
Learning Nonlinear Loop Invariants with
Gated Continuous Logic Networks

Jianan Yao∗

Columbia University, USA
jianan@cs.columbia.edu

Gabriel Ryan∗

Columbia University, USA
gabe@cs.columbia.edu

Justin Wong∗

Columbia University, USA
justin.wong@columbia.edu

Suman Jana
Columbia University, USA
suman@cs.columbia.edu

Ronghui Gu
Columbia University, CertiK, USA

rgu@cs.columbia.edu

Abstract

Verifying real-world programs often requires inferring loop
invariants with nonlinear constraints. This is especially true
in programs that perform many numerical operations, such
as control systems for avionics or industrial plants. Recently,
data-drivenmethods for loop invariant inference have shown
promise, especially on linear loop invariants. However, ap-
plying data-driven inference to nonlinear loop invariants is
challenging due to the large numbers of and large magni-
tudes of high-order terms, the potential for overfitting on
a small number of samples, and the large space of possible
nonlinear inequality bounds.
In this paper, we introduce a new neural architecture for

general SMT learning, the Gated Continuous Logic Network
(G-CLN), and apply it to nonlinear loop invariant learning.
G-CLNs extend the Continuous Logic Network (CLN) archi-
tecture with gating units and dropout, which allow themodel
to robustly learn general invariants over large numbers of
terms. To address overfitting that arises from finite program
sampling, we introduce fractional samplingÐa sound relax-
ation of loop semantics to continuous functions that facili-
tates unbounded sampling on the real domain. We addition-
ally design a new CLN activation function, the Piecewise
Biased Quadratic Unit (PBQU), for naturally learning tight
inequality bounds.
We incorporate these methods into a nonlinear loop in-

variant inference system that can learn general nonlinear
loop invariants. We evaluate our system on a benchmark of

∗Equal contribution

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

PLDI ’20, June 15ś20, 2020, London, UK

© 2020 Copyright held by the owner/author(s). Publication rights licensed

to ACM.

ACM ISBN 978-1-4503-7613-6/20/06. . . $15.00

https://doi.org/10.1145/3385412.3385986

nonlinear loop invariants and show it solves 26 out of 27
problems, 3 more than prior work, with an average runtime
of 53.3 seconds. We further demonstrate the generic learning
ability of G-CLNs by solving all 124 problems in the linear
Code2Inv benchmark. We also perform a quantitative stabil-
ity evaluation and show G-CLNs have a convergence rate
of 97.5% on quadratic problems, a 39.2% improvement over
CLN models.

CCS Concepts: · Software and its engineering → Soft-

ware verification; · Computing methodologies→Neu-

ral networks.

Keywords: Loop Invariant Inference, Program Verification,
Continuous Logic Networks

ACM Reference Format:

Jianan Yao, Gabriel Ryan, Justin Wong, Suman Jana, and Ronghui

Gu. 2020. Learning Nonlinear Loop Invariants with Gated Con-

tinuous Logic Networks. In Proceedings of the 41st ACM SIGPLAN

International Conference on Programming Language Design and Im-

plementation (PLDI ’20), June 15ś20, 2020, London, UK. ACM, New

York, NY, USA, 15 pages. https://doi.org/10.1145/3385412.3385986

1 Introduction

Formal verification provides techniques for proving the cor-
rectness of programs, thereby eliminating entire classes of
critical bugs. While many operations can be verified auto-
matically, verifying programs with loops usually requires
inferring a sufficiently strong loop invariant, which is unde-
cidable in general [5, 10, 15]. Invariant inference systems are
therefore based on heuristics that work well for loops that ap-
pear in practice. Data-driven loop invariant inference is one
approach that has shown significant promise, especially for
learning linear invariants [30, 35, 40]. Data-driven inference
operates by sampling program state across many executions
of a program and trying to identify an Satisfiability Modulo
Theories (SMT) formula that is satisfied by all the sampled
data points.
However, verifying real-world programs often requires

loop invariants with nonlinear constraints. This is espe-
cially true in programs that perform many numerical op-
erations, such as control systems for avionics or industrial

106

https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1145/3385412.3385986
https://doi.org/10.1145/3385412.3385986

PLDI ’20, June 15ś20, 2020, London, UK J. Yao, G. Ryan, J. Wong, S. Jana, R. Gu

plants [6, 20]. Data-driven nonlinear invariant inference is
fundamentally difficult because the space of possible non-
linear invariants is large, but sufficient invariants for veri-
fication must be inferred from a finite number of samples.
In practice, this leads to three distinct challenges when per-
forming nonlinear data-driven invariant inference: (i) Large
search space with high magnitude terms. Learning nonlinear
terms causes the space of possible invariants to grow quickly
(i.e. polynomial expansion of terms grows exponentially in
the degree of terms). Moreover, large terms such as x2 or
xy dominate the process and prevent meaningful invariants
from being learned. (ii) Limited samples. Bounds on the num-
ber of loop iterations in programs with integer variables
limit the number of possible samples, leading to overfitting
when learning nonlinear invariants. (iii) Distinguishing suffi-
cient inequalities. For any given finite set of samples, there
are potentially infinite valid inequality bounds on the data.
However, verification usually requires specific bounds that
constrain the loop behavior as tightly as possible.
Figure 1a and 1b illustrate the challenges posed by loops

withmany higher-order terms as well as nonlinear inequality
bounds. The loop in Figure 1a computes a cubic power and
requires the invariant (x = n3) ∧ (y = 3n2 + 3n + 1) ∧
(z = 6n + 6) to verify its postcondition (x = a3). To infer
this invariant, a typical data-driven inference system must
consider 35 possible terms, ranging from n to x3, only seven
of which are contained in the invariant. Moreover, the higher-
order terms in the program will dominate any error measure
in fitting an invariant, so any data-driven model will tend to
only learn the constraint (x = n3). Figure 1b shows a loop for
computing integer square root where the required invariant
is (n ≥ a2) to verify its postcondition. However, a data-driven
model must identify this invariant from potentially infinite
other valid but loosely fit inequality invariants.

Most existing methods for nonlinear loop invariant infer-
ence address these challenges by limiting either the structure
of invariants they can learn or the complexity of invariants
they can scale to. Polynomial equation solving methods such
as Numinv and Guess-And-Check are able to learn equal-
ity constraints but cannot learn nonlinear inequality invari-
ants [21, 33]. In contrast, template enumeration methods
such as PIE can potentially learn arbitrary invariants but
struggle to scale to loops with nonlinear invariants because
space of possible invariants grows too quickly [26].
In this paper, we introduce an approach that can learn

general nonlinear loop invariants. Our approach is based
on Continuous Logic Networks (CLNs), a recently proposed
neural architecture that can learn SMT formulas directly
from program traces [30]. CLNs use a parameterized relax-
ation that relaxes SMT formulas to differentiable functions.
This allows CLNs to learn SMT formulas with gradient de-
scent, but a template that defines the logical structure of the
formula has to be manually provided.

