

1 **Full Title: The Impacts of Ocean Acidification on Marine Ecosystems and Reliant**

2 **Human Communities**

3

4 **Shortened running title:** Ocean Acidification Impacts

5 *Annual Review of Environment and Resources* (ARER)

6 submission for Volume 45 (to be published Fall, 2020)

7

8 Scott C. Doney

9 Department of Environmental Sciences, University of Virginia, Charlottesville, VA

10 22904, USA, sdoney@virginia.edu

11 ORCID: <https://orcid.org/0000-0002-3683-2437>

12

13 D. Shallin Busch

14 Ocean Acidification Program, Office of Oceanic and Atmospheric Research and

15 Conservation Biology Division, Northwest Fisheries Science Center, National Marine

16 Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA,

17 98112, USA, shallin.busch@noaa.gov

18 ORCID: <https://orcid.org/0000-0001-8387-7980>

19

20 Sarah R. Cooley

21 Ocean Conservancy, Washington, DC, 20036, USA, scooley@oceanconservancy.org

22 ORCID: <https://orcid.org/0000-0002-1034-0653>

23

24 Kristy J. Kroeker
25 Department of Ecology and Evolutionary Biology, University of California, Santa Cruz,
26 Santa Cruz, CA, 95064, USA, kkroeker@ucsc.edu
27 ORCID: <https://orcid.org/0000-0002-5766-1999>
28
29 Corresponding Author contact information:
30 Scott C. Doney, Joe D. and Helen J. Kington Professor in Environmental Change
31 Dept. Environmental Sciences, University of Virginia
32 291 McCormick Rd, P.O. Box 400123
33 Charlottesville, VA 22904-4123 USA
34 Phone: 434-924-0570 Fax: 434-982-2137
35 Email: sdoney@virginia.edu
36

37 **Keywords** (Maximum of 6)

38 carbon dioxide, ocean acidification, organism responses, marine ecosystems, natural
39 resources, social-ecological systems

40

41 **Abstract** (Maximum of 150 words; currently 149 words)

42 Rising atmospheric CO₂ levels, from fossil fuel combustion and deforestation, along
43 with agriculture and land-use practices are causing wholesale increases in seawater CO₂
44 and inorganic carbon levels, reductions in pH, and alterations in acid-base chemistry of
45 estuarine, coastal, and surface open-ocean waters. Based on laboratory experiments and
46 field studies of naturally elevated-CO₂ marine environments, widespread biological
47 impacts of human-driven ocean acidification have been posited, ranging from changes in
48 organism physiology and population dynamics to altered communities and ecosystems.
49 Acidification, in conjunction with other climate change related environmental stresses,
50 particularly under future climate change and further elevated atmospheric CO₂ levels,
51 potentially puts at risk many of the valuable ecosystem services that the ocean provides
52 to society, such as fisheries, aquaculture, and shoreline protection. Emphasis in this
53 review is on both current scientific understanding and knowledge gaps, highlighting
54 directions for future research and recognizing the information needs of policymakers and
55 stakeholders.

56

57 **Main Text**

58 (target 10,000 words; currently ~8900 words, excluding references, and ~1200 additional
59 word equivalents from 3 moderately sized figures and 1 table estimated at ~300 words
60 each)

61 (target 150 references; currently ~220. Note that references numbered by appearance in
62 text, but with author names left in text for now to ease editing and revisions; will be
63 removed for final version)

64

65 **1. INTRODUCTION**

66 Present-day atmospheric carbon dioxide (CO₂) levels of more than 410 ppm in 2020
67 are nearly 50% higher than pre-industrial concentrations, and the current elevated levels
68 and rapid growth rates are unprecedented in the past several million years of the
69 geological record. The source for this excess CO₂ is clearly established as human driven,
70 reflecting a mix of anthropogenic fossil fuel, industrial, and land-use/land-change
71 emissions (1) (Le Quéré et al., 2018). The concept that the ocean acts as a major sink
72 for anthropogenic CO₂ has been present in the scientific literature since at least the late
73 1950s, and multiple lines of evidence, including direct observations of increasing
74 dissolved inorganic carbon inventories (2) (Gruber et al., 2019), document ocean uptake
75 of roughly a quarter of total anthropogenic CO₂ emissions. It is also well understood that
76 the additional CO₂ in the ocean results in a wholesale shift in seawater acid-base
77 chemistry towards more acidic, lower pH conditions and lower saturation states for
78 carbonate minerals used in many marine organism shells and skeletons (3) (Zeebe and
79 Wolf-Gladrow, 2001). Extensive observational systems are now in place or being built for

80 monitoring seawater CO₂ chemistry and acidification both for the global open-ocean and
81 some coastal systems (4, 5) (Tilbrook et al., 2019, Cross et al., 2019).

82 The potential for substantial biological responses to the excess CO₂ and ocean
83 acidification has only started to be well appreciated in the past two decades, stimulated
84 in part by a seminal Royal Society meeting and report (6) (Royal Society, 2005). Reported
85 acidification effects span from changes in cellular metabolism, organism physiology, and
86 sensory perception to population and community, biogeochemical, and ecosystem-level
87 dynamics (7) (Gattuso and Hannson, 2011). Knowledge about organismal responses
88 leverages a wealth of data from laboratory manipulative experiments. More limited
89 information is available on community and ecosystem responses from mesocosm and
90 field studies, natural high-CO₂ environments, and modeling exercises.

91 The implications for human society—for fishery and resource management, marine
92 conservation, and impacts on communities reliant on the ocean—are just now coming into
93 focus. Atmospheric CO₂ and the concurrent ocean acidification are projected to continue
94 to rise through mid-century, if not longer, without deliberate and decisive international
95 action on climate mitigation and emissions reductions. Thus, improved understanding is
96 urgently needed on ocean acidification impacts from scientific, management, policy, and
97 socio-economic perspectives to develop adequate adaptation strategies.

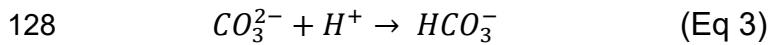
98 This review focuses on the rapidly expanding body of knowledge on ocean
99 acidification in the scientific literature over the past decade since a previous *Annual*
100 *Reviews* article on the topic (8) (Doney et al., 2009). It builds from a number of recent
101 synthesis efforts in journal special issues (9) (Mathis et al., 2015a) and national and
102 international scientific assessments (10, 11, 12, 13) (Cai et al., 2013, Hoegh-Guldberg

103 et al., 2014, Jewett and Romanou, 2017; Bindoff et al., 2019). There are also a number
104 of excellent review papers on various topical aspects of ocean acidification, a selection
105 including articles on physiological responses (14) (Falkenberg et al., 2018), effects on
106 invertebrate and fish larvae (15) (Espinel-Velasco et al., 2018), animal behavior (16)
107 (Nagelkerken and Munday, 2016), nitrogen cycle (17) (Wannicke et al., 2018), coral reefs
108 (18) (Kleypas, 2019), ecological theory (19) (Gaylord et al., 2015), and policy solutions
109 (20) (Gattuso et al., 2018).

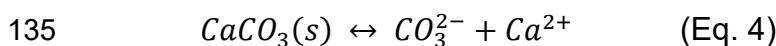
110 The remainder of this review is partitioned into sections on acidification impacts on
111 seawater chemistry from rising atmospheric CO₂ and coastal land-use and pollution
112 (Section 2), organismal effects of acidification (Section 3), community and ecosystem
113 impacts on key food-web interactions such as competition, predator-prey interactions,
114 and disease (Section 4), risks to human communities that rely on the natural resources
115 provided by the ocean via fisheries, aquaculture, and culture and social connections
116 (Section 5), and a brief summary (Section 6).

117

118 **2. SEAWATER CHEMISTRY**


119 Aqueous carbon dioxide, CO₂(aq), and the inorganic carbon system play a central role
120 in seawater acid-base chemistry, and the addition of CO₂ from natural and anthropogenic
121 sources causes acidification and shifts in the speciation of dissolved ions (3, 21) (Zeebe
122 and Wolf-Gladrow 2001, Millero 2007). At seawater pH levels (~8), CO₂ added to
123 seawater reacts with water to form bicarbonate, HCO₃⁻, and hydrogen ions, H⁺:

125 The release of hydrogen ions acts to increase acidity and lower seawater pH, defined as:


126 $pH = -\log_{10}[H^+]$ (Eq 2)

127 and lower the concentration of carbonate ions, CO_3^{2-} , via:

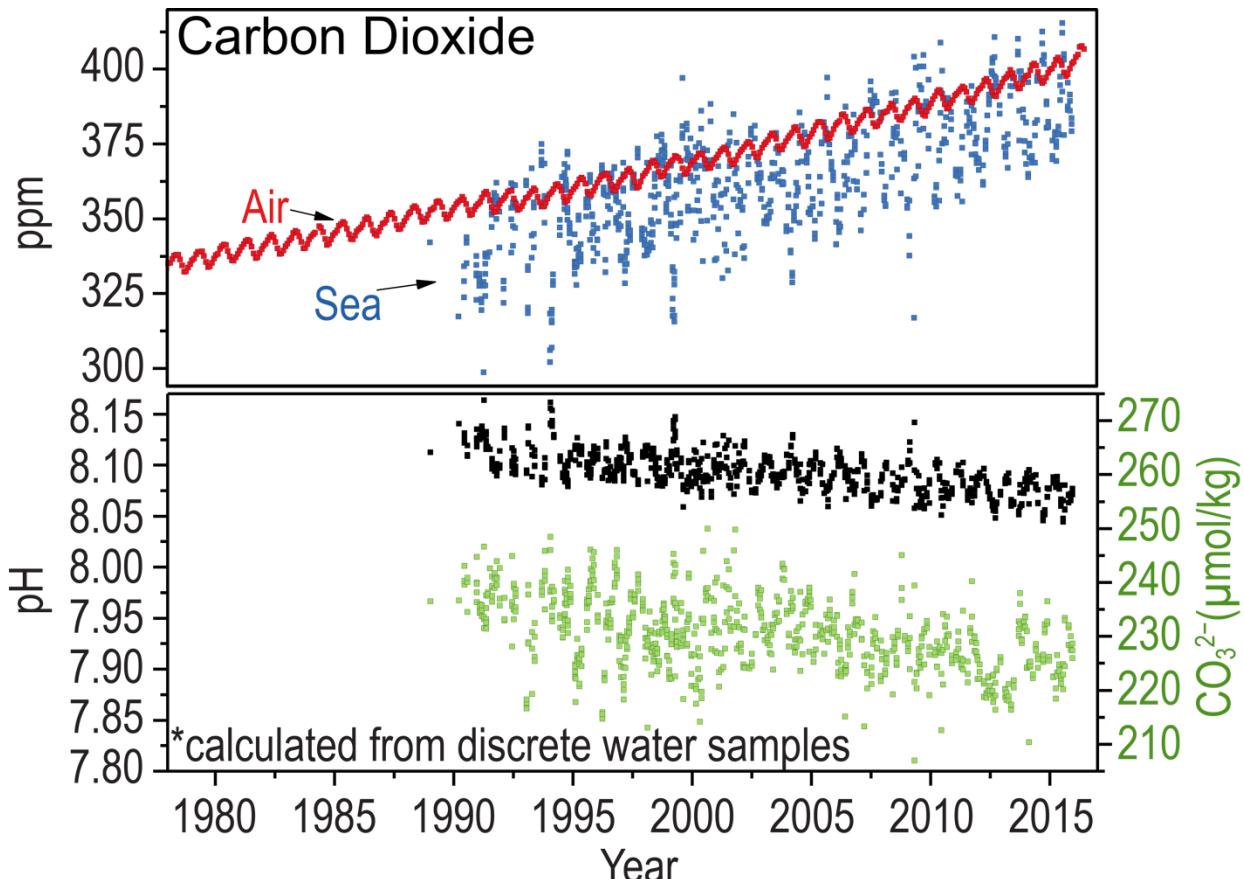
129 Acidification impacts will depend on organism responses to multiple, simultaneous
130 chemical changes—increasing $CO_2(aq)$, HCO_3^- and H^+ and decreasing CO_3^{2-} (22) (Hurd
131 et al. 2019).

132 Acidification has been shown to affect many types of marine organisms that form
133 shells and skeletons from calcium carbonate minerals ($CaCO_3$). The solubility of
134 carbonate minerals:

136 can be expressed as a saturation state:

137 $\Omega = \frac{[CO_3^{2-}][Ca^{2+}]}{K_{sp}}$ (Eq. 5)

138 where $\Omega < 1$ indicates undersaturation with respect to thermodynamic equilibrium and the
139 expectation that unprotected carbonate materials will dissolve. There are multiple forms
140 of carbonate minerals with different solubilities, with calcite being less soluble than
141 aragonite and amorphous carbonate.


142 The inorganic carbon acid-base reactions and carbonate mineral solubility are
143 controlled by well-characterized, equilibrium thermodynamic relationships as a function
144 of temperature, salinity, and pressure. The system is characterized fully from the physical
145 state and any two of four chemical properties: pCO_2 , pH , dissolved inorganic carbon
146 (DIC), and alkalinity. DIC is the total concentration of CO_2 gas and the inorganic carbon
147 acid-base products resulting from hydration (Eq. 1 and 3). Alkalinity is the acid buffering
148 capacity of seawater that reflects the speciation of the carbonate and borate acid-base

149 systems as well as minor trace species. The scientific community has developed best
150 practices for the measurement of seawater carbonate chemistry in field and lab samples
151 as well as standardized approaches for mimicking acidification chemical changes in
152 biological manipulation studies (23) (Riebesell et al. 2010).

153 On a global scale, acidification of the surface ocean is occurring because of the rapid
154 rise in atmospheric CO₂. Driven primarily by fossil fuel combustion, contemporary human
155 CO₂ emissions to the atmosphere of about 10 billion metric tons carbon per year result in
156 an increase in atmospheric CO₂ of roughly 2 ppm/year or 0.5% per year (1) (Le Quéré et
157 al., 2018). Present-day CO₂ levels (~410 ppm) have not been experienced by life on Earth
158 for several million years, and the human-induced CO₂ growth rate is nearly two orders of
159 magnitude faster than what occurred during the large glacial-interglacial transitions (10)
160 (Ciais et al., 2013).

161 Ocean surface waters exchange CO₂ with the overlying atmosphere via physical gas
162 transfer, and the surface seawater partial pressure, pCO₂, tends to track the growth of
163 atmospheric CO₂ for much of the global ocean, as illustrated by long-term time series
164 records at a number of open-ocean locations (24) (Benway et al., 2019) and analysis of
165 global surface ocean CO₂ observational networks (25) (Bakker et al., 2016). As a result,
166 surface pH and carbonate ion are declining (Figure 1), and surface ocean pH is estimated
167 to have dropped on average globally by about 0.1 units from the pre-industrial era to
168 present.

169

170
 171 Figure 1. Trends in surface (<50m) ocean carbonate chemistry calculated from
 172 observations obtained at the Hawai'i Ocean Time-series (HOT) Program in the North
 173 Pacific over 1988–2015. The upper panel shows the linked increase in atmospheric (red
 174 points) and seawater (blue points) CO₂ concentrations. The bottom panel shows a decline
 175 in seawater pH (black points, primary y-axis) and carbonate ion concentration (green
 176 points, secondary y-axis). Ocean chemistry data were obtained from the Hawai'i Ocean
 177 Time-series Data Organization & Graphical System (HOT-DOGS,
 178 <http://hahana.soest.hawaii.edu/hot/hot-dogs/index.html>). (Figure source: NOAA and
 179 Jewett and Romanou, 2017). Note: final version of published figure shown here is slightly
 180 different than the electronic version shared from authors so that file will need minor
 181 redrafting to match published version.

