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Abstract (Maximum of 150 words; currently 149 words)

Rising atmospheric CO2 levels, from fossil fuel combustion and deforestation, along
with agriculture and land-use practices are causing wholesale increases in seawater COz2
and inorganic carbon levels, reductions in pH, and alterations in acid-base chemistry of
estuarine, coastal, and surface open-ocean waters. Based on laboratory experiments and
field studies of naturally elevated-CO2 marine environments, widespread biological
impacts of human-driven ocean acidification have been posited, ranging from changes in
organism physiology and population dynamics to altered communities and ecosystems.
Acidification, in conjunction with other climate change related environmental stresses,
particularly under future climate change and further elevated atmospheric COz2 levels,
potentially puts at risk many of the valuable ecosystem services that the ocean provides
to society, such as fisheries, aquaculture, and shoreline protection. Emphasis in this
review is on both current scientific understanding and knowledge gaps, highlighting
directions for future research and recognizing the information needs of policymakers and

stakeholders.
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(target 10,000 words; currently ~8900 words, excluding references, and ~1200 additional
word equivalents from 3 moderately sized figures and 1 table estimated at ~300 words
each)

(target 150 references; currently ~220. Note that references numbered by appearance in
text, but with author names left in text for now to ease editing and revisions; will be

removed for final version)

1. INTRODUCTION

Present-day atmospheric carbon dioxide (COz2) levels of more than 410 ppm in 2020
are nearly 50% higher than pre-industrial concentrations, and the current elevated levels
and rapid growth rates are unprecedented in the past several million years of the
geological record. The source for this excess CO: is clearly established as human driven,
reflecting a mix of anthropogenic fossil fuel, industrial, and land-use/land-change
emissions (1) (Le Quéré et al., 2018). The concept that the ocean acts as a major sink
for anthropogenic COz2 has been present in the scientific literature since at least the late
1950s, and multiple lines of evidence, including direct observations of increasing
dissolved inorganic carbon inventories (2) (Gruber et al., 2019), document ocean uptake
of roughly a quarter of total anthropogenic CO2 emissions. It is also well understood that
the additional CO2 in the ocean results in a wholesale shift in seawater acid-base
chemistry towards more acidic, lower pH conditions and lower saturation states for
carbonate minerals used in many marine organism shells and skeletons (3) (Zeebe and

Wolf-Gladrow, 2001). Extensive observational systems are now in place or being built for
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monitoring seawater CO2 chemistry and acidification both for the global open-ocean and
some coastal systems (4, 5) (Tilbrook et al., 2019, Cross et al., 2019).

The potential for substantial biological responses to the excess CO2 and ocean
acidification has only started to be well appreciated in the past two decades, stimulated
in part by a seminal Royal Society meeting and report (6) (Royal Society, 2005). Reported
acidification effects span from changes in cellular metabolism, organism physiology, and
sensory perception to population and community, biogeochemical, and ecosystem-level
dynamics (7) (Gattuso and Hannson, 2011). Knowledge about organismal responses
leverages a wealth of data from laboratory manipulative experiments. More limited
information is available on community and ecosystem responses from mesocosm and
field studies, natural high-CO2 environments, and modeling exercises.

The implications for human society—for fishery and resource management, marine
conservation, and impacts on communities reliant on the ocean—are just now coming into
focus. Atmospheric CO2 and the concurrent ocean acidification are projected to continue
to rise through mid-century, if not longer, without deliberate and decisive international
action on climate mitigation and emissions reductions. Thus, improved understanding is
urgently needed on ocean acidification impacts from scientific, management, policy, and
socio-economic perspectives to develop adequate adaptation strategies.

This review focuses on the rapidly expanding body of knowledge on ocean
acidification in the scientific literature over the past decade since a previous Annual
Reviews article on the topic (8) (Doney et al., 2009). It builds from a number of recent
synthesis efforts in journal special issues (9) (Mathis et al., 2015a) and national and

international scientific assessments (10, 11, 12, 13) (Ciais et al., 2013, Hoegh-Guldberg
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et al., 2014, Jewett and Romanou, 2017; Bindoff et al., 2019). There are also a number
of excellent review papers on various topical aspects of ocean acidification, a selection
including articles on physiological responses (14) (Falkenberg et al., 2018), effects on
invertebrate and fish larvae (15) (Espinel-Velasco et al., 2018), animal behavior (16)
(Nagelkerken and Munday, 2016), nitrogen cycle (17) (Wannicke et al., 2018), coral reefs
(18) (Kleypas, 2019), ecological theory (19) (Gaylord et al., 2015), and policy solutions
(20) (Gattuso et al., 2018).

The remainder of this review is partitioned into sections on acidification impacts on
seawater chemistry from rising atmospheric CO2 and coastal land-use and pollution
(Section 2), organismal effects of acidification (Section 3), community and ecosystem
impacts on key food-web interactions such as competition, predator-prey interactions,
and disease (Section 4), risks to human communities that rely on the natural resources
provided by the ocean via fisheries, aquaculture, and culture and social connections

(Section 5), and a brief summary (Section 6).

2. SEAWATER CHEMISTRY
Aqueous carbon dioxide, CO2(aq), and the inorganic carbon system play a central role
in seawater acid-base chemistry, and the addition of CO2 from natural and anthropogenic
sources causes acidification and shifts in the speciation of dissolved ions (3, 21) (Zeebe
and Wolf-Gladrow 2001, Millero 2007). At seawater pH levels (~8), CO2 added to
seawater reacts with water to form bicarbonate, HCOs~, and hydrogen ions, H*:
CO, + H,0 - HCO; +H* (Eq 1)

The release of hydrogen ions acts to increase acidity and lower seawater pH, defined as:
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pH = —log;o[H"] (Eq 2)
and lower the concentration of carbonate ions, CO3?-, via:

CO5~+H" - HCO3 (Eq 3)
Acidification impacts will depend on organism responses to multiple, simultaneous
chemical changes—increasing CO2(aq), HCOs~ and H* and decreasing CO3?~ (22) (Hurd
et al. 2019).

Acidification has been shown to affect many types of marine organisms that form
shells and skeletons from calcium carbonate minerals (CaCOs). The solubility of
carbonate minerals:

CaC03(s) © CO2™ + Ca?* (Eq. 4)
can be expressed as a saturation state:

[cof~|[ca?*]
Ksp

Q= (Eq. 5)

where <1 indicates undersaturation with respect to thermodynamic equilibrium and the
expectation that unprotected carbonate materials will dissolve. There are multiple forms
of carbonate minerals with different solubilities, with calcite being less soluble than
aragonite and amorphous carbonate.

The inorganic carbon acid-base reactions and carbonate mineral solubility are
controlled by well-characterized, equilibrium thermodynamic relationships as a function
of temperature, salinity, and pressure. The system is characterized fully from the physical
state and any two of four chemical properties: pCOz2, pH, dissolved inorganic carbon
(DIC), and alkalinity. DIC is the total concentration of CO2 gas and the inorganic carbon
acid-base products resulting from hydration (Eq. 1 and 3). Alkalinity is the acid buffering

capacity of seawater that reflects the speciation of the carbonate and borate acid-base
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systems as well as minor trace species. The scientific community has developed best
practices for the measurement of seawater carbonate chemistry in field and lab samples
as well as standardized approaches for mimicking acidification chemical changes in
biological manipulation studies (23) (Riebesell et al. 2010).