We base our approach on three developments that ad-
dress the challenges inherent in nonlinear loop invariant
inference: First, we introduce a new neural architecture, the
Gated Continuous Logic Network (G-CLN), a more robust CLN
architecture that is not dependent on formula templates. Sec-
ond, we introduce Fractional Sampling, a principled program
relaxation for dense sampling. Third, we derive the Piece-
wise Biased Quadratic Unit (PBQU), a new CLN activation
function for inequality learning. We provide an overview of
these methods below.
Gated Continuous Logic Networks. G-CLNs improve the
CLN architecture by making it more robust and general.
Unlike CLNs, G-CLNs are not dependent on formula tem-
plates for logical structure. We adapt three different methods
from deep learning to make G-CLN training more stable
and combat overfitting: gating, dropout, and batch normal-
ization [2, 13, 16, 37]. To force the model to learn a varied
combination of constraints, we apply Term Dropout, which
operates similarly to dropout in feedforward neural networks
by zeroing out a random subset of terms in each clause. Gat-
ing makes the CLN architecture robust by allowing it to ig-
nore subclauses that cannot learn satisfying coefficients for
their inputs, due to poor weight initialization or dropout. To
stabilize training in the presence of high magnitude nonlin-
ear terms, we apply normalization to the input and weights
similar to batch normalization.
By combining dropout with gating, G-CLNs are able to

learn complex constraints for loops with many higher-order
terms. For the loop in Figure 1a, the G-CLN will set the n2

or n3 terms to zero in several subclauses during dropout,
forcing the model to learn a conjunction of all three equality
constraints. Clauses that cannot learn a satisfying set of
coefficients due to dropout, i.e. a clause with only x and n
but no n3 term, will be ignored by a model with gating.
Fractional Sampling.When the samples from the program
trace are insufficient to learn the correct invariant due to
bounds on program behavior, we perform a principled relax-
ation of the program semantics to continuous functions. This
allows us to perform Fractional Sampling, which generates
samples of the loop behavior at intermediate points between
integers. To preserve soundness, we define the relaxation
such that operations retain their discrete semantics relative
to their inputs but operate on the real domain, and any in-
variant for the continuous relaxation of the program must
be an invariant for the discrete program. This allows us to
take potentially unbounded samples even in cases where the
program constraints prevent sufficient sampling to learn a
correct invariant.
Piecewise Biased Quadratic Units. For inequality learn-
ing, we design a PBQU activation, which penalizes loose fits
and converges to tight constraints on data. We prove this
function will learn a tight bound on at least one point and
demonstrate empirically that it learns precise bounds invari-
ant bounds, such as the (n ≥ a2) bound shown in Figure 1b.

107

Learning Nonlinear Loop Invariants with G-CLNs PLDI ’20, June 15ś20, 2020, London, UK

// pre: (a >= 0)

n=0; x=0;

y=1; z=6;

// compute cube:

while(n != a){

n += 1;

x += y;

y += z;

z += 6;

}

return x;

// post: x == a^3 0 5 10 15
n

0

1k

2k

 3k

 4k

x
y

z

x samples
y samples
z samples
invariants

(a) Loop for computing cubes that requires the invariant (x =
n3)∧(y = 3n2+3n+1)∧(z = 6n+6) to infer its postcondition (x = a3).
A data-driven model must simultaneously learn a cubic constraint

that changes by 1000s and a linear constraint that increments by 6.

// pre: (n >= 0)

a=0; s=1; t=1;

// compute sqrt:

while (s <= n) {

a += 1;

t += 2;

s += t;

}

return a;

//post: a^2 <= n

//and n < (a+1)^2

0 100 200 300
n

0
2
4
6
8

10
12
14
16
18

a

loose invariant
tight invariant
sample

(b) Loop for computing integer approximation to square root. The

graph shows three valid inequality invariants, but only the tight

quadratic inequality invariant (n ≥ a2) is sufficient to verify that

the final value of a is between ⌊sqrt(n)⌋ and ⌈sqrt(n)⌉.

Figure 1. Example problems demonstrating the challenges of nonlinear loop invariant learning.

We use G-CLNs with Fractional Sampling and PBQUs
to develop a unified approach for general nonlinear loop
invariant inference. We evaluate our approach on a set of
loop programs with nonlinear invariants, and show it can
learn invariants for 26 out of 27 problems, 3 more than prior
work, with an average runtime of 53.3 seconds. We also
perform a quantitative stability evaluation and showG-CLNs
have a convergence rate of 97.5% on quadratic problems, a
39.2% improvement over CLN models. We also test the G-
CLN architecture on the linear Code2Inv benchmark [35]
and show it can solve all 124 problems.

In summary, this paper makes the following contributions:

• We develop a new general and robust neural architec-
ture, the Gated Continuous Logic Network (G-CLN),
to learn general SMT formulas without relying on for-
mula templates for logical structure.

• We introduce Fractional Sampling, a method that fa-
cilitates sampling on the real domain by applying a
principled relaxation of program loop semantics to
continuous functions while preserving soundness of
the learned invariants.

• We design PBQUs, a new activation function for learn-
ing tight bounds inequalities, and provide convergence
guarantees for learning a valid bound.

• We integrate our methods in a general loop invariant
inference system and show it solves 26 out 27 problems
in a nonlinear loop invariant benchmark, 3 more than
prior work. Our system can also infer loop invariants
for all 124 problems in the linear Code2Inv benchmark.

The rest of the paper is organized as follows: In ğ2, we
provide background on the loop invariant inference problem,
differentiable logic, and the CLN neural architecture for SMT
learning. Subsequently, we introduce the high-level work-
flow of our method in ğ3. Next, in ğ4, we formally define

the gated CLN construction, relaxation for fractional sam-
pling, and PBQU for inequality learning, and provide sound-
ness guarantees for gating and convergence guarantees for
bounds learning. We then provide a detailed description of
our approach for nonlinear invariant learning with CLNs
in ğ5. Finally we show evaluation results in ğ6 and discuss
related work in ğ7 before concluding in ğ8.

2 Background

In this section, we provide a brief review of the loop invariant
inference problem and then define the differentiable logic
operators and the Continuous Logic Network architecture
used in our approach.