182

183 More acidified ocean conditions, found regionally due to natural processes and local
184 human impacts, are exacerbated by the global acidification signal driven by CO₂
185 emissions. Coastal upwelling systems typically have elevated CO₂ and low O₂ levels
186 because of the marine biological pump and subsequent respiration of sinking organic
187 matter at depth (26, 27) (Feely et al., 2008; Feely et al., 2018). Similar high CO₂–low O₂
188 conditions are found in many coastal and estuarine systems associated with excess
189 nutrient and organic carbon inputs from land sources (27, 28) (Feely et al., 2010; Feely
190 et al., 2018). Coastal acidification can also occur because of low-alkalinity freshwater
191 fluxes from rivers, groundwater, and ice melt (29, 30, 31) (Gledhill et al., 2015; Rheuban
192 et al., 2019; Evans et al., 2013). Coastal systems tend to exhibit large amplitude variations
193 of seawater chemistry on smaller time and space scales (32) (Waldbusser and Salisbury,
194 2014).

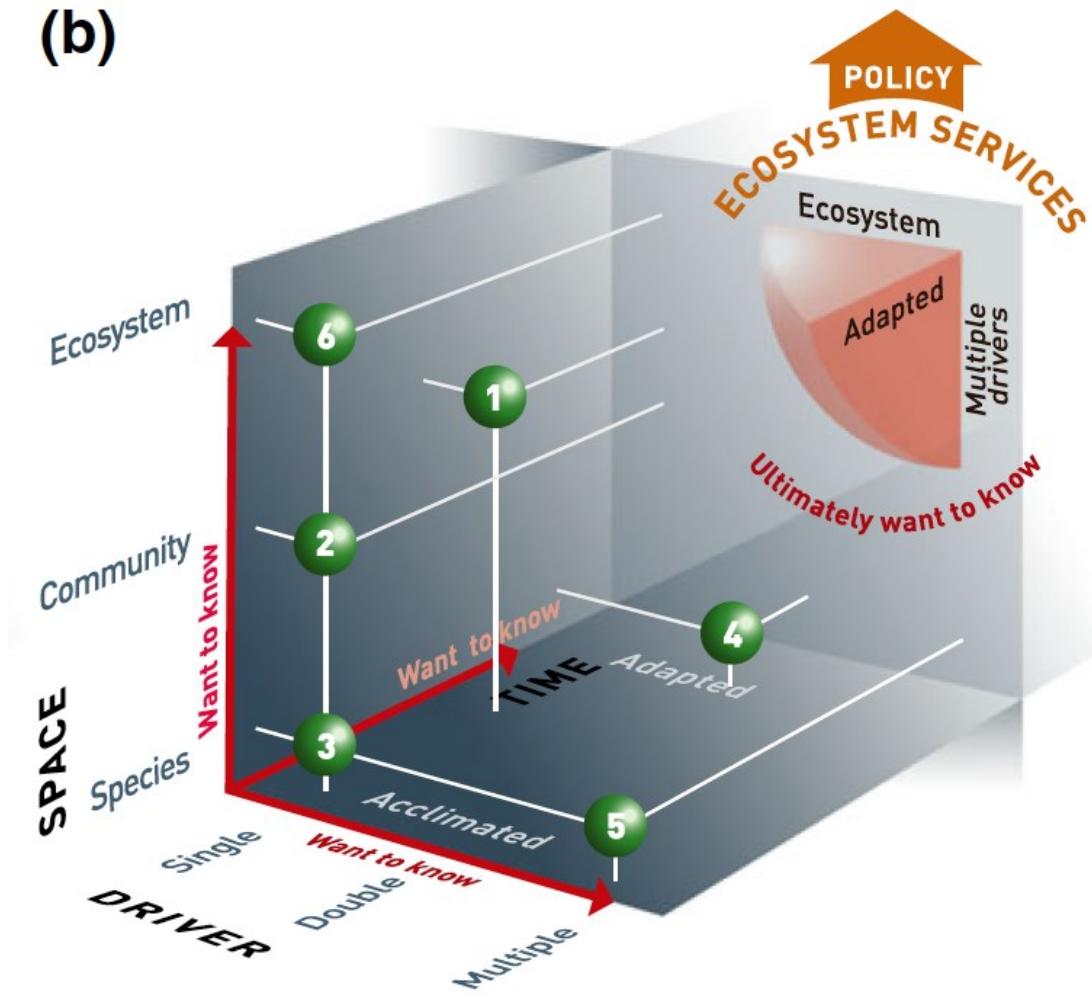
195

196 **3. ORGANISMAL RESPONSES**

197 The literature on organismal sensitivity to high CO₂ conditions has expanded rapidly
198 (33) (Browman, 2016), and, in marine biology, ocean acidification has moved from being
199 a frontier science to a mature sub-discipline exploring species sensitivity at finer detail
200 than a decade ago. Research on how high-CO₂ conditions influence fishes exemplifies
201 this trend. While some fish appear able to compensate for disturbance to acid-base
202 balance under high-CO₂ conditions, they express unexpected sensitivity in otolith growth,
203 mitochondrial function, metabolic rate, larval yolk consumption, activity, and
204 neurosensory and behavioral endpoints, including settlement and post-settlement

205 processes, to current and near future CO₂ levels (15, 34) (Espinel-Velasco et al. 2018,
206 Heuer and Grosell 2014). Altered fish physiology in high CO₂ conditions may disrupt
207 systems related to the neurochemical GABA_A (35) (Tresguerres and Hamilton 2017).
208 Substantial variation in sensitivity exists within and between fish species (36, 37) (Cattano
209 et al. 2018, Esbaugh 2018).

210 As more detailed information on species sensitivity to ocean acidification conditions
211 becomes available, generalizations about patterns in sensitivity are difficult to make. For
212 example, copepod sensitivity currently defies simple characterization as it is higher in
213 earlier life-stages than in the adult life stage, variable between species and within different
214 populations of the same species, and dependent on co-stressors and processes of
215 acclimatization and adaptation (38) (Wang et al. 2018). Variation also exists within and
216 between phytoplanton groups: diazotrophs, diatoms, and other large photoplankton
217 including dinoflagellates have higher growth rates in high CO₂ conditions, while
218 coccolithophores, *Synechococcus*, and *Prochlorococcus* do not, though there is wide
219 variation in response within groups (39) (Dutkiewicz et al. 2015). While species that calcify
220 are generally more sensitive to high CO₂ conditions than those that do not calcify, this
221 generalization is not uniformly applicable, and the form of calcium carbonate that species
222 produce (i.e., calcite, aragonite) is not strongly linked to species sensitivity (40) (Busch
223 and McElhany 2017).


224 Recent reviews emphasize how species sensitivity to various CO₂ conditions is
225 influenced by exposure to other aspects of climate change. Negative additive effects
226 typically occur with simultaneous exposure to high CO₂ and low dissolved oxygen (41)
227 (Gobler and Baumann 2016). A trend toward slower survival, growth, and development

228 is also evident with simultaneous exposure to high CO₂ and elevated temperature (42)
229 (Kroeker et al. GCB 2013).

230 As displayed in Figure 2, a variety of experimental strategies are being used to
231 characterize the sensitivity of species to acidification now and in the future (43, 44)
232 (Sunday et al. 2013; Boyd et al. 2018). Complementary approaches are needed because
233 any one technique is limited by issues related to drawing inferences from short-term
234 experiments or small-scale spatial range, choices about treatment conditions and study
235 subjects, logistics related to engineering and animal husbandry, and other factors (33)
236 (Browman 2016). Below we discuss recent experimental and field breakthroughs through
237 the lens of three challenges or tensions in designing and interpreting organismal
238 sensitivity studies.

239

(b)

240

241 Figure 2. Progress in studies of ocean global change overlaid on the property-property
242 space (termed the “RG cube”) developed by (45) Riebesell and Gattuso (2015). The cube
243 represents different experimental strategies: 1 mesocosms, including FOCE experiments;
244 2 competition experiments; 3 typical acclimated species under acidification; 4 long-term
245 (>400 generations) microevolution studies; 5 multiple driver studies; 6 sites of CO₂ natural
246 enrichment such as CO₂ seeps. Figure from (44) Boyd et al. 2018. Note: final version of
247 published figure shown here from .png file is slightly different than the electronic eps and
248 pdf versions shared from authors; those files will need some redrafting.

249

250 3.1 Characterizing present versus projected future sensitivity to ocean acidification
251 Ocean acidification is a long-term, press perturbation on marine ecosystems that will
252 play out on the scale of decades, centuries, and longer. Early work characterizing the
253 sensitivity of marine species to ocean acidification focused on a stationary approach: the
254 sensitivity of representative individuals of a species as they exist in the present (46, 47)
255 (Kroeker et al. 2010, Busch and McElhany 2016). While useful, this approach does not
256 necessarily yield information on how species in their future state will react to changes in
257 seawater carbonate chemistry as acidification progresses in the environment. Predicting
258 the evolutionary demographic responses to climate change and ocean acidification
259 requires consideration of phenotypic plasticity and natural selection across environments
260 (48) (Chevin et al. 2013).

261 Discovery of individuals or populations more resilient to high CO₂ conditions has
262 arisen by testing the repeatability within and between identical sensitivity experiments
263 (49, 50) (Murray and Baumann 2018, Guscelli et al. 2019) and among populations of the
264 same species. Some populations living in naturally high CO₂ environments express less
265 sensitivity to high CO₂ experimental treatments (51, 52, 53) (Kelly et al. 2013, Vargas et
266 al. 2017, Hollarsmith et al. 2020). Others at the edge of a species' range can be more
267 sensitive to high CO₂ exposure, suggesting the influence of biogeographic processes
268 beyond carbonate chemistry conditions (54) (Calosi et al. 2017).

269 Studying populations living in naturally high CO₂ environments is another way to
270 explore whether long-term exposure to high CO₂ can confer resistance to ocean
271 acidification. Laboratory experiments on two zooplankton species collected from Puget
272 Sound, an urbanized estuary in the northeast Pacific with high CO₂ conditions due to both

273 natural and human sources (28) (Feely et al. 2010), finds that individuals are negatively
274 impacted by carbonate chemistry conditions already experienced by local populations
275 (55, 56) (Busch et al. 2014, McLaskey et al. 2016). Field collections show that some
276 species express sensitivity to the high CO₂ conditions already observed along the western
277 coast of the United States, while others express signs of potential adaptation (57, 58, 59,
278 60) (Pespeni et al. 2013 Int. Comp. Biology, Bednaršek et al. 2014, Bednaršek et al. 2018,
279 Engström-Öst et al. 2019).

280 Organisms may evolve much more quickly than we recently thought possible (61)
281 (Sanford and Kelly 2011), especially via epigenetics (62, 63) (Moore et al. 2019, Perez
282 and Lehner 2019). Groundbreaking work in the purple urchin *Strongylocentrotus*
283 *purpuratus* has shown transgenerational plasticity in response to high CO₂ exposure, with
284 documented transgenerational impacts on the epigenome (64) (Strader et al. 2019), gene
285 expression (65) (Wong et al. 2018), and phenotype (66) (Wong et al. 2019). Other work
286 in the purple urchin has found evidence of additive genetic variance for size and genome-
287 wide selection under different CO₂ conditions (51, 67) (Kelly et al. 2013, Pespeni et al.
288 2013b). Multigenerational experimental evolution studies are feasible for microbes and
289 have indicated that adaption to high CO₂ conditions is possible (68, 69, 70) (Collins 2011,
290 Lohbeck et al. 2012, Schaum and Collins 2014).

291

292 3.2 Designing tractable experiments versus aiming for ecological relevance

293 The ecological relevance of aspects of present-day experimental capabilities can be
294 debated, and the resulting knowledge gaps limit our ability to project or model the potential
295 direct and indirect impacts of acidification at the ecosystem level (47) (Busch and

296 McElhany 2016). For example, results from experiments that hold environmental
297 conditions static may not be fully relevant to the dynamic conditions that organisms
298 experience in nature (71) (Wahl et al. 2016). Also, sensitivity research tends to cluster on
299 a limited group of taxa– driven by logistics, stakeholder concerns, and concentration of
300 mechanistic studies on a limited set of target organisms – thus failing to reflect the
301 diversity of marine species (47) (Busch and McElhany 2016). Publication bias against
302 sharing negative experimental results, that is cases with no or small CO₂ effects, also
303 may limit the representativeness of available data for synthesis and modeling (33)
304 (Browman 2016).

305 Ocean acidification should not be considered an isolated phenomenon but is instead
306 part of a complex of changing ocean conditions that must be considered together if
307 sensitivity studies are to have ecological relevance. Designing research studies to tackle
308 the complexity of multiple changing parameters, while still being logically feasible and
309 interpretable, is a challenge. Boyd et al. (44) (Boyd et al. 2018) describe two
310 complementary paths: 1) a mechanistic, reductionist approach in which the influence of
311 each aspect of ocean change is considered alone and then in conjunction with other
312 aspects of ocean change; and 2) a scenario-based approach in which multiple variables
313 are altered together to match future projections of ocean conditions.

314 A well-recognized danger in the reductionist approach is that considering one factor
315 alone can yield incorrect information related to how a species might fare in a future ocean.
316 The response of species to various aspects of ocean change can be additive, synergistic,
317 or antagonistic (44, 72) (Boyd et al. 2018; Przeslawski et al. 2015). For example, the
318 sensitivity of reproduction in kelp to pH sensitivity can depend on temperature conditions

319 (53) (Hollarsmith et al. 2020). Elevated CO₂ in coastal regions and the deep ocean
320 typically co-occurs with low oxygen or hypoxia, both generated by respiration of organic
321 matter (41) (Gobler and Baumann 2016). High CO₂ and reduced oxygen content can have
322 the opposite effects on otolith size in juvenile rockfish (73) (Hamilton et al. 2019).

323

324 3.3 Sensitivity to high CO₂ conditions versus detecting ocean acidification impacts in the
325 environment

326 Most studies to date focused on organismal responses to different seawater inorganic
327 carbon chemistry conditions in either laboratory or field settings; valuable research, but
328 not actually demonstration of ocean acidification impacts on marine species (74)
329 (McElhany 2016). In contrast, more limited research has attempted to detect change in
330 marine species in the environment that can be attributed to ocean acidification and its
331 progression. Studies correlating ocean carbonate chemistry to marine species
332 abundance have mixed results, with some finding a signature of ocean acidification
333 impacts (75) (Rivero-Calle et al. 2015) and many failing to do so (76, 77, 78) (Beare et al.
334 2013, Howes et al. 2015, Thibodeau et al. 2019). Historical records of pteropods and
335 foraminifera show correlation of shell conditions with reconstructed carbonate chemistry
336 conditions (79, 80, 81, 82) (de Moel et al. 2009, Wall-Palmer et al. 2012, Howes et al.
337 2017, Osborne et al. In press), though such correlations do not yet exist for coral reefs
338 and are contradictory for coccolithophores (83, 84) (Beaufort et al. 2011, Krumhardt et al.
339 2016).

340 Because ocean acidification co-occurs with other aspects of climate change and
341 human impacts on ocean systems, disentangling ocean acidification impacts from those

342 of other stressors is a challenge (85) (Silbiger et al. 2017). It is also likely that the
343 thresholds at which carbonate chemistry conditions will impact many species have not
344 yet been crossed. Natural variation in carbonate chemistry in modern systems has been
345 used to gain insight into the current and projected future effects of ocean acidification on
346 marine species (58, 86) (Bednaršek et al. 2014, Silbiger et al. 2014). As understanding
347 of the sublethal signatures of exposure to high-CO₂ conditions increases, such as
348 alterations in molecular markers of stress (60) (Engström-Öst et al. 2019), the immune
349 system (87) (Meseck et al. 2016), or shell state (58) (Bednaršek et al. 2014), robust
350 methods for detecting and monitoring the impacts of ocean acidification on marine
351 species will emerge. The probability of detecting and attributing change to ocean
352 acidification will likely increase as the chemical signature of ocean acidification emerges
353 from the natural variation of carbonate chemistry in the coastal oceans (88) (Sutton et al.
354 2019).