On a global scale, acidification of the surface ocean is occurring because of the rapid
rise in atmospheric COz2. Driven primarily by fossil fuel combustion, contemporary human
CO2 emissions to the atmosphere of about 10 billion metric tons carbon per year result in
an increase in atmospheric CO:2 of roughly 2 ppm/year or 0.5% per year (1) (Le Quéré et
al., 2018). Present-day COz2 levels (~410 ppm) have not been experienced by life on Earth
for several million years, and the human-induced COz2 growth rate is nearly two orders of
magnitude faster than what occurred during the large glacial-interglacial transitions (10)
(Ciais et al., 2013).

Ocean surface waters exchange CO:2 with the overlying atmosphere via physical gas
transfer, and the surface seawater partial pressure, pCOz2, tends to track the growth of
atmospheric CO2 for much of the global ocean, as illustrated by long-term time series
records at a number of open-ocean locations (24) (Benway et al., 2019) and analysis of
global surface ocean COz2 observational networks (25) (Bakker et al., 2016). As a result,
surface pH and carbonate ion are declining (Figure 1), and surface ocean pH is estimated
to have dropped on average globally by about 0.1 units from the pre-industrial era to

present.
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Figure 1. Trends in surface (<50m) ocean carbonate chemistry calculated from
observations obtained at the Hawai‘i Ocean Time-series (HOT) Program in the North
Pacific over 1988-2015. The upper panel shows the linked increase in atmospheric (red
points) and seawater (blue points) CO2 concentrations. The bottom panel shows a decline
in seawater pH (black points, primary y-axis) and carbonate ion concentration (green
points, secondary y-axis). Ocean chemistry data were obtained from the Hawai‘i Ocean
Time-series Data Organization & Graphical System (HOT-DOGS,
http://hahana.soest.hawaii.edu/hot/hot-dogs/index.html). (Figure source: NOAA and
Jewett and Romanou, 2017). Note: final version of published figure shown here is slightly
different than the electronic version shared from authors so that file will need minor

redrafting to match published version.
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More acidified ocean conditions, found regionally due to natural processes and local
human impacts, are exacerbated by the global acidification signal driven by CO:2
emissions. Coastal upwelling systems typically have elevated CO2 and low Oz levels
because of the marine biological pump and subsequent respiration of sinking organic
matter at depth (26, 27) (Feely et al., 2008; Feely et al., 2018). Similar high CO2—low O2
conditions are found in many coastal and estuarine systems associated with excess
nutrient and organic carbon inputs from land sources (27, 28) (Feely et al., 2010; Feely
et al., 2018). Coastal acidification can also occur because of low-alkalinity freshwater
fluxes from rivers, groundwater, and ice melt (29, 30, 31) (Gledhill et al., 2015; Rheuban
etal., 2019; Evans et al., 2013). Coastal systems tend to exhibit large amplitude variations
of seawater chemistry on smaller time and space scales (32) (Waldbusser and Salisbury,

2014).

3. ORGANISMAL RESPONSES

The literature on organismal sensitivity to high CO2 conditions has expanded rapidly
(33) (Browman, 2016), and, in marine biology, ocean acidification has moved from being
a frontier science to a mature sub-discipline exploring species sensitivity at finer detail
than a decade ago. Research on how high-CO2 conditions influence fishes exemplifies
this trend. While some fish appear able to compensate for disturbance to acid-base
balance under high-CO2 conditions, they express unexpected sensitivity in otolith growth,
mitochondrial function, metabolic rate, larval yolk consumption, activity, and

neurosensory and behavioral endpoints, including settlement and post-settlement

10
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processes, to current and near future COz2 levels (15, 34) (Espinel-Velasco et al. 2018,
Heuer and Grosell 2014). Altered fish physiology in high CO2 conditions may disrupt
systems related to the neurochemical GABAA (35) (Tresguerres and Hamilton 2017).
Substantial variation in sensitivity exists within and between fish species (36, 37) (Cattano
et al. 2018, Esbaugh 2018).

As more detailed information on species sensitivity to ocean acidification conditions
becomes available, generalizations about patterns in sensitivity are difficult to make. For
example, copepod sensitivity currently defies simple characterization as it is higher in
earlier life-stages than in the adult life stage, variable between species and within different
populations of the same species, and dependent on co-stressors and processes of
acclimatization and adaptation (38) (Wang et al. 2018). Variation also exists within and
between phytoplanton groups: diazotrophs, diatoms, and other large photoplankton
including dinoflagellates have higher growth rates in high CO2 conditions, while
coccolithophores, Synechoccucus, and Prochlorococus do not, though there is wide
variation in response within groups (39) (Dutkiewicz et al. 2015). While species that calcify
are generally more sensitive to high CO2 conditions than those that do not calcify, this
generalization is not uniformly applicable, and the form of calcium carbonate that species
produce (i.e., calcite, aragonite) is not strongly linked to species sensitivity (40) (Busch
and McElhany 2017).

Recent reviews emphasize how species sensitivity to various CO2 conditions is
influenced by exposure to other aspects of climate change. Negative additive effects
typically occur with simultaneous exposure to high CO2 and low dissolved oxygen (41)

(Gobler and Baumann 2016). A trend toward slower survival, growth, and development
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is also evident with simultaneous exposure to high CO2 and elevated temperature (42)
(Kroeker et al. GCB 2013).

As displayed in Figure 2, a variety of experimental strategies are being used to
characterize the sensitivity of species to acidification now and in the future (43, 44)
(Sunday et al. 2013; Boyd et al. 2018). Complementary approaches are needed because
any one technique is limited by issues related to drawing inferences from short-term
experiments or small-scale spatial range, choices about treatment conditions and study
subjects, logistics related to engineering and animal husbandry, and other factors (33)
(Browman 2016). Below we discuss recent experimental and field breakthroughs through
the lens of three challenges or tensions in designing and interpreting organismal

sensitivity studies.
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Figure 2. Progress in studies of ocean global change overlaid on the property-property
space (termed the “RG cube”) developed by (45) Riebesell and Gattuso (2015). The cube
represents different experimental strategies: 1 mesocosms, including FOCE experiments;
2 competition experiments; 3 typical acclimated species under acidification; 4 long-term
(>400 generations) microevolution studies; 5 multiple driver studies; 6 sites of CO2 natural
enrichment such as CO2 seeps. Figure from (44) Boyd et al. 2018. Note: final version of
published figure shown here from .png file is slightly different than the electronic eps and

pdf versions shared from authors; those files will need some redrafting.
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3.1 Characterizing present versus projected future sensitivity to ocean acidification

Ocean acidification is a long-term, press perturbation on marine ecosystems that will
play out on the scale of decades, centuries, and longer. Early work characterizing the
sensitivity of marine species to ocean acidification focused on a stationary approach: the
sensitivity of representative individuals of a species as they exist in the present (46, 47)
(Kroeker et al. 2010, Busch and McElhany 2016). While useful, this approach does not
necessarily yield information on how species in their future state will react to changes in
seawater carbonate chemistry as acidification progresses in the environment. Predicting
the evolutionary demographic responses to climate change and ocean acidification
requires consideration of phenotypic plasticity and natural selection across environments
(48) (Chevin et al. 2013).

