respect to each other (Figure 1a,b). The corresponding fast Fourier transformed


Figure 2. (a) Low magnification LAADF image from a pristine cathode particle showing a high concentration of elongated defects as indicated by red arrows. (b) Atomic resolution HAADF image from a line-defect indicated in part a. Based on the (c) line profile measurement and (d) FFT analysis, the defect is an elongated interlayer distance where [010] and [310] projections of monoclinic Li_2MO_3 phases are forming a grain boundary. (e) Reconstructed color-coded image from the indicated diffraction spots in part d illustrating the separation of two grains. (f) GPA results showing a large strain in the grain boundary as a result of increased interlayer distance.

118 (FFT) images are shown in Figure 1c,d. Based on the FFT 119 analysis, it can be concluded that the two intersecting grains 120 correspond to [010] and [310] projections of the monoclinic 121 Li_2MO_3 phase and the [100] projection of the hexagonal 122 LiMO_2 phase, respectively. In addition to FFT analysis, the 123 interlayer distances of the layered structures in Figure 1c are 124 quantified through line profile measurements and the results 125 are demonstrated in Figure 1e. The yellow and red profiles 126 correspond to the monoclinic and hexagonal phases, 127 respectively. It can be observed that the interlayer distances 128 of the monoclinic-labeled structure are ca. 0.2 Å larger, which 129 is in accordance with the atomic models. Although such 130 projections from the monoclinic and hexagonal phases have a 131 very close atomic configuration and interlayer distances, such 132 small variations can be quantified through sub-angstrom AC- 133 STEM imaging. In addition, chemical composition analysis 134 using EDS and EELS was carried out as a complementary 135 technique to verify the coexistence of monoclinic Li_2MO_3 and 136 hexagonal LiMO_2 phases. Figure 1e demonstrates an EDS line 137 scan collected across a grain boundary between Li_2MO_3 and 138 LiMO_2 grains (Figure S3a). In spite of a very small variation in 139 the transition metal signals, a considerable reduction in O 140 signal intensity can be observed by moving from the Li_2MO_3 141 grain to the LiMO_2 grain.

142 Further investigations of the grain boundaries in the pristine 143 cathode particles were carried out by defect-sensitive LAADF

and atomic resolution imaging. Figure 2a demonstrates a low- 144 magnification LAADF image from a pristine particle. The high 145 contrast lines, indicated with red arrows, correspond to defects 146 in the structure. Considering the 50 nm width of the image, the 147 presence of four line-defects demonstrates a high concen- 148 tration of defects in this particle. Atomic resolution imaging 149 reveals that the bright elongated lines in the LAADF 150 correspond to an increased interlayer distance in the layered 151 structure of the sample (Figure 2b). As shown in Figure 2c, the 152 interlayer distance has increased from 4.87 Å in the adjacent 153 area to 5.73 Å in the defect line. Based on the FFT pattern 154 analysis shown in Figure 2d, it is concluded that the increased 155 interlayer distance corresponds to a grain boundary between 156 [010] and [310] projections of the monoclinic structure. 157 Figure 2e demonstrates the color-coded reconstructed image 158 based on the FFT pattern, illustrating the presence of various 159 projections of the monoclinic phase in this area. Moreover, 160 GPA was carried out on the atomic resolution image in Figure 161 2b, which demonstrates a large strain in the grain boundary 162 (Figure 2f). The observed strain is generated as a result of the 163 increased interlayer distance in the grain boundary, which can 164 possibly lead to cracking, impedance rise, and capacity fade of 165 the battery during electrochemical cycling.

166 A different configuration of grain boundaries is shown in 167 Figure 3a, where dissimilar projections of the monoclinic 168 structure are facing each other. Although there is a one-to-one 169