355

356 **4. COMMUNITY AND ECOSYSTEM EFFECTS**

357 4.1 Introduction – Overall patterns of community change

358 Studies examining how individual organismal effects of ocean acidification will affect
359 communities and functioning ecosystems have received increasing recent attention (19)
360 (Gaylord et al. 2015). Results from both mesocosm experiments and studies using natural
361 gradients in carbonate chemistry strongly suggest ocean acidification increases primary
362 producer biomass and decreases taxonomic diversity (89, 90, 91) (Hall-Spencer et al.
363 2008, Fabricius et al. 2011, Enochs et al. 2015), although many species are able to
364 survive in high CO₂ conditions. The decreases in taxonomic diversity are likely to have

365 functional consequences (92) (Teixidó et al. 2018), although the effects on ecosystem
366 function are just beginning to be explored. In general, there is a trend towards the
367 homogenization of community structure in space and time, which has been attributed to
368 altered competitive interactions (93, 94) (Kroeker et al. *Nat. Clim.* 2013; Brustolin et al.
369 2019). Although functional redundancy is generally considered to be quite low in marine
370 ecosystems (95) (Micheli & Halpern 2005), redundancy within trophic groups can limit
371 community shifts associated with acidification if resilient species are able to compensate
372 functionally for more vulnerable species (96) (Baggini et al. 2015).

373 Increased primary production associated with high pCO₂ can boost production across
374 multiple trophic levels (97) (Doubleday et al. 2019), if consumers are able to increase
375 their consumption rates. However, it is unclear what controls the ability of a consumer to
376 increase their consumption rate in high CO₂ conditions. For example, consumers have
377 been shown to compensate for increased primary producer biomass associated with
378 acidification, thereby limiting the predicted shifts in community structure associated with
379 the increased growth and competitive dominance of macroalgae (98, 99) (Alsterberg et
380 al. 2013; Ghedini et al. 2015). However, in an observational study at natural high CO₂
381 seeps, the increase in consumer consumption rates was insufficient to keep pace with
382 increased algal productivity, and thus community structure associated with high CO₂
383 conditions was dominated by fleshy macroalgae (97) (Doubleday et al. 2019). Moreover,
384 there are numerous examples of consumers demonstrating little to no change in their
385 consumption rates in high CO₂ conditions, including when decreases in prey quality
386 caused by acidification require it for predator survival (100) (Harvey and Moore 2017).
387 Altered behavior in marine consumers (e.g., predator avoidance) caused by exposure to

388 conditions of ocean acidification can also weaken indirect trophic linkages (e.g., trophic
389 cascades), causing cascading effects on community structure and function (101) (Jellison
390 and Gaylord 2019).

391 Below, we review the expanding literature on community and ecosystem effects of
392 acidification on four critical habitats especially relevant for resource managers: pelagic
393 food webs, coral reefs, oyster and other biogenic, carbonate reefs, and seagrass beds
394 (Table 1).

395

Critical habitat	Community/Ecosystem Property or Process	Trend	References
Pelagic foodwebs	Community structure	Δ	102, 103, 104
	Primary productivity	↑	105
	Secondary productivity	↑	103, 105, 106
	Harmful algal blooms	↑	108, 109
Coral Reefs	Community structure	Δ	90, 91, 115, 121
	Net ecosystem calcification	↓	111, 112, 114
	Bioerosion of habitat forming species	↑	114
	Recruitment of habitat forming species	↓	118-120
	Competition of habitat forming species with macroalgae	↑	90, 91, 116, 119
	Structural complexity	↓	123, 124
	Taxonomic diversity	↓	90, 91, 124
Other carbonate reefs	Net calcification	↓	129, 130
	Dissolution	↑	127
	Recruitment of habitat forming species	↓	128, 129
	Competition of habitat forming species with macroalgae	↑	130
Seagrass meadows	Primary productivity	↑	131
	Competition of habitat forming species with macroalgae	↑↓	89, 132, 135
	Top-down control/grazing	↑	98, 136-138

396

397 **Table 1:** General trends in key community and ecosystem properties and processes in
398 response to ocean acidification from the primary literature. Triangle = change (neither
399 increase or decrease), upward arrow = increase, downward arrow = decrease. Trends
400 are primarily derived from studies of multiple-species mesocosm experiments or
401 observational studies in naturally acidified ecosystems. The literature cited is not

402 exhaustive but represents key studies highlighting the community and ecosystem effects
403 in the critical habitats featured in this review.

404

405 4.2 Pelagic food webs

406 The community structure of planktonic communities is very likely to change with
407 acidification (102, 103) (Bach et al. 2017; Taucher et al. 2017), with cascading impacts
408 on the productivity of the entire food web. An important caveat to consider, however, is
409 that the responses of phytoplankton will likely depend on other environmental conditions
410 and factors, such as the nutrient availability, salinity, and the temperature regime (104)
411 (Boyd et al. 2015), and these interactions have yet to be fully incorporated into whole-
412 community mesocosm studies. Modeling work suggests that ocean acidification,
413 warming, and increased stratification will drive changes in marine microbial community
414 makeup (39) (Dutkiewicz et al. 2015), but it is not yet known whether microbial changes
415 will alter global ecosystem functions such as net primary production and export or air-sea
416 gas exchange.

417 Whole-community mesocosm studies have demonstrated increased productivity at
418 the base of pelagic food webs (102) (Bach et al. 2017), leading to increased productivity
419 of higher trophic levels (105) (Boxhammer et al. 2018), including enhanced survival and
420 biomass of larval fish that are directly negatively impacted by acidification (106) (Sswat
421 et al. 2018). However, not all zooplankton are expected to benefit from increased primary
422 productivity. For example, some zooplankton taxa appear to be vulnerable directly to
423 ocean acidification, regardless of the resources available (58) (Bednarsek et al. 2014).
424 Field studies across upwelling gradients indicate that pteropods may already be

425 experiencing shell dissolution in low pH waters along the California Current (58)
426 (Bednarsek et al. 2014). In addition, the nutritional quality of some zooplankton may suffer
427 with ocean acidification, despite increased production or abundance (107) (Rossoll et al.
428 2012). As such, models of pelagic food webs with ocean acidification have indicated that
429 the effects on upper trophic level species are likely to be complex and species-specific,
430 based on the specific food web linkages in the ecosystem.

431 Ocean acidification could also disrupt pelagic food webs via the proliferation of toxic
432 algal blooms (108) (Riebesell et al. 2018). Ocean acidification can either increase the
433 toxicity of the harmful algae (109) (Fu et al. 2012) or increase the abundance of toxic
434 bloom forming species through altered competitive interactions (108) (Riebesell et al.
435 2018). Again, it is less well understood how ocean acidification may interact with other
436 factors, including changing ocean temperatures and nutrient concentrations to affect
437 harmful algal blooms, but it is clear that increases in the toxicity or abundance of bloom
438 forming species could severely disrupt food webs.

439

440 4.3 Coral reefs

441 The persistence of coral reefs depends on the balance of net accretion (e.g.,
442 carbonate production minus dissolution) and bioerosion of the habitat-forming coral
443 species. Numerous studies document declines in net calcification of different coral
444 species and coral reef assemblages with lower carbonate saturation states. Moreover,
445 retrospective studies from the Great Barrier Reef have highlighted large declines in the
446 net calcification of corals over time (110) (De'ath et al. 2009). However, it has been difficult
447 to attribute the declines in net accretion to ocean acidification due to the concurrent trends

448 in ocean warming and coral bleaching. Using manipulative alkalinity enrichment at the
449 scale of a reef flat, Albright et al. (2016) (111) recently demonstrated that net community
450 calcification increases when the seawater carbonate saturation states are raised to pre-
451 industrial levels. This suggests that coral reefs have already suffered declines in net
452 calcification associated with ocean acidification (111) (Albright et al. 2016).

453 There is growing evidence that bioerosion may be more sensitive to changes in
454 carbonate chemistry than carbonate production (112) (Silbiger et al. 2016). This is
455 potentially due to changes in the density or structural integrity of the coral skeletons
456 produced in lower carbonate saturation state (113) (Mollica et al. 2018). Indeed,
457 increased bioerosion has been demonstrated in naturally more acidic locations (91, 114,
458 115) (Enochs et al. 2015, Enoch et al. 2016; Shamberger et al. 2014), which suggests
459 minor shifts in species interactions may further tip the balance from net accretion to net
460 erosion of coral reefs in future conditions.

461 As with other habitats, most observational studies of naturally acidified coral reefs
462 indicate that diversity is depressed and macroalgal abundance is elevated in carbonate
463 chemistry conditions comparable to those projected for the end of the century (90, 91)
464 (Fabricius et al. 2011, Enoch et al. 2015). Potential shifts in the competitive balance
465 between corals and macroalgae is especially important given the numerous studies
466 documenting the detrimental effects of algal overgrowth of corals. Turf algal communities,
467 in particular, are expected to increase in biomass and diversity in high CO₂ conditions
468 (116, 117) (Connell et al. 2013, Ober et al. 2016), which could further impact community
469 structure by limiting the recruitment of juvenile corals. Declines in the percent cover of
470 crustose coralline algae, which are often used as recruitment substrates by corals, may

471 also contribute to reduced coral settlement in high CO₂ conditions (118) (Doropoulos et
472 al. 2012). High-CO₂ effects on early succession dynamics lead to higher abundance of
473 micro- and macroalgae and lower coral recruitment, although the mechanisms attributed
474 to these shifts differ among studies: altered competitive interactions (119) (Crook et al.
475 2016) versus chemical control (120) (Noonan et al. 2018).

476 Despite these observed shifts in coral reef community structure, corals do not
477 “disappear” in naturally more acidic conditions. In several studies, the coral community
478 shifts from relatively faster-growing, structurally complex corals to slower-growing,
479 mounding corals (90, 91) (Fabricius et al. 2011, Enochs et al. 2015) or even soft corals
480 (121) (Inoue et al. 2013) in conditions comparable to end of the century projections.
481 Studies of coral reefs growing in the rock islands of Palau, however, documented slightly
482 different shifts in coral community structure than other naturally acidified ecosystems
483 (115) (Shamberger et al. 2014). In this system, community composition of the coral
484 species varies with carbonate chemistry, as in other systems, but the shifts in community
485 composition are not associated with decreased diversity, structural complexity or
486 increased macroalgal abundance. Instead, distinct coral reef communities, with high coral
487 cover, exist in the naturally more acidic bays. Lab studies of the corals growing in these
488 environments suggest there may be some level of adaptation to lower saturation states
489 or other co-occurring environmental covariates (122) (Barkley et al. 2015). Thus, the
490 potential adaptive capacity of corals to projected future warming and acidification remains
491 an important frontier that needs to be resolved better for understanding emergent
492 community shifts.

493 Shifts in coral community structure associated with acidification can have indirect
494 effects on reef-associated invertebrate and fish communities (123) (Sunday et al. 2016).
495 For example, shifts from structurally complex corals to massive, mounding corals, as
496 witnessed near natural CO₂ seeps, can reduce the structural complexity of the habitat
497 and the associated invertebrate communities (90, 124) (Fabricius et al. 2011; Fabricius
498 et al. 2014). Alternatively, increased macroalgal abundance that provides shelter or
499 habitat structure for prey can benefit fish populations, despite negative direct effects on
500 fish behavior and predator avoidance (125) (Nagelkerken et al. 2015). While there have
501 been several studies of fish behavior and population dynamics in naturally acidified
502 conditions, the spatial scale of the affected areas in these studies is usually much smaller
503 than the range of many fish species (126) (Munday et al. 2014). Thus, our inference
504 regarding the emergent effects on fish populations is generally limited to those with very
505 small home ranges.

506

507 4.4 Oyster and other biogenic, carbonate reefs

508 Similar to coral reefs, ocean acidification is expected to increase dissolution rates of
509 oyster shells that make up the structure of oyster reefs (127) (Waldbusser et al. 2011),
510 and high CO₂ impacts on oyster larvae may negatively influence oyster recruitment (128)
511 (Waldbusser et al. 2015). Vermetid reefs, built by vermetid gastropods cemented together
512 via crustose coralline algae, and the habitat structure and ecosystem services the reefs
513 provide are threatened by ocean acidification, which reduces the recruitment and
514 enhances shell dissolution for the gastropods (129) (Milazzo et al. 2014). Maerl beds (also
515 called Rhodolith beds), in which the habitat forming species is an unattached, branching

516 crustose coralline algae, are also threatened by acidification. Laboratory exposure of the
517 community to more acidic conditions led to decreased calcification and increased
518 dissolution of the habitat forming species as well as to an increase in the biomass of
519 competitive, epiphytic algae. The dominant grazers in this ecosystem were not able to
520 keep pace with the increased biomass of epiphytic algae, potentially contributing to
521 overgrowth of the habitat forming species and the further deterioration of these
522 ecosystems (130) (Legrand et al. 2017).

523

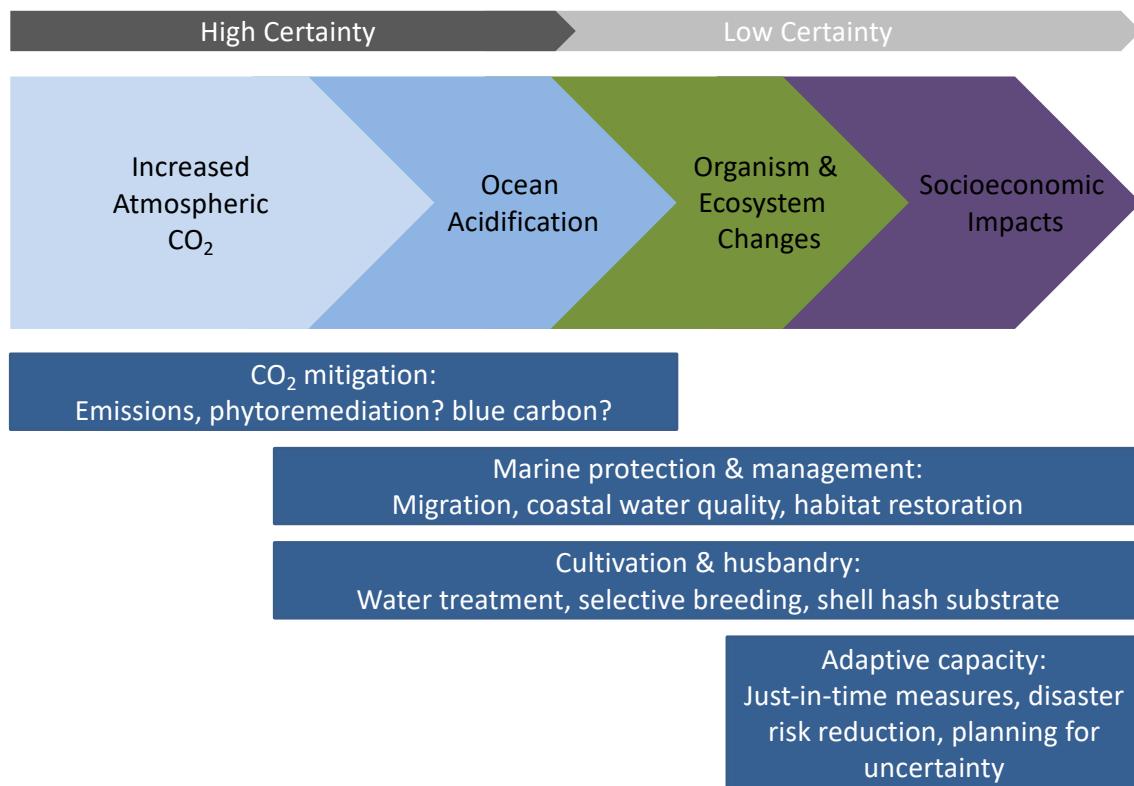
524 4.5 Seagrass beds

525 Seagrasses are largely expected to benefit from acidification (131) (Koch et al. 2013),
526 but the effects on associated species could mediate the community and ecosystem
527 effects. Of concern is the response of epiphytic and macroalgae that compete with
528 seagrasses (132) (Campbell and Fourqurean 2014). Additionally, seagrasses are
529 sensitive to water quality and benthic light levels, so acidification effects on plankton
530 dynamics may also play a role (133) (Zimmermann et al. 2015). While calcareous
531 epiphytes are expected to decrease with acidification (89, 132) (Hall-Spencer et al. 2008,
532 Cambpell and Fourqurean 2014), enhanced seagrass production may protect some
533 calcareous species in the diffusive boundary layer in low flow environments (134) (Cox et
534 al. 2017). In contrast, fleshy epiphytic algae are largely expected to benefit from high
535 pCO₂ (135) (Martinez-Crego et al. 2014). Mesocosm studies of temperate seagrass
536 communities, dominated by fleshy epiphytic and macroalgae, suggest that grazers can
537 keep epiphytic algae in check (98) (Alsterberg et al. 2013), and in some cases,
538 acidification may actually increase top-down control (136) (Burnell et al. 2013). Despite

539 the calcareous skeletons of several of the grazers in seagrass ecosystems, evidence
540 suggests high tolerance of the macroinvertebrate taxa (137, 138) (Eklof et al. 2015,
541 Hughes et al. 2018).