Discovery of individuals or populations more resilient to high CO2 conditions has
arisen by testing the repeatability within and between identical sensitivity experiments
(49, 50) (Murray and Baumann 2018, Guscelli et al. 2019) and among populations of the
same species. Some populations living in naturally high CO2 environments express less
sensitivity to high CO2 experimental treatments (51, 52, 53) (Kelly et al. 2013, Vargas et
al. 2017, Hollarsmith et al. 2020). Others at the edge of a species’ range can be more
sensitive to high CO2 exposure, suggesting the influence of biogeographic processes
beyond carbonate chemistry conditions (54) (Calosi et al. 2017).

Studying populations living in naturally high CO2 environments is another way to
explore whether long-term exposure to high CO2 can confer resistance to ocean
acidification. Laboratory experiments on two zooplankton species collected from Puget

Sound, an urbanized estuary in the northeast Pacific with high CO2 conditions due to both

14
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natural and human sources (28) (Feely et al. 2010), finds that individuals are negatively
impacted by carbonate chemistry conditions already experienced by local populations
(55, 56) (Busch et al. 2014, McLaskey et al. 2016). Field collections show that some
species express sensitivity to the high CO2 conditions already observed along the western
coast of the United States, while others express signs of potential adaptation (57, 58, 59,
60) (Pespeni et al. 2013 Int. Comp. Biology, Bednarsek et al. 2014, Bednarsek et al. 2018,
Engstrom-Ost et al. 2019).

Organisms may evolve much more quickly than we recently thought possible (61)
(Sanford and Kelly 2011), especially via epigenetics (62, 63) (Moore et al. 2019, Perez
and Lehner 2019). Groundbreaking work in the purple urchin Strongylocentrotus
purpuratus has shown transgenerational plasticity in response to high CO2 exposure, with
documented transgenerational impacts on the epigenome (64) (Strader et al. 2019), gene
expression (65) (Wong et al. 2018), and phenotype (66) (Wong et al. 2019). Other work
in the purple urchin has found evidence of additive genetic variance for size and genome-
wide selection under different CO2 conditions (51, 67) (Kelly et al. 2013, Pespeni et al.
2013b). Multigenerational experimental evolution studies are feasible for microbes and
have indicated that adaption to high COz2 conditions is possible (68, 69, 70) (Collins 2011,

Lohbeck et al. 2012, Schaum and Collins 2014).

3.2 Designing tractable experiments versus aiming for ecological relevance
The ecological relevance of aspects of present-day experimental capabilities can be
debated, and the resulting knowledge gaps limit our ability to project or model the potential

direct and indirect impacts of acidification at the ecosystem level (47) (Busch and

15
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McElhany 2016). For example, results from experiments that hold environmental
conditions static may not be fully relevant to the dynamic conditions that organisms
experience in nature (71) (Wahl et al. 2016). Also, sensitivity research tends to cluster on
a limited group of taxa— driven by logistics, stakeholder concerns, and concentration of
mechanistic studies on a limited set of target organisms — thus failing to reflect the
diversity of marine species (47) (Busch and McElhany 2016). Publication bias against
sharing negative experimental results, that is cases with no or small CO2 effects, also
may limit the representativeness of available data for synthesis and modeling (33)
(Browman 2016).

Ocean acidification should not be considered an isolated phenomenon but is instead
part of a complex of changing ocean conditions that must be considered together if
sensitivity studies are to have ecological relevance. Designing research studies to tackle
the complexity of multiple changing parameters, while still being logistically feasible and
interpretable, is a challenge. Boyd et al. (44) (Boyd et al. 2018) describe two
complementary paths: 1) a mechanistic, reductionist approach in which the influence of
each aspect of ocean change is considered alone and then in conjunction with other
aspects of ocean change; and 2) a scenario-based approach in which multiple variables
are altered together to match future projections of ocean conditions.

A well-recognized danger in the reductionist approach is that considering one factor
alone can yield incorrect information related to how a species might fare in a future ocean.
The response of species to various aspects of ocean change can be additive, synergistic,
or antagonistic (44, 72) (Boyd et al. 2018; Przeslawski et al. 2015). For example, the

sensitivity of reproduction in kelp to pH sensitivity can depend on temperature conditions
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(53) (Hollarsmith et al. 2020). Elevated CO2 in coastal regions and the deep ocean
typically co-occurs with low oxygen or hypoxia, both generated by respiration of organic
matter (41) (Gobler and Baumann 2016). High CO2 and reduced oxygen content can have

the opposite effects on otolith size in juvenile rockfish (73) (Hamilton et al. 2019).

3.3 Sensitivity to high CO2 conditions versus detecting ocean acidification impacts in the
environment

Most studies to date focused on organismal responses to different seawater inorganic
carbon chemistry conditions in either laboratory or field settings; valuable research, but
not actually demonstration of ocean acidification impacts on marine species (74)
(McElhany 2016). In contrast, more limited research has attempted to detect change in
marine species in the environment that can be attributed to ocean acidification and its
progression. Studies correlating ocean carbonate chemistry to marine species
abundance have mixed results, with some finding a signature of ocean acidification
impacts (75) (Rivero-Calle et al. 2015) and many failing to do so (76, 77, 78) (Beare et al.
2013, Howes et al. 2015, Thibodeau et al. 2019). Historical records of pteropods and
foraminfera show correlation of shell conditions with reconstructed carbonate chemistry
conditions (79, 80, 81, 82) (de Moel et al. 2009, Wall-Palmer et al. 2012, Howes et al.
2017, Osborne et al. In press), though such correlations do not yet exist for coral reefs
and are contradictory for coccolithophores (83, 84) (Beaufort et al. 2011, Krumhardt et al.
2016).

Because ocean acidification co-occurs with other aspects of climate change and

human impacts on ocean systems, disentangling ocean acidification impacts from those
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of other stressors is a challenge (85) (Silbiger et al. 2017). It is also likely that the
thresholds at which carbonate chemistry conditions will impact many species have not
yet been crossed. Natural variation in carbonate chemistry in modern systems has been
used to gain insight into the current and projected future effects of ocean acidification on
marine species (58, 86) (Bednarsek et al. 2014, Silbiger et al. 2014). As understanding
of the sublethal signatures of exposure to high-CO2 conditions increases, such as
alterations in molecular markers of stress (60) (Engstrém-Ost et al. 2019), the immune
system (87) (Meseck et al. 2016), or shell state (58) (BednarSek et al. 2014), robust
methods for detecting and monitoring the impacts of ocean acidification on marine
species will emerge. The probability of detecting and attributing change to ocean
acidification will likely increase as the chemical signature of ocean acidification emerges
from the natural variation of carbonate chemistry in the coastal oceans (88) (Sutton et al.

2019).