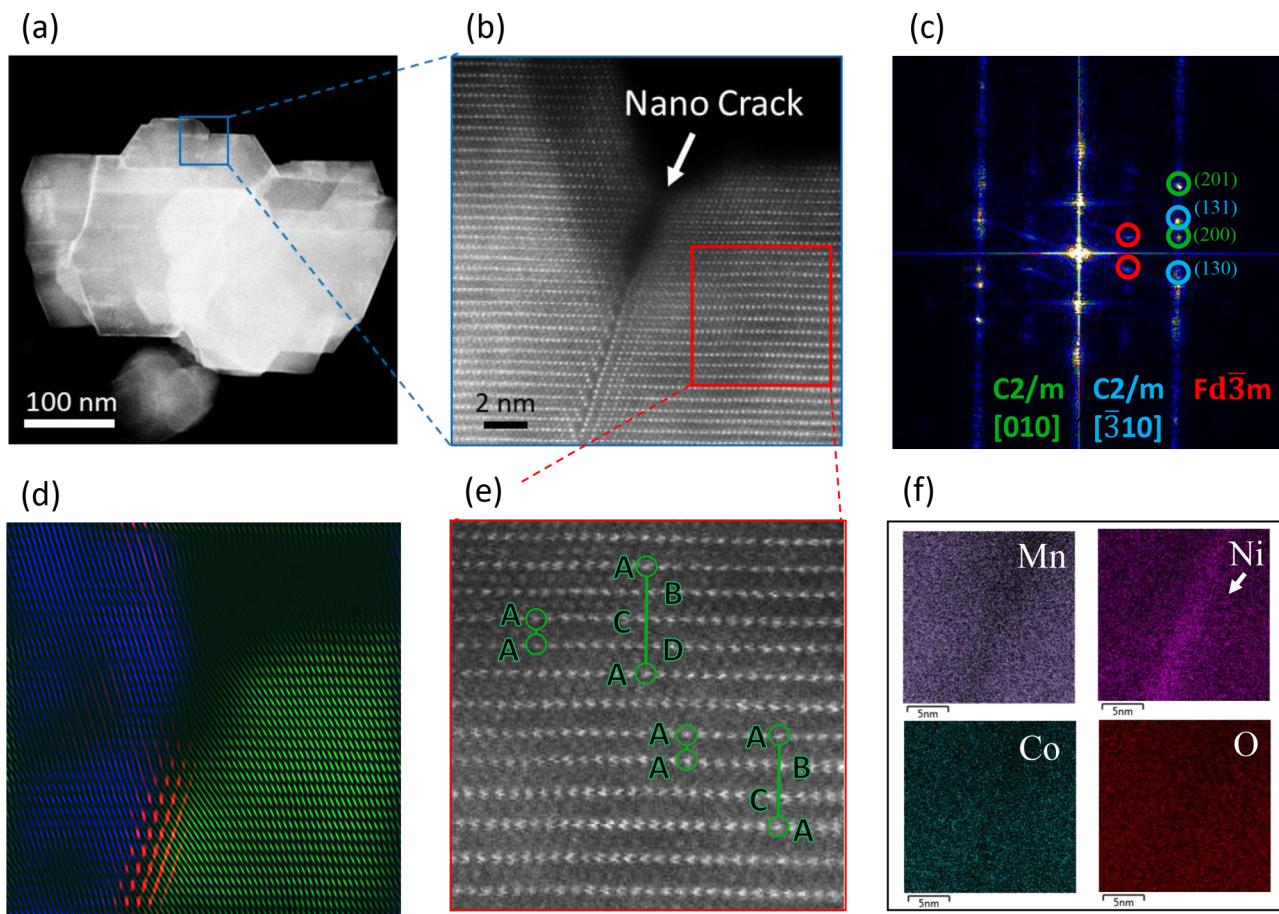
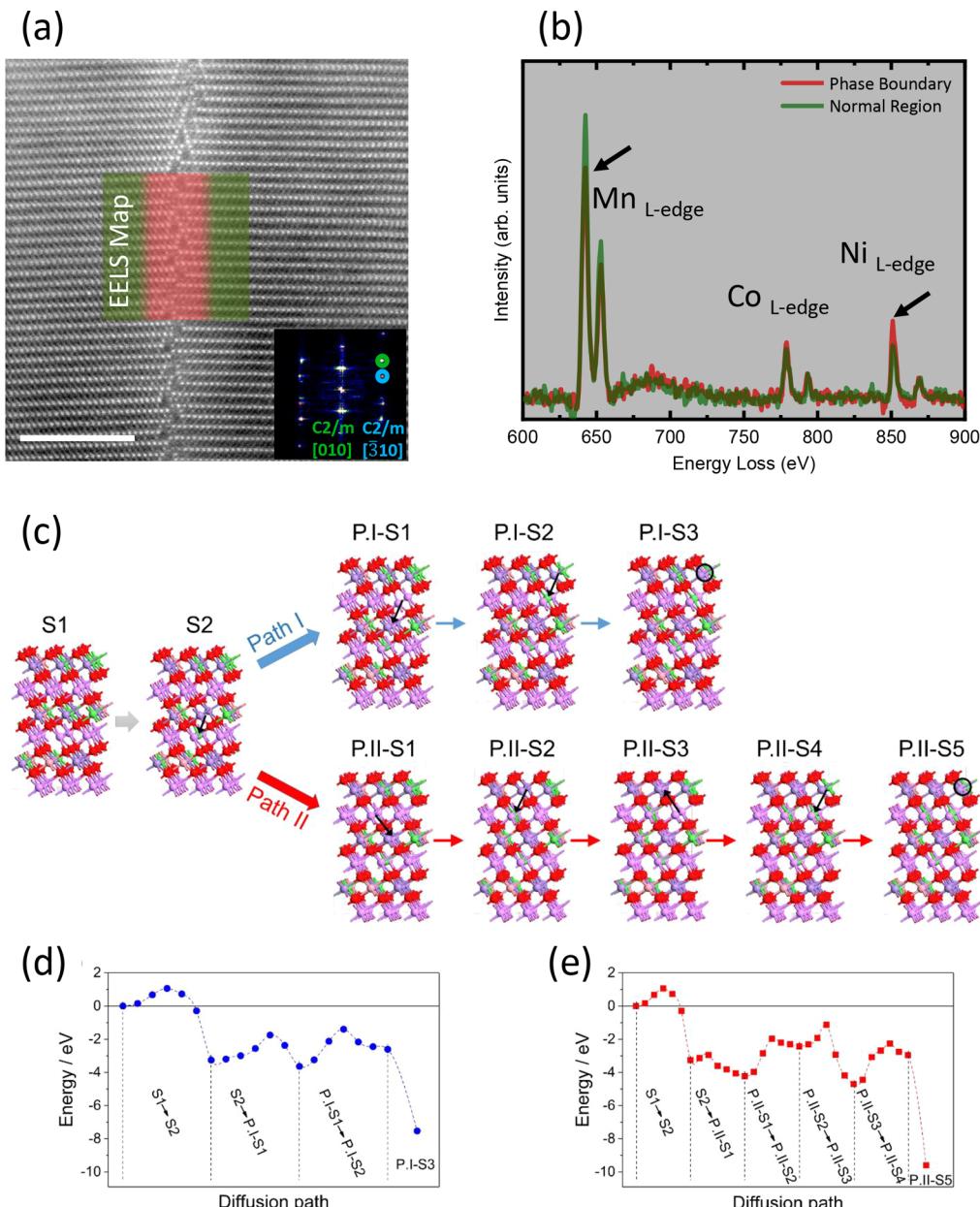


Figure 3. (a) The atomic resolution HAADF image from a pristine cathode particle, showing a spinel-type grain boundary. (b) The corresponding FFT image demonstrating the presence of the $[010]$ and $[\bar{3}10]$ projections of the monoclinic Li_2MO_3 phase and formation of the spinel-type structure at the grain boundary as a result of migration of transition metals to the Li-octahedral sites. A color-coded reconstruction image based on the diffraction spots indicated in part b is shown as the inset in part a for illustration of the triple phase boundary. (c) GPA, showing a large strain in the spinel-type grain boundary. (d) EDS maps of Mn, Ni, and Co from the grain boundary confirming a uniform composition at the grain boundary.

170 correspondence between the atomic layers of $[010]$ and $[\bar{3}10]$
 171 phases, a distinct spinel-type grain boundary is formed that is a
 172 result of transition metal migration to the Li-octahedral sites.
 173 Such transition metal migration has occurred in one to two
 174 unit cells that are adjacent to the grain boundary. **Figure 3b**
 175 demonstrates the corresponding FFT pattern, which is
 176 analyzed as a three-phase structure consisting of $[010]$ and
 177 $[\bar{3}10]$ projections of the monoclinic Li_2MO_3 structure, plus the
 178 spinel-type interface. A color-coded reconstructed image is
 179 shown as an inset in **Figure 3a** for illustration of grain
 180 configurations. As can be seen from the GPA shown in **Figure**
 181 **3c**, such spinel-type grain boundaries are also highly strained
 182 and may also act as crack and failure initiation points in the
 183 cycled material. In addition, chemical analysis has been carried
 184 out on the spinel-type grain boundary area by EDS, shown in
 185 **Figure 3d**. Although the results demonstrate that the
 186 distribution of Mn, Ni, and Co appears to be uniform in
 187 both surrounding monoclinic Li_2MO_3 grains²⁹ as well as across
 188 the boundary, it should be noted that we cannot rule out the
 189 Li–Mn ordering and formation of LiMn_6 - and LiMn_5Ni_1 -type
 190 structures in the subnano scale, reported through XAS and
 191 NMR studies.^{33–36} However, resolving such angstrom scale
 192 chemical deviations was beyond the spatial resolution
 193 achievable in our case due to signal averaging in the cross
 194 section of the sample.

