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Abstract— This paper presents a stochastic barrier function-
based abstraction technique for discrete-time stochastic sys-
tems. Recent works have shown the potential of Interval-valued
Markov Chain abstractions for conducting efficient verification
of continuous-state, discrete-time stochastic systems against
complex objectives, as well as efficient synthesis for finite-mode
switched stochastic systems. Such Markovian abstractions allow
for a range of transition probabilities between its states. In
this work, we address the problem of constructing Interval-
valued Markov Chain abstractions for polynomial systems using
stochastic barrier functions. Stochastic barrier functions serve
as Lyapunov-like probabilistic certificates of forward set invari-
ance. Specifically, given a finite partition of the system’s domain,
we show that bounds on the probability of transition between
any two elements of the partition are found by generating
stochastic barrier functions via optimization procedures in the
form of Sum-of-Squares programs. We present an algorithm
for solving these optimization problems whose implementation
is demonstrated in a verification and a synthesis case study.

I. INTRODUCTION

Dynamical systems with complex objectives—such as
autonomous vehicles and industrial robotics—subject to
random disturbances pose challenges for verification and
controller synthesis. Efforts have been dedicated to stability
analysis of stochastic systems via stochastic Lyapunov func-
tions [1]. Recent literature has extended stochastic system
verification and synthesis to more complex system properties
expressed using symbolic temporal logics [2], [3].

However, verification and synthesis for complex temporal
logic specifications in discrete time are, in general, un-
decidable or intractable to solve and require resorting to
approximation methods [3], [4]. These methods typically
involve the discretization of the system’s domain into a finite
number of discrete states which are converted to a finite
stochastic transition system. This transition system serves as
a finite-state abstraction of the continuous-state dynamics.
Performing verification or synthesis on this abstraction is
generally more tractable and yields bounded-error probabilis-
tic guarantees with respect to the original system states.
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Several types of stochastic abstractions, such as approx-
imate Markov Chains [5], have been put forth in the lit-
erature. Abstractions by way of Interval-valued Markov
Chains (IMC) [6] were shown to be an effective means
for verification and synthesis of stochastic systems [2], [7],
[8]. Individual states of an IMC abstraction encapsulate the
collective behavior of all its abstracted continuous states by
imposing their transition probabilities to lie within some
interval. While IMC abstractions have proven to be efficient
verification and synthesis tools for discrete-time stochastic
systems, little work has been conducted on the computation
of such abstractions. An abstraction algorithm for linear
systems with additive noise and polytopic domain partition
is introduced in [9]. In [10], an IMC abstraction technique
scaling linearly with the number of dimensions is presented
for mixed monotone systems. To the best of our knowledge,
other classes of systems for which correct and non-trivial
IMC abstractions can be constructed have not been discussed.

Stochastic barrier functions have emerged as promising
instruments for providing probabilistic guarantees amenable
to IMC abstractions. Stochastic barrier functions are used
as a probabilistic certificate of set invariance for stochastic
dynamical systems. Specifically, one can derive an upper
bound on the probability that a system will reach some region
of the domain if one can show the existence of a barrier
function satisfying certain value constraints over the domain.
The works in [11] and [12] derive set invariance bounds for
discrete-time, finite-time horizon stochastic systems, while
[13] focuses on infinite-time horizon guarantees.

In this work, we utilize stochastic barrier functions to con-
struct IMC abstractions of discrete-time polynomial systems.
These abstractions enable verification and synthesis for such
systems against specifications from the expressive class of ω-
regular properties, which is an improvement from existing
techniques. State-of-the-art tools such as FAUST2 [14] and
StocHy [15] cannot perform synthesis for arbitrary stochastic
polynomial systems against all ω-regular specifications.

The contributions of this paper are as follows: we present
an IMC abstraction method for discrete-time stochastic poly-
nomial systems; to construct such abstractions, we use a
discrete-time formulation of the stochastic barrier function
framework over a single transition where two barrier func-
tions are computed; by means of this formulation, an IMC
abstraction of stochastic polynomial systems is created from
a finite partition of its domain by finding two stochastic
barrier functions per transition. The barrier functions are
calculated via Sum-of-Squares (SOS) optimization programs.