4. COMMUNITY AND ECOSYSTEM EFFECTS
4.1 Introduction — Overall patterns of community change

Studies examining how individual organismal effects of ocean acidification will affect
communities and functioning ecosystems have received increasing recent attention (19)
(Gaylord et al. 2015). Results from both mesocosm experiments and studies using natural
gradients in carbonate chemistry strongly suggest ocean acidification increases primary
producer biomass and decreases taxonomic diversity (89, 90, 91) (Hall-Spencer et al.
2008, Fabricius et al. 2011, Enochs et al. 2015), although many species are able to

survive in high CO2 conditions. The decreases in taxonomic diversity are likely to have

18



365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

functional consequences (92) (Teixido et al. 2018), although the effects on ecosystem
function are just beginning to be explored. In general, there is a trend towards the
homogenization of community structure in space and time, which has been attributed to
altered competitive interactions (93, 94) (Kroeker et al. Nat. Clim. 2013; Brustolin et al.
2019). Although functional redundancy is generally considered to be quite low in marine
ecosystems (95) (Micheli & Halpern 2005), redundancy within trophic groups can limit
community shifts associated with acidification if resilient species are able to compensate
functionally for more vulnerable species (96) (Baggini et al. 2015).

Increased primary production associated with high pCOz2 can boost production across
multiple trophic levels (97) (Doubleday et al. 2019), if consumers are able to increase
their consumption rates. However, it is unclear what controls the ability of a consumer to
increase their consumption rate in high CO2 conditions. For example, consumers have
been shown to compensate for increased primary producer biomass associated with
acidification, thereby limiting the predicted shifts in community structure associated with
the increased growth and competitive dominance of macroalgae (98, 99) (Alsterberg et
al. 2013; Ghedini et al. 2015). However, in an observational study at natural high COz2
seeps, the increase in consumer consumption rates was insufficient to keep pace with
increased algal productivity, and thus community structure associated with high CO:2
conditions was dominated by fleshy macroalgae (97) (Doubleday et al. 2019). Moreover,
there are numerous examples of consumers demonstrating little to no change in their
consumption rates in high CO2 conditions, including when decreases in prey quality
caused by acidification require it for predator survival (100) (Harvey and Moore 2017).

Altered behavior in marine consumers (e.g., predator avoidance) caused by exposure to
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conditions of ocean acidification can also weaken indirect trophic linkages (e.g., trophic
cascades), causing cascading effects on community structure and function (101) (Jellison
and Gaylord 2019).

Below, we review the expanding literature on community and ecosystem effects of
acidification on four critical habitats especially relevant for resource managers: pelagic
food webs, coral reefs, oyster and other biogenic, carbonate reefs, and seagrass beds

(Table 1).

Critical habitat Community/Ecosystem Property or Process Trend References
Pelagic foodwebs
d "f_'-"( Community structure A 102, 103, 104
i, Primary productivity by 105
Secondary productivity i3 103, 105,106
Harmful algal blooms i3 108,109
Coral Reefs
Community structure A 90, 91,115, 121
Net ecosystem calcification 7 111, 112, 114
Bioerosion of habitat forming species i 114
Recruitment of habitat forming species v 118-120
Competition of habitat forming species with macroalgae iy 90, 91, 116, 119
Structural complexity 7 123,124
Taxonomic diversity 7 90, 91,124
Net calcification v 129, 130
Dissolution @ 127
Recruitment of habitat forming species &b 128, 129
Competition of habitat forming species with macroalgae i 130
Primary productivity i) 131
Competition of habitat forming species with macroalgae g 4 89, 132,135
Top-down control/grazing i 98, 136-138

Table 1: General trends in key community and ecosystem properties and processes in
response to ocean acidification from the primary literature. Triangle = change (neither
increase or decrease), upward arrow = increase, downward arrow = decrease. Trends
are primarily derived from studies of multiple-species mesocosm experiments or

observational studies in naturally acidified ecosystems. The literature cited is not
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exhaustive but represents key studies highlighting the community and ecosystem effects

in the critical habitats featured in this review.

4.2 Pelagic food webs

The community structure of planktonic communities is very likely to change with
acidification (102, 103) (Bach et al. 2017; Taucher et al. 2017), with cascading impacts
on the productivity of the entire food web. An important caveat to consider, however, is
that the responses of phytoplankton will likely depend on other environmental conditions
and factors, such as the nutrient availability, salinity, and the temperature regime (104)
(Boyd et al. 2015), and these interactions have yet to be fully incorporated into whole-
community mesocosm studies. Modeling work suggests that ocean acidification,
warming, and increased stratification will drive changes in marine microbial community
makeup (39) (Dutkiewicz et al. 2015), but it is not yet known whether microbial changes
will alter global ecosystem functions such as net primary production and export or air-sea
gas exchange.

Whole-community mesocosm studies have demonstrated increased productivity at
the base of pelagic food webs (102) (Bach et al. 2017), leading to increased productivity
of higher trophic levels (105) (Boxhammer et al. 2018), including enhanced survival and
biomass of larval fish that are directly negatively impacted by acidification (106) (Sswat
et al. 2018). However, not all zooplankton are expected to benefit from increased primary
productivity. For example, some zooplankton taxa appear to be vulnerable directly to
ocean acidification, regardless of the resources available (58) (Bednarsek et al. 2014).

Field studies across upwelling gradients indicate that pteropods may already be

21



425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

experiencing shell dissolution in low pH waters along the California Current (58)
(Bednarsek et al. 2014). In addition, the nutritional quality of some zooplankton may suffer
with ocean acidification, despite increased production or abundance (107) (Rossoll et al.
2012). As such, models of pelagic food webs with ocean acidification have indicated that
the effects on upper trophic level species are likely to be complex and species-specific,
based on the specific food web linkages in the ecosystem.

Ocean acidification could also disrupt pelagic food webs via the proliferation of toxic
algal blooms (108) (Riebesell et al. 2018). Ocean acidification can either increase the
toxicity of the harmful algae (109) (Fu et al. 2012) or increase the abundance of toxic
bloom forming species through altered competitive interactions (108) (Riebesell et al.
2018). Again, it is less well understood how ocean acidification may interact with other
factors, including changing ocean temperatures and nutrient concentrations to affect
harmful algal blooms, but it is clear that increases in the toxicity or abundance of bloom

forming species could severely disrupt food webs.

4.3 Coral reefs

The persistence of coral reefs depends on the balance of net accretion (e.g.,
carbonate production minus dissolution) and bioerosion of the habitat-forming coral
species. Numerous studies document declines in net calcification of different coral
species and coral reef assemblages with lower carbonate saturation states. Moreover,
retrospective studies from the Great Barrier Reef have highlighted large declines in the
net calcification of corals over time (110) (De’ath et al. 2009). However, it has been difficult

to attribute the declines in net accretion to ocean acidification due to the concurrent trends
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in ocean warming and coral bleaching. Using manipulative alkalinity enrichment at the
scale of a reef flat, Albright et al. (2016) (111) recently demonstrated that net community
calcification increases when the seawater carbonate saturation states are raised to pre-
industrial levels. This suggests that coral reefs have already suffered declines in net
calcification associated with ocean acidification (111) (Albright et al. 2016).