195 To understand the role of the identified grain/phase
 196 boundaries on the electrochemical degradation structural
 197 stability of the particles, AC-STEM experiments were carried

198 out on the cycled cathode particles. **Figure 4a** demonstrates an
 199 LAADF image from a cycled cathode particle with bright
 200 contrast features that correspond to the identified grain/phase
 201 boundaries. **Figure 4b** is an atomic resolution image from the
 202 indicated area in the low-magnification image, which
 203 demonstrates a spinel-type grain boundary with the same
 204 grain configuration as was observed in the pristine particle
 205 shown in **Figure 3**. The phase transition at the surface regions
 206 of the particle can be observed, which is an expected
 207 phenomenon in the cycled layered oxide cathodes.^{37,38}
 208 Additionally, it can be observed that a nanocrack has initiated
 209 on the grain boundary, which might develop into a more
 210 significant crack and initiate disintegration of the cathode upon
 211 further cycling. The analyzed FFT pattern demonstrates that
 212 the spinel-type boundary is located between the $[010]$ and
 213 $[\bar{3}10]$ projections of the monoclinic Li_2MO_3 phase, similar to
 214 the atomic configuration observed in the pristine sample. The
 215 color-coded reconstructed image, **Figure 4d**, illustrates the
 216 configuration of the identified grains and the spinel-type grain
 217 boundary. Aside from the layered to spinel/rock-salt phase
 218 transformation that can be observed in the surface areas of
 219 both grains and transition metal migration to Li sites, stacking
 220 fault disorder can be detected in the cycled sample. **Figure 4e**
 221 shows an atomic resolution image from the $[010]$ grain located
 222 on the right side of **Figure 4b**, demonstrating a disorder in the
 223 stacking of the layers. The stacking faults, induced by slab
 224 sliding during electrochemical cycling, denote the electro-
 225 chemical activity present in the Li-rich domains. **Figure 4f**


Figure 4. (a) Low-magnification LAADF image showing a cycled cathode particle. Various bright contrast features can be observed in the particle which can be attributed to previously shown grain/phase boundaries. (b) Atomic resolution HAADF image from the indicated area in part a, which shows a spinel-type grain boundary that forms a nanocrack at the particle surface. (c) The corresponding FFT pattern that is indexed as a three-phase structure consisting of [010] and [310] projections of the Li_2MO_3 structure together with the spinel-type boundary, similar to the atomic configuration of the pristine sample. (d) Color-coded reconstructed image, based on the indicated diffraction spots in part c, illustrating the three-phase structure of the imaged area. (e) Atomic resolution image from the [010] projection on the right side of part b, showing a disorder in the stacking of the layers. (f) EDS maps obtained from the spinel-type grain boundary showing the depletion of Mn and enrichment of Ni in the grain boundary subsequent to the electrochemical cycling.

226 demonstrates EDS map results from the indicated spinel-type
 227 boundary, which shows localized depletion of Mn and
 228 enrichment of Ni at the boundary. The localized chemical
 229 inhomogeneity in the interface is only observed after
 230 electrochemical cycling of the particles. The depletion of Mn
 231 may be attributed to a preferred dissolution of Mn from high
 232 energy grain boundaries that subsequently promotes the
 233 diffusion of Ni into the Mn/Li vacancies, as discussed below.
 234 The increased dissolution of Mn and increased Ni migration to
 235 the grain boundary can also be the result of cracking of the
 236 particle surface and exposing new surfaces to the electrolyte,
 237 which promotes the metal dissolution. The promoted metal
 238 dissolution can, in turn, negatively affect cell performance
 239 through Mn deposition and Li consumption at the graphite
 240 anode as well as impedance rise at the now disordered cathode
 241 surface.^{39,40} In addition, crack formation, exposure of fresh
 242 particle surfaces, and eventual disintegration of the active
 243 materials serve to exacerbate these problems.

244 The increased Ni concentration at the grain boundary has
 245 also been confirmed by EELS. Figure 5a demonstrates an
 246 atomic resolution HAADF image from a grain boundary on a
 247 cycled cathode particle. An EELS map was acquired from the
 248 grain boundary and the signal from an equal number of pixels

in the spinel-type grain boundary, and the adjacent layered
 249 areas were summed and compared as shown in Figure 5b. It
 250 can be clearly observed that the grain boundary shows a less
 251 intense Mn signal. However, the Ni concentration has
 252 increased, while, interestingly, the Co content has remained
 253 almost the same, consistent with EDS results on a different
 254 particle (Figure 4f). It should be noted that, while the intensity
 255 of the Ni L_3 edge at 851 eV has substantially increased at the
 256 grain boundary, the L_2 edge at 870 eV has a very similar
 257 intensity in both spectra. This increase in the relative intensity
 258 of Ni L_3/L_2 edges denotes the reduction of the valence state
 259 and change in the Ni bonding at the interface.⁴¹ The increased
 260 Ni concentration in the spinel-type boundaries could also be
 261 explained by the preferred migration of Ni cations into the Li
 262 layers that forms these structures. Preferred migration of Ni
 263 ions into Li vacancies has been observed in conventional NMC
 264 cathodes via electron microscopy and X-ray spectroscopy.^{38,39,42} Moreover, segregation of Ni and Co has been
 265 observed at specific facet terminations in the Li-rich cathode
 266 materials.³⁸ However, it is interesting that here we observe
 267 such phenomena at complex interfaces within these materials.²⁶⁸

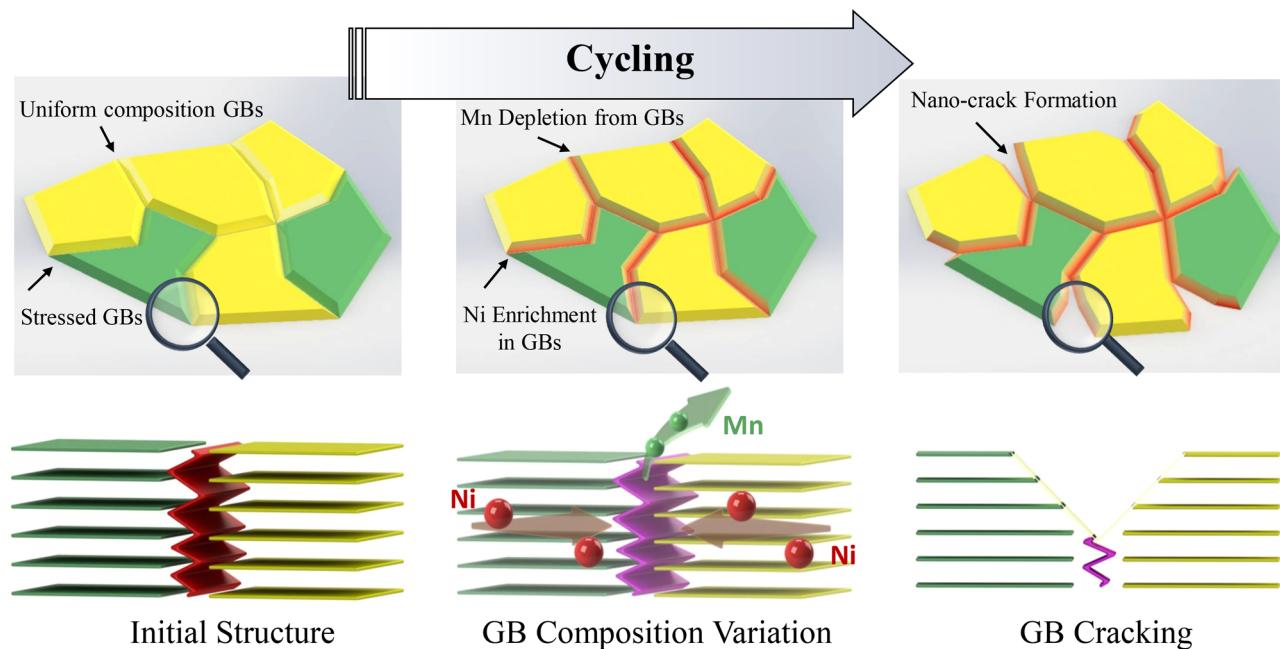

268 To understand the atomic interactions that promote
 269 preferred Ni migration to the grain boundaries, complementary
 270