542

543 **5. Risks to Human Communities**


544 5.1 Introduction – Impacts on socially and ecologically important marine resources,
545 environments, and people

546 The emergence of ocean acidification impacts on the Pacific oyster industry in the
547 Pacific Northwest United States in the mid-2000s (139) (Barton et al. 2015) immediately
548 framed ocean acidification as a present-day concern with direct implications for small and
549 large businesses and coastal communities. Since then, much ocean acidification
550 research has focused on economically, culturally, and ecologically important species.
551 Other studies have focused on how ocean acidification will ultimately alter the benefits
552 that marine systems provide to human communities (also called ecosystem services, or
553 nature's contributions to people).

554 Detecting changes in ecosystem services can be challenging and attributing those
555 changes to one long-term driver, like ocean acidification, is even more difficult. Moreover,
556 human and natural systems are constantly adapting and responding to ocean acidification
557 in a multi-stressor context, while the risk of harmful changes to ecosystem services from
558 climate change is increasing (140, 141) (Gosling 2013, Scholes 2016). Multidisciplinary
559 studies focused on social-ecological risks from ocean acidification are exploring
560 economics, ecosystem services, and cultural and societal institutions. Researchers are
561 also studying interventions that decrease vulnerability by either decreasing social-

562 ecological systems' exposure to ocean acidification or increasing their adaptive capacity.
563 In addition to strengthening fisheries and aquaculture, or improving the resilience of
564 coastal environments, these actions have the co-benefit of improving management of
565 marine systems and resources (Figure 3).

566

567

568 Figure 3. Impact pathway from increased atmospheric CO₂ to changes in social-
569 ecological systems. Gray band indicates level of scientific certainty. Dark blue blocks
570 show the groups of interventions that are frequently proposed to directly decrease harm
571 from ocean acidification on social-ecological systems. Adapted from (142) (Pörtner et al.
572 2014)

573

574 5.2 Fisheries and food webs

575 Both real-world and laboratory evidence suggests that ocean acidification is very likely
576 to decrease harvests of several bivalve shellfish species, with lost revenue and cultural
577 disruption to follow. During the mid-2000s, the Pacific oyster aquaculture industry in the
578 Pacific Northwest, which is increasingly at risk from acute ocean acidification worsened
579 by enhanced coastal upwelling, supported over 3,000 jobs and \$270 million in economic
580 activity per year (139) (Barton et al. 2015). Because marine mollusks comprise 9% of the
581 total world fishery production by value (143) (Narita et al. 2012), ocean acidification's
582 potential effects on shellfish harvests and provisioning ecosystem services became a
583 research theme (144) (Cooley & Doney 2009).

584 Ocean acidification caused decreases in bivalve reproduction, survival of juvenile
585 bivalves, or delayed maturation of adults can alter recruitment, harvestable biomass,
586 maximum sustainable yield, and economic value of shellfish fisheries (145) (Cooley et al.
587 2015). Other impacts such as alterations in the taste or other food qualities of shellfish
588 (146, 147) (Dupont et al. 2014, Lemasson et al. 2019), or behavioral changes in finfish
589 species (16, 148) (Nagelkerken and Munday, 2016; Ashur et al. 2017), have not yet been
590 detected in nature or incorporated into models, so their socioeconomic implications have
591 not been projected yet.

592 Studies with varying degrees of complexity have examined potential economic losses
593 from associated shellfish harvest decreases. Models with simple CO₂-damage
594 relationships for all bivalves and time discounting have projected losses of about 10-28%
595 losses for both US and UK mollusk harvests annually (144, 149) (Cooley & Doney 2009,

596 Mangi et al. 2018). Model estimates of welfare losses from ocean acidification impacts on
597 shellfish range widely: US losses are estimated at \$400 million USD and global losses
598 from \$6 billion-\$100 billion USD annually (143) (Narita et al. 2012), with an annual
599 projected impact of over \$1 billion USD for Europe by 2100 (150) (Narita & Rehdanz
600 2017). Ocean acidification and warming together on UK fisheries are projected to
601 decrease shellfish biomass by 30% by 2020, with overall employment losses related to
602 shellfish and finfish declines from 3-20% by 2050 (151) (Fernandes et al. 2017). United
603 State economic damages by the end of the century for mollusk fishery losses are on the
604 same order as those for increased hurricane damages (152) (Moore 2015).

605 Integrated assessment models (IAMs) are now being utilized to explore the possible
606 combined impacts of climate change, acidification, harvest, fishery management, and
607 social-economic factors on specific commercial fisheries. Cooley et al. (145) (Cooley et
608 al. 2015) found for the United States northeast sea scallop a substantial decline in
609 harvests by 2050 under business-as-usual CO₂ emissions and contemporary harvest
610 rules, if ocean acidification decreases recruitment and slows growth, although
611 adjustments to management can help increase biomass somewhat (153) (Rheuban et al.
612 2018). Another IAM projected a decrease in the Alaska-based southern Tanner crab
613 fishery catch and profits by more than 50% in the next 20 years (154) (Punt et al. 2016).
614 A dynamic bioclimate envelope model examining ocean acidification and temperature
615 effects together found that total fisheries revenue in the Arctic region may increase by
616 39% from 2000-2050 under SRES A2, because poleward movement of temperate
617 fisheries will increase Arctic fishery revenues more than calcifier mortality will drive losses
618 (155) (Lam et al. 2016).

619 Ecosystem models and vulnerability assessments have also evaluated the interaction
620 of ocean acidification with other drivers and fisheries. In the California Current, decreased
621 pH is expected to most impact crabs, shrimps, benthic grazers, and bivalves, with indirect
622 effects on specific demersal species that prey on these groups (156) (Marshall et al. 2017)
623 and different consequences for port-based economies in the region (157) (Hodgson et al.
624 2018). Using a suite of regional ecosystem models from around the world, Olsen et al.
625 (158) (Olsen et al. 2018) explored the interaction of ocean acidification, marine protection,
626 and fishing pressure, finding that marine protection and ocean acidification have greater
627 overall effects on the ecosystem than adjusting fishing pressure. Seijo et al. (159) (Seijo
628 et al. 2016) recommend considering possible ocean acidification effects when defining
629 fisheries management strategies, and Olsen et al. (158) (Olsen et al. 2018) and Talloni-
630 Alvarez et al. (160) (Talloni-Alvarez et al. 2019) suggest that ocean acidification should
631 also be considered when developing protection strategies and ecosystem-based
632 management. Regional vulnerability to potential losses in shellfish harvests from ocean
633 acidification is greater for indigenous groups and rural communities in the United States
634 (161, 162) (Mathis et al. Prog. Oceanogr. 2015; Ekstrom et al. 2015) and developing
635 nations with artisanal fishing fleets in the Mediterranean (163) (Hilmi et al. 2014).
636 Minimizing overall community vulnerability to losses from ocean acidification requires
637 addressing community and environmental factors such as overall economic well-being,
638 access to job alternatives, coastal hypoxic events, and more as well as ocean acidification
639 impacts on marine species.

640

641 5.3 Coral reefs

642 Potential economic and cultural losses of coral reef-provided ecosystem services –
643 coastal protection, habitat and biodiversity, fisheries, recreational and tourism
644 opportunities, and existence and amenity values – have been considered since the
645 earliest days of ocean acidification research. Approximately 500 million people derive
646 food, income, coastal protection, and other services from coral reefs (164) (Hoegh-
647 Guldberg et al. 2017). The worldwide value of coral reefs, however, is difficult to pin down;
648 published estimates range from \$29.8 billion/year (165) (Cesar et al. 2003) to \$376
649 billion/year (166) (Costanza et al. 1997), although Pendleton et al. (167) (Pendleton et al.
650 2016) find that data are insufficient to allow rigorous evaluation. Ocean acidification
651 combined with erosion and other disturbances have lowered the seafloor around
652 carbonate platform environments in the Florida Keys, Caribbean, and near Hawai'i,
653 accelerating the rate of relative sea level rise (168) (Yates et al. 2017) and endangering
654 human safety and property (169) (Beck et al. 2018). Without coastal protection from reefs,
655 specifically, flood damages from 100-year storm events would nearly double, rising to
656 \$272 billion (169) (Beck et al. 2018). Brander et al. (170) (Brander et al. 2012) examined
657 the economic impact of ocean acidification on coral reefs, concluding that economic
658 effects of reef scarcity and increasing global wealth would keep tourism and economic
659 value of reefs strong, despite net loss of coral reefs from acidification.

660 Other analyses use non-economic methods to evaluate risks posed by changes in
661 coral reef health or coverage. Pendleton et al. (167) (Pendleton et al. 2016) showed that
662 overlapping risk of reef loss from warming and acidification and social and economic
663 vulnerability puts Southeast Asia at particular combined risk, yet most places there have
664 minimal data on ocean acidification exposure. A similar approach around the Great

665 Barrier Reef concluded that a suite of ecological and social measures are needed to
666 decrease risk of harm from climate-associated reef loss (171) (Pendleton et al. 2019).

667 Vermetid and shellfish reefs suffer from ocean acidification as well as coastal
668 disturbances like trampling, sedimentation, dredging, and pollutants or poisons (129, 172,
669 173) (Milazzo et al. 2014, Lemasson et al. 2017, Milazzo et al. 2017). Both types of reefs
670 are “ecosystem engineers” that stabilize sediments, provide habitat for benthic
671 ecosystems, and store organic carbon (129, 172) (Milazzo et al. 2014, Lemasson et al.
672 2017). Oyster reefs provide an estimated value of \$5500–\$99,000 per hectare per year
673 via shoreline stabilization, habitat creation, and water filtration (174) (Grabowski et al.
674 2012). Ocean acidification’s economic ramifications for vermetid and shellfish reefs have
675 not been explored, but the reefs’ important non-economic environmental roles have made
676 them focal areas for preservation and restoration.

677

678 5.4 Coastal systems and submerged aquatic vegetation

679 Many near-shore, coastal systems contain submerged aquatic vegetation, such as
680 seagrass beds or kelp forests, that are increasingly mentioned as a solution to address
681 ocean acidification (20, 175) (Gattuso et al. 2018, California Ocean Protection Council
682 2018). Submerged aquatic vegetation’s ability to create habitat and slow water flow in
683 coastal regions is better established (176, 177, 178) (Hurd 2015, Macreadie et al. 2017,
684 Morris et al. 2019) than its ability to consistently capture and sequester carbon dioxide or
685 modulate local pH swings, where evidence is mixed (179, 180, 181) (Gao et al. 2019,
686 Garrard & Beaumont 2014, Kapsenberg & Cyronak 2019). Nevertheless, restoring and
687 preserving submerged aquatic vegetation is increasingly seen as a widely useful marine

688 conservation step that will help sustain marine provisioning and regulating services (182)
689 (Herr 2009) and may help mitigate ocean acidification in localized areas (20) (Gattuso et
690 al. 2018).

691 Similar to submerged aquatic vegetation, coastal systems including wetlands,
692 mangroves, and nearshore sediments are thought to help mitigate ocean acidification by
693 sustaining regulating services and capturing carbon or releasing alkalinity (183, 184, 185)
694 (Howard et al. 2017, Pacella et al. 2018, Sippo et al. 2016). However, local details strongly
695 influence the amount and duration of carbon captured (184, 186) (Pacella et al. 2018,
696 Sabine 2018). Estimates of the economic value of this “blue carbon” (carbon sequestered
697 in wetlands, mangroves, sediments, macroalgae, and submerged aquatic vegetation) are
698 functions of these environments’ carbon drawdown, their spatial coverage, and the social
699 cost of carbon (187, 188) (Luisetti et al. 2019; Beaumont et al. 2014). Conservation and
700 restoration of coastal systems to sequester carbon are being evaluated and promoted as
701 part of overall carbon mitigation efforts (189, 190) (Lavery et al. 2013, Pendleton et al.
702 2012), which may indirectly benefit ocean acidification.

703

704 5.5 Biodiversity and environmental health

705 All healthy ocean and coastal systems, including the environments mentioned above,
706 sustain biodiversity. The reduced biodiversity associated with acidified conditions
707 observed in many coastal systems (191) (Hall-Spencer & Harvey 2019) decreases
708 ecosystem resilience and compromises regulating services including habitat provision,
709 nutrient cycling, and carbon storage (192) (Barry et al. 2011). For example, slower growth
710 and survival of a widespread mussel species (*Mytilus edulis*) under ocean acidification

711 could substantially decrease its ability to regulate coastal water quality by filtering water
712 (193) (Broszeit et al. 2016). Ocean acidification could strongly affect critical or unique
713 environments like coral reefs, deep-sea systems, and high-latitude systems, which
714 depend on highly endemic species and may not have much functional redundancy within
715 species groups (192) (Barry et al. 2011). Outcomes for ecosystems like phytoplankton
716 populations are harder to anticipate, because ocean acidification and other drivers
717 reshuffle species composition (192) (Barry et al. 2011), and it is difficult to determine how
718 ecosystem function will change. Gascuel and Cheung (194) (Gascuel and Cheung 2019)
719 caution that loss of ocean biodiversity that decreases regulating functions and functional
720 redundancy can decrease not only system productivity, but also stability and resiliency;
721 and it can raise the risk of large-scale ecosystem shifts in ecosystem structure and
722 decrease the resilience.

723 Losses of marine biodiversity from ocean acidification impacts on marine systems can
724 also affect cultural services (195, 196, 197, 198) (Koenigstein et al. 2016, Rodrigues et
725 al. 2013, Ruckelshaus et al. 2013, Urquhart & Acott 2014). Cultural services comprise
726 activities from supporting individual recreational activities to sustaining multi-generational,
727 community-wide religious and cultural identities. There is broad agreement that the actual
728 effects and modes of action of ocean acidification and other ocean changes on cultural
729 services are insufficiently understood (142, 199, 200, 201) (Pörtner et al. 2014, AMAP
730 2018, Garcia Rodrigues et al. 2017, Klain & Chan 2012). Encouragingly, though,
731 Koenigstein et al. (195) (Koenigstein et al. 2016) report that human communities
732 recognize the potential implications of lost marine biodiversity, especially regarding

733 extinctions and losses in ecosystem function, and this can spark meaningful,
734 conservation-oriented multi-stakeholder discussions.

735

736 5.6 Interventions and adaptations

737 Nearly every study that identifies potential harm from ocean acidification to ecosystem
738 services also identifies possible interventions (Figure 3). There is consensus across the
739 scientific community that the foremost solution to ocean acidification is to cut atmospheric
740 CO₂ emissions (202, 203, 204, 205, 206) (Billé et al. 2013, Cooley et al. 2016, Gattuso et
741 al. 2015, Magnan et al. 2015, Strong et al. 2014). At present, the international body of
742 climate policy (within the U.N. Framework Convention on Climate Change, or UNFCCC)
743 does not explicitly address ocean acidification, although numerous analyses agree that
744 ocean acidification falls within UNFCCC-relevant concerns (205, 207, 208) (Magnan et
745 al. 2015, Harrould-Kolieb & Herr 2012, Potts 2018).