2.1 Loop Invariant Inference

Loop invariants encapsulate properties of the loop which
are independent of the iterations and enable verification to
be performed over loops. For an invariant to be sufficient for
verification, it must simultaneously be weak enough to be
derived from the precondition and strong enough to conclude
the post-condition. Formally, the loop invariant inference
problem is, given a loop łwhile(LC) C,ž a precondition P ,
and a post-condition Q , we are asked to find an inductive
invariant I that satisfies the following three conditions:

P =⇒ I {I ∧ LC} C {I } I ∧ ¬LC =⇒ Q

where the inductive condition is defined using a Hoare triple.
Loop invariants can be encoded in SMT, which facilitates

efficient checking of the conditions with solvers such as Z3 [4,
7]. As such, our work focuses on inferring likely candidate
invariant as validating a candidate can be done efficiently.
Data-driven Methods. Data-driven loop invariant infer-
ence methods use program traces recording the state of each
variable in the program on every iteration of the loop to

108

PLDI ’20, June 15ś20, 2020, London, UK J. Yao, G. Ryan, J. Wong, S. Jana, R. Gu

guide the invariant generation process. Since an invariant
must hold for any valid execution, the collected traces can be
used to rule out many potential invariants. Formally, given
a set of program traces X , data-driven invariant inference
finds SMT formulas F such that:

∀x ∈ X , F (x) = True

2.2 Basic Fuzzy Logic

Our approach to SMT formula learning is based on a form of
differentiable logic called Basic Fuzzy Logic (BL). BL is a re-
laxation of first-order logic that operates on continuous truth
values on the interval [0, 1] instead of on boolean values. BL
uses a class of functions called t-norms (⊗), which preserves
the semantics of boolean conjunctions on continuous truth
values. T-norms are required to be consistent with boolean
logic, monotonic on their domain, commutative, and asso-
ciative [14]. Formally, a t-norm is defined ⊗ : [0, 1]2 → [0, 1]
such that:

• ⊗ is consistent for any t ∈ [0, 1]:

t ⊗ 1 = t t ⊗ 0 = 0

• ⊗ is commutative and associative for any t ∈ [0, 1]:

t1 ⊗ t2 = t2 ⊗ t1 t1 ⊗ (t2 ⊗ t3) = (t1 ⊗ t2) ⊗ t3

• ⊗ is monotonic (nondecreasing) for any t ∈ [0, 1]:

t1 ≤ t2 =⇒ t1 ⊗ t3 ≤ t2 ⊗ t3

BL additionally requires that t-norms be continuous. T-conorms
(⊕) are derived from t-norms via DeMorgan’s law and oper-
ate as disjunctions on continuous truth values, while nega-
tions are defined ¬t := 1 − t .
In this paper, we keep t-norms abstract in our formula-

tions to make the framework general. Prior work [30] found
product t-norm x ⊗ y = x · y perform better in Continu-
ous Logic Networks. For this reason, we use product t-norm
in our final implementation, although other t-norms (e.g.,
Godel) can also be used.

2.3 Continuous Logic Networks

We perform SMT formula learning with Continuous Logic
Networks (CLNs), a neural architecture introduced in [30]
that are able to learn SMT formulas directly from data. These
can be used to learn loop invariants from the observed be-
havior of the program.

CLNs are based on a parametric relaxation of SMT formu-
las that maps the SMT formulation from boolean first-order
logic to BL. The model defines the operator S. Given an
quantifier-free SMT formula F : X → {True, False}, S maps
it to a continuous function S(F) : X → [0, 1]. In order for
the continuous model to be both usable in gradient-guided
optimization while also preserving the semantics of boolean
logic, it must fulfill three conditions:

1. It must preserve the meaning of the logic, such that
the continuous truth values of a valid assignment are
always greater than the value of an invalid assignment:

(F (x) = True ∧ F (x ′) = False)
=⇒ (S(F)(x) > S(F)(x ′))

2. It must be must be continuous and smooth (i.e. differ-
entiable almost everywhere) to facilitate training.

3. It must be strictly increasing as an unsatisfying assign-
ment of terms approach satisfying themapped formula,
and strictly decreasing as a satisfying assignment of
terms approach violating the formula.

S is constructed as follows to satisfy these requirements. The
logical relations {∧,∨,¬} are mapped to their continuous
equivalents in BL:

Conjunction: S(F1 ∧ F2) ≜ S(F1) ⊗ S(F2)
Disjunction: S(F1 ∨ F2) ≜ S(F1) ⊕ S(F2)
Negation: S(¬F) ≜ 1 − S(F)

where any F is an SMT formula.S defines SMT predicates {=
,,, <, ≤, >, ≥} with functions that map to continuous truth
values. This mapping is defined for {>, ≥} using sigmoids
with a shift parameter ϵ and smoothing parameter B:

Greater Than: S(x1 > x2) ≜
1

1 + e−B(x1−x2−ϵ)

Greater or Equal to: S(x1 ≥ x2) ≜
1

1 + e−B(x1−x2+ϵ)

where x1, x2 ∈ R. Mappings for other predicates are derived
from their logical relations to {>, ≥}:
Less Than: S(x1 < x2) = S(¬(x1 ≥ x2))
Less or Equal to: S(x1 ≤ x2) = S(¬(x1 > x2))
Equality: S(x1 = x2) = S((x1 ≥ x2) ∧ (x1 ≤ x2))
Inequality: S(x1 , x2) = S(¬(x1 = x2))

Using these definitions the parametric relaxation S satisfies
all three conditions for sufficiently large B and sufficiently
small ϵ . Based on this parametric relaxation S(F), we build a
Continuous Logic Network model M , which is a computa-
tional graph of S(F)(x) with learnable parametersW . When
training a CLN, loss terms are applied to penalize small B,
ensuring that as the loss approaches 0 the CLN will learn
a precise formula. Under these conditions, the following
relationship holds between a trained CLN model M with
coefficientsW and its associated formula F for a given set of
data points, X :

∀x ∈ X ,M(x ;W) = 1 ⇐⇒ F (x ;W) = True
Figure 2 shows an example CLN for the formula on a single
variable x :

F (x) = (x = 1) ∨ (x ≥ 5) ∨ (x ≥ 2 ∧ x ≤ 3)

109

Learning Nonlinear Loop Invariants with G-CLNs PLDI ’20, June 15ś20, 2020, London, UK

0 1 2 3 4 5
x

0

1
Tr

ut
h

Va
lu

e F(x)
(F)(x)

Figure 2. Plot of the formula F (x) ≜ (x = 1)∨(x ≥ 5)∨(x ≥
2 ∧ x ≤ 3) and its associated CLNM(x).

Trace Collection

Source
code

Execution
Traces

Invariant Generation Invariant Checking

Z3

Candidate
Invariant

Counterexamples

Figure 3. Overview of method consisting of 3 phases: trace
generation from source code file, G-CLN training, and in-
variant extraction followed by checking with Z3.

// pre: (n >= 0)

a=0; s=1; t=1;

while (s<=n){

log(a,s,t,n);

a += 1;

t += 2;

s += t;

}

log(a,s,t,n);

(a) Program instru-

mented to log samples.

1 a t ... as t2 st

1 0 1 0 1 1
1 1 3 4 9 12
1 2 5 18 25 45
1 3 7 48 49 112

(b) Sample data points generated

with maximum degree of 2.

Figure 4. Training data generation for the program shown
in Figure 1b.

3 Workflow

Figure 3 illustrates our overall workflow for loop invariant
inference. Our approach has three stages: (i) We first instru-
ment the program and execute to generate trace data. (ii) We
then construct and train a G-CLN model to fit the trace data.
(iii) We extract a candidate loop invariant from the model
and check it against a specification.
Given a program loop, we modify it to record variables

for each iteration and then execute the program to gener-
ate samples. Figure 4a illustrates this process for the sqrt
program from Figure 1b. The program has the input n with
precondition (n ≥ 0), so we execute with valuesn = 0, 1, 2, ...
for inputs in a set range. Then we expand the samples to
all candidate terms for the loop invariant. By default, we

enumerate all the monomials over program variables up to
a given degreemaxDeд, as shown in Figure 4b. Our system
can be configured to consider other non-linear terms like xy .