There is growing evidence that bioerosion may be more sensitive to changes in
carbonate chemistry than carbonate production (112) (Silbiger et al. 2016). This is
potentially due to changes in the density or structural integrity of the coral skeletons
produced in lower carbonate saturation state (113) (Mollica et al. 2018). Indeed,
increased bioerosion has been demonstrated in naturally more acidic locations (91, 114,
115) (Enochs et al. 2015, Enochs et al. 2016; Shamberger et al. 2014), which suggests
minor shifts in species interactions may further tip the balance from net accretion to net
erosion of coral reefs in future conditions.

As with other habitats, most observational studies of naturally acidified coral reefs
indicate that diversity is depressed and macroalgal abundance is elevated in carbonate
chemistry conditions comparable to those projected for the end of the century (90, 91)
(Fabricius et al. 2011, Enochs et al. 2015). Potential shifts in the competitive balance
between corals and macroalgae is especially important given the numerous studies
documenting the detrimental effects of algal overgrowth of corals. Turf algal communities,
in particular, are expected to increase in biomass and diversity in high CO2 conditions
(116, 117) (Connell et al. 2013, Ober et al. 2016), which could further impact community
structure by limiting the recruitment of juvenile corals. Declines in the percent cover of

crustose coralline algae, which are often used as recruitment substrates by corals, may
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also contribute to reduced coral settlement in high CO2 conditions (118) (Doropoulos et
al. 2012). High-CO: effects on early succession dynamics lead to higher abundance of
micro- and macroalgae and lower coral recruitment, although the mechanisms attributed
to these shifts differ among studies: altered competitive interactions (119) (Crook et al.
2016) versus chemical control (120) (Noonan et al. 2018).

Despite these observed shifts in coral reef community structure, corals do not
“disappear” in naturally more acidic conditions. In several studies, the coral community
shifts from relatively faster-growing, structurally complex corals to slower-growing,
mounding corals (90, 91) (Fabricius et al. 2011, Enochs et al. 2015) or even soft corals
(121) (Inoue et al. 2013) in conditions comparable to end of the century projections.
Studies of coral reefs growing in the rock islands of Palau, however, documented slightly
different shifts in coral community structure than other naturally acidified ecosystems
(115) (Shamberger et al. 2014). In this system, community composition of the coral
species varies with carbonate chemistry, as in other systems, but the shifts in community
composition are not associated with decreased diversity, structural complexity or
increased macroalgal abundance. Instead, distinct coral reef communities, with high coral
cover, exist in the naturally more acidic bays. Lab studies of the corals growing in these
environments suggest there may be some level of adaptation to lower saturation states
or other co-occurring environmental covariates (122) (Barkley et al. 2015). Thus, the
potential adaptive capacity of corals to projected future warming and acidification remains
an important frontier that needs to be resolved better for understanding emergent

community shifts.
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Shifts in coral community structure associated with acidification can have indirect
effects on reef-associated invertebrate and fish communities (123) (Sunday et al. 2016).
For example, shifts from structurally complex corals to massive, mounding corals, as
witnessed near natural CO2 seeps, can reduce the structural complexity of the habitat
and the associated invertebrate communities (90, 124) (Fabricius et al. 2011; Fabricius
et al. 2014). Alternatively, increased macroalgal abundance that provides shelter or
habitat structure for prey can benefit fish populations, despite negative direct effects on
fish behavior and predator avoidance (125) (Nagelkerken et al. 2015). While there have
been several studies of fish behavior and population dynamics in naturally acidified
conditions, the spatial scale of the affected areas in these studies is usually much smaller
than the range of many fish species (126) (Munday et al. 2014). Thus, our inference
regarding the emergent effects on fish populations is generally limited to those with very

small home ranges.

4.4 Oyster and other biogenic, carbonate reefs

Similar to coral reefs, ocean acidification is expected to increase dissolution rates of
oyster shells that make up the structure of oyster reefs (127) (Waldbusser et al. 2011),
and high COz impacts on oyster larvae may negatively influence oyster recruitment (128)
(Waldbusser et al. 2015). Vermetid reefs, built by vermetid gastropods cemented together
via crustose coralline algae, and the habitat structure and ecosystem services the reefs
provide are threatened by ocean acidification, which reduces the recruitment and
enhances shell dissolution for the gastropods (129) (Milazzo et al. 2014). Maerl beds (also

called Rhodolith beds), in which the habitat forming species is an unattached, branching
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crustose coralline algae, are also threatened by acidification. Laboratory exposure of the
community to more acidic conditions led to decreased calcification and increased
dissolution of the habitat forming species as well as to an increase in the biomass of
competitive, epiphytic algae. The dominant grazers in this ecosystem were not able to
keep pace with the increased biomass of epiphytic algae, potentially contributing to
overgrowth of the habitat forming species and the further deterioration of these

ecosystems (130) (Legrand et al. 2017).

4.5 Seagrass beds

Seagrasses are largely expected to benefit from acidification (131) (Koch et al. 2013),
but the effects on associated species could mediate the community and ecosystem
effects. Of concern is the response of epiphytic and macroalgae that compete with
seagrasses (132) (Campbell and Fourquerean 2014). Additionally, seagrasses are
sensitive to water quality and benthic light levels, so acidification effects on plankton
dynamics may also play a role (133) (Zimmermann et al. 2015). While calcareous
epiphytes are expected to decrease with acidification (89, 132) (Hall-Spencer et al. 2008,
Cambpell and Fourquerean 2014), enhanced seagrass production may protect some
calcareous species in the diffusive boundary layer in low flow environments (134) (Cox et
al. 2017). In contrast, fleshy epiphytic algae are largely expected to benefit from high
pCO2 (135) (Martinez-Crego et al. 2014). Mesocosm studies of temperate seagrass
communities, dominated by fleshy epiphytic and macroalgae, suggest that grazers can
keep epiphytic algae in check (98) (Alsterberg et al. 2013), and in some cases,

acidification may actually increase top-down control (136) (Burnell et al. 2013). Despite
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the calcareous skeletons of several of the grazers in seagrass ecosystems, evidence
suggests high tolerance of the macroinvertebrate taxa (137, 138) (Eklof et al. 2015,

Hughes et al. 2018).

5. Risks to Human Communities
5.1 Introduction — Impacts on socially and ecologically important marine resources,
environments, and people

The emergence of ocean acidification impacts on the Pacific oyster industry in the
Pacific Northwest United States in the mid-2000s (139) (Barton et al. 2015) immediately
framed ocean acidification as a present-day concern with direct implications for small and
large businesses and coastal communities. Since then, much ocean acidification
research has focused on economically, culturally, and ecologically important species.
Other studies have focused on how ocean acidification will ultimately alter the benefits
that marine systems provide to human communities (also called ecosystem services, or
nature’s contributions to people).

Detecting changes in ecosystem services can be challenging and attributing those
changes to one long-term driver, like ocean acidification, is even more difficult. Moreover,
human and natural systems are constantly adapting and responding to ocean acidification
in a multi-stressor context, while the risk of harmful changes to ecosystem services from
climate change is increasing (140, 141) (Gosling 2013, Scholes 2016). Multidisciplinary
studies focused on social-ecological risks from ocean acidification are exploring
economics, ecosystem services, and cultural and societal institutions. Researchers are

also studying interventions that decrease vulnerability by either decreasing social-
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ecological systems’ exposure to ocean acidification or increasing their adaptive capacity.
In addition to strengthening fisheries and aquaculture, or improving the resilience of
coastal environments, these actions have the co-benefit of improving management of

marine systems and resources (Figure 3).