Figure 5. (a) HAADF atomic resolution image from a grain boundary in the bulk structure of a cycled LMR-NMC particle sample. (b) EELS spectra showing the Co and Ni L edges from the specified area in part a. Increased Ni concentration can be observed at the grain boundary area. (c) Two paths (path I and path II) of Li/Ni exchange. Path I (upper panel) depicts the “direct” (shortest distance) Li/Ni exchange. Path II (lower panel) shows the “side” Li/Ni exchange. The first two slabs on the left are the same for both paths. (d and e) The energetics and the migration barriers of Li and Ni atoms for path I and path II as obtained in the present DFT calculations.

272 DFT calculations were performed and favorable pathways for
 273 Li/M (M = Ni, Mn, and Co) exchange in the cathode structure
 274 were studied. Several configurations varying the Ni, Mn, and
 275 Co position within the simulated slab were considered (Figure
 276 S4). Among many possible calculated structures, a structure
 277 with Ni segregation in the grain boundary was revealed to be
 278 the most stable. In addition, the diffusion of all three transition
 279 metal atoms into Li vacancies is calculated and compared. It
 280 was found that diffusion of Ni ions into the Li vacancies
 281 (Figure 5c–e) was the most favorable process when compared
 282 to Mn and Co (Figures S5 and S6). These results agree with
 283 the experimentally observed Ni accumulation within the grain
 284 boundaries.

Additional DFT calculations have been carried out to elucidate the details of the observed Ni migration to Li vacancies. Two possible pathways for migration are identified, referred to as path I and path II, and are illustrated in Figure 5c. Both pathways start with the same atomic configuration (namely, S1), where the indicated Ni atom diffuses to the nearest Li vacancy, leaving a Ni vacancy and forming the S2 configuration. This process is energetically favorable by 3.1 eV, as shown in Figure 5d and e, where the energies of all diffusion pathways are shown. Subsequent Li diffusion into the Ni vacancy in configuration S2 could occur from two nearest neighbors. Path I depicts a “direct” exchange of Ni/Li vacancy, and path II corresponds to a “side” exchange. Path I describes the Li atom diffusion from the nearest neighbor on the right,

Figure 6. Schematic illustration of the proposed grain-boundary-induced degradation mechanisms in Li-rich cathodes. During cycling, the grain boundaries are depleted of Mn and enriched in Ni, possibly aiding in crack initiation at the already strained grain boundaries.

299 while path II shows the Li atom diffusion from the nearest
 300 neighbor on the left. The Li atom diffusion in path II is more
 301 energetically favorable ($\Delta h = -0.97$ eV) with a smaller
 302 activation barrier ($E^{\text{act}} = 0.3$ eV) than the respective Li atom
 303 diffusion of path I ($\Delta h = -0.38$ eV and $E^{\text{act}} = 0.7$ eV). In either
 304 case, the creation of a Li vacancy leads to the P.I–S1 and P.II–
 305 S1 configurations. The processes P.I–S1 to P.I–S2 in path I
 306 and P.II–S1 to P.II–S2 in path II describe Ni diffusion from
 307 either side of the Li vacancy. This process is energetically
 308 unfavorable in both paths (path I, $\Delta h = +1.03$ eV and $E^{\text{act}} =$
 309 2.24 eV; path II, $\Delta h = +1.79$ eV and $E^{\text{act}} = 2.25$ eV). However,
 310 the consequent Li atom diffusion into the metal vacancy is
 311 highly favorable, having $\Delta h = -4.92$ eV in path I and $\Delta h =$
 312 -2.27 eV in path II. The large difference between the
 313 enthalpies in the last step in path I and path II is because a Li
 314 atom is inserted into the metal vacancy, since there is no
 315 further Li atom in the slab. The corresponding insertion in
 316 path II is shown by the P.II–S6 structure, where the enthalpy
 317 difference is $\Delta h = -6.64$ eV. This process, of Ni migration, can
 318 progress along the bulk structure of NMC creating defects or
 319 contributing to crack initiation within the electrode.

320 In conclusion, aberration corrected-scanning transmission
 321 electron microscopy was performed on the bulk structure of
 322 Li-rich cathode materials having integrated spinel-type
 323 domains. The complex atomic structure of grain/phase
 324 boundaries that can form in the LMR-NMC cathode materials
 325 was identified. The presented atomic study, which was enabled
 326 by synthesis of thin, electron transparent cathode particles,
 327 demonstrated the presence of a layered–layered, hexagonal–
 328 monoclinic structure with various possible grain/phase
 329 boundary structures, such as spinel interfaces. These structures
 330 were found to have a dependence on the configuration of the
 331 adjacent grains, where stacking of two layered grains
 332 perpendicular to their layered structure formed grain
 333 boundaries with increased interlayer distances, whereas
 334 stacking of grains parallel to their layered structures resulted
 335 in a spinel-type grain boundary. It was demonstrated that such

336 grain boundaries, that are also highly strained, would promote 337 initiation of crack formation. Subsequently, fracture and 338 disintegration of the active materials may ensue, resulting in 339 loss of performance. Additionally, Mn depletion and Ni 340 enrichment were observed in the grain boundaries of cycled 341 samples, implying an important role of such boundaries in 341 performance degradation mechanisms. Such grain-boundary- 342 induced degradation mechanisms are schematically depicted in 343 **Figure 6**. The underlying reason for atomic migration of Ni 344 into spinel-type grain boundaries was investigated using DFT 345 calculations. Among the various calculated structures, a 346 configuration with Ni migration into Li vacancies was revealed 347 to be the most energetically favorable structure, correlating 348 well with the experimental observations. This work reveals the 349 complex role between composition, synthesis, and structure— 350 property relationships of advanced cathode designs and 351 reiterates the important role that local atomic structures can 352 play in defining macroscopic electrode properties as well as the 353 need to further understand these materials across various 354 length scales. 355