We then construct and train a G-CLN model using the col-
lected trace data. We use the model architecture described
in ğ5.2.1, with PBQUs for bounds learning using the pro-
cedure in ğ5.2.2. After training the model, the SMT for-
mula for the invariant is extracted by recursively descend-
ing through the model and extracting clauses whose gat-
ing parameters are above 0.5, as outlined in Algorithm 1.
On the sqrt program, the model will learn the invariant(
a2 ≤ n

)
∧ (t = 2a + 1) ∧

(
su = (a + 1)2

)
.

Finally, if z3 returns a counterexample, we will incorporate
it into the training data, and rerun the three stages with more
generated samples. Our system repeats until a valid invariant
is learned or times out.

4 Theory

In this section, we first present our gating construction for
CLNs and prove gated CLNs are sound with regard to their
underlying discrete logic. We then describe Piecewise Biased
Quadratic Units, a specific activation function construction
for learning tight bounds on inequalities, and provide theo-
retical guarantees. Finally we present a technique to relax
loop semantics and generate more samples when needed.

4.1 Gated t-norms and t-conorms

In the original CLNs [30], a formula template is required
to learn the invariant. For example, to learn the invariant
(x + y = 0) ∨ (x − y = 0), we have to provide the template
(w1x +w2y + b1 = 0) ∨ (w3x +w4y + b2 = 0), which can be
constructed as a CLN model to learn the coefficients. So, we
have to know in advance whether the correct invariant is an
atomic clause, a conjunction, a disjunction, or a more com-
plex logical formula. To tackle this problem, we introduce
gated t-norms and gated t-conorms.

Given a classic t-norm T (x,y) = x ⊗ y, we define its asso-
ciated gated t-norm as

TG (x,y;д1,д2) = (1 + д1(x − 1)) ⊗ (1 + д2(y − 1))

Here д1,д2 ∈ [0, 1] are gate parameters indicating if x and
y are activated, respectively. The following equation shows
the intuition behind gated t-norms.

TG (x,y;д1,д2) =




x ⊗ y д1 = 1,д2 = 1
x д1 = 1,д2 = 0
y д1 = 0,д2 = 1
1 д1 = 0,д2 = 0

Informally speaking when д1 = 1, the input x is activated
and behaves as in the classic t-norm. When д1 = 0, x is
deactivated and discarded. When 0 < д1 < 1, the value of
д1 indicates how much information we should take from x .
This pattern also applies for д2 and y.

110

PLDI ’20, June 15ś20, 2020, London, UK J. Yao, G. Ryan, J. Wong, S. Jana, R. Gu

We can prove that ∀д1,д2 ∈ [0, 1], the gated t-norm is
continuous and monotonically increasing with regard to x
and y, thus being well suited for training.
Like the original t-norm, the gated t-norm can be easily

extended to more than two operands. In the case of three
operands, we have the following:

TG (x,y, z;д1,д2,д3) = (1 + д1(x − 1)) ⊗ (1 + д2(y − 1))
⊗ (1 + д3(z − 1))

Using De Morgan’s laws x ⊕ y = 1 − (1 − x) ⊗ (1 − y), we
define gated t-conorm as

T ′
G (x,y;д1,д2) = 1 − (1 − д1x) ⊗ (1 − д2y)

Similar to gated t-norms, gated t-conorms have the following
property.

T ′
G (x,y;д1,д2) =




x ⊕ y д1 = 1,д2 = 1
x д1 = 1,д2 = 0
y д1 = 0,д2 = 1
0 д1 = 0,д2 = 0

Now we replace the original t-norms and t-conorms in
CLN with our gated alternatives, which we diagram in Fig-
ure 5. Figure 6 demonstrates a gated CLN for representing
an SMT formula. With the gated architecture, the gating pa-
rameters д1,д2 for each gated t-norm or gated t-conorm are
made learnable during model training, such that the model
can decide which input should be adopted and which should
be discarded from the training data. This improves model
flexibility and does not require a specified templates.

Now, we formally state the procedure to retrieve the SMT
formula from a gated CLN model recursively in Algorithm 1.
Abusing notation for brevity, Mi in line 1 represent the
output node of modelMi rather than the model itself, and
the same applies for line 8 and line 15. BuildAtomicFormula

in line 18 is a subroutine to extract the formula for a model
with no logical connectives (e.g., retrieving x + y + z = 0
in Figure 6). The linear weights which have been learned
serve as the coefficients for the terms in the equality or
inequality depending on the associated activation function.

Gate

Gate

Gate

T-norm

T-norm

Figure 5. Example of gated t-norm with three operands
constructed from binary t-norms. The gated t-conorm is
done similarly.

+

+

-
+

+

+

Figure 6. An instance of gated CLN. ł+ž means
activated (g=1) and ł-ž means deactivated (g=0).
The SMT formula learned is (3y − 3z − 2 = 0) ∧
((x − 3z = 0) ∨ (x + y + z = 0)).

Algorithm 1 Formula Extraction Algorithm.

Input: A gated CLN modelM, with input nodes
X = {x1, x2, ..., xn} and output node p.
Output: An SMT formula F
Procedure ExtractFormula(M)

1: if p = TG (M1, ...,Mn ;д1, ...,дn) then
2: F := True
3: for i := 1 to n do

4: if дi > 0.5 then
5: F := F ∧ ExtractFormula(Mi)
6: else if p = T ′

G (M1, ...,Mn ;д1, ...,дn) then
7: F := False
8: for i := 1 to n do

9: if дi > 0.5 then
10: F := F ∨ ExtractFormula(Mi)
11: else if p = 1 −M1 then

12: F := ¬ExtractFormula(M1)
13: else

14: F := BuildAtomicFormula(M)

Finally, we need to round the learned coefficients to integers.
We first scale the coefficients so that the maximum is 1 and
then round to the nearest rational number using a maximum
possible denominator. We check if each rounded invariant
fits all the training data and discard the invalid ones.
In Theorem 4.1, we will show that the extracted SMT

formula is equivalent to the gated CLN model under some
constraints. We first introduce a property of t-norms that is
defined in the original CLNs [30].

Property 1. ∀t u, (t > 0) ∧ (u > 0) =⇒ (t ⊗ u > 0).
The product t-norm x ⊗ y = x · y, which is used in our

implementation, has this property.
Note that the hyperparameters c1, c2, ϵ,σ in Theorem 4.1

will be formally introduced in ğ4.2 and are unimportant here.
One can simply see

lim
c1→0,c2→∞
σ→0,ϵ→0

M(x ; c1, c2,σ , ϵ)

as the model outputM(x).