746 Adaptive management of marine systems is often cited as a possible intervention.
747 Acidification, oxygen loss, and the gradual redistribution of species across management
748 boundaries to higher latitudes from ocean warming already confound current and future
749 management decisions (164) (Hoegh-Guldberg et al. 2017), and a critical challenge is the
750 balance of protection versus sustainable human resource use for impacted systems (209)
751 (Pratchett et al. 2014). In coastal zones, the ocean acidification interacts with other
752 anthropogenic and natural drivers like pollution, freshwater runoff, and coastal plankton
753 blooms (210) (Kelly et al. 2011), but many existing water quality regulatory policies can
754 start to help address coastal acidification locally (211) (Kelly & Caldwell 2013).

755 Husbandry of captive or wild species also offers intervention opportunities.
756 Encouraging shellfish aquaculture industry growth has been proposed as an adaptation
757 to ocean acidification and warming (212) (Alleway et al. 2019). Shellfish hatcheries have
758 enhanced water quality monitoring, improved water quality, and expanded selective
759 breeding and strategic feeding to adapt to acidification, and this has stabilized or
760 improved yields and economic revenues (139) (Barton et al. 2015). Amending tidal flats
761 where shellfish grow to maturity with ground shell material provides substrate for larval
762 settlement and may modulate ocean acidification locally (213, 214, 215) (Doyle 2018,
763 Green et al. 2009, Waldbusser et al. 2013). Submerged aquatic vegetation may also
764 capture CO₂ locally through photosynthesis while providing habitat (181) (Kapsenberg
765 and Cyronak 2019). Active interventions are being piloted to support coral species and
766 restore coral reef environments, including selective breeding and carefully protected
767 outplanting, as a key conservation tactic to maintain biodiversity (216) (National
768 Academies of Sciences, Engineering, and Medicine et al. 2019). As with water quality,
769 existing management levers might also improve resilience to ocean acidification and
770 hypoxia (217) (Kroeker et al. 2019 *Oceanography*).

771 The least well-developed group of interventions involves increasing the adaptive
772 capacity of human communities that depend on marine resources. Just-in-time
773 adaptations such as the industry-science partnerships undertaken by the United States
774 Pacific oyster shellfish fishery to identify and address ocean acidification do work (5, 139)
775 (Cross et al. 2019, Barton et al. 2015), but so do planned, end-to-end structures that
776 support communities that may experience future losses from ocean change (5) (Cross et
777 al. 2019). This must reach beyond ocean acidification, as extreme ocean events including

778 harmful algal blooms, hypoxia, and marine heat waves have recently tested management
779 systems and stressed marine-dependent socio-economic systems (218) (Ritzman et al.
780 2018). Emphasizing disaster risk reduction (219) (Munang et al. 2013) and rigorously
781 incorporating uncertainty (220) (Carriger et al. 2019) in marine policy and governance can
782 greatly improve outcomes for both social and ecological systems affected by ocean
783 change (221) (Silver et al. 2019).

784

785 **6. SUMMARY**

786 The scientific study of seawater chemistry changes due to rising atmospheric CO₂ and
787 the sensitivity of marine life to elevated CO₂ have advanced dramatically in the past two
788 decades. Major challenges remain, however, in understanding the implications of the
789 ongoing long-term, press perturbation of ocean acidification for marine species, ocean
790 biological communities and ecosystems, and the risks to human communities that depend
791 on marine resources and ecosystem services. Efforts to understand the sensitivity of
792 marine species to projected future ocean acidification are delving into detailed
793 characterization and mechanisms of species sensitivity, consideration of acclimation and
794 adaptation, greater ecological relevance including consideration of multiple stressors, and
795 detection and attribution of the impacts for ocean ecosystems. Front-line risks to human
796 communities have been identified, including loss of shellfish harvests and decline in
797 coastal protection by coral reefs, and more risks are being investigated. Several existing
798 policies used to regulate water quality and marine species conservation can also help
799 address acidification, with no or minimal amendments. Likewise, many adaptive actions
800 used to address other issues, such as strengthening the shellfish aquaculture industry

801 overall, can have co-benefits in addressing acidification. Current management practices
802 must be adjusted, however, to allow marine governance to remain nimble in the face of
803 both global-scale changes like acidification and climate change and local-scale concerns.

804

805 **KEY TERMS** (glossary and acronyms lists)

806 **CO₂**: Carbon dioxide gas that is removed by photosynthesis and released by respiration
807 and fossil fuel combustion

808 **CO₃²⁻**: Carbonate ion, an inorganic carbon molecule formed when CO₂ dissolves in
809 seawater and a key building block for carbonate minerals used in organism
810 biomineralization

811 **pH**: A measure of the acidity of seawater where lower pH reflects more acidic
812 conditions; pH is reported on a log-scale so a 1 unit drop in pH is equivalent to a factor
813 of 10 increase in acidity

814 **Ocean acidification**: Changes in seawater chemistry including increased acidity, lower
815 pH, and reduced carbonate ion levels caused by input of excess carbon dioxide

816 **Carbonate saturation state**: A comparison of seawater carbonate and calcium ion
817 concentrations relative to thermodynamic equilibrium, where saturation states below 1
818 reflect under-saturation and carbonate mineral dissolution

819 **Aragonite and calcite**: Two of the mineral forms of calcium carbonate (CaCO₃) used
820 by marine organisms for shell and skeleton formation via biomimicry

821 **Hypoxia**: Low oxygen conditions in the coastal and open ocean often associated with
822 respiration of organic material that also elevates CO₂

823 **Ecosystem services:** Benefits that people accrue from natural marine ecosystems
824 such as fisheries and aquaculture

825

826 **SUMMARY POINTS**

- 827 1. Human CO₂ emissions alter surface seawater acid-base chemistry globally, with
828 additional coastal acidification from nutrient pollution and other factors.
- 829 2. Biological impacts reflect multiple, simultaneous chemical changes—increasing
830 CO₂(aq), HCO₃[−] and H⁺ and decreasing CO₃^{2−} and carbonate saturation state.
- 831 3. Laboratory and field studies indicate a wide range of biological responses to high
832 CO₂ on organism-level physiology, biomineralization, growth, reproduction, sensory
833 perception, and behavior.
- 834 4. New research fronts involve characterization and mechanisms of species sensitivity,
835 acclimation and adaptation, ecological relevance, multiple stressors, and detection
836 and attribution of the ocean ecosystem impacts.
- 837 5. Propagation of organism-level effects into community and ecosystem responses is
838 being elucidated through mesocosm and field manipulation experiments and studies
839 of naturally acidified marine environments.
- 840 6. A suite of multiple-stressors including acidification, climate change, and other
841 environmental alterations must be considered when determining the emergent
842 ecological effects and any adaptation-focused intervention.
- 843 7. Acidification likely will impact aquaculture, fisheries, shoreline protection, and other
844 valuable marine ecosystem services, resulting in vulnerabilities and risks to human
845 communities, but interventions designed to address other issues (e.g., biodiversity

846 loss, water quality, governance, etc.) may also help address harm from ocean
847 acidification.

848 8. The ultimate solution to ocean acidification involves global-scale reductions in
849 human CO₂ emissions, with local adaptation strategies also needed to minimize
850 harm from the impacts that are inevitable.

851

852 **FUTURE ISSUES**

853 1. Enhanced monitoring of ocean acidification is possible leveraging improved
854 autonomous ocean platform and sensor, remote sensing, data analysis and
855 modeling technologies.

856 2. Targeted observing systems, process studies, and modeling efforts are needed to
857 evaluate acidification impacts in the marine environment across biological scales
858 from populations to ecosystems.

859 3. Experimental studies of ecological effects of ocean acidification that explicitly
860 incorporate environmental context (e.g., temporal variability in pCO₂/pH and
861 concurrent exposure to multiple, relevant drivers) are needed to improve forecasts of
862 emergent ecological effects.

863 4. Increased monitoring and data synthesis efforts aimed at detecting species and
864 ecosystem change and understanding what portion of the change can be attributed
865 to ocean acidification will help guide living marine resource management and the
866 scientific efforts that support it.

867 5. Development and evaluation of adaptation solutions for ocean acidification are key
868 priorities that will likely require co-production of knowledge and close cooperation by
869 scientists, resource managers, and stakeholders.

870 6. Marine management strategies need updating to balance protection and sustainable
871 human uses in the face of overlapping global-scale changes like acidification,
872 warming, and oxygen loss.

873 7. Adaptive management systems must be developed to move beyond assumption of
874 steady-state environmental, to accommodate geographic and temporal shifts in
875 living marine resources, and to nimbly address extreme events in ways that
876 minimize harm to both marine systems and ocean-dependent human communities.

877

878 **DISCLOSURE STATEMENT**

879 The authors are not aware of any affiliations, memberships, funding, or financial
880 holdings that might be perceived as affecting the objectivity of this review.

881

882 **ACKNOWLEDGEMENTS**

883 SC Doney was supported by the Environmental Resilience Institute at the University of
884 Virginia and the National Science Foundation. KJ Kroeker was supported in part by the
885 David and Lucile Packard Foundation and the National Science Foundation. DS Busch
886 was supported by the NOAA Ocean Acidification Program and Northwest Fisheries
887 Science Center.

888

889 **LITERATURE CITED**

890 1. Le Quéré C, Andrew RM, Friedlingstein P, Sitch S, Hauck J, et al. 2018. Global
891 Carbon Budget 2018. *Earth System Science Data*, 10:2141–94

892 2. Gruber N, Clement D, Carter BR, Feely RA, van Heuven S, et al. 2019. The
893 oceanic sink for anthropogenic CO₂ from 1994 to 2007. *Science* 363:1193–99

894 3. Zeebe RE, Wolf-Gladrow D. 2001. *CO₂ in Seawater: Equilibrium, Kinetics,
895 Isotopes*. Amsterdam: Elsevier Science

896 4. Tilbrook B, Jewett EB, DeGrandpre MD, Hernandez-Ayon JM, Feely RA, et al.
897 2019. An enhanced ocean acidification observing network: from people to
898 technology to data synthesis and information exchange. *Front. Mar. Sci.* 6:337

899 5. Cross JN, Turner JA, Cooley SR, Newton JA, Azetsu-Scott K, et al. 2019. The
900 knowledge-to-action pipeline: connecting ocean acidification research and
901 actionable decision support. *Frontiers Mar. Sci.* 6:356

902 6. Royal Society. 2005. *Ocean acidification due to increasing atmospheric carbon
903 dioxide*. Policy document 12/05, Royal Society, London, United Kingdom

904 7. Gattuso J-P, Hansson L. 2011. *Ocean Acidification*, Oxford/New York: Oxford
905 University Press

906 8. Doney SC, Fabry VJ, Feely RA, Kleypas JA. 2009. Ocean acidification: the other
907 CO₂ problem. *Annu. Rev. Mar. Sci.* 1:169–92

908 9. Mathis, J.T., S.R. Cooley, K.K. Yates, and P. Williamson. 2015a. Introduction to
909 this special issue on ocean acidification: the pathway from science to policy.
910 *Oceanography* 28(2):10–15

911 10. Ciais P, Sabine C, Bala G, Bopp L, Brovkin V, et al. 2013. Carbon and other
912 biogeochemical cycles. In *Climate Change 2013: The Physical Science Basis*.

913 Contribution of Working Group I to the Fifth Assessment Report of the
914 Intergovernmental Panel on Climate Change, ed. TF Stocker, D Qin, G-K Plattner,
915 M Tignor, SK Allen, et al., pp. 465–570, Cambridge/New York: Cambridge
916 University Press

917 11. Hoegh-Guldberg O, Cai R, Poloczanska ES, Brewer PG, S. Sundby S, et al. 2014.
918 The ocean. In *Climate Change 2014: Impacts, Adaptation, and Vulnerability*.
919 Contribution of Working Group II to the Fifth Assessment Report of the
920 Intergovernmental Panel on Climate Change, ed. VR Barros, CB Field, DJ Dokken,
921 MD Mastrandrea, KJ Mach, et al., pp. 1655–1731, Cambridge/New York:
922 Cambridge University Press

923 12. Jewett L, Romanou A. 2017. Ocean acidification and other ocean changes. In
924 *Climate Science Special Report: Fourth National Climate Assessment, Volume I*,
925 ed. DJ Wuebbles, DW Fahey, KA Hibbard, DJ Dokken, BC Stewart, and T.K.
926 Maycock, pp. 364-392, U.S. Global Change Research Program, Washington, DC,
927 USA

928 13. Bindoff NL, Cheung WWL, Kairo JG, Arístegui J, Guinder JA, et al. 2019.
929 Changing ocean, marine ecosystems, and dependent communities. In *Special
930 Report on the Ocean and Cryosphere in a Changing Climate*, IPCC, Geneva,
931 Switzerland

932 14. Falkenberg LJ, Dupont S, Bellerby RGJ. 2018. Approaches to reconsider literature
933 on physiological effects of environmental change: examples from ocean
934 acidification research. *Front. Mar. Sci.* 5:453.

935 15. Espinel-Velasco N, Linn Hoffmann L, Agüera A, Byrne M, Dupont S, et al. 2018.

936 Effects of ocean acidification on the settlement and metamorphosis of marine

937 invertebrate and fish larvae: a review *Mar. Ecol. Prog. Ser.* 606:237–57

938 16. Nagelkerken I, Munday PL. 2016. Animal behaviour shapes the ecological effects

939 of ocean acidification and warming: moving from individual to community-level

940 responses. *Global Change Biology* 22(3):974–89

941 17. Wannicke N, Frey C, Law CS, Voss M. 2018. The response of the marine nitrogen

942 cycle to ocean acidification. *Global Change Biology* 24(11):5031–43

943 18. Kleypas JA. 2019. Climate change and tropical marine ecosystems: a review with

944 an emphasis on coral reefs. *UNED Research Journal* 11(1):S24–S35

945 19. Gaylord B, Kroeker KJ, Sunday JM, Anderson KM, Barry JP, et al. 2015. Ocean

946 acidification through the lens of ecological theory. *Ecology* 96(1):3–15

947 20. Gattuso J-P, Magnan AK, Bopp L, Cheung WWL, Duarte CM, et al. 2018. Ocean

948 solutions to address climate change and its effects on marine ecosystems. *Front.*

949 *Mar. Sci.* 5:337

950 21. Millero FJ. 2007. The marine inorganic carbon cycle. *Chem. Rev.* 107:308–41

951 22. Hurd CL, Beardall J, Comeau S, Cornwall CE, Havenhand JN, et al. 2019. Ocean

952 acidification as a multiple driver: how interactions between changing seawater

953 carbonate parameters affect marine life. *Marine Freshwater Res.* In press.

954 <https://doi.org/10.1071/MF19267>

955 23. Riebesell U, Fabry VJ, Hansson L, Gattuso J-P. (ed.) 2010. *Guide to Best Practices*

956 for Ocean Acidification Research and Data Reporting. Publications Office of the

957 European Union, Luxembourg

958 24. Benway HM, Lorenzoni L, White AE, Fiedler B, Levine NM, et al. 2019. Ocean time
959 series observations of changing marine ecosystems: an era of integration,
960 synthesis, and societal applications. *Front. Mar. Sci.* 6:393.