The paper is organized as follows: Section II introduces



the problem formulation; Section III discusses the theory of
stochastic barrier functions; Section IV shows how stochastic
barrier functions can be used for computing IMC abstractions
of polynomial stochastic systems; Section V presents a
verification and synthesis case study where our abstraction
method is applied; Section VI concludes this work.

II. PROBLEM FORMULATION

We consider the discrete-time, continuous-state stochastic
system

x[k + 1] = F(x[k], w[k]) , (1)

where x[k] ∈ D ⊂ Rn is the state of the system and
w[k] ∈W ⊂ Rp is a random disturbance at time k, and F :
D×W → D is a continuous map. At each time-step k, the
random disturbance w[k] is sampled from a probability dis-
tribution with density function fw : Rp → R≥0. Associated
with (1) is a labeling function L : D → Σ, where Σ is a finite
alphabet. An infinite path π = x[0]x[1]x[2] . . . generated by
(1) induces a trace L(π) = L(x[0])L(x[1])L(x[2]) . . .

We denote by Ψ an arbitrary ω-regular property [16] over
alphabet Σ. In particular, all properties defined by a Linear
Temporal Logic (LTL) formula are ω-regular. We define a
probability operator P./psat

[Ψ] over ω-regular properties,
with ./ ∈ {≤, <,≥, >}, psat ∈ [0, 1]. For any initial state
x ∈ D, we define the satisfaction relation |= where x |=
P./psat

[Ψ] ⇔ pxΨ ./ psat, with pxΨ being the probability that
the trace generated by a random path starting at x satisfies
property Ψ (for a rigorous formalization, see, e.g., [5]). We
concentrate on formulas of the type φ = P./psat [Ψ]. Given
a formula φ of this form, the verification problem requires
sorting all initial states of system (1) into those that satisfy
property φ and those that do not satisfy property φ.

We additionally consider switched stochastic systems

x[k + 1] = Fa(x[k], wa[k]) , (2)

with a ∈ A and A is a finite set of modes, and everything
is defined as in (1) for a fixed mode a. At each time-step
k, a mode a is chosen and a transition occurs according to
the dynamics of Fa subject to the disturbance wa. A finite
sequence of states π = x[0]x[1] . . . x[m] in (2) is called a
finite path and the set of all finite paths of (2) is denoted by
Pathsfin. A function µ : Pathsfin → A assigning a mode
to each finite path in (2) is called a switching policy and the
set of all switching policies of (2) is denoted by U . Given
an ω-regular property Ψ, the synthesis problem asks for a
switching policy µ̂Ψ or µ̂Ψ that respectively minimizes or
maximizes the probability of satisfying Ψ and are such that

µ̂Ψ = arg min
µ∈U

(pxΨ)µ , µ̂Ψ = arg max
µ∈U

(pxΨ)µ

for any initial state x ∈ D, with (pxΨ)µ being the probability
that the trace generated by a random path starting at x
satisfies property Ψ under policy µ. Recent works have
shown that these verification and synthesis problems cannot,
in general, be solved exactly [3], [4]. Instead, they are
addressed via approximation techniques by first generating

a finite partition P of the system domain D.

Definition 1 (Partition): A partition P of D ⊂ Rn is a
collection of states P = {Qj}mj=1, Qj ⊂ D, satisfying⋃m
j=1Qj = D and int(Qj) ∩ int(Q`) = ∅ ∀j, `, j 6= `,

where int(Qj) denotes the interior of Qj . For any continuous
state x belonging to a state Qj , we write x ∈ Qj .

The discrete states of P , which are collections of continuous
states of D, serve as a basis for finite-state abstractions of
(1) and (2) by means of stochastic transition systems. In this
paper, the abstractions of choice for (1) are Interval-valued
Markov Chains (IMC) [6], while (2) is abstracted by
Bounded-parameter Markov Decision Processes (BMDP)
[17], which are finite collections of IMCs.

Definition 2 (Bounded-parameter Markov Decision Proc- ):
ess): A Bounded-parameter Markov Decision Process
(BMDP) [17] is a 6-tuple B = (Q,Act, T̂ , T̂ ,Σ, L) where:
• Q is a finite set of states,
• Act is a finite set of actions,
• T̂ : Q × Act ×Q → [0, 1] maps pairs of states and an

action to a lower transition bound,
• T̂ : Q × Act ×Q → [0, 1] maps pairs of states and an

action to an upper transition bound,
• Σ is a finite set of atomic propositions,
• L : Q→ Σ is a labeling function from states to Σ.