Experimental Section. Synthesis of Cathode Particles. A 356 coprecipitation process was used to synthesize Ni–Mn–Co 357 (NMC) carbonate precursors using a 4 L continuously stirred 358 tank reactor (CSTR). An initial volume of 3 L of DI water was 359 used. The CSTR was sealed, and N_2 was flowed to remove air 360 and avoid oxidation of the product. Stock solutions of 361 ammonium hydroxide (0.05 M NH_4OH), sodium carbonate 362 (2 M Na_2CO_3), and NMC sulfate (2 M $NMC-SO_4$) were 363 pumped into the tank to allow for a 6 h residence time. The 364 reaction was stopped after 24 h (four residence times), and the 365 product was filtered, washed, and then dried overnight at 110 366 °C. The NMC-carbonate was then mixed with the appropriate 367 amount of lithium carbonate and fired at 900 °C (2 °C/min) 368 for 20 h. The “parent” LMR-NMC material for this work is 369 based on the following composition: $0.25Li_2MnO_3 \cdot 0.75LiMO_2$ 370 or $Li_{1.25}Mn_{0.53}Ni_{0.28}Co_{0.19}O_x$, where $Li/TM = 1.25$. In order to 371 integrate a spinel-type component into the composite material 372

373 used in this work, less lithium was used to achieve Li/TM < 374 1.25. The composition achieved for the baseline cathode in this 375 work was $\text{Li}_{1.18}\text{Mn}_{0.53}\text{Ni}_{0.28}\text{Co}_{0.19}\text{O}_x$, where Li/TM = 1.18, 376 suggesting a spinel component of ~6%.

377 **Electrochemical Characterization.** Slurries containing the 378 baseline cathode material, polyvinylidene fluoride (PVDF), 379 and C45 carbon (84:8:8) were cast on aluminum foil and dried 380 overnight. The electrodes were calendared to 80% of the 381 original thickness before use in cells. The active material 382 loading was 8 mg/cm². Celgard polypropylene and graphite- 383 based electrodes were used as the separator and anode, 384 respectively, for coin cell testing. The electrolyte was 1.2 M 385 LiPF₆ dissolved in ethylene carbonate/ethyl methyl carbonate 386 (EC:EMC 3:7 by weight).

387 The cycling protocol used consists of an activation cycle 388 between 4.5 and 2.0 V (vs graphite) at C/10 followed by 389 continuous cycling between 4.4 and 2.5 V (C/2). Further 390 details of the cycling protocol can be found elsewhere.⁴³ The 391 capacity delivered during the first cycle activation between 4.5 392 and 2.0 V was ~215 mAh/g (not shown). In the current work, 393 the capacity dropped to ~190 mAh/g upon limiting the 394 voltage window to 4.4–2.5 V (~C/2) in subsequent cycles.

395 **Scanning Electron Microscope Imaging.** The morphologies 396 of the material were investigated by scanning electron 397 microscopy (SEM) and energy dispersive X-ray spectroscopy 398 using a Hitachi S-4700-II microscope in the Electron 399 Microscopy Center, Argonne National Laboratory.

400 **X-ray Diffraction.** High-energy synchrotron X-ray diffraction 401 measurements were carried out on the LMR-NMC 402 cathode powder at 11-BM at the Advanced Photon Source at 403 Argonne National Lab ($\lambda = 0.414561 \text{ \AA}$).

404 **Transmission Electron Microscopy.** Cathode samples were 405 scratched from the Al current collector, sonicated in IPA, drop 406 casted onto lacy carbon grids, dried, and loaded on a double 407 tilt TEM holder. Scanning transmission electron microscopy 408 and electron energy loss spectroscopy were performed using a 409 JEOL JEM-ARM200CF STEM instrument equipped with a 410 cold field emission gun with 0.78 Å spatial resolution and a 411 Gatan Quantom EELS detector. A 22 mrad probe convergence 412 angle was used to perform STEM imaging. A HAADF detector 413 with 90 mrad inner-detector angle was utilized to obtain Z- 414 contrast atomic resolution images. A LAADF detector with 45 415 mrad inner-detector angle was utilized to obtain defect- 416 sensitive images. The color-coded images were restructured 417 from the atomic resolution images using Gatan Microscopy 418 Suite (GMS3) software, in which diffraction spots from each 419 grain were masked to generate reconstructed atomic images by 420 the inverted FFT function. Then, images from various phases 421 were combined to form the color-coded reconstructed images. 422 EELS was carried out with 0.5 eV/channel dispersion on a 423 2048-channel EELS detector using a 5 mm detector aperture. 424 The full width at half-maximum of the zero loss peak was 425 measured as 0.6 eV which determines the energy resolution of 426 the obtained spectra. EELS map acquisitions were carried out 427 by 5 Å pixel size and 0.2 s dwell time on a 77 nm area. Electron 428 dispersive spectroscopy (EDS) was carried out using an 429 Oxford X-max 100TLE windowless SDD X-ray detector.

430 **Density Functional Theory Calculations.** DFT calculations⁴⁴ were performed using the Vienna Ab Initio Simulations 431 Package (VASP)⁴⁵ code employing the generalized-gradient 433 approximation (GGA)⁴⁶ using the PBE (Perdew, Burke, and 434 Ernzerhof)⁴⁷ functional to account for the exchange- 435 correlation effects. In addition, to account for the Coulombic

repulsion between localized electrons in transition metals (Ni, 436 Mn, and Co), the DFT+U schema is used. The Hubbard 437 parameters ($U-J$) for Ni, Mn, and Co are set as 6.7, 4.2, and 438 5.96, respectively.⁴⁸ For systems with an even number of 439 electrons, non-spin-polarized calculations are performed, and 440 for systems with an odd number of electrons, unrestricted spin- 441 polarized calculations are performed. The migration paths and 442 barriers are determined using the linear nudged-elastic-band 443 method, as implemented in VASP code.⁴⁴⁴

445 For all calculations, a cutoff energy of 500 eV is used. The 446 further increase of cutoff energy to 550 eV led to a change of 447 the total energy of less than 0.02 eV. All structural 448 optimizations are carried out until the forces, acting on 449 atoms, are below 0.01 eV/Å. The criteria for energy change is 449 set to 0.1 eV.

450 The $\text{LiNi}_x\text{Mn}_x\text{Co}_x\text{O}_2$ (NMC) computational slab is created 451 from the LiCoO_2 (LCO) unit cell, by repeating it three times 452 through **a** and **b** vectors (Figure S3) and randomly substituting 453 Co atoms by the appropriate amount of Ni and Mn atoms. The 454 final NMC slab has 108 atoms and the lattice constants $a = b =$ 455 8.45 Å and $c = 14.05 \text{ \AA}$ ($\alpha = \beta = 90^\circ, \gamma = 120^\circ$). For all of the 456 calculations, a k -point mesh of $4 \times 4 \times 2$ is used. In order to 457 ensure that the slab size is chosen properly and represents the 458 properties of the macroscopic crystal structure, the Li diffusion 459 energetics is calculated for two different slab sizes. The first 460 slab is 108 atoms, as described above, and the second one is 461 192 atoms. In the case of the 192-atom configuration, the Li 462 diffusion barrier has changed less than 1% compared to the 463 slab with 108 atoms. Thus, in order to perform computationally 464 effective calculations, the slab with 108 atoms is used.⁴⁶⁵

■ ASSOCIATED CONTENT

S Supporting Information

The Supporting Information is available free of charge at 468 [469](https://pubs.acs.org/doi/10.1021/acs.nanolett.9b04620)