961 25. Bakker DCE, Pfeil B, Landa CS, Metzl N, O'Brien KM, et al. 2016. A multi-decade
962 record of high-quality fCO₂ data in version 3 of the Surface Ocean CO₂ Atlas
963 (SOCAT). *Earth Syst. Sci. Data* 8:383–413

964 26. Feely RA, Sabine CL, Hernandez-Ayon JM, Ianson D, Hales B. 2008. Evidence for
965 upwelling of corrosive “acidified” water onto the continental shelf. *Science*
966 320(5882):1490–92

967 27. Feely RA, Okazaki RR, Cai W-J, Bednaršek N, Alin SR, Byrne RH, Fassbender A.
968 2018. The combined effects of acidification and hypoxia on pH and aragonite
969 saturation in the coastal waters of the California current ecosystem and the northern
970 Gulf of Mexico. *Cont. Shelf Res.* 152:50–60

971 28. Feely RA, Alin SR, Newton J, Sabine CL, Warner M, et al. 2010. The combined
972 effects of ocean acidification, mixing, and respiration on pH and carbonate saturation
973 in an urbanized estuary. *Estuarine, Coastal Shelf Sci.* 88:442–49

974 29. Gledhill DK, White MM, Salisbury J, Thomas H, Mlsna I, et al. 2015. Ocean and
975 coastal acidification off New England and Nova Scotia. *Oceanography* 8(2):182–97

976 30. Rheuban JE, Doney SC, McCorkle DC, R.W. Jakuba RW. 2019. Quantifying the
977 effects of nutrient enrichment and freshwater mixing on coastal ocean acidification.
978 *J. Geophys. Res. Oceans*. In press. <https://doi.org/10.1029/2019JC015556>

979 31. Evans W, Mathis JT, Cross JN. 2013. Calcium carbonate corrosivity in an Alaskan
980 inland sea. *Biogeosciences* 11:365–79

981 32. Waldbusser GG, Salisbury JE. 2014. Ocean acidification in the coastal zone from
982 an organism's perspective: Multiple system parameters, frequency domains, and
983 habitats. *Ann. Rev. Mar. Sci.* 6:221–47

984 33. Browman HI. 2016. Applying organized scepticism to ocean acidification research.
985 *ICES J. Mar. Sci.* 73:529–36

986 34. Heuer RM, Grosell M. 2014. Physiological impacts of elevated carbon dioxide and
987 ocean acidification on fish. *Amer. J. Physiol.-Regulatory, Integrative and*
988 *Comparative Physiology* 307:R1061–R1084

989 35. Tresguerres M, Hamilton TJ. 2017. Acid–base physiology, neurobiology and
990 behaviour in relation to CO₂-induced ocean acidification. *J. Experimental Biol.*
991 220:2136–48

992 36. Cattano C, Claudet J, Domenici P, Milazzo M. 2018. Living in a high CO₂ world: a
993 global meta-analysis shows multiple trait-mediated fish responses to ocean
994 acidification. *Ecological Monographs* 88:320–35

995 37. Esbaugh AJ. 2018. Physiological implications of ocean acidification for marine fish:
996 emerging patterns and new insights. *J. Comp. Physiology B* 188:1–13

997 38. Wang M, Jeong C-B, Lee YH, Lee J-S. 2018. Effects of ocean acidification on
998 copepods. *Aquatic Toxicology* 196:17–24

999 39. Dutkiewicz S, Morris JJ, Follows MJ, Scott J, Levitan O, et al. 2015. Impact of ocean
1000 acidification on the structure of future phytoplankton communities. *Nat. Clim. Chang.*
1001 5:1002

1002 40. Busch DS, McElhany P. 2017. Using mineralogy and higher-level taxonomy as
1003 indicators of species sensitivity to pH: A case-study of Puget Sound. *Elementa* 5:53

1004 41. Gobler CJ, Baumann H. 2016. Hypoxia and acidification in ocean ecosystems:
1005 coupled dynamics and effects on marine life. *Biology Letters* 12:20150976

1006 42. Kroeker KJ, Kordas RL, Crim R, Hendriks IE, Ramajo L, et al. 2013. Impacts of
1007 ocean acidification on marine organisms: quantifying sensitivities and interaction
1008 with warming. *Global Change Biology* 19:1884–96

1009 43. Sunday JM, Calosi P, Dupont S, Munday PL, Stillman JH, Reusch TBH. 2013.
1010 Evolution in an acidifying ocean. *Trends Ecol. Evol.* 29(2) 117–25

1011 44. Boyd PW, Collins S, Dupont S, Fabricius K, Gattuso JP, et al. 2018. Experimental
1012 strategies to assess the biological ramifications of multiple drivers of global ocean
1013 change—a review. *Global Change Biology* 24:2239–61

1014 45. Riebesell U, Gattuso J-P. 2015. Lessons learned from ocean acidification research.
1015 *Nature Climate Change* 5:12–14

1016 46. Kroeker KJ, Kordas RL, Crim RN, Singh GG. 2010. Meta-analysis reveals negative
1017 yet variable effects of ocean acidification on marine organisms. *Ecology Letters*
1018 13:1419–34

1019 47. Busch DS, McElhany P. 2016. Estimates of the direct effect of seawater pH on the
1020 survival rate of species groups in the California Current Ecosystem. *PLoS ONE*
1021 11:e0160669

1022 48. Chevin L-M, Collins S, Lefèvre F. 2013. Phenotypic plasticity and evolutionary
1023 demographic responses to climate change: taking theory out to the field. *Functional
1024 Ecology* 27:967–79

1025 49. Murray, C., and H. Baumann. 2018. You better repeat it: complex CO₂ × temperature
1026 effects in Atlantic silverside offspring revealed by serial experimentation. *Diversity*
1027 10:69

1028 50. Guscelli E, Spicer JI, Calosi P. 2019. The importance of inter-individual variation in
1029 predicting species' responses to global change drivers. *Ecology Evolution* 9:4327–
1030 39

1031 51. Kelly MW, Padilla-Gamiño JL, Hofmann GE. 2013. Natural variation, and the
1032 capacity to adapt to ocean acidification in the keystone sea urchin
1033 *Strongylocentrotus purpuratus*. *Global Change Biology* 19:2536–46

1034 52. Vargas CA, Lagos NA, Lardies MA, Duarte C, Manríquez PH, 2017. Species-specific
1035 responses to ocean acidification should account for local adaptation and adaptive
1036 plasticity. *Nature Ecol. Evol.* 1:0084

1037 53. Hollarsmith JA, Buschmann AH, Camus C, Grosholz ED. 2020. Varying reproductive
1038 success under ocean warming and acidification across giant kelp (*Macrocystis*
1039 *pyrifera*) populations. *J. Exp. Marine Biology Ecology* 522:151247

1040 54. Calosi PS, Melatunan S, Turner LM, Artioli Y, Davidson RL, et al. 2017. Regional
1041 adaptation defines sensitivity to future ocean acidification. *Nature Comm.* 8:13994

1042 55. Busch DS, Maher M, Thibodeau P, McElhany P. 2014. Shell condition and survival
1043 of Puget Sound pteropods are impaired by ocean acidification conditions. *PLoS*
1044 *ONE* 9:e105884

1045 56. McLaskey AK, Keister JE, McElhany P, Olson MB, Busch DS, et al. 2016.
1046 Development of *Euphausia pacifica* (krill) larvae is impaired under pCO₂ levels
1047 currently observed in the Northeast Pacific. *Mar. Ecol. Prog. Ser.* 555:65–78.

1048 57. Pespeni MH, Chan F, Menge BA, Palumbi SR. 2013. Signs of adaptation to local pH
1049 conditions across an environmental mosaic in the California Current Ecosystem.
1050 *Integrative Comparative Biology* 53:857–70

1051 58. Bednaršek N, Feely RA, Reum JCP, Peterson B, Menkel J, et al. 2014. *Limacina*
1052 *helicina* shell dissolution as an indicator of declining habitat suitability due to ocean
1053 acidification in the California Current Ecosystem. *Proc. Royal Society B: Biological*
1054 *Sciences* 281:20140123

1055 59. Bednaršek N, Feely RA, Beck MW, Glippa O, Kanerva M, Engström-Öst J. 2018. El
1056 Niño-related thermal stress coupled with upwelling-related ocean acidification
1057 negatively impacts cellular to population-level responses in pteropods along the
1058 California Current System with implications for increased bioenergetic costs. *Front.*
1059 *Mar. Sci.* 5:486

1060 60. Engström-Öst, J, Glippa O, Feely RA, Kanerva M, Keister JE, et al. 2019. Eco-
1061 physiological responses of copepods and pteropods to ocean warming and
1062 acidification. *Scientific Reports* 9:4748.

1063 61. Sanford E, Kelly MW. 2011. Local adaptation in marine invertebrates. *Ann. Rev.*
1064 *Mar. Sci.* 3:509–35.

1065 62. Moore RS, Kaletsky R, Murphy CT. 2019. Piwi/PRG-1 argonaute and TGF- β
1066 mediate transgenerational learned pathogenic avoidance. *Cell* 177:1827–41.e1812.

1067 63. Perez MF, Lehner B. 2019. Intergenerational and transgenerational epigenetic
1068 inheritance in animals. *Nature Cell Biology* 21:143–51

1069 64. Strader ME, Wong JM, Kozal LC, Leach TS, Hofmann GE. 2019. Parental
1070 environments alter DNA methylation in offspring of the purple sea urchin,
1071 *Strongylocentrotus purpuratus*. *J. Experimental Mar. Biol. Ecol.* 517:54–64

1072 65. Wong JM, Johnson KM, Kelly MW, Hofmann GE. 2018. Transcriptomics reveal
1073 transgenerational effects in purple sea urchin embryos: Adult acclimation to
1074 upwelling conditions alters the response of their progeny to differential pCO₂ levels.
1075 *Molecular Ecology* 27:1120–37

1076 66. Wong JM, Kozal LC, Leach TS, Hoshijima U, Hofmann GE. 2019. Transgenerational
1077 effects in an ecological context: conditioning of adult sea urchins to upwelling
1078 conditions alters maternal provisioning and progeny phenotype. *J. Experimental*
1079 *Mar. Bio. Ecol.* 517:65–77

1080 67. Pespeni MH, Sanford E, Gaylord B, Hill TM, Hosfelt JD, et al. 2013. Evolutionary
1081 change during experimental ocean acidification. *Proc. Nat. Acad. Sci. U.S.A.*
1082 110:6937–43

1083 68. Collins S. 2011. Competition limits adaptation and productivity in a photosynthetic
1084 alga at elevated CO₂. *Proc. Royal Society B: Bio. Sci.* 278:247–55

1085 69. Lohbeck KT, Riebesell U, Reusch TBH. 2012. Adaptive evolution of a key
1086 phytoplankton species to ocean acidification. *Nature Geosci.* 5:346–51

1087 70. Schaum CE, Collins S. 2014. Plasticity predicts evolution in a marine alga. *Proc.*
1088 *Royal Soc. B: Biol. Sci.* 281:20141486.

1089 71. Wahl M, Saderne V, Sawall Y. 2016. How good are we at assessing the impact of
1090 ocean acidification in coastal systems? limitations, omissions and strengths of

1091 commonly used experimental approaches with special emphasis on the neglected
1092 role of fluctuations. *Marine Freshwater Research* 67:25–36

1093 72. Przeslawski R, Byrne M, Mellin C. 2015. A review and meta-analysis of the effects
1094 of multiple abiotic stressors on marine embryos and larvae. *Global Change Biology*
1095 21:2122–40.

1096 73. Hamilton SL, Kashef NS, Stafford DM, Mattiasen EG, Kapphahn LA, et al. 2019.
1097 Ocean acidification and hypoxia can have opposite effects on rockfish otolith growth.
1098 *J. Exp. Marine Biology Ecology* 521:151245

1099 74. McElhany P. 2016. CO₂ sensitivity experiments are not sufficient to show an effect
1100 of ocean acidification. *ICES J. Marine Science* 74:926–28

1101 75. Rivero-Calle S, Gnanadesikan A, Del Castillo CE, Balch WM, Guikema SD. 2015.
1102 Multidecadal increase in North Atlantic coccolithophores and the potential role of
1103 rising CO₂. *Science* 350:1533–37

1104 76. Beare D, McQuatters-Gollop A, van der Hammen T, Machiels M, Teoh SJ, Hall-
1105 Spencer JM. 2013. Long-term trends in calcifying plankton and pH in the North Sea.
1106 *PLoS ONE* 8:e61175

1107 77. Howes EL, Stemmann L, Assailly C, Irisson JO, Dima M, Bijma J, Gattuso JP. 2015.
1108 Pteropod time series from the North Western Mediterranean (1967-2003): impacts
1109 of pH and climate variability. *Mar. Ecol. Prog. Ser.* 531:193–206.

1110 78. Thibodeau PS, Steinberg DK, Stammerjohn SE, Hauri C. 2019. Environmental
1111 controls on pteropod biogeography along the Western Antarctic Peninsula. *Limnol.*
1112 *Oceanogr.* 64:S240–56

1113 79. de Moel H, Ganssen GM, Peeters FJC, Jung SJA, Kroon D, Brummer GJA, Zeebe
1114 RE. 2009. Planktic foraminiferal shell thinning in the Arabian Sea due to
1115 anthropogenic ocean acidification? *Biogeosciences* 6:1917–25

1116 80. Wall-Palmer D, Hart MB, Smart CW, Sparks RSJ, Le Friant A, et al. 2012. Pteropods
1117 from the Caribbean Sea: variations in calcification as an indicator of past ocean
1118 carbonate saturation. *Biogeosciences* 9:309–15

1119 81. Howes EL, Eagle RA, Gattuso J-P, Bijma J. 2017. Comparison of Mediterranean
1120 pteropod shell biometrics and ultrastructure from historical (1910 and 1921) and
1121 present day (2012) samples provides baseline for monitoring effects of global
1122 change. *PLoS ONE* 12:e0167891

1123 82. Osborne EB, Thunell RC, Gruber N, Feely RA, Benitez-Nelson C. 2020. Climatic
1124 modulation of anthropogenic ocean acidification in the California Current. *Nature* In
1125 press

1126 83. Beaufort L, Probert I, de Garidel-Thoron T, Bendif EM, Ruiz-Pino D, et al. 2011.
1127 Sensitivity of coccolithophores to carbonate chemistry and ocean acidification.
1128 *Nature* 476:80–83.

1129 84. Krumhardt KM, Lovenduski NS, Freeman NM, Bates NR. 2016. Apparent increase
1130 in coccolithophore abundance in the subtropical North Atlantic from 1990 to 2014.
1131 *Biogeosciences* 13:1163–77

1132 85. Silbiger NJ, Donahue MJ, Brainard RE. 2017. Environmental drivers of coral reef
1133 carbonate production and bioerosion: a multi-scale analysis. *Ecology* 98:2547–60

1134 86. Silbiger NJ, Guadayol Ò, Thomas FIM, Donahue MJ. 2014. Reefs shift from net
1135 accretion to net erosion along a natural environmental gradient. *Mar. Ecol. Prog. Ser.* 515:33–44

1136

1137 87. Meseck SL, Alix JH, Swiney KM, Long WC, Wikfors GH, Foy RJ. 2016. Ocean
1138 acidification affects hemocyte physiology in the tanner crab (*Chionoecetes bairdi*).
1139 *PLoS ONE* 11:e0148477.