Definition 3 (Interval-valued Markov Chain): An
Interval-valued Markov Chain (IMC) I = (Q, T̂ , T̂ ,Σ, L)
is defined similarly to a BDMP with the difference that a
single action (omitted in the defining tuple) is available.

Techniques for performing verification of IMCs and
synthesis for BMDPs against ω-regular specifications are
presented in [7] and [18] and are not the focus of this work.
Here, we seek to determine bounds on the probabilities
of transition between any two states in the partition P
so as to construct IMC and BMDP abstractions of (1) and (2).

Definition 4 (Exact Transition Bounds): Let P be a par-
tition of the domain D of (1). For all Qi, Qj ∈ P , the
exact transition lower bound T̂ ex(Qi, Qj) and upper bound
T̂ex(Qi, Qj) on the transition from Qi to Qj are given by

T̂ ex(Qi, Qj) = inf
x∈Qi

Pr(F(x,w) ∈ Qj),

T̂ex(Qi, Qj) = sup
x∈Qi

Pr(F(x,w) ∈ Qj),

where Pr(F(x,w) ∈ Qj | x) for fixed x is the probability
that (1) transitions from x to some x′ = F (x,w) in Qj .

Definition 5 (IMC and BMDP Abstractions): Let P be a
partition of the domain D of (1). An interval-valued Markov
Chain I = (Q, T̂ , T̂ ,Σ, L) is an abstraction of (1) if Q = P ;
for all Qj ∈ P and for any two xi, x` ∈ Qj , it holds that



L(Qj) := L(xi) = L(x`); and, for all Qi, Qj ∈ P ,

T̂ (Qi, Qj) ≤ T̂ ex(Qi, Qj) ≤ T̂ex(Qi, Qj) ≤ T̂ (Qi, Qj) .

A BMDP abstraction B = (Q,Act, T̂ , T̂ ,Σ, L) of (2) is
defined similarly by letting each action a ∈ Act induce an
IMC abstraction of (2) under mode a.

The tractibility of finding non-trivial transition intervals,
i.e., not ranging from 0 to 1, depends on the system of
interest and the geometry of its domain partition. Here, we
focus on systems with polynomial dynamics in x and w.

Assumption 1: The function F in (1) is a polynomial in
x and w.

For system (2), we assume that every mode a induces an
equation of the form (1) under Assumption 1. Consequently,
a method for constructing an IMC abstraction of (1) allows
us to build an IMC abstraction for all modes of (2), which is
equivalent to a BMDP abstraction. Thus, the main problem
of this work consists in devising an IMC abstraction
procedure for (1).

Problem: Given a system of the form (1) under Assump-
tion 1 and a partition P of its domain D, construct a non-
trivial IMC abstraction of (1).

III. STOCHASTIC BARRIER FUNCTIONS

In order to propose a solution to the main problem, we
first introduce the concept of stochastic barrier function.

Stochastic barrier functions are utilized as a probabilistic
certificate of set invariance for stochastic systems. By
showing the existence of a function satisfying a particular
set of constraints over the domain of the system, one can
ensure that the probability of reaching a given set of states
from a set of initial conditions is less than some bound.
Here, we study stochastic barrier functions in a discrete-time
framework over a time horizon of one transition. Consider
a stochastic system (1) over a continuous domain X ⊂ Rn.
Let X0 ⊆ X be a set of initial conditions, and X1 ⊆ X be a
compact set of the domain. The probability of reaching set
X1 from any initial state x0 ∈ X0 in one time-step can be
upper-bounded by finding a function B(x) fulfilling specific
value constraints on X , X0 and X1 as formalized below.

Theorem 1: Given the stochastic differential equation in
(1) and the sets X ⊂ Rn, X0 ⊆ X ,X1 ⊆ X . Consider the
process x[k] evolving according to (1). Suppose that there
exists a function B : X → R, such that

B(x) ≥ 1 ∀x ∈ X1 , (3)

B(x) ≥ 0 ∀x ∈ X , (4)

Ew
[
B(F(x,w)) | x

]
≤ α ∀x ∈ X0 (5)

for some α ≥ 0, where Ew denotes the expectation with
respect to w. Given x0 := x[0], define ρu(x0) := Pr{x[1] ∈

X1 | x0}. Then, for any initial state x0 ∈ X0,

ρu(x0) ≤ Pr {B(x[1]) ≥ 1 | x0} ≤ α . (6)

Proof: This theorem follows from Markov’s inequality,

as Pr {B(x[1]) ≥ 1 | x0} ≤
Ew

[
B(F(x0,w)) | x0

]
1 .