111

Learning Nonlinear Loop Invariants with G-CLNs PLDI ’20, June 15ś20, 2020, London, UK

Theorem 4.1. For a gated CLN model M with input nodes
{x1, x2, ..., xn} and output nodep, if all gating parameters {дi }
are either 0 or 1, then using the formula extraction algorithm,
the recovered SMT formula F is equivalent to the gated CLN
modelM. That is, ∀x ∈ Rn ,

F (x) = True ⇐⇒ lim
c1→0,c2→∞
σ→0,ϵ→0

M(x ; c1, c2,σ , ϵ) = 1 (1)

F (x) = False ⇐⇒ lim
c1→0,c2→∞
σ→0,ϵ→0

M(x ; c1, c2,σ , ϵ) = 0 (2)

as long as the t-norm inM satisfies Property 1.

Proof. We prove this by induction over the formula structure
considering four cases: atomic, negation, T-norm, and T-
conorm. For brevity, we sketch the T-norm case here and
provide the full proof in our extended technical report [39].

T-normCase. Ifp = TG (M1, ...,Mn ;д1, ...,дn), whichmeans
the final operation in M is a gated t-norm, we know that
for each submodel M1, ...,Mn the gating parameters are all
either 0 or 1. By the induction hypothesis, for eachMi , using
Algorithm 1, we can extract an equivalent SMT formula Fi
satisfying Eq. (1)(2). Then we can prove the full model M
and the extracted formula F also satisfy Eq. (1)(2), using the
induction hypothesis and the properties and t-norms. □

The requirement of all gating parameters being either 0 or
1 indicates that no gate is partially activated (e.g., д1 = 0.6).
Gating parameters between 0 and 1 are acceptable during
model fitting but should be eliminated when the model con-
verges. In practice this is achieved by gate regularization
which will be discussed in ğ5.2.1.

Theorem 4.1 guarantees the soundness of the gatingmethod-
ology with regard to discrete logic. Since the CLN architec-
ture is composed of operations that are sound with regard to
discrete logic, this property is preserved when gated t-norms
and t-conorms are used in the network.
Now the learnable parameters of our gated CLN include

both linear weightsW as in typical neural networks, and
the gating parameters {дi }, so the model can represent a
large family of SMT formulas. Given a training set X , when
the gated CLN model M is trained to M(x) = 1 for all
x ∈ X , then from Theorem 4.1 the recovered formula F is
guaranteed to hold true for all the training samples. That is,
∀x ∈ X , F (x) = True .

4.2 Parametric Relaxation for Inequalities

For learned inequality constraints to be useful in verification,
they usually need to constrain the loop behavior as tightly as
possible. In this section, we define a CLN activation function,
the bounds learning activation, which naturally learns tight
bounds during training while maintaining the soundness

guarantees of the CLN mapping to SMT.

S(t ≥ u) ≜



c21
(t−u)2+c21

t < u

c22
(t−u)2+c22

t ≥ u
(3)

Here c1 and c2 are two constants. The following limit prop-
erty holds.

lim
c1→0
c2→∞

S(t ≥ u) =
{
0 t < u

1 t ≥ u

Intuitively speaking, when c1 approaches 0 and c2 approaches
infinity,S(x ≥ 0)will approach the original semantic of pred-
icate ≥. Figure 7b provides an illustration of our parametric
relaxation for ≥.
Compared with the sigmoid construction in the original

CLNs (Figure 7a), our parametric relaxation penalizes very
large x , where x ≥ 0 is absolutely correct but not very in-
formative because the bound is too weak. In general, our
piecewise mapping punishes data points farther away from
the boundary, thus encouraging to learn a tight bound of the
samples. On the contrary, the sigmoid construction encour-
ages samples to be far from the boundary, resulting in loose
bounds which are not useful for verification.

(a) Plot of S(x ≥ 0) with the

CLNs’ sigmoid construction.

(b) Plot of S(x ≥ 0) with our

piecewise construction.

Figure 7. Comparison of the mapping S on ≥. The hyper-
parameters are B = 5, ϵ = 0.5, c1 = 0.5, and c2 = 5.

Since the samples represent only a subset of reachable
states from the program, encouraging a tighter bound may
potentially lead to overfitting. However, we ensure sound-
ness by later checking learned invariants via a solver. If an
initial bound is too tight, we can incorporate counterexam-
ples to the training data. Our empirical results show this
approach works well in practice.
Given a set of n k-dimensional samples {[x11, ..., x1k], ...,

[xn1, ..., xnk]}, where xi j denotes the value of variable x j in
the i-th sample, we want to learn an inequalityw1x1 + ... +

wkxk + b ≥ 0 for these samples. The desirable properties of
such an inequality is that it should be valid for all points,
and have as tight as a fit as possible. Formally, we define a
łdesiredž inequality as:

∀i ∈ {1, ...,n},w1xi1 + ... +wkxik + b ≥ 0

∃j ∈ {1, ...,n},w1x j1 + ... +wkx jk + b = 0
(4)

112

PLDI ’20, June 15ś20, 2020, London, UK J. Yao, G. Ryan, J. Wong, S. Jana, R. Gu

Our parametric relaxation for ≥ shown in Eq. 3 can always
learn an inequality which is very close to a łdesiredž one
with proper c1 and c2. Theorem 4.2 put this formally.

Theorem 4.2. Given a set of n k-dimensional samples with
the maximum L2-norm l , if c1 ≤ 2l and c1 · c2 ≥ 8

√
nl2, and

the weights are constrained as
∑k

i=1w
2
i = 1, then when the

model converges, the learned inequality has distance at most

c1/
√
3 from a łdesiredž inequality.

Proof. See the extended technical report [39]. □

Recall that c1 is a small constant, so c1/
√
3 can be con-

sidered as the error bound of inequality learning. Although
we only proved the theoretical guarantee when learning a
single inequality, our parametric relaxation for inequalities
can be connected with other inequalities and equalities with
conjunctions and disjunctions under a single CLN model.

Based on our parametric relaxation for ≥, other inequality
predicates can be defined accordingly.

S(t ≤ u) ≜



c22
(t−u)2+c22

t < u

c21
(t−u)2+c21

t ≥ u

S(t > u) ≜ S(t ≥ (u + ϵ)) S(t < u) ≜ S(t ≤ (u − ϵ))

where ϵ is a set small constant.
For our parametric relaxation, some axioms in classic logic

just approximately rather than strictly hold (e.g., t ≤ u =

¬(t > u)). They will strictly hold when c1 → 0 and c2 → ∞.
We reuse the Gaussian function as the parametric relax-

ation for equalities [30]. Given a small constant σ ,

S(t = u) ≜ exp (−(t − u)2
2σ 2

)

4.3 Fractional Sampling

In some cases, the samples generated from the original pro-
gram are insufficient to learn the correct invariant due to
dominating growth of some terms (higher-order terms in
particular) or limited number of loop iterations. To generate
more fine-grained yet valid samples, we perform Fractional
Sampling to relax the program semantics to continuous func-
tions without violating the loop invariants by varying the
initial value of program variables. The intuition is as follows.

Any numerical loop invariant I can be viewed as a predi-
cate over program variables V initialized with V0 such that

∀V , V0 7→∗ V =⇒ I (V) (5)

where V0 7→∗ V means starting from initial values V0 and
executing the loop for 0 or more iterations ends with values
V for the variables.