1140 88. Sutton AJ, Feely RA, Maenner-Jones S, Musielwicz S, Osborne J, et al. 2019.
1141 Autonomous seawater pCO₂ and pH time series from 40 surface buoys and the
1142 emergence of anthropogenic trends. *Earth Syst. Sci. Data* 11:421–39

1143 89. Hall-Spencer JM, Rodolfo-Metalpa R, Martin S, Ransome E, Fine M, et al. 2008.
1144 Volcanic carbon dioxide vents show ecosystem effects of ocean acidification. *Nature*
1145 454:96–99

1146 90. Fabricius KE, Langdon C, Uthicke S, Humphrey C, Noonan S, et al. 2011. Losers
1147 and winners in coral reefs acclimatized to elevated carbon dioxide concentrations.
1148 *Nat. Clim. Chang.* 1(3):165–69

1149 91. Enochs IC, Manzello DP, Donham EM, Kolodziej G, Okano R, et al. 2015. Shift from
1150 coral to macroalgae dominance on a volcanically acidified reef. *Nature Clim. Change*
1151 5:1083–88

1152 92. Teixidó N, Gambi MC, Parravicini V, Kroeker K, Micheli F, et al. 2018. Functional
1153 biodiversity loss along natural CO₂ gradients. *Nat. Commun.* 9(1):5149

1154 93. Kroeker KJ, Micheli F, Gambi MC. 2013. Ocean acidification causes ecosystem
1155 shifts via altered competitive interactions. *Nat. Clim. Chang.* 3(2):156–59

1156 94. Brustolin MC, Nagelkerken I, Moitinho Ferreira C, Urs Goldenberg S, Ullah H,
1157 Fonseca G. 2019. Future ocean climate homogenizes communities across habitats
1158 through diversity loss and rise of generalist species. *Glob. Chang. Biol.*
1159 25(10):3539–48

1160 95. Micheli F, Halpern BS. 2005. Low functional redundancy in coastal marine
1161 assemblages. *Ecol. Lett.* 8(4):391–400

1162 96. Baggini C, Issaris Y, Salomidi M, Hall-Spencer J. 2015. Herbivore diversity improves
1163 benthic community resilience to ocean acidification. *J. Exp. Mar. Bio. Ecol.* 469:98–
1164 104

1165 97. Doubleday ZA, Nagelkerken I, Coutts MD, Goldenberg SU, Connell SD. 2019. A
1166 triple trophic boost: How carbon emissions indirectly change a marine food chain.
1167 *Glob. Chang. Biol.* 25(3):978–84

1168 98. Alsterberg C, Eklöf JS, Gamfeldt L, Havenhand JN, Sundbäck K. 2013. Consumers
1169 mediate the effects of experimental ocean acidification and warming on primary
1170 producers. *Proc. Natl. Acad. Sci. U.S.A.* 110(21):8603–08

1171 99. Ghedini G, Russell BD, Connell SD. 2015. Trophic compensation reinforces
1172 resistance: herbivory absorbs the increasing effects of multiple disturbances. *Ecol.*
1173 *Lett.* 18(2):182–87

1174 100. Harvey BP, Moore PJ. 2017. Ocean warming and acidification prevent
1175 compensatory response in a predator to reduced prey quality. *Mar. Ecol. Prog. Ser.*
1176 563:111–22

1177 101. Jellison BM, Gaylord B. 2019. Shifts in seawater chemistry disrupt trophic links within
1178 a simple shoreline food web. *Oecologia* 190(4):955–67

1179 102. Bach LT, Alvarez-Fernandez S, Hornick T, Stuhr A, Riebesell U. 2017. Simulated
1180 ocean acidification reveals winners and losers in coastal phytoplankton. *PLoS One*
1181 12(11):e0188198

1182 103. Taucher J, Haunost M, Boxhammer T, Bach LT, Algueró-Muñiz M, Riebesell U.
1183 2017. Influence of ocean acidification on plankton community structure during a
1184 winter-to-summer succession: an imaging approach indicates that copepods can
1185 benefit from elevated CO₂ via indirect food web effects. *PLoS One* 12(2):e0169737

1186 104. Boyd PW, Lennartz ST, Glover DM, Doney SC. 2015. Biological ramifications of
1187 climate-change-mediated oceanic multi-stressors. *Nat. Clim. Chang.* 5(1):71–79

1188 105. Boxhammer T, Taucher J, Bach LT, Achterberg EP, Algueró-Muñiz M, et al. 2018.
1189 Enhanced transfer of organic matter to higher trophic levels caused by ocean
1190 acidification and its implications for export production: A mass balance approach.
1191 *PLoS One* 13(5):e0197502

1192 106. Sswat M, Stiasny MH, Taucher J, Algueró-Muñiz M, Bach LT, et al. 2018. Food web
1193 changes under ocean acidification promote herring larvae survival. *Nat. Ecol. Evol.*
1194 2(5):836–40

1195 107. Rossoll D, Bermúdez R, Hauss H, Schulz KG, Riebesell U, et al. 2012. Ocean
1196 acidification-induced food quality deterioration constrains trophic transfer. *PLoS One*
1197 7(4):e34737

1198 108. Riebesell U, Aberle-Malzahn N, Achterberg EP, Algueró-Muñiz M, Alvarez-
1199 Fernandez S, et al. 2018. Toxic algal bloom induced by ocean acidification disrupts
1200 the pelagic food web. *Nat. Clim. Chang.* 8(12):1082–86

1201 109. Fu FX, Tatters AO, Hutchins DA. 2012. Global change and the future of harmful algal
1202 blooms in the ocean. *Mar. Ecol. Prog. Ser.* 470:207–33

1203 110. De'ath G, Lough JM, Fabricius KE. 2009. Declining coral calcification on the Great
1204 Barrier Reef. *Science* 323(5910):116–19

1205 111. Albright R, Caldeira L, Hosfelt J, Kwiatkowski L, Maclaren JK, et al. 2016. Reversal
1206 of ocean acidification enhances net coral reef calcification. *Nature* 531(7594):362–
1207 65

1208 112. Silbiger NJ, Guadayol Ò, Thomas FIM, Donahue MJ. 2016. A novel µCT analysis
1209 reveals different responses of bioerosion and secondary accretion to environmental
1210 variability. *PLoS ONE* 11:e0153058

1211 113. Mollica NR, Guo W, Cohen AL, Huang K-F, Foster GL, et al. 2018. Ocean
1212 acidification affects coral growth by reducing skeletal density. *Proc. Natl. Acad. Sci.*
1213 *U.S.A.* 115(8):1754–59

1214 114. Enochs IC, Manzello DP, Kolodziej G, Noonan SHC, Valentino L, Fabricius KE.
1215 2016. Enhanced macroboring and depressed calcification drive net dissolution at
1216 high-CO₂ coral reefs. *Proc. Royal Society B: Biol. Sci.* 283(1842):20161742

1217 115. Shamberger KEF, Cohen AL, Golbuu Y, McCorkle DC, Lentz SJ, Barkley HC. 2014.
1218 Diverse coral communities in naturally acidified waters of a Western Pacific reef.
1219 *Geophys. Res. Lett.* 41:499–504

1220 116. Connell SD, Kroeker KJ, Fabricius KE, Kline DI, Russell BD. 2013. The other ocean
1221 acidification problem: CO₂ as a resource among competitors for ecosystem
1222 dominance. *Philos. Trans. R. Soc. Lond. B Biol. Sci.* 368(1627):20120442

1223 117. Ober GT, Diaz-Pulido G, Thornber C. 2016. Ocean acidification influences the
1224 biomass and diversity of reef-associated turf algal communities. *Mar. Biol.*
1225 163(10):204

1226 118. Doropoulos C, Ward S, Diaz-Pulido G, Hoegh-Guldberg O, Mumby PJ. 2012. Ocean
1227 acidification reduces coral recruitment by disrupting intimate larval-algal settlement
1228 interactions. *Ecol. Lett.* 15(4):338–46

1229 119. Crook ED, Kroeker KJ, Potts DC, Rebolledo-Vieyra M, Hernandez-Terrones LM,
1230 Paytan A. 2016. Recruitment and succession in a tropical benthic community in
1231 response to in-situ ocean acidification. *PLoS One* 11(1):e0146707

1232 120. Noonan SHC, Kluibenschedl A, Fabricius KE. 2018. Ocean acidification alters early
1233 successional coral reef communities and their rates of community metabolism. *PLoS*
1234 *ONE* 13(5): e0197130

1235 121. Inoue S, Kayanne H, Yamamoto S, Kurihara H. 2013. Spatial community shift from
1236 hard to soft corals in acidified water. *Nat. Clim. Chang.* 3(7):683–87

1237 122. Barkley HC, Cohen AL, Golbuu Y, Starczak VR, DeCarlo TM, Shamberger KEF.
1238 2015. Changes in coral reef communities across a natural gradient in seawater pH.
1239 *Sci Adv.* 1(5):e1500328

1240 123. Sunday JM, Fabricius KE, Kroeker KJ, Anderson KM, Brown NE, et al. 2016. Ocean
1241 acidification can mediate biodiversity shifts by changing biogenic habitat. *Nat. Clim.*
1242 *Chang.* 7:81

1243 124. Fabricius KE, De'ath G, Noonan S, Uthicke S. 2014. Ecological effects of ocean
1244 acidification and habitat complexity on reef-associated macroinvertebrate
1245 communities. *Proc. Biol. Sci.* 281(1775):20132479

1246 125. Nagelkerken I, Russell BD, Gillanders BM, Connell SD. 2015. Ocean acidification
1247 alters fish populations indirectly through habitat modification. *Nat. Clim. Chang.* 6:89

1248 126. Munday PL, Cheal AJ, Dixson DL, Rummer JL, Fabricius KE. 2014. Behavioural
1249 impairment in reef fishes caused by ocean acidification at CO₂ seeps. *Nat. Clim.*
1250 *Chang.* 4(6):487–92

1251 127. Waldbusser GG, Steenson RA, Green MA. 2011. Oyster shell dissolution rates in
1252 estuarine waters: effects of pH and shell legacy. *J. Shellfish Res.* 30(3):659–69

1253 128. Waldbusser GG, Hales B, Langdon CJ, Haley BA, Schrader P, et al. (2015) Ocean
1254 acidification has multiple modes of action on bivalve larvae. *PLoS ONE*
1255 10(6):e0128376.

1256 129. Milazzo M, Rodolfo-Metalpa R, Chan VBS, Fine M, Alessi C, et al. 2014. Ocean
1257 acidification impairs vermetid reef recruitment. *Sci. Rep.* 4:4189

1258 130. Legrand E, Riera P, Lutier M, Coudret J, Grall J, Martin S. 2017. Species interactions
1259 can shift the response of a maerl bed community to ocean acidification and warming.
1260 *Biogeosciences* 14(23):5359–76

1261 131. Koch M, Bowes G, Ross C, Zhang X-H. 2013. Climate change and ocean
1262 acidification effects on seagrasses and marine macroalgae. *Global Change Biology*
1263 19(1):103–32

1264 132. Campbell JE, Fourqurean JW. 2014. Ocean acidification outweighs nutrient effects
1265 in structuring seagrass epiphyte communities. *J. Ecology* 102(3):730–37

1266 133. Zimmerman RC, Hill VJ, Gallegos CL. 2015. Predicting effects of ocean warming,
1267 acidification, and water quality on Chesapeake region eelgrass. *Limnol. Oceanogr.*
1268 60:1781–804

1269 134. Cox TE, Díaz-Castañeda V, Martin S, Alliouane S, Mahacek P, et al. 2017. Effects
1270 of in situ CO₂ enrichment on epibiont settlement on artificial substrata within a
1271 *Posidonia oceanica* meadow. *J. Exp. Mar. Bio. Ecol.* 497:197–211

1272 135. Martínez-Crego B, Olivé I, Santos R. 2014. CO₂ and nutrient-driven changes across
1273 multiple levels of organization in *Zostera noltii* ecosystems. *Biogeosciences*
1274 11(24):7237–49

1275 136. Burnell OW, Russell BD, Irving AD, Connell SD. 2013. Eutrophication offsets
1276 increased sea urchin grazing on seagrass caused by ocean warming and
1277 acidification. *Mar. Ecol. Prog. Ser.* 485:37–46

1278 137. Eklöf JS, Havenhand JN, Alsterberg C, Gamfeldt L. 2015. Community-level effects
1279 of rapid experimental warming and consumer loss outweigh effects of rapid ocean
1280 acidification. *Oikos* 124(8):1040–49

1281 138. Hughes BB, Lummis SC, Anderson SC, Kroeker KJ. 2018. Unexpected resilience of
1282 a seagrass system exposed to global stressors. *Glob. Chang. Biol.* 24(1):224–34

1283 139. Barton A, Waldbusser G, Feely R, Weisberg S, Newton J, et al. 2015. Impacts of
1284 coastal acidification on the Pacific Northwest shellfish industry and adaptation
1285 strategies implemented in response. *Oceanography* 25(2):146–59

1286 140. Gosling SN. 2013. The likelihood and potential impact of future change in the large-
1287 scale climate-earth system on ecosystem services. *Environ. Sci. Policy* 27(Supp
1288 1):S15–S31

1289 141. Scholes RJ. 2016. Climate change and ecosystem services. *WIREs Clim Change*
1290 7(4):537–50

1291 142. Pörtner H-O, Karl DM, Boyd PW, Cheung W, Lluch-Cota SE, et al. 2014. *Ocean*
1292 *Systems*. Cambridge/New York: Cambridge University Press

1293 143. Narita D, Rehdanz K, Tol RSJ. 2012. Economic costs of ocean acidification: a look
1294 into the impacts on global shellfish production. *Clim. Change* 113(3):1049–63

1295 144. Cooley SR, Doney SC. 2009. Anticipating ocean acidification's economic
1296 consequences for commercial fisheries. *Environ. Res. Lett.* 4(2):024007

1297 145. Cooley SR, Rheuban JE, Hart DR, Luu V, Glover DM, et al. 2015. An integrated
1298 assessment model for helping the United States sea scallop (*Placopecten*
1299 *magellanicus*) fishery plan ahead for ocean acidification and warming. *PLoS One*
1300 10(5):e0124145

1301 146. Dupont S, Hall E, Calosi P, Lundve B. 2014. First evidence of altered sensory quality
1302 in a shellfish exposed to decreased pH relevant to ocean acidification. *J. Shellfish*
1303 *Res.* 33(3):857–61

1304 147. Lemasson AJ, Hall-Spencer JM, Kuri V, Knights AM. 2019. Changes in the
1305 biochemical and nutrient composition of seafood due to ocean acidification and
1306 warming. *Mar. Environ. Res.* 143:82–92

1307 148. Ashur MM, Johnston NK, Dixson DL. 2017. Impacts of ocean acidification on
1308 sensory function in marine organisms. *Integr. Comp. Biol.* 57(1):63–80

1309 149. Mangi SC, Lee J, Pinnegar JK, Law RJ, Tyllianakis E, Birchenough SNR. 2018. The
1310 economic impacts of ocean acidification on shellfish fisheries and aquaculture in the
1311 United Kingdom. *Environ. Sci. Policy* 86:95–105

1312 150. Narita D, Rehdanz K. 2017. Economic impact of ocean acidification on shellfish
1313 production in Europe. *J. Environ. Planning Manage.* 60(3):500–18

1314 151. Fernandes JA, Papathanasopoulou E, Hattam C, Queirós AM, Cheung WWL, et
1315 al. 2017. Estimating the ecological, economic and social impacts of ocean
1316 acidification and warming on UK fisheries. *Fish Fisheries* 18(3):389–411

1317 152. Moore C. 2015. Welfare estimates of avoided ocean acidification in the U.S. mollusk
1318 market. *J. Agric. Resour. Econ.* 40(1):50–62

1319 153. Rheuban JE, Doney SC, Cooley SR, Hart DR. 2018. Projected impacts of future
1320 climate change, ocean acidification, and management on the US Atlantic sea scallop
1321 (*Placopecten magellanicus*) fishery. *PLoS ONE* 13(9):e0203536

1322 154. Punt AE, Foy RJ, Dalton MG, Long WC, Swiney KM. 2016. Effects of long-term
1323 exposure to ocean acidification conditions on future southern Tanner crab
1324 (*Chionoecetes bairdi*) fisheries management. *ICES J. Mar. Sci.* 73(3):849–64

1325 155. Lam VWY, Cheung WWL, Sumaila UR. 2016. Marine capture fisheries in the Arctic:
1326 winners or losers under climate change and ocean acidification? *Fish Fisheries*
1327 17(2):335–57

1328 156. Marshall KN, Kaplan IC, Hodgson EE, Hermann A, Busch DS, et al. 2017. Risks of
1329 ocean acidification in the California Current food web and fisheries: ecosystem
1330 model projections. *Glob. Chang. Biol.* 23(4):1525–39