The function B in the above theorem serve as a stochastic
barrier function for general systems of the form (1). Nu-
merical procedures for finding a function B satisfying the
conditions of Theorem 1 for particular polynomial systems
under Assumption 1 are developed in the next section.

IV. BARRIER FUNCTION-BASED IMC
ABSTRACTION

We next present a stochastic barrier function-based
approach to the IMC abstraction problem for general
systems of the form (1). Consider two states Qi and Qj
from a partition P of the domain D of (1). Our goal
is to determine a lower bound T̂ (Qi, Qj) and an upper
bound T̂ (Qi, Qj) on the probability of transitioning from
any continuous state in Qi to a state in Qj . Then, an
IMC abstraction of (1) is constructed by applying this
methodology to all pairs of states in P . We assume
henceforth that an over-approximation and an under-
approximation of any discrete state in P can be represented
as the zero-superlevel set of some polynomial function.

Assumption 2: For any state Qi in a partition P of domain
D, there exists an over-approximation X̂Qi ⊃ Qi and an
under-approximation X̂Qi

⊂ Qi such that X̂Qi
= {x ∈

Rn | sX̂Qi
(x) ≥ 0} and X̂Qi = {x ∈ Rn | sX̂Qi

(x) ≥ 0},
where sX̂Qi

and sX̂Qi

are polynomials. Also, there exists

an over-approximation X̂ ⊃ D of D such that X̂ = {x ∈
Rn | sX̂ (x) ≥ 0}, where sX̂ is a polynomial.

Finding bounds on the probability of making a transition
from Qi to Qj in one time-step can be converted to two
reachability problems over a one time-step time horizon.
Indeed, by viewing Qi as the set X0 in Theorem 1,
determining upper bounds on the probability of reaching
X1 = Qj and X1 = D \ Qj induces an interval on the
probability of making a transition from Qi to Qj . We
formalize this in terms of the over and under-approximation
representations of these states in the following lemma.

Lemma 1: Let X0 and X1 be the sets defined in Theorem
1. Recall the exact bounds on the probability of transition
from Qi to Qj are T̂ ex(Qi, Qj) and T̂ex(Qi, Qj), where Qi
and Qj are states in partition P . Let ρ̂u be an upper bound on
the probability for system (1) to reach X1 when X0 = X̂Qi

and X1 = X̂Qj , and let ρ̂u be a similarly defined upper bound
when X0 = X̂Qi

and X1 = D \ X̂Qj
. Then,

ρ̂u ≥ T̂ex(Qi, Qj) , (7)

1− ρ̂u ≤ T̂ ex(Qi, Qj) . (8)



Proof: By assumption, the probability of making a
transition to X̂Qj from any state x ∈ X̂Qi in one time-step
is upper bounded by ρ̂u. Since Qj ⊂ X̂Qj

, the probability of
transitioning from X̂Qi

to Qj cannot be greater than ρ̂u. As
Qi ⊂ X̂Qi

, the latter also holds true for all x ∈ Qi, proving
(7). Then, the probability of transitioning to D \ X̂Qj from
any state x ∈ X̂Qi

in one time-step is upper bounded by ρ̂u.
Therefore, the probability of transitioning to X̂Qj

is at least
1− ρ̂u. Since X̂Qj

⊂ Qj , the probability of transitioning to
Qj from X̂Qi

cannot be less than 1− ρ̂u. As Qi ⊂ X̂Qi
, the

latter also holds true for all x ∈ Qi, proving (8).

First, we describe a numerical procedure for computing
polynomial barrier functions fulfilling the requirements of
Theorem 1 for polynomial systems satisfying Assumption
1. Next, we discuss an approach for constructing tight
polynomial superlevel sets that under- and over-approximate
every state in partitions where all states are hyperrectangles.