The details of sample synthesis, basic characterization, 470 and electrochemical tests and supplemental figures 471 (PDF)⁴⁷²

■ AUTHOR INFORMATION

Corresponding Authors

*E-mail: Croy@anl.gov

*E-mail: rsyassar@uic.edu

ORCID

Soroosh Sharifi-Asl: [0000-0003-0441-9231](https://orcid.org/0000-0003-0441-9231)

Vitaliy Yurkiv: [0000-0002-3407-891X](https://orcid.org/0000-0002-3407-891X)

Arturo Gutierrez: [0000-0002-2899-3089](https://orcid.org/0000-0002-2899-3089)

Farzad Mashayek: [0000-0003-1187-4937](https://orcid.org/0000-0003-1187-4937)

Jason Croy: [0000-0002-5839-3666](https://orcid.org/0000-0002-5839-3666)

Reza Shahbazian-Yassar: [0000-0002-7744-4780](https://orcid.org/0000-0002-7744-4780)

Author Contributions

S.S.-A., A.G., and V.Y. contributed equally to this work. S.S.-A. 485 and R.S.-Y. initiated the idea and designed the experimental 486 protocols. A.G., J.C., and M.B. synthesized the sample and 487 carried out the electrochemical cycling experiments. S.S.-A. 488 performed the STEM experiments and conducted the data 489 analysis. V.Y. and F.M. carried out the DFT calculations. All of 490 the authors contributed to the writing and discussion of the 491 manuscript.⁴⁹²

Notes

The authors declare no competing financial interest.⁴⁹³

466

467

468

469

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495 ■ ACKNOWLEDGMENTS

496 R.S.-Y. acknowledges the financial support from the National
 497 Science Foundation (Award No. 1805938). This work made
 498 use of the JEOL JEM-ARM200CF in the Electron Microscopy
 499 Core of UIC's Research Resources Center. The acquisition of
 500 this instrument was supported by an MRI-R2 grant from the
 501 National Science Foundation (DMR-0959470). The present
 502 DFT calculations were supported by the National Science
 503 Foundation Extreme Science and Engineering Discovery
 504 Environment (XSEDE) (Award No. TG-DMR180106) as
 505 well as the Advanced Cyberinfrastructure for Education and
 506 Research (ACER) group at the University of Illinois at
 507 Chicago (URL: <https://acer.uic.edu>). Support from the U.S.
 508 Department of Energy, Office of Energy Efficiency and
 509 Renewable Energy, in particular from David Howell and
 510 Peter Faguy, is gratefully acknowledged. The submitted
 511 manuscript has been created by UChicago Argonne, LLC,
 512 Operator of Argonne National Laboratory ("Argonne").
 513 Argonne, a U.S. Department of Energy Office of Science
 514 laboratory, is operated under Contract No. DE-AC02-
 515 06CH11357. The U.S. Government retains for itself, and
 516 others acting on its behalf, a paid-up, nonexclusive, irrevocable
 517 worldwide license in said article to reproduce, prepare
 518 derivative works, distribute copies to the public, and perform
 519 publicly and display publicly, by or on behalf of the
 520 Government.