1331 157. Hodgson EE, Kaplan IC, Marshall KN, Leonard J, Timothy E. Essington TE, et al.
1332 2018. Consequences of spatially variable ocean acidification in the California
1333 Current: Lower pH drives strongest declines in benthic species in southern regions
1334 while greatest economic impacts occur in northern regions. *Ecological Modelling*
1335 383(10):106–17

1336 158. Olsen E, Kaplan IC, Ainsworth C, Fay G, Gaichas S, et al. 2018. Ocean futures
1337 under ocean acidification, marine protection, and changing fishing pressures
1338 explored using a worldwide suite of ecosystem models. *Front. Mar. Sci.* 5:64

1339 159. Seijo JC, Villanueva-Poot R, Charles A. 2016. Bioeconomics of ocean acidification
1340 effects on fisheries targeting calcifier species: a decision theory approach. *Fish. Res.*
1341 176:1–14

1342 160. Talloni-Álvarez NE, Sumaila UR, Le Billon P, Cheung WWL. 2019. Climate change
1343 impact on Canada's Pacific marine ecosystem: the current state of knowledge. *Mar.*
1344 *Policy* 104:163–76

1345 161. Mathis JT, Cooley SR, Lucey N, Colt S, Ekstrom J, et al. 2015. Ocean acidification
1346 risk assessment for Alaska's fishery sector. *Prog. Oceanogr.* 136:71–91

1347 162. Ekstrom JA, Suatoni L, Cooley SR, Pendleton LH, Waldbusser GG, et al. 2015.
1348 Vulnerability and adaptation of US shellfisheries to ocean acidification. *Nat. Clim.*
1349 *Chang.* 5:207

1350 163. Hilmi N, Allemand D, Cinar M, Cooley S, Hall-Spencer JM, et al. 2014. Exposure of
1351 Mediterranean countries to ocean acidification. *Water* 6(6):1719–44

1352 164. Hoegh-Guldberg O, Poloczanska ES, Skirving W, Dove S. 2017. Coral reef
1353 ecosystems under climate change and ocean acidification. *Front. Mar. Sci.* 4:158

1354 165. Cesar H, Burke L, Pet-Soede L. 2003. *The economics of worldwide coral reef*
1355 *degradation*. Technical Report, Cesar Environmental Economics Consulting
1356 (CEEC), Arnhem, Netherlands

1357 166. Costanza R, d'Arge R, de Groot R, Farber S, Grasso M, et al. 1997. The value of
1358 the world's ecosystem services and natural capital. *Nature* 387(6630):253–60

1359 167. Pendleton LH, Thébaud O, Mongruel RC, Levrel H. 2016. Has the value of global
1360 marine and coastal ecosystem services changed? *Mar. Policy* 64:156–58

1361 168. Yates KK, Zawada DG, Smiley NA, Tiling-Range G. 2017. Divergence of seafloor
1362 elevation and sea level rise in coral reef ecosystems. *Biogeosciences* 14(6):1739–
1363 72

1364 169. Beck MW, Losada IJ, Menéndez P, Reguero BG, Díaz-Simal P, Fernández F. 2018.
1365 The global flood protection savings provided by coral reefs. *Nat. Commun.* 9(1):2186

1366 170. Brander LM, Rehdanz K, Tol RSJ, Van Beukering PJH. 2012. The economic impact
1367 of ocean acidification on coral reefs. *Clim. Change Econ.* 03(01):1250002

1368 171. Pendleton L, Hoegh-Guldberg O, Albright R, Kaup A, Marshall P, et al. 2019. The
1369 Great Barrier Reef: vulnerabilities and solutions in the face of ocean acidification.
1370 *Regional Studies Mar. Sci.* 31:100729

1371 172. Lemasson AJ, Fletcher S, Hall-Spencer JM, Knights AM. 2017. Linking the biological
1372 impacts of ocean acidification on oysters to changes in ecosystem services: a
1373 review. *J. Exp. Mar. Bio. Ecol.* 492:49–62

1374 173. Milazzo M, Fine M, La Marca EC, Alessi C, Chemello R. 2017. Drawing the line at
1375 neglected marine ecosystems: ecology of vermetid reefs in a changing ocean. In
1376 *Marine Animal Forests*, Vol. 8, ed. S Rossi, L Bramanti, A Gori, C Orejas, pp. 345–
1377 67. Cham: Springer International Publishing

1378 174. Grabowski JH, Brumbaugh RD, Conrad RF, Keeler AG, Opaluch JJ, et al. 2012.
1379 Economic valuation of ecosystem services provided by oyster reefs. *Bioscience*
1380 62(10):900–09

1381 175. California Ocean Protection Council. 2018. *State of California Ocean Acidification*
1382 *Action Plan*. California Ocean Protection Council, Sacramento, California, United
1383 States of America

1384 176. Hurd CL. 2015. Slow-flow habitats as refugia for coastal calcifiers from ocean
1385 acidification. *J. Phycol.* 51(4):599–605

1386 177. Macreadie PI, Jarvis J, Trevathan-Tackett SM, Bellgrove A. 2017. Seagrasses and
1387 macroalgae: importance, vulnerability and impacts. In *Climate Change Impacts on*
1388 *Fisheries and Aquaculture*, Vol. 52, ed. BF Phillips, M Pérez-Ramírez, pp. 729–70.
1389 Chichester, UK: John Wiley & Sons, Ltd

1390 178. Morris RL, Graham TDJ, Kelvin J, Ghisalberti M, Swearer SE. 2019. Kelp beds as
1391 coastal protection: wave attenuation of *Ecklonia radiata* in a shallow coastal bay.
1392 *Ann. Bot.* mcz127

1393 179. Gao K, Beardall J, Häder D-P, Hall-Spencer JM, Gao G, Hutchins DA. 2019.
1394 Effects of ocean acidification on marine photosynthetic organisms under the
1395 concurrent influences of warming, UV radiation, and deoxygenation. *Front. Mar.*
1396 *Sci.* 6:322

1397 180. Garrard SL, Beaumont NJ. 2014. The effect of ocean acidification on carbon
1398 storage and sequestration in seagrass beds; a global and UK context. *Mar. Pollut.*
1399 *Bull.* 86(1-2):138–46

1400 181. Kapsenberg L, Cyronak T. 2019. Ocean acidification refugia in variable
1401 environments. *Glob. Chang. Biol.* 25(10):3201–14

1402 182. Herr D, Galland GR. 2009. *The ocean and climate change: tools and guidelines for*
1403 *action*. IUCN, Gland, Switzerland

1404 183. Howard J, McLeod E, Thomas S, Eastwood E, Fox M, et al. 2017. The potential to
1405 integrate blue carbon into MPA design and management. *Aquat. Conserv.* 27:100–
1406 15

1407 184. Pacella SR, Brown CA, Waldbusser GG, Labiosa RG, Hales B. 2018. Seagrass
1408 habitat metabolism increases short-term extremes and long-term offset of CO₂
1409 under future ocean acidification. *Proc. Natl. Acad. Sci. U.S.A.* 115(15):3870–75

1410 185. Sippo JZ, Maher DT, Tait DR, Holloway C, Santos IR. 2016. Are mangroves
1411 drivers or buffers of coastal acidification? Insights from alkalinity and dissolved
1412 inorganic carbon export estimates across a latitudinal transect: mangroves buffer
1413 coastal acidification. *Global Biogeochem. Cycles* 30(5):753–66

1414 186. Sabine CL. 2018. Good news and bad news of blue carbon. *Proc. Nat. Acad. Sci.*
1415 *USA* 115(15): 3745–3746

1416 187. Luisetti T, Turner RK, Andrews JE, Jickells TD, Kröger S, et al. 2019. Quantifying
1417 and valuing carbon flows and stores in coastal and shelf ecosystems in the UK.
1418 *Ecosystem Services* 35:67–76

1419 188. Beaumont NJ, Jones L, Garbutt A, Hansom JD, Toberman M. 2014. The value of
1420 carbon sequestration and storage in coastal habitats. *Estuar. Coast. Shelf Sci.*
1421 137:32–40

1422 189. Lavery PS, Mateo M-Á, Serrano O, Rozaimi M. 2013. Variability in the carbon
1423 storage of seagrass habitats and its implications for global estimates of blue
1424 carbon ecosystem service. *PLoS One* 8(9):e73748

1425 190. Pendleton L, Donato DC, Murray BC, Crooks S, Jenkins WA, et al. 2012.

1426 Estimating global “blue carbon” emissions from conversion and degradation of

1427 vegetated coastal ecosystems. *PLoS One* 7(9):e43542

1428 191. Hall-Spencer JM, Harvey BP. 2019. Ocean acidification impacts on coastal

1429 ecosystem services due to habitat degradation. *Emerging Topics Life Sci.*

1430 3(2):197–206

1431 192. Barry JP, Widdicombe S, Hall-Spencer JM. 2011. Effects of ocean acidification on

1432 marine biodiversity and ecosystem function. In *Ocean Acidification*, ed. J-P

1433 Gattuso, L Hansson, pp. 192–209. Oxford/New York: Oxford University Press

1434 193. Broszeit S, Hattam C, Beaumont N. 2016. Bioremediation of waste under ocean

1435 acidification: Reviewing the role of *Mytilus edulis*. *Mar. Pollut. Bull.* 103(1-2):5–14

1436 194. Gascuel D, Cheung WWL. 2019. Marine biodiversity and ecosystem services: the

1437 large gloomy shadow of climate change. In *Predicting Future Oceans*. ed. AM

1438 Cisneros-Montemayor, WWL Cheung, Y Ota, pp. 79–85. Amsterdam: Elsevier

1439 195. Koenigstein S, Ruth M, Gössling-Reisemann S. 2016. Stakeholder-informed

1440 ecosystem modeling of ocean warming and acidification impacts in the Barents

1441 Sea region. *Front. Mar. Sci.* 3:93

1442 196. Rodrigues LC, van den Bergh JCJM, Ghermandi A. 2013. Socio-economic impacts

1443 of ocean acidification in the Mediterranean Sea. *Mar. Policy* 38:447–56

1444 197. Ruckelshaus M, Doney SC, Galindo HM, Barry JP, Chan F, et al. 2013. Securing

1445 ocean benefits for society in the face of climate change. *Mar. Policy* 40:154–59

1446 198. Urquhart J, Acott T. 2014. A sense of place in cultural ecosystem services: the

1447 case of Cornish fishing communities. *Soc. Nat. Resour.* 27(1):3–19

1448 199. AMAP. 2018. *AMAP Assessment 2018: Arctic Ocean Acidification*. Arctic
1449 Monitoring and Assessment Programme (AMAP), Tromsø, Norway

1450 200. Garcia Rodrigues J, Conides AJ, Rivero Rodriguez S, Raicevich S, Pita P, et al.

1451 2017. Marine and coastal cultural ecosystem services: knowledge gaps and
1452 research priorities. *Organ. Ethic.* 2:e12290

1453 201. Klain SC, Chan KMA. 2012. Navigating coastal values: participatory mapping of
1454 ecosystem services for spatial planning. *Ecol. Econ.* 82:104–13

1455 202. Billé R, Kelly R, Biastoch A, Harrould-Kolieb E, Herr D, et al. 2013. Taking action
1456 against ocean acidification: a review of management and policy options. *Environ.*
1457 *Manage.* 52(4):761–79

1458 203. Cooley SR, Ono CR, Melcer S, Roberson J. 2016. Community-level actions that
1459 can address ocean acidification. *Front. Mar. Sci.* 2:128

1460 204. Gattuso J-P, Magnan A, Billé R, Cheung WWL, Howes EL, et al. 2015. Contrasting
1461 futures for ocean and society from different anthropogenic CO₂ emissions
1462 scenarios. *Science* 349(6243):aac4722

1463 205. Magnan AK, Billé R, Cooley SR, Kelly R, Pörtner HO, et al. 2015. Intertwined
1464 ocean and climate: implications for international climate negotiations. *IDDRi Policy*
1465 *Brief* 04/15:1–4

1466 206. Strong AL, Kroeker KJ, Teneva LT, Mease LA, Kelly RP. 2014. Ocean acidification
1467 2.0: managing our changing coastal ocean chemistry. *Bioscience* 64(7):581–92

1468 207. Harrould-Kolieb ER, Herr D. 2012. Ocean acidification and climate change:
1469 synergies and challenges of addressing both under the UNFCCC. *Clim. Policy.*
1470 12(3):378–89

1471 208. Potts T. 2018. Climate change, ocean acidification and the marine environment. In

1472 *International Marine Environmental Law and Policy*, ed. D Hassan, S Karim, pp.

1473 87–100, London: Taylor & Francis Group

1474 209. Pratchett MS, Hoey AS, Wilson SK. 2014. Reef degradation and the loss of critical

1475 ecosystem goods and services provided by coral reef fishes. *Curr. Opinion*

1476 *Environ. Sustain.* 7:37–43

1477 210. Kelly RP, Foley MM, Fisher WS, Feely RA, Halpern BS, et al. 2011. Mitigating local

1478 causes of ocean acidification with existing laws. *Science* 332:1036–37

1479 211. Kelly RP, Caldwell MR. 2013. Ten ways states can combat ocean acidification

1480 (and why they should). *Harvard Environ. Law Rev.* 37:57

1481 212. Alleway HK, Gillies CL, Bishop MJ, Gentry RR, Theuerkauf SJ, Jones R. 2019.

1482 The ecosystem services of marine aquaculture: valuing benefits to people and

1483 nature. *Bioscience* 69(1):59–68

1484 213. Doyle B. 2018. *Tsleil-Waututh Nation: restoring shellfish harvest opportunities in*

1485 *Burrard Inlet, Canada*. Paper presented at the 2018 Salish Sea Ecosystem

1486 Conference, Seattle, WA, USA

1487 214. Green MA, Waldbusser GG, Reilly SL, Emerson K, O'Donnell S. 2009. Death by

1488 dissolution: sediment saturation state as a mortality factor for juvenile bivalves.

1489 *Limnol. Oceanogr.* 54(4):1037–47

1490 215. Waldbusser GG, Powell EN, Mann R. 2013. Ecosystem effects of shell

1491 aggregations and cycling in coastal waters: an example of Chesapeake Bay oyster

1492 reefs. *Ecology* 94(4):895–903

1493 216. National Academies of Sciences, Engineering, and Medicine, Division on Earth
1494 and Life Studies, Board on Life Sciences, Ocean Studies Board, Committee on
1495 Interventions to Increase the Resilience of Coral Reefs. 2019. A Research Review
1496 of Interventions to Increase the Persistence and Resilience of Coral Reefs.
1497 National Academies Press

1498 217. Kroeker KJ, Carr MH, Raimondi PT, Caselle JE, Washburn L, et al. 2019. Planning
1499 for change: Assessing the potential role of marine protected areas and fisheries
1500 management approaches for resilience management in a changing ocean.
1501 *Oceanography* 32(3):116–125

1502 218. Ritzman J, Brodbeck A, Brostrom S, McGrew S, Dreyer S, et al. 2018. Economic
1503 and sociocultural impacts of fisheries closures in two fishing-dependent
1504 communities following the massive 2015 U.S. West Coast harmful algal bloom.
1505 *Harmful Algae* 80:35–45

1506 219. Munang R, Thiaw I, Alverson K, Liu J, Han Z. 2013. The role of ecosystem
1507 services in climate change adaptation and disaster risk reduction. *Current Opinion*
1508 *Environ. Sustain.* 5(1):47–52

1509 220. Carriger JF, Yee SH, Fisher WS. 2019. An introduction to Bayesian networks as
1510 assessment and decision support tools for managing coral reef ecosystem
1511 services. *Ocean Coast. Manag.* 177:188–99

1512 221. Silver JM, Arkema KK, Griffin RM, Lashley B, Lemay M, et al. 2019. Advancing
1513 coastal risk reduction science and implementation by accounting for climate,
1514 ecosystems, and people. *Front. Mar. Sci.* 6:556

1515