A. Numerical Procedure for Barrier Function Computation

This section proposes a numerical algorithm based on the
equations in Theorem 1 for computing the bounds discussed
in Lemma 1. In this subsection, we assume the dynamics
of the system under consideration to satisfy Assumption
1. As we wish to find transition bounds that are as tight
as possible, we formulate an optimization problem that
minimizes the computed upper bound probability of system
(1) transitioning to a set X1 in one time-step as established
in Theorem 1. Specifically, for a given initial set X0 and
a set X1, we are interested in finding the minimum upper
bound α on ρu such that a barrier function B satisfying
conditions (3) – (5) exists. Imposing the restriction that B
is a polynomial function, this problem is converted to a
Sum-of-Squares Program (SOSP) as defined below.

Definition 6 (Sum-of-Squares Polynomial): Define R[x]
as the set of all polynomials in x ∈ Rn. Then

Σ[x] :=

{
s(x) ∈ R[x] : s(x) =

m∑
i=1

gi(x)2, gi(x) ∈ R[x]

}
is the set of SOS polynomials. It is noted that if s(x) ∈ Σ[x]
then s(x) ≥ 0 ∀ x.

Definition 7 (Sum-of-Squares Program): Given pi(x) ∈
R[x] for i = 0, . . . ,m, the problem of finding qi(x) ∈ Σ[x]
for i = 1, . . . , m̂ and qi(x) ∈ R[x] for i = m̂ + 1, . . . ,m
such that

p0(x) +
m∑
i=1

pi(x)qi(x) ∈ Σ[x]

is a sum-of-squares program (SOSP). SOSPs are converted to
semidefinite programs with tools such as SOSTOOLS [19].

Finding an SOS polynomial barrier functions B fulfilling
constraints (4) – (6) over the sets X0 and X1 can be encoded
as an SOSP: assume X0 = {x ∈ Rn | sX0

(x) ≥ 0},

Algorithm 1 Upper-bounding SOSP S(sX0 , sX1 , sX )

1: Input: Polynomial representations sX0
, sX1

, sX of re-
gions X0, X1 and domain D

2: Output: Upper bound α∗ on the probability of making
a transition from X0 to X1 in one time-step

3: Solve α∗ = min
α, B(x),

λX (x), λX0
(x), λX1

(x)

α

subject to
B(x)− λX (x)sX (x) ∈ Σ[x]

B(x)− λX1 (x)sX1 (x)− 1 ∈ Σ[x]

−Ew[B(F(x,w)) | x] + α− λX0
(x)sX0

(x) ∈ Σ[x]

λX (x), λX0
(x), λX1

(x) ∈ Σ[x]

4: return α∗

X1 = {x ∈ Rn | sX1(x) ≥ 0} and X = {x ∈ Rn | sX (x) ≥
0}, where sX0

, sX1
and sX are polynomials. The SOSP

S(sX0
, sX1

, sX ) in Algorithm 1 finds an upper bound on the
probability of making a transition from X0 to X1 in one time-
step by setting α to be the objective function to minimize.

The constraints of the SOSPs are derived from the Posi-
tivstellensatz condition for converting constraints on sets to
SOSPs as detailed in [19]. The expectation term in the SOSP
is computed by expanding B(F(x,w)) and determining the
moments of the noise terms, which results in a polynomial in
x when F is a polynomial. An important hyperparameter of
this algorithm is the degree of the barrier and λ polynomials.
Searching for high degree polynomials allows to find tighter
bounds, at a cost of increased computational complexity.

According to Lemma 1, an upper and lower bound on
the probability of transition between any two states in a
partition P of the domain D can be found using function
S . Algorithm 2 summarizes the IMC abstraction procedure
for system (1) with a given domain partition P .

Theorem 2: Given a system of the form (1) and partition
P of its domain D, an IMC abstraction of (1) is computed
via Algorithm 2.

Proof: For any states Qi and Qj of a partition P of the
domain D of (1), Algorithm 2 computes an upper bound and
a lower bound on the probability of making a transition from
any continuous state in Qi to Qj in line 6 to 10, from Lemma
1. Moreover, Algorithm 2 applies this bounding procedure to
every pair of states in P , proving the theorem.