High Certainty

Increased
Atmospheric Ocean
co, Acidification

CO, mitigation:
Emissions, phytoremediation? blue carbon?

Marine protection & management:
Migration, coastal water quality, habitat restoration

Cultivation & husbandry:

Water treatment, selective breeding, shell hash substrate

Adaptive capacity:
Just-in-time measures, disaster
risk reduction, planning for
uncertainty

Figure 3. Impact pathway from increased atmospheric CO2 to changes in social-
ecological systems. Gray band indicates level of scientific certainty. Dark blue blocks
show the groups of interventions that are frequently proposed to directly decrease harm
from ocean acidification on social-ecological systems. Adapted from (142) (Portner et al.

2014)

28



573

574

575

576

Sr7

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

5.2 Fisheries and food webs

Both real-world and laboratory evidence suggests that ocean acidification is very likely
to decrease harvests of several bivalve shellfish species, with lost revenue and cultural
disruption to follow. During the mid-2000s, the Pacific oyster aquaculture industry in the
Pacific Northwest, which is increasingly at risk from acute ocean acidification worsened
by enhanced coastal upwelling, supported over 3,000 jobs and $270 million in economic
activity per year (139) (Barton et al. 2015). Because marine mollusks comprise 9% of the
total world fishery production by value (143) (Narita et al. 2012), ocean acidification’s
potential effects on shellfish harvests and provisioning ecosystem services became a
research theme (144) (Cooley & Doney 2009).

Ocean acidification caused decreases in bivalve reproduction, survival of juvenile
bivalves, or delayed maturation of adults can alter recruitment, harvestable biomass,
maximum sustainable yield, and economic value of shellfish fisheries (145) (Cooley et al.
2015). Other impacts such as alterations in the taste or other food qualities of shellfish
(146, 147) (Dupont et al. 2014, Lemasson et al. 2019), or behavioral changes in finfish
species (16, 148) (Nagelkerken and Munday, 2016; Ashur et al. 2017), have not yet been
detected in nature or incorporated into models, so their socioeconomic implications have
not been projected yet.

Studies with varying degrees of complexity have examined potential economic losses
from associated shellfish harvest decreases. Models with simple CO2-damage
relationships for all bivalves and time discounting have projected losses of about 10-28%

losses for both US and UK mollusk harvests annually (144, 149) (Cooley & Doney 20089,
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Mangi et al. 2018). Model estimates of welfare losses from ocean acidification impacts on
shellfish range widely: US losses are estimated at $400 million USD and global losses
from $6 billion-$100 billion USD annually (143) (Narita et al. 2012), with an annual
projected impact of over $1 billion USD for Europe by 2100 (150) (Narita & Rehdanz
2017). Ocean acidification and warming together on UK fisheries are projected to
decrease shellfish biomass by 30% by 2020, with overall employment losses related to
shellfish and finfish declines from 3-20% by 2050 (151) (Fernandes et al. 2017). United
State economic damages by the end of the century for mollusk fishery losses are on the
same order as those for increased hurricane damages (152) (Moore 2015).

Integrated assessment models (IAMs) are now being utilized to explore the possible
combined impacts of climate change, acidification, harvest, fishery management, and
social-economic factors on specific commercial fisheries. Cooley et al. (145) (Cooley et
al. 2015) found for the United States northeast sea scallop a substantial decline in
harvests by 2050 under business-as-usual CO2 emissions and contemporary harvest
rules, if ocean acidification decreases recruitment and slows growth, although
adjustments to management can help increase biomass somewhat (153) (Rheuban et al.
2018). Another IAM projected a decrease in the Alaska-based southern Tanner crab
fishery catch and profits by more than 50% in the next 20 years (154) (Punt et al. 2016).
A dynamic bioclimate envelope model examining ocean acidification and temperature
effects together found that total fisheries revenue in the Arctic region may increase by
39% from 2000-2050 under SRES A2, because poleward movement of temperate
fisheries will increase Arctic fishery revenues more than calcifier mortality will drive losses

(155) (Lam et al. 2016).
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Ecosystem models and vulnerability assessments have also evaluated the interaction
of ocean acidification with other drivers and fisheries. In the California Current, decreased
pH is expected to most impact crabs, shrimps, benthic grazers, and bivalves, with indirect
effects on specific demersal species that prey on these groups (156) (Marshall et al. 2017)
and different consequences for port-based economies in the region (157) (Hodgson et al.
2018). Using a suite of regional ecosystem models from around the world, Olsen et al.
(158) (Olsen et al. 2018) explored the interaction of ocean acidification, marine protection,
and fishing pressure, finding that marine protection and ocean acidification have greater
overall effects on the ecosystem than adjusting fishing pressure. Seijo et al. (159) (Seijo
et al. 2016) recommend considering possible ocean acidification effects when defining
fisheries management strategies, and Olsen et al. (158) (Olsen et al. 2018) and Talloni-
Alvarez et al. (160) (Talloni-Alvarez et al. 2019) suggest that ocean acidification should
also be considered when developing protection strategies and ecosystem-based
management. Regional vulnerability to potential losses in shellfish harvests from ocean
acidification is greater for indigenous groups and rural communities in the United States
(161, 162) (Mathis et al. Prog. Oceanogr. 2015; Ekstrom et al. 2015) and developing
nations with artisanal fishing fleets in the Mediterranean (163) (Hilmi et al. 2014).
Minimizing overall community vulnerability to losses from ocean acidification requires
addressing community and environmental factors such as overall economic well-being,
access to job alternatives, coastal hypoxic events, and more as well as ocean acidification

impacts on marine species.

5.3 Coral reefs
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Potential economic and cultural losses of coral reef-provided ecosystem services —
coastal protection, habitat and biodiversity, fisheries, recreational and tourism
opportunities, and existence and amenity values — have been considered since the
earliest days of ocean acidification research. Approximately 500 million people derive
food, income, coastal protection, and other services from coral reefs (164) (Hoegh-
Guldberg et al. 2017). The worldwide value of coral reefs, however, is difficult to pin down;
published estimates range from $29.8 billion/year (165) (Cesar et al. 2003) to $376
billion/year (166) (Costanza et al. 1997), although Pendleton et al. (167) (Pendleton et al.
2016) find that data are insufficient to allow rigorous evaluation. Ocean acidification
combined with erosion and other disturbances have lowered the seafloor around
carbonate platform environments in the Florida Keys, Caribbean, and near Hawai’i,
accelerating the rate of relative sea level rise (168) (Yates et al. 2017) and endangering
human safety and property (169) (Beck et al. 2018). Without coastal protection from reefs,
specifically, flood damages from 100-year storm events would nearly double, rising to
$272 billion (169) (Beck et al. 2018). Brander et al. (170) (Brander et al. 2012) examined
the economic impact of ocean acidification on coral reefs, concluding that economic
effects of reef scarcity and increasing global wealth would keep tourism and economic
value of reefs strong, despite net loss of coral reefs from acidification.