Now we relax the initial values X0 and see them as input
variablesVI , which may carry arbitrary values. The new loop

//pre: x = y = 0

// /\ k >= 0

while (y < k) {

y++;

x += y * y * y;

}

//post: 4x == k^2

// * (k + 1)^2

(a) The ps4 program

in the benchmark.

x y y2 y3 y4

0 0 0 0 0
1 1 1 1 1
9 2 4 8 16
36 3 9 27 81
100 4 16 64 256
225 5 25 125 625

(b) Training data generated

without Fractional Sampling.

x y y2 y3 y4 x0 y0 y20 y30 y40

-1 -0.6 0.36 -0.22 0.13 -1 -0.6 0.36 -0.22 0.13
-0.9 0.4 0.16 0.06 0.03 -1 -0.6 0.36 -0.22 0.13
1.8 1.4 1.96 2.74 3.84 -1 -0.6 0.36 -0.22 0.13
0 -1.2 1.44 -1.73 2.07 0 -1.2 1.44 -1.73 2.07
0 -0.2 0.04 -0.01 0.00 0 -1.2 1.44 -1.73 2.07

0.5 0.8 0.64 0.52 0.41 0 -1.2 1.44 -1.73 2.07

(c) Training data generated with fractional sampling.

Figure 8. An example of Fractional Sampling.

program will have variables V ∪VI . Suppose we can learn
an invariant predicate I ′ for this new program, i.e.,

∀VI V , VI 7→∗ V =⇒ I ′(VI ∪V) (6)

Then let VI = V0, Eq. (6) will become

∀V , V0 7→∗ V =⇒ I ′(V0 ∪V) (7)

Now V0 is a constant, and I ′(V0 ∪ V) satisfies Eq. (5) thus
being a valid invariant for the original program. In fact, if we
learn predicate I ′ successfully then we have a more general
loop invariant that can apply for any given initial values.
Figure 8 shows how Fractional Sampling can generate

more fine-grained samples with different initial values, mak-
ing model fitting much easier in our data-driven learning
system. The correct loop invariant for the program in Figure
8a is

(4x = y4 + 2y3 + y2) ∧ (y ≤ k)
To learn the equality part (4x = y4 + 2y3 + y2), if we choose
maxDeд = 4 and apply normal sampling, then six terms
{1,y,y2,y3,y4, x} will remain after the heuristic filters in
ğ5.1.3. Figure 8b shows a subset of training samples without
Fractional Sampling (the column of term 1 is omitted).
When y becomes larger, the low order terms 1,y, and y2

become increasingly negligible because they are significantly
smaller than the dominant terms y4 and x . In practice we
observe that the coefficients for x4 and y can be learned
accurately but not for 1,y,y2. To tackle this issue, we hope
to generate more samples around y = 1 where all terms are
on the same level. Such samples can be easily generated by
feeding more initial values around y = 1 using Fractional

113

Learning Nonlinear Loop Invariants with G-CLNs PLDI ’20, June 15ś20, 2020, London, UK

Sampling. Table 8c shows some generated samples from
x0 = −1,y0 = −0.6 and x0 = 0,y0 = −1.2.

Now we have more samples where terms are on the same
level, making the model easier to converge to the accurate
solution. Our gated CLN model can correctly learn the re-
laxed invariant 4x − y4 − 2y3 − y2 − 4x0 + y

4
0 + 2y

3
0 + y

2
0 = 0.

Finally we return to the exact initial values x0 = 0,y0 = 0,
and the correct invariant for the original programwill appear
4x − y4 − 2y3 − y2 = 0.

Note that for convenience, in Eq. (5)(6)(7), we assume all
variables are initialized in the original program and all are
relaxed in the new program. However, the framework can
easily extends to programs with uninitialized variables, or
we just want to relax a subset of initialized variables. Details
on how fractional sampling is incorporated in our system
are provided in ğ5.4.

5 Nonlinear Invariant Learning

In this section, we describe our overall approach for nonlin-
ear loop invariant inference. We first describe our methods
for stable CLN training on nonlinear data. We then give an
overview of our model architecture and how we incorporate
our inequality activation function to learn inequalities. Fi-
nally, we show how we extend our approach to also learn
invariants that contain external functions.

5.1 Stable CLN Training on Nonlinear Data

Nonlinear data causes instability in CLN training due to the
large number of terms and widely varying magnitudes it in-
troduces. We address this by modifying the CLN architecture
to normalize both inputs and weights on a forward execution.
We then describe how we implement term dropout, which
helps the model learn precise SMT coefficients.

5.1.1 DataNormalization. Exceedingly large inputs cause
instability and prevent the CLN model from converging to
precise SMT formulas that fit the data. We therefore modify
the CLN architecture such that it rescales its inputs so the
L2-norm equals a set value l . In our implementation, we used
l = 10.

We take the program in Figure 1b as an example. The raw
samples before normalization is shown in Figure 4b. The
monomial terms span in a too wide range, posing difficulty
for network training. With data normalization, each sample

Table 1. Training data after normalization for the program
in Figure 1b, which computes the integer square root.

1 a t ... as t2 st

0.70 0 0.70 0 0.70 0.70
0.27 0.27 0.81 1.08 2.42 3.23
0.13 0.25 0.63 2.29 3.17 5.71
0.06 0.19 0.45 3.10 3.16 7.23

(i.e., each row) is proportionally rescaled to L2-norm 10. The
normalized samples are shown in Table 1.

Now the samples occupy a more regular range. Note that
data normalization does not violate model correctness. If
the original sample (t1, t2, ...tk) satisfies the equalityw1t1 +

w2t2+ ...+wktk = 0 (note that ti can be a higher-order term),
so does the normalized sample and vice versa. The same
argument applies to inequalities.

5.1.2 Weight Regularization. For both equality invari-
ant w1x1 + ... + wmxm + b = 0 and inequality invariant
w1x1 + ... +wmxm + b ≥ 0, w1 = ... = wm = b = 0 is a true
solution. To avoid learning this trivial solution, we require
at least one of {w1, ...,wm} is non-zero. A more elegant way
is to constrain the Lp -norm of the weight vector to constant
1. In practice we choose L2-norm as we did in Theorem 4.2.
The weights are constrained to satisfy

w2
1 + ... +w

2
m = 1

5.1.3 Term Dropout. Given a program with three vari-
ables {x,y, z} andmaxDeд = 2, we will have ten candidate
terms {1, x,y, z, x2,y2, z2, xy, xz, yz}. The large number of
terms poses difficulty for invariant learning, and the loop
invariant in a real-world program is unlikely to contain all
these terms. We use two methods to select terms. First the
growth-rate-based heuristic in [33] is adopted to filter out
unnecessary terms. Second we apply a random dropout to
discard terms before training.