B. Polynomial Under and Over-Approximation of Boxes

Algorithm 2 requires the computation of polynomial over-
and under-approximation representations of the sets of inter-
est. In this subsection, we derive a procedure for constructing
tight representations of box states arising from a rectangular
partition of the domain. Let Qi denote a hyperrectangular
region of the state-space, i.e., Qi = {x | q ≤ x ≤ q} for
some q, q ∈ Rn satisfying q ≤ q, where all inequalities
are interpreted element-wise. We aim to compute an under
and over-approximation of Qi as the super-zero level sets
of two polynomials, i.e, we seek to generate polynomials
sX̂Qi

(x) , sX̂Qi

(x) ∈ R[x] such that, for all x ∈ Qi we have



Algorithm 2 Barrier function-based IMC Abstraction
1: Input: Domain D, Domain partition P
2: Output: IMC Abstraction I
3: Compute an over-approximation representation sX̂ of D
4: for Qi ∈ P do
5: for Qj ∈ P do
6: Compute the over and under-approximation repre-

sentations sX̂Qi
, sX̂Qj

and s
D\X̂Qj

7: ρ̂ := S(sX̂Qi
, sX̂Qj

, sX̂ ) , ρ̂ := S(sX̂Qi
, s
D\X̂Qj

, sX̂ )

8: T̂ (Qi, Qj) := ρ̂ , T̂ (Qi, Qj) := 1− ρ̂
9: end for

10: end for
11: return I

Qi
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Fig. 1. Generating over and under-approximations for the rectangle Qi =
[0, 3]× [−1, 2] ⊂ R2. Rectangle Qi is shown in black, 2nd and 4th order
polynomials approximations are shown in green and blue, respectively.

sX̂Qi
(x) ≥ 0, and, for all x 6∈ Qi we have sX̂Qi

(x) < 0. We
solve this problem by employing a modified p-norm based
approach, where we define the p-norm of a vector x ∈ Rn to
be ||x||p =

p
√
xp1 + · · · + xpn. The level sets of the function

||x||p are known to be convex and to better approximate the
shape of a rectangle as p increases.

Proposition 1: Given a positive even integer t, define

p(x) =
(

1
2

)t
− xt1 − · · · − xtn ,

p(x) = n
(

1
2

)t
− xt1 − · · · − xtn .

(9)

Additionally, define qm = 1
2 (q + q) and q̃ = q − q. Then

the polynomial pair sX̂Qi

(x) := p
(
y(x)

)
and sX̂Qi

(x) :=

p
(
y(x)

)
respectively under- and over-approximate Qi, where

y(x) ∈ Rn is defined along each dimension by

yj(xj) =
xj − qmj
q̃j

. (10)

Proof: Define C ⊂ Rn to be the rectangular region
centered at the origin and with unit side length, that is,

C :=

[
− 1

21n,
1
21n

]
, where 1n ∈ Rn denotes a vector

fully populated with ones. We first show that the super-
zero levelsets of p(x), p(x) ∈ R[x] (as defined by (9)) are

−0.4 −0.2 0.0 0.2 0.4
x1

−0.4

−0.2

0.0

0.2

0.4

x
2

Verification against φ

Fig. 2. Verification of system (11) against specification φ on a 160-state
partition of D. States in green satisfy φ, states in red violate φ, and states
in yellow are undecided.

over- and under-approximations for C, respectively; that is,
we show C ⊆ C ⊆ C, where we define C, C ⊂ Rn by
C := {z ∈ Rn | p(z) ≥ 0} and C := {z ∈ Rn | p(z) ≥ 0}.

To that end, let z ∈ C denote the center of one face of
the unit box; in this case z ∈ Rn contains ±0.5 in some
position and is populated with zeros otherwise. By (9), we
have p(z) = 0. Therefore, the center of each face of the unit
box must be contained inside C. Additionally C is convex
and symmetric in all dimensions. Thus, it holds that C ⊆ C.

Now redefine z ∈ C to denote a corner of the unit box; in
this case z ∈ Rn is defined to have ±0.5 in every position.
By (9), p(z) = 0. Therefore, each corner of the unit square
must be contained inside C. Additionally, C is convex. Thus,
it holds that C ⊆ C. Following from (10), we have x ∈
Qi ⇐⇒ y(x) ∈ C. Therefore, x ∈ Qi ⇐⇒ sX̂Qi

(x) :=

p
(
y(x)

)
≥ 0 and x 6∈ Qi ⇐⇒ sX̂Qi

(x) := p
(
y(x)

)
< 0.

For p-norms, as the order of the polynomials increases, the
over and under-approximations reduce in conservatism.