Other analyses use non-economic methods to evaluate risks posed by changes in
coral reef health or coverage. Pendleton et al. (167) (Pendleton et al. 2016) showed that
overlapping risk of reef loss from warming and acidification and social and economic
vulnerability puts Southeast Asia at particular combined risk, yet most places there have

minimal data on ocean acidification exposure. A similar approach around the Great
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Barrier Reef concluded that a suite of ecological and social measures are needed to
decrease risk of harm from climate-associated reef loss (171) (Pendleton et al. 2019).
Vermetid and shellfish reefs suffer from ocean acidification as well as coastal
disturbances like trampling, sedimentation, dredging, and pollutants or poisons (129, 172,
173) (Milazzo et al. 2014, Lemasson et al. 2017, Milazzo et al. 2017). Both types of reefs
are “ecosystem engineers” that stabilize sediments, provide habitat for benthic
ecosystems, and store organic carbon (129, 172) (Milazzo et al. 2014, Lemasson et al.
2017). Oyster reefs provide an estimated value of $5500-$99,000 per hectare per year
via shoreline stabilization, habitat creation, and water filtration (174) (Grabowski et al.
2012). Ocean acidification’s economic ramifications for vermetid and shellfish reefs have
not been explored, but the reefs’ important non-economic environmental roles have made

them focal areas for preservation and restoration.

5.4 Coastal systems and submerged aquatic vegetation

Many near-shore, coastal systems contain submerged aquatic vegetation, such as
seagrass beds or kelp forests, that are increasingly mentioned as a solution to address
ocean acidification (20, 175) (Gattuso et al. 2018, California Ocean Protection Council
2018). Submerged aquatic vegetation’s ability to create habitat and slow water flow in
coastal regions is better established (176, 177, 178) (Hurd 2015, Macreadie et al. 2017,
Morris et al. 2019) than its ability to consistently capture and sequester carbon dioxide or
modulate local pH swings, where evidence is mixed (179, 180, 181) (Gao et al. 2019,
Garrard & Beaumont 2014, Kapsenberg & Cyronak 2019). Nevertheless, restoring and

preserving submerged aquatic vegetation is increasingly seen as a widely useful marine
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conservation step that will help sustain marine provisioning and regulating services (182)
(Herr 2009) and may help mitigate ocean acidification in localized areas (20) (Gattuso et
al. 2018).

Similar to submerged aquatic vegetation, coastal systems including wetlands,
mangroves, and nearshore sediments are thought to help mitigate ocean acidification by
sustaining regulating services and capturing carbon or releasing alkalinity (183, 184, 185)
(Howard et al. 2017, Pacella et al. 2018, Sippo et al. 2016). However, local details strongly
influence the amount and duration of carbon captured (184, 186) (Pacella et al. 2018,
Sabine 2018). Estimates of the economic value of this “blue carbon” (carbon sequestered
in wetlands, mangroves, sediments, macroalgae, and submerged aquatic vegetation) are
functions of these environments’ carbon drawdown, their spatial coverage, and the social
cost of carbon (187, 188) (Luisetti et al. 2019; Beaumont et al. 2014). Conservation and
restoration of coastal systems to sequester carbon are being evaluated and promoted as
part of overall carbon mitigation efforts (189, 190) (Lavery et al. 2013, Pendleton et al.

2012), which may indirectly benefit ocean acidification.

5.5 Biodiversity and environmental health

All healthy ocean and coastal systems, including the environments mentioned above,
sustain biodiversity. The reduced biodiversity associated with acidified conditions
observed in many coastal systems (191) (Hall-Spencer & Harvey 2019) decreases
ecosystem resilience and compromises regulating services including habitat provision,
nutrient cycling, and carbon storage (192) (Barry et al. 2011). For example, slower growth

and survival of a widespread mussel species (Mytilus edulis) under ocean acidification
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could substantially decrease its ability to regulate coastal water quality by filtering water
(193) (Broszeit et al. 2016). Ocean acidification could strongly affect critical or unique
environments like coral reefs, deep-sea systems, and high-latitude systems, which
depend on highly endemic species and may not have much functional redundancy within
species groups (192) (Barry et al. 2011). Outcomes for ecosystems like phytoplankton
populations are harder to anticipate, because ocean acidification and other drivers
reshuffle species composition (192) (Barry et al. 2011), and it is difficult to determine how
ecosystem function will change. Gascuel and Cheung (194) (Gascuel and Cheung 2019)
caution that loss of ocean biodiversity that decreases regulating functions and functional
redundancy can decrease not only system productivity, but also stability and resiliency;
and it can raise the risk of large-scale ecosystem shifts in ecosystem structure and
decrease the resilience.

Losses of marine biodiversity from ocean acidification impacts on marine systems can
also affect cultural services (195, 196, 197, 198) (Koenigstein et al. 2016, Rodrigues et
al. 2013, Ruckelshaus et al. 2013, Urquhart & Acott 2014). Cultural services comprise
activities from supporting individual recreational activities to sustaining multi-generational,
community-wide religious and cultural identities. There is broad agreement that the actual
effects and modes of action of ocean acidification and other ocean changes on cultural
services are insufficiently understood (142, 199, 200, 201) (Portner et al. 2014, AMAP
2018, Garcia Rodrigues et al. 2017, Klain & Chan 2012). Encouragingly, though,
Koenigstein et al. (195) (Koenigstein et al. 2016) report that human communities

recognize the potential implications of lost marine biodiversity, especially regarding
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extinctions and losses in ecosystem function, and this can spark meaningful,

conservation-oriented multi-stakeholder discussions.

5.6 Interventions and adaptations

Nearly every study that identifies potential harm from ocean acidification to ecosystem
services also identifies possible interventions (Figure 3). There is consensus across the
scientific community that the foremost solution to ocean acidification is to cut atmospheric
COz2 emissions (202, 203, 204, 205, 206) (Billé et al. 2013, Cooley et al. 2016, Gattuso et
al. 2015, Magnan et al. 2015, Strong et al. 2014). At present, the international body of
climate policy (within the U.N. Framework Convention on Climate Change, or UNFCCC)
does not explicitly address ocean acidification, although numerous analyses agree that
ocean acidification falls within UNFCCC-relevant concerns (205, 207, 208) (Magnan et
al. 2015, Harrould-Kolieb & Herr 2012, Potts 2018).