521 ■ REFERENCES

- (1) Radin, M. D.; Hy, S.; Sina, M.; Fang, C.; Liu, H.; Vinckeviciute, J.; Zhang, M.; Whittingham, M. S.; Meng, Y. S. Narrowing the Gap between Theoretical and Practical Capacities in Li-Ion Layered Oxide Cathode Materials. *Adv. Energy Mater.* **2017**, *7*, 1602888.
- (2) Qiu, B.; Zhang, M.; Xia, Y.; Liu, Z.; Meng, Y. S. Understanding and Controlling Anionic Electrochemical Activity in High-Capacity Oxides for Next Generation Li-Ion Batteries. *Chem. Mater.* **2017**, *29*, 908–915.
- (3) Yan, J.; Liu, X.; Li, B. Recent Progress in Li-Rich Layered Oxides as Cathode Materials for Li-Ion Batteries. *RSC Adv.* **2014**, *4*, 63268–63284.
- (4) Nayak, P. K.; Erickson, E. M.; Schipper, F.; Penki, T. R.; Munichandraiah, N.; Adelhelm, P.; Sclar, H.; Amalraj, F.; Markovsky, B.; Aurbach, D. Review on Challenges and Recent Advances in the Electrochemical Performance of High Capacity Li- and Mn-Rich Cathode Materials for Li-Ion Batteries. *Adv. Energy Mater.* **2018**, *8*, 1702397.
- (5) Pan, H.; Zhang, S.; Chen, J.; Gao, M.; Liu, Y.; Zhu, T.; Jiang, Y. Li- and Mn-Rich Layered Oxide Cathode Materials for Lithium-Ion Batteries: A Review from Fundamentals to Research Progress and Applications. *Mol. Syst. Des. Eng.* **2018**, *3*, 748–803.
- (6) Croy, J. R.; Balasubramanian, M.; Gallagher, K. G.; Burrell, A. K. Review of the U.S. Department of Energy's "Deep Dive" Effort to Understand Voltage Fade in Li- and Mn-Rich Cathodes. *Acc. Chem. Res.* **2015**, *48*, 2813–2821.
- (7) Croy, J. R.; Gallagher, K. G.; Balasubramanian, M.; Chen, Z.; Ren, Y.; Kim, D.; Kang, S.; Dees, D. W.; Thackeray, M. M. Examining Hysteresis in Composite $x\text{Li}_2\text{MnO}_3 \cdot (1-x)\text{LiMO}_2$ Cathode Structures. *J. Phys. Chem. C* **2013**, *117*, 6525–6536.
- (8) Teufl, T.; Pritzl, D.; Mendez, M. A.; Solchenbach, S. State of Charge Dependent Resistance Build-Up in Li- and Mn-Rich Layered Oxides during Lithium Extraction and Insertion. *J. Electrochem. Soc.* **2019**, *166*, A1275–A1284.
- (9) Gowda, S. R.; Dees, D. W.; Jansen, A. N.; Gallagher, K. G. Examining the Electrochemical Impedance at Low States of Charge in Lithium- and Manganese-Rich Layered Transition-Metal Oxide Electrodes. *J. Electrochem. Soc.* **2015**, *162*, A1374–A1381.
- (10) Seo, D.-H.; Lee, J.; Urban, A.; Malik, R.; Kang, S.; Ceder, G. The Structural and Chemical Origin of the Oxygen Redox Activity in Layered and Cation-Disordered Li-Excess Cathode Materials. *Nat. Chem.* **2016**, *8*, 692–697.
- (11) Croy, J. R.; Iddir, H.; Gallagher, K.; Johnson, C. S.; Benedek, R. First-Charge Instabilities of Layered-Layered Lithium-Ion-Battery Materials. *Phys. Chem. Chem. Phys.* **2015**, *17* (17), 24382–24391.
- (12) Chen, C.-J.; Pang, W. K.; Mori, T.; Peterson, V. K.; Sharma, N.; Lee, P.-H.; Wu, S.-h.; Wang, C.-C.; Song, Y.-F.; Liu, R.-S. The Origin of Capacity Fade in the $\text{Li}_2\text{MnO}_3 \cdot \text{LiMO}_2$ ($M = \text{Li}, \text{Ni}, \text{Co}, \text{Mn}$) Microsphere Positive Electrode: An *Operando* Neutron Diffraction and Transmission X-ray Microscopy Study. *J. Am. Chem. Soc.* **2016**, *138*, 8824–8833.
- (13) Liu, H.; Chen, Y.; Hy, S.; An, K.; Venkatachalam, S.; Qian, D. *Operando* Lithium Dynamics in the Li-Rich Layered Oxide Cathode Material via Neutron Diffraction. *Adv. Energy Mater.* **2016**, *6*, 1502143.
- (14) Mu, L.; Lin, R.; Xu, R.; Han, L.; Xia, S.; Sokaras, D.; Steiner, J. D.; Weng, T.; Nordlund, D.; Doe, M. M.; et al. Oxygen Release Induced Chemomechanical Breakdown of Layered Cathode Materials. *Nano Lett.* **2018**, *18*, 3241–2149.
- (15) Bak, S. M.; Hu, E.; Zhou, Y.; Yu, X.; Senanayake, S. D.; Cho, S. J.; Kim, K. B.; Chung, K. Y.; Yang, X. Q.; Nam, K. W. Structural Changes and Thermal Stability of Charged $\text{LiNi}_x\text{Mn}_y\text{Co}_z\text{O}_2$ Cathode Materials Studied by Combined *in Situ* Time-Resolved XRD and Mass Spectroscopy. *ACS Appl. Mater. Interfaces* **2014**, *6*, 22594–22601.
- (16) Yan, P.; Zheng, J.; Gu, M.; Xiao, J.; Zhang, J. G.; Wang, C. M. Intragranular Cracking as a Critical Barrier for High-Voltage Usage of Layer-Structured Cathode for Lithium-Ion Batteries. *Nat. Commun.* **2017**, *8*, 14101.
- (17) Yano, A.; Shikano, M.; Ueda, A.; Sakaebe, H.; Ogumi, Z. LiCoO₂ Degradation Behavior in the High-Voltage Phase Transition Region and Improved Reversibility with Surface Coating. *J. Electrochem. Soc.* **2017**, *164*, A6116–A6122.
- (18) Yan, P.; Zheng, J.; Liu, J.; Wang, B.; Cheng, X.; Zhang, Y.; Sun, X.; Wang, C.; Zhang, J. Tailoring Grain Boundary Structures and Chemistry of Ni-Rich Layered Cathodes for Enhanced Cycle Stability of Lithium-Ion Batteries. *Nat. Energy* **2018**, *3*, 600–605.
- (19) Gallagher, K. G.; Croy, J. R.; Balasubramanian, M.; Bettge, M.; Abraham, D. P.; Burrell, A. K.; Thackeray, M. M. Electrochemistry Communications Correlating Hysteresis and Voltage Fade in Lithium- and Manganese-Rich Layered Transition-Metal Oxide Electrodes. *Electrochim. Commun.* **2013**, *33*, 96–98.
- (20) Dogan, F.; Long, B. R.; Croy, J. R.; Gallagher, K. G.; Iddir, H.; Russell, J. T.; Balasubramanian, M.; Key, B. Re-Entrant Lithium Local Environments and Defect Driven Electrochemistry of Li- and Mn-Rich Li-Ion Battery Cathodes. *J. Am. Chem. Soc.* **2015**, *137*, 2328–2335.
- (21) Singer, A.; Zhang, M.; Hy, S.; Cela, D.; Fang, C.; Wynn, T. A.; Qiu, B.; Xia, Y.; Liu, Z.; Ulvestad, A.; et al. Nucleation of Dislocations and Their Dynamics in Layered Oxide Cathode Materials during Battery Charging. *Nat. Energy* **2018**, *3*, 641–647.
- (22) Lu, Z.; Chen, Z.; Dahm, J. R. Lack of Cation Clustering in $\text{Li}[\text{Ni}_{1-x}\text{Li}_{1/3-2x/3}\text{Mn}_{2/3-x/3}] \text{O}_2$ ($0 < x \leq 1/2$) and $\text{Li}[\text{Cr}_x\text{Li}_{(1-x)/3}\text{Mn}_{(2-2x)/3}] \text{O}_2$ ($0 < x < 1$). *Chem. Mater.* **2003**, *15*, 3214–3220.
- (23) Yan, J.; Liu, X.; Li, B. Recent Progress in Li-Rich Layered Oxides as Cathode Materials for Li-Ion Batteries. *RSC Adv.* **2014**, *4*, 63268–63284.
- (24) Yu, H.; Zhou, H. High-Energy Cathode Materials ($\text{Li}_2\text{MnO}_3 - \text{LiMO}_2$) for Lithium-Ion Batteries. *J. Phys. Chem. Lett.* **2013**, *4*, 1268–1280.
- (25) Gu, M.; Belharouak, I.; Genc, A.; Wang, Z.; Wang, D.; Amine, K.; Gao, F.; Zhou, G.; Thevuthasan, S.; Baer, D. R.; et al. Conflicting Roles of Nickel in Controlling Cathode Performance in Lithium Ion Batteries. *Nano Lett.* **2012**, *12*, 5186–5191.
- (26) Wen, J. G.; Bareño, J.; Lei, C. H.; Kang, S. H.; Balasubramanian, M.; Petrov, I.; Abraham, D. P. Analytical Electron

628 Microscopy of $\text{Li}_{1.2}\text{Co}_{0.4}\text{Mn}_{0.4}\text{O}_2$ for Lithium-Ion Batteries. *Solid State*
629 *Ionics* **2011**, *182*, 98–107.

630 (27) Thackeray, M. M.; Kang, S. H.; Johnson, C. S.; Vaughey, J. T.;
631 Hackney, S. A. Comments on the Structural Complexity of Lithium-
632 Rich $\text{Li}_{1+x}\text{M}_{1-x}\text{O}_2$ Electrodes (M = Mn, Ni, Co) for Lithium Batteries.
633 *Electrochem. Commun.* **2006**, *8*, 1531–1538.

634 (28) Thackeray, M. M.; Kang, S.-H.; Johnson, C. S.; Vaughey, J. T.;
635 Benedek, R.; Hackney, S. A. Li_2MnO_3 -Stabilized LiMO_2 (M = Mn,
636 Ni, Co) Electrodes for Lithium-Ion Batteries. *J. Mater. Chem.* **2007**,
637 *17*, 3112.

638 (29) Shukla, A. K.; Ramasse, Q. M.; Ophus, C.; Duncan, H.; Hage,
639 F.; Chen, G. Unravelling Structural Ambiguities in Lithium- and
640 Manganese-Rich Transition Metal Oxides. *Nat. Commun.* **2015**, *6*,
641 8711.