Dropout is a common practice in neural networks to avoid
overfitting and improve performance. Our dropout is ran-
domly predetermined before the training, which is different
from the typical weight dropout in deep learning [37]. Sup-
pose after the growth-rate-based filter, seven terms {1, x,
y, z, x2,y2, xy} remain. Before the training, each input term
to a neuron may be discarded with probability p.
The importance of dropout is twofold. First it further re-

duces the number of terms in each neuron. Second it en-
courages G-CLN to learn more simple invariants. For exam-
ple, if the desired invariant is (x − y − 1 = 0) ∧ (x2 − z =

0), then a neuron may learn their linear combination (e.g.,
2x − 2y − 2 + x2 − z = 0) which is correct but not human-
friendly. If the term x is discarded in one neuron then that
neuronmay learn x2−z = 0 rather than 2x−2y−2+x2−z = 0.
Similarly, if the terms x2 and xy are discarded in another
neuron, then that neuron may learn x − y − 1 = 0. Together,
the entire network consisting of both neurons will learn the
precise invariant.
Since the term dropout is random, a neuron may end up

having no valid invariant to learn (e.g., both x and x2 are
discarded in the example above). But when gating (ğ4.1)
is adopted, this neuron will be deactivated and remaining
neurons may still be able to learn the desired invariant. More
details on gated model training will be provided in ğ5.2.1.

114

PLDI ’20, June 15ś20, 2020, London, UK J. Yao, G. Ryan, J. Wong, S. Jana, R. Gu

Input

Dropout

Dropout

Gaussian

PBQ Unit

Gated
Disjunction

Layer

Gated
Conjunction

Layer

Output

Figure 9. Diagram of G-CLN model. Additional disjunction
and conjunction layers may be added to learn more complex
SMT formulas.

5.2 Gated CLN Invariant Learning

Here we describe the Gated CLN architecture and how we
incorporate the bounds learning activation function to learn
general nonlinear loop invariants.

5.2.1 Gated CLN Architecture. Architecture. In ğ3.1,
we introduce gated t-norm and gated t-conorm, and illustrate
how they can be integrated in CLN architecture. Theoreti-
cally, the gates can cascade to many layers, while in practice,
we use a gated t-conorm layer representing logical OR fol-
lowed by a gated t-norm layer representing logical AND, as
shown in Figure 9. The SMT formula extracted from such a
gated CLN architecture will be in conjunctive normal form
(CNF). In other words, G-CLN is parameterized by m and n,
where the underlying formula can be a conjunction of up
to m clauses, where each clause is a disjunction of n atomic
clauses. In the experiments we set m=10, n=2.
Gated CLN Training. For the sake of discussion, consider
a gated t-norm with two inputs. We note that the gating
parameters д1 and д2 have an intrinsic tendency to become
0 in our construction. When д1 = д2 = 0, TG (x,y;д1,д2) = 1
regardless of the truth value of the inputs x and y. So when
training the gated CLN model, we apply regularization on
д1,д2 to penalize small values. Similarly, for a gated t-conorm,
the gating parameters д1,д2 have an intrinsic tendency to
become 1 because x ⊕ y has a greater value than x and y.
To resolve this we apply regularization pressure on д1,д2 to
penalize close-to-1 values.

In the general case, given training set X and gate regular-
ization parameters λ1, λ2, the model will learn to minimize
the following loss function with regard to the linear weights

(a) Learned inequality

bounds.

(b) Learned inequality

bounds on sqrt.

Figure 10. Examples of 2 dimensional bound fitting.

W and gating parameters G,

L(X ;W ,G) =
∑

x ∈X
(1 −M(x;W ,G))

+ λ1

∑

дi ∈TG
(1 − дi) + λ2

∑

дi ∈T ′
G

дi

By training the G-CLN with this loss formulation, the model
tends to learn a formula F satisfying each training sample
(recall F (x) = True ⇔ M(x) = 1 in ğ4.1). Together, gating
and regularization prunes off poorly learned clauses, while
preventing the network from pruning off too aggressively.
When the training converges, all the gating parameters will
be very close to either 1 or 0, indicating the participation of
the clause in the formula. The invariant is recovered using
Algorithm 1.

5.2.2 Inequality Learning. Inequality learning largely
follows the same procedure as equality learning with two
differences. First, we use the PBQU activation (i.e., the para-
metric relaxation for ≥) introduced in ğ4.2, instead of the
Gaussian activation function (i.e., the parametric relaxation
for =). This difference is shown in Figure 9. As discussed in
ğ4.2, the PBQU activation will learn tight inequalities rather
than loose ones.

Second, we structure the dropout on inequality constraints
to consider all possible combinations of variables up to a set
number of terms andmaximum degree (up to 3 terms and 2nd
degree in our evaluation). We then train the model following
the same optimization used in equality learning, and remove
constraints that do not fit the data based on their PBQU
activations after the model has finished training.
When extracting a formula from the model we remove

poorly fit learned bounds that have PBQU activations be-
low a set threshold. As discussed in ğ4.2, PBQU activations
penalizes points that are farther from its bound. The tight
fitting bounds in Figures 10a and 10b with solid red lines
have PBQU activations close to 1, while loose fitting bounds
with dashed lines have PBQU activations close to 0. After

115

Learning Nonlinear Loop Invariants with G-CLNs PLDI ’20, June 15ś20, 2020, London, UK

selecting the best fitting bounds, we check against the loop
specification and remove any remaining constraints that are
unsound. If the resulting invariant is insufficient to prove the
postcondition, the model is retrained using the counterex-
amples generated during the specification check.

5.3 External Function Calls

In realistic applications, loops are not entirely whitebox and
may contain calls to external functions for which the sig-
nature is provided but not the code body. In these cases,
external functions may also appear in the loop invariant. To
address these cases, when an external function is present, we
sample it during loop execution. To sample the function, we
execute it with all combinations of variables in scope during
sampling that match its call signature.
For example, the function дcd : Z × Z → Z, for great-

est common divisor, is required in the invariant for four of
the evaluation problems that compute either greatest com-
mon divisor or least common multiple: (egcd2, egcd3, lcm1,
and lcm2). In practice, we constrain our system to binary
functions, but it is not difficult to utilize static-analysis to
extend the support to more complex external function calls.
This procedure of constructing terms containing external
function calls is orthogonal to our training framework.

5.4 Fractional Sampling Implementation

We apply fractional sampling on a per-program basis when
we observe the model is unable to learn the correct polyno-
mial from the initial samples. We first sample on 0.5 intervals,
then 0.25, etc. until the model learns a correct invariant. We
do not apply fractional sampling to variables involved in
predicates and external function calls, such as gcd. In princi-
ple, predicate constraints can be relaxed to facilitate more
general sampling. We will investigate this in future work.
Among all the programs in our evaluation, only two of

them, ps5 and ps6, require fractional sampling. For both
of them sampling on 0.5 intervals is sufficient to learn the
correct invariant, although more fine grained sampling helps
the model learn a correct invariant more quickly. The cost
associated with fractional sampling is small (< 5s).

6 Evaluation

We evaluate our approach on NLA, a benchmark of common
numerical algorithms with nonlinear invariants. We first per-
form a comparison with two prior works, Numinv and PIE,
that use polynomial equation solving and template learning
respectively. We then perform an ablation of the methods
we introduce in this paper. Finally, we evaluate the stability
of our approach against a baseline CLN model.