Adaptive management of marine systems is often cited as a possible intervention.
Acidification, oxygen loss, and the gradual redistribution of species across management
boundaries to higher latitudes from ocean warming already confound current and future
management decisions (164) (Hoegh-Guldberg et al. 2017), and a critical challenge is the
balance of protection versus sustainable human resource use for impacted systems (209)
(Pratchett et al. 2014). In coastal zones, the ocean acidification interacts with other
anthropogenic and natural drivers like pollution, freshwater runoff, and coastal plankton
blooms (210) (Kelly et al. 2011), but many existing water quality regulatory policies can

start to help address coastal acidification locally (211) (Kelly & Caldwell 2013).
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Husbandry of captive or wild species also offers intervention opportunities.
Encouraging shellfish aquaculture industry growth has been proposed as an adaptation
to ocean acidification and warming (212) (Alleway et al. 2019). Shellfish hatcheries have
enhanced water quality monitoring, improved water quality, and expanded selective
breeding and strategic feeding to adapt to acidification, and this has stabilized or
improved yields and economic revenues (139) (Barton et al. 2015). Amending tidal flats
where shellfish grow to maturity with ground shell material provides substrate for larval
settlement and may modulate ocean acidification locally (213, 214, 215) (Doyle 2018,
Green et al. 2009, Waldbusser et al. 2013). Submerged aquatic vegetation may also
capture CO2 locally through photosynthesis while providing habitat (181) (Kapsenberg
and Cyronak 2019). Active interventions are being piloted to support coral species and
restore coral reef environments, including selective breeding and carefully protected
outplanting, as a key conservation tactic to maintain biodiversity (216) (National
Academies of Sciences, Engineering, and Medicine et al. 2019). As with water quality,
existing management levers might also improve resilience to ocean acidification and
hypoxia (217) (Kroeker et al. 2019 Oceanography).

The least well-developed group of interventions involves increasing the adaptive
capacity of human communities that depend on marine resources. Just-in-time
adaptations such as the industry-science partnerships undertaken by the United States
Pacific oyster shellfish fishery to identify and address ocean acidification do work (5, 139)
(Cross et al. 2019, Barton et al. 2015), but so do planned, end-to-end structures that
support communities that may experience future losses from ocean change (5) (Cross et

al. 2019). This must reach beyond ocean acidification, as extreme ocean events including
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harmful algal blooms, hypoxia, and marine heat waves have recently tested management
systems and stressed marine-dependent socio-economic systems (218) (Ritzman et al.
2018). Emphasizing disaster risk reduction (219) (Munang et al. 2013) and rigorously
incorporating uncertainty (220) (Carriger et al. 2019) in marine policy and governance can
greatly improve outcomes for both social and ecological systems affected by ocean

change (221) (Silver et al. 2019).

6. SUMMARY

The scientific study of seawater chemistry changes due to rising atmospheric CO2 and
the sensitivity of marine life to elevated CO2 have advanced dramatically in the past two
decades. Major challenges remain, however, in understanding the implications of the
ongoing long-term, press perturbation of ocean acidification for marine species, ocean
biological communities and ecosystems, and the risks to human communities that depend
on marine resources and ecosystem services. Efforts to understand the sensitivity of
marine species to projected future ocean acidification are delving into detailed
characterization and mechanisms of species sensitivity, consideration of acclimation and
adaptation, greater ecological relevance including consideration of multiple stressors, and
detection and attribution of the impacts for ocean ecosystems. Front-line risks to human
communities have been identified, including loss of shellfish harvests and decline in
coastal protection by coral reefs, and more risks are being investigated. Several existing
policies used to regulate water quality and marine species conservation can also help
address acidification, with no or minimal amendments. Likewise, many adaptive actions

used to address other issues, such as strengthening the shellfish aquaculture industry
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overall, can have co-benefits in addressing acidification. Current management practices
must be adjusted, however, to allow marine governance to remain nimble in the face of

both global-scale changes like acidification and climate change and local-scale concerns.

KEY TERMS (glossary and acronyms lists)

COz2: Carbon dioxide gas that is removed by photosynthesis and released by respiration
and fossil fuel combustion

COs3%: Carbonate ion, an inorganic carbon molecule formed when CO2 dissolves in
seawater and a key building block for carbonate minerals used in organism
biomineralization

pH: A measure of the acidity of seawater where lower pH reflects more acidic
conditions; pH is reported on a log-scale so a 1 unit drop in pH is equivalent to a factor
of 10 increase in acidity

Ocean acidification: Changes in seawater chemistry including increased acidity, lower
pH, and reduced carbonate ion levels caused by input of excess carbon dioxide
Carbonate saturation state: A comparison of seawater carbonate and calcium ion
concentrations relative to thermodynamic equilibrium, where saturation states below 1
reflect under-saturation and carbonate mineral dissolution

Aragonite and calcite: Two of the mineral forms of calcium carbonate (CaCOs) used
by marine organisms for shell and skeleton formation via biomineralization

Hypoxia: Low oxygen conditions in the coastal and open ocean often associated with

respiration of organic material that also elevates CO2
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Ecosystem services: Benefits that people accrue from natural marine ecosystems

such as fisheries and aquaculture

SUMMARY POINTS

1. Human CO2 emissions alter surface seawater acid-base chemistry globally, with
additional coastal acidification from nutrient pollution and other factors.

2. Biological impacts reflect multiple, simultaneous chemical changes—increasing
CO2(aq), HCO3~ and H* and decreasing CO3?~ and carbonate saturation state.

3. Laboratory and field studies indicate a wide range of biological responses to high
CO2 on organism-level physiology, biomineralization, growth, reproduction, sensory
perception, and behavior.

4. New research fronts involve characterization and mechanisms of species sensitivity,
acclimation and adaptation, ecological relevance, multiple stressors, and detection
and attribution of the ocean ecosystem impacts.

5. Propagation of organism-level effects into community and ecosystem responses is
being elucidated through mesocosm and field manipulation experiments and studies
of naturally acidified marine environments.

6. A suite of multiple-stressors including acidification, climate change, and other
environmental alterations must be considered when determining the emergent
ecological effects and any adaptation-focused intervention.

7. Acidification likely will impact aquaculture, fisheries, shoreline protection, and other
valuable marine ecosystem services, resulting in vulnerabilities and risks to human

communities, but interventions designed to address other issues (e.g., biodiversity
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loss, water quality, governance, etc.) may also help address harm from ocean
acidification.

The ultimate solution to ocean acidification involves global-scale reductions in
human CO2 emissions, with local adaptation strategies also needed to minimize

harm from the impacts that are inevitable.

FUTURE ISSUES

1.

Enhanced monitoring of ocean acidification is possible leveraging improved
autonomous ocean platform and sensor, remote sensing, data analysis and
modeling technologies.

Targeted observing systems, process studies, and modeling efforts are needed to
evaluate acidification impacts in the marine environment across biological scales
from populations to ecosystems.

Experimental studies of ecological effects of ocean acidification that explicitly
incorporate environmental context (e.g., temporal variability in pCO2/pH and
concurrent exposure to multiple, relevant drivers) are needed to improve forecasts of
emergent ecological effects.

Increased monitoring and data synthesis efforts aimed at detecting species and
ecosystem change and understanding what portion of the change can be attributed
to ocean acidification will help guide living marine resource management and the

scientific efforts that support it.
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5. Development and evaluation of adaptation solutions for ocean acidification are key
priorities that will likely require co-production of knowledge and close cooperation by
scientists, resource managers, and stakeholders.

6. Marine management strategies need updating to balance protection and sustainable
human uses in the face of overlapping global-scale changes like acidification,
warming, and oxygen loss.

7. Adaptive management systems must be developed to move beyond assumption of
steady-state environmental, to accommodate geographic and temporal shifts in
living marine resources, and to nimbly address extreme events in ways that

minimize harm to both marine systems and ocean-dependent human communities.
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