642 (30) Koga, H.; Croguennec, L.; Mannessiez, P.; Ménétrier, M.;
643 Weill, F.; Bourgeois, L.; Duttine, M.; Suard, E.; Delmas, C.
644 $\text{Li}_{1.20}\text{Mn}_{0.54}\text{Co}_{0.13}\text{Ni}_{0.13}\text{O}_2$ with Different Particle Sizes as Attractive
645 Positive Electrode Materials for Lithium-Ion Batteries: Insights into
646 Their Structure. *J. Phys. Chem. C* **2012**, *116*, 13497–13506.

647 (31) Peng, Y.; Nellist, P. D.; Pennycook, S. J. HAADF-STEM
648 Imaging with Sub-Angstrom Probes: A Full Bloch Wave Analysis. *J.*
649 *Electron Microsc.* **2004**, *53*, 257–266.

650 (32) Phillips, P. J.; Graef, M. De; Kovarik, L.; Agrawal, A.; Windl,
651 W.; Mills, M. J. Atomic-Resolution Defect Contrast in Low Angle
652 Annular Dark-Field STEM. *Ultramicroscopy* **2012**, *116*, 47–55.

653 (33) Long, B. R.; Croy, J. R.; Dogan, F.; Suchomel, M. R.; Key, B.;
654 Wen, J.; Miller, D. J.; Thackeray, M. M.; Balasubramanian, M. Effect
655 of Cooling Rates on Phase Separation in $0.5\text{Li}_2\text{MnO}_3\text{:}0.5\text{LiCoO}_2$
656 Electrode Materials for Li-Ion Batteries. *Chem. Mater.* **2014**, *26*,
657 3565–3572.

658 (34) Barenco, J.; Balasubramanian, M.; Kang, S. H.; Wen, J. G.; Lei,
659 C. H.; Pol, S. V.; Petrov, I.; Abraham, D. P. Long-Range and Local
660 Structure in the Layered Oxide. *Chem. Mater.* **2011**, *23*, 2039–2050.

661 (35) Croy, J. R.; Gallagher, K. G.; Balasubramanian, M.; Long, B. R.;
662 Thackeray, M. M. $x\text{Li}_2\text{MnO}_3\text{:}(1-x)\text{LiMn}_{0.5}\text{Ni}_{0.5}\text{O}_2$ Electrodes as a
663 Function of Li_2MnO_3 Content. *J. Electrochem. Soc.* **2014**, *161*, A318–
664 A325.

665 (36) Balasubramanian, M.; Mcbreen, J.; Davidson, I. J. In Situ X-Ray
666 Absorption Study of a Layered Manganese-Chromium Oxide-Based
667 Cathode Material. *J. Electrochem. Soc.* **2002**, *149*, A176–A184.

668 (37) Lin, F.; Markus, I. M.; Nordlund, D.; Weng, T.-C.; Asta, M. D.;
669 Xin, H. L.; Doeff, M. M. Surface Reconstruction and Chemical
670 Evolution of Stoichiometric Layered Cathode Materials for Lithium-
671 Ion Batteries. *Nat. Commun.* **2014**, *5*, 3529.

672 (38) Yan, P.; Zheng, J.; Zheng, J.; Wang, Z.; Teng, G.; Kuppan, S.;
673 Xiao, J.; Chen, G.; Pan, F.; Zhang, J. G.; et al. Cathode Materials: Ni
674 and Co Segregations on Selective Surface Facets and Rational Design
675 of Layered Lithium Transition-Metal Oxide Cathodes. *Adv. Energy*
676 *Mater.* **2016**, *6*, 1–9.

677 (39) Gilbert, J. A.; Shkrob, I. A.; Abraham, D. P. Transition Metal
678 Dissolution, Ion Migration, Electrocatalytic Reduction and Capacity
679 Loss in Lithium-Ion Full Cells. *J. Electrochem. Soc.* **2017**, *164*, A389–
680 A399.

681 (40) Watanabe, S.; Kinoshita, M.; Hosokawa, T.; Morigaki, K.
682 Capacity Fading of $\text{LiAl}_y\text{Ni}_{1-x-y}\text{Co}_x\text{O}_2$ Cathode for Lithium-Ion
683 Batteries during Accelerated Calendar and Cycle Life Tests (Effect of
684 Depth of Discharge in Charge e Discharge Cycling on the
685 Suppression of the Micro-Crack Generation of $\text{LiAl}_y\text{Ni}_{1-x-y}\text{Co}_x\text{O}_2$
686 Particle). *J. Power Sources* **2014**, *260*, 50–56.

687 (41) Hwang, S.; Kim, S. M. Y.; Bak, S. M.; Kim, S. M. Y.; Cho, B.
688 W.; Chung, K. Y.; Lee, J. Y.; Stach, E. A.; Chang, W. Using Real-Time
689 Electron Microscopy To Explore the Effects of Transition-Metal
690 Composition on the Local Thermal Stability in Charged
691 $\text{Li}_x\text{Ni}_y\text{Mn}_z\text{Co}_{1-y-z}\text{O}_2$ Cathode Materials. *Chem. Mater.* **2015**, *27*,
692 3927–3935.

693 (42) Yan, P.; Zheng, J.; Zhang, J. G.; Wang, C. Atomic Resolution
694 Structural and Chemical Imaging Revealing the Sequential Migration
695 of Ni, Co, and Mn upon the Battery Cycling of Layered Cathode.
696 *Nano Lett.* **2017**, *17*, 3946–3951.

697 (43) Long, B. R.; Rinaldo, S. G.; Gallagher, K. G.; Dees, D. W.;
698 Trask, S. E.; Polzin, B. J.; Jansen, A. N.; Abraham, D. P.; Bloom, I.;
699 Croy, J. R.; et al. *J. Electrochem. Soc.* **2016**, *163*, A2999–A3009.

700 (44) Kohn, W.; Sham, L. J. Self-Consistent Equations Including
701 Exchange and Correlation Effects. *Phys. Rev.* **1965**, *140*, A1133–
702 A1138.

703 (45) Kresse, G.; Furthmüller, J. Efficient Iterative Schemes for Ab
704 Initio Total-Energy Calculations Using a Plane-Wave Basis Set. *Phys.*
705 *Rev. B: Condens. Matter Mater. Phys.* **1996**, *54*, 11169–11186.

706 (46) Perdew, J.; Chevary, J.; Vosko, S.; Jackson, K.; Pederson, M.;
707 Singh, D.; Fiolhais, C. Atoms, Molecules, Solids, and Surfaces:
708 Applications of the Generalized Gradient Approximation for
709 Exchange and Correlation. *Phys. Rev. B: Condens. Matter Mater.*
710 *Phys.* **1992**, *46*, 6671–6687.

711 (47) Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient
712 Approximation Made Simple. *Phys. Rev. Lett.* **1996**, *77*, 3865–3868.

713 (48) Sun, H.; Zhao, K. Electronic Structure and Comparative
714 Properties of $\text{LiNi}_x\text{Mn}_y\text{Co}_z\text{O}_2$ Cathode Materials. *J. Phys. Chem. C*
715 **2017**, *121*, 6002–6010.