Evaluation Environment. The experiments described in
this section were conducted on an Ubuntu 18.04 server with
an Intel XeonE5-2623 v4 2.60GHz CPU, 256Gb of memory,
and an Nvidia GTX 1080Ti GPU.

System Configuration. We implement our method with
the PyTorch Framework and use the Z3 SMT solver to vali-
date the correctness of the inferred loop invariants. For the
four programs involving greatest common divisors, we man-
ually check the validity of the learned invariant since gcd is
not supported by z3. We use a G-CLN model with the CNF
architecture described in ğ5.2.1, with a conjunction of ten
clauses, each with up to two literals. We use adaptive regular-
ization on the CLN gates. λ1 is set to (1.0, 0.999, 0.1), which
means that λ1 is initialized as 1.0, and is multiplied by 0.999
after each epoch until it reaches the threshold 0.1. Similarly,
λ2 is set to (0.001, 1.001, 0.1). We try three maximum denom-
inators, (10, 15, 30), for coefficient extraction in ğ4.1. For the
parametric relaxation in ğ4.2, we set σ = 0.1, c1 = 1, c2 = 50.
The default dropout rate in ğ5.1.3 is 0.3, and will decrease
by 0.1 after each failed attempt until it reaches 0. We use the
Adam optimizer with learning rate 0.01, decay 0.9996, and
max epoch 5000.

6.1 Polynomial Invariant Dataset

We evaluate ourmethod on a dataset of programs that require
nonlinear polynomial invariants [22]. The problems in this
dataset represent various numerical algorithms ranging from
modular division and greatest common denominator (дcd)
to computing geometric and power series. These algorithms
involve up to triply nested loops and sequential loops, which
we handle by predicting all the requisite invariants using
the model before checking their validity. We sample within
input space of the whole program just as we do with single
loop problems and annotate the loop that a recorded state
is associated with. The invariants involve up to 6th order
polynomial and up to thirteen variables.

Performance Comparison. Our method is able to solve
26 of the 27 problems as shown in Table 2, while NumInv
solves 23 of 27. Our average execution time was 53.3 seconds,
which is a minor improvement to NumInv who reported 69.9
seconds. We also evaluate LoopInvGen (PIE) on a subset of
the simpler problems which are available in a compatible
format1. It was not able to solve any of these problems be-
fore hitting a 1 hour timeout. In Table 2, we indicate solved
problems with ✓, unsolved problems with ✗, and problems
that were not attempted with −.
The single problem we do not solve, knuth, is the most

difficult problem from a learning perspective. The invariant
for the problem, (d2 ∗q−4∗r ∗d+4∗k ∗d−2∗q ∗d+8∗r ==
8 ∗ n) ∧ (mod(d, 2) == 1), is one of the most complex in the
benchmark. Without considering the external function call
tomod (modular division), there are already 165 potential
terms of degree at most 3, nearly twice as many as next most
complex problem in the benchmark, making it difficult to
learn a precise invariant with gradient based optimization.

1LoopInvGen uses the SyGuS competition format, which is an extended

version of smtlib2.

116

PLDI ’20, June 15ś20, 2020, London, UK J. Yao, G. Ryan, J. Wong, S. Jana, R. Gu

Table 2. Table of problems requiring nonlinear polynomial
invariant fromNLA dataset. We additionally tested Code2Inv
on the same problems as PIE and it fails to solve any within
1 hour. Numinv results are based on Table 1 in [21]. G-CLN
solves 26 of 27 problems with an average execution time of
53.3 seconds.

Problem Degree # Vars PIE NumInv G-CLN

divbin 2 5 - ✓ ✓

cohendiv 2 6 - ✓ ✓

mannadiv 2 5 ✗ ✓ ✓

hard 2 6 - ✓ ✓

sqrt1 2 4 - ✓ ✓

dijkstra 2 5 - ✓ ✓

cohencu 3 5 - ✓ ✓

egcd 2 8 - ✓ ✓

egcd2 2 11 - ✗ ✓

egcd3 2 13 - ✗ ✓

prodbin 2 5 - ✓ ✓

prod4br 3 6 ✗ ✓ ✓

fermat1 2 5 - ✓ ✓

fermat2 2 5 - ✓ ✓

freire1 2 3 - ✗ ✓

freire2 3 4 - ✗ ✓

knuth 3 8 - ✓ ✗

lcm1 2 6 - ✓ ✓

lcm2 2 6 ✗ ✓ ✓

geo1 2 5 ✗ ✓ ✓

geo2 2 5 ✗ ✓ ✓

geo3 3 6 ✗ ✓ ✓

ps2 2 4 ✗ ✓ ✓

ps3 3 4 ✗ ✓ ✓

ps4 4 4 ✗ ✓ ✓

ps5 5 4 - ✓ ✓

ps6 6 4 - ✓ ✓

Weplan to explore better initialization and training strategies
to scale to complex loops like knuth in future work.
Numinv is able to find the equality constraint in this in-

variant because its approach is specialized for equality con-
straint solving. However, we note that NumInv only infers
octahedral inequality constraints and does not in fact infer
the nonlinear and 3 variable inequalities in the benchmark.

We handle themod binary function successfully in fermat1
and fermat2 indicting the success of our model in support-
ing external function calls. Additionally, for four problems
(egcd2, egcd3, lcm1, and lcm2), we incorporate the дcd ex-
ternal function call as well.

6.2 Ablation Study

We conduct an ablation study to demonstrate the benefits
gained by the normalization/regularization techniques and
term dropouts as well as fractional sampling. Table 3 notes
that data normalization is crucial for nearly all the problems,

Table 3. Table with ablation of various components in the
G-CLN model. Each column reports which problems can be
solved with G-CLN when that feature ablated.

Problem Data Weight Drop- Frac. Full

Norm. Reg. out Sampling Method

divbin ✗ ✗ ✓ ✓ ✓

cohendiv ✗ ✗ ✗ ✓ ✓

mannadiv ✗ ✗ ✓ ✓ ✓

hard ✗ ✗ ✓ ✓ ✓

sqrt1 ✗ ✗ ✗ ✓ ✓

dijkstra ✗ ✗ ✓ ✓ ✓

cohencu ✗ ✗ ✓ ✓ ✓

egcd ✗ ✓ ✗ ✓ ✓

egcd2 ✗ ✓ ✗ ✓ ✓

egcd3 ✗ ✓ ✗ ✓ ✓

prodbin ✗ ✓ ✓ ✓ ✓

prod4br ✗ ✓ ✓ ✓ ✓

fermat1 ✗ ✓ ✓ ✓ ✓

fermat2 ✗ ✓ ✓ ✓ ✓

freire1 ✗ ✓ ✓ ✓ ✓

freire2 ✗ ✓ ✗ ✓ ✓

knuth ✗ ✗ ✗ ✗ ✗

lcm1 ✗ ✓ ✓ ✓ ✓

lcm2 ✗ ✓ ✓ ✓ ✓