We illustrate the utility of Proposition 1 by calculating
under and over-approximations of a rectangle in Fig. 1.

V. CASE STUDY

We now demonstrate the machinery described in previous
sections in a verification and synthesis case study. The code
used to produce the following examples is found at https:
//github.com/gtfactslab/ACCBarrier.

A. Verification

We consider the 2-dimensional polynomial system

x1[k + 1] = 6.0x3
1x2

x2[k + 1] = 0.3x1x2 + w ,
(11)

with domain D = [−0.5, 0.5] × [−0.5, 0.5] and Gaussian
additive noise w ∼ N (µ = 0, σ = 0.18). The probability of
transition outside of D is negligible, thus we ignore the possi-
bility of transitioning outside of D1. We perform verification
for these dynamics against the probabilistic specification

φ = P≥0.82[�¬B ∧ (♦C ∨©A ∨©©A)] ,

where the specification inside the probabilistic operator trans-
lates to “Never reach a B state and either eventually reach a

1Alternatively, a “sink” state can be used for all states outside of D.



C state or reach an A state in 2 time steps”. The partition of
the domain D is assumed to be as in Fig.1 and contains 160
states. The A states are located in [−0.25, 0] × [0.25, 0.5];
the B states in [−0.5,−0.25]× [0.25, 0.5] and [0.25, 0.5]×
[−0.5,−0.25]; the C states in [−0.5,−0.25]× [0, 0.25] and
[0.25, 0.5] × [−0.25, 0] . We construct an IMC abstraction
of the system using the procedure in Section IV-A. Given
an IMC abstraction, formal techniques are applicable for
verification with respect to φ 2. Note that no SOS barrier
function can ensure a transition upper bound of exactly
zero. Thus, we apply a pre-processing step where states that
are unreachable from one another have their upper bound
probability of transition set to 0. To do so, we compute the
range of reachable x1 values for each state using the fact that
the x1 dynamics are locally monotone in the partition states,
and identify the states lying outside this range. We search for
SOS polynomials of degree 6 in the SOSP. To approximate
each state with polynomial superlevel sets, we use shifted
and scaled versions of 4th order polynomials, as detailed in
Section IV-B. The result of verification is displayed in Fig.
2. States in green satisfy φ, states in red violate φ, and states
in yellow are undecided. To reduce the volume of undecided
states, refinement of the partition can be applied [7].

B. Synthesis

We now consider the two-mode system

x1[k + 1] = aix
3
1x2

x2[k + 1] = bix1x2 + w ,

for i ∈ {1, 2}, where (a1, b1) = (6.0, 0.3) in the first mode,
(a2, b2) = (7.0, 0.2) in the second mode, and the domain D
and noise term w are as in the verification case study.

Our goal is to find a switching policy minimizing the prob-
ability of satisfying the specification inside the probabilistic
operator in φ. To do this, we build a BMDP abstraction
of the system by constructing an IMC abstraction for each
mode. Formal techniques can be utilized on this abstraction
for controller synthesis [18]. The partition is the same as
in the previous subsection. We check our results against
Monte-Carlo simulations with initial state x0 = [0.15,−0.2].
The computed switching policy guarantees a probability of
satisfying the specification between [0, 0.81] from x0, which
is confirmed in simulations with a probability of 0.1008.

C. Discussion

The strength of our IMC and BMDP abstraction method
lies in its applicability to the wide class of discrete-time
polynomial stochastic systems. Such abstractions allow us to
perform verification and synthesis for these systems against
all ω-regular specifications. On the other hand, the compu-
tational complexity of this method, which depends heavily
on the hyperparameters of the SOSP, varies greatly with
the dynamics of interest. As all transitions computations are
parallelizable, the viability of this technique for verification
and synthesis relies on the available parallel computing

2For example, we propose such a technique in [7].

capabilities. For instance, building the abstraction for the
verification case study on a 2-core machine took 14 hours.

VI. CONCLUSIONS

This paper addressed the problem of generating IMC and
BMDP abstractions for discrete-time polynomial stochastic
systems. The construction of these IMCs and BMDPs was
achieved by solving an SOSP for each transition bound in the
abstraction. A technique for creating tight polynomial under
and over-approximations of hyperrectangular states, required
for the formulation of the SOSPs, was presented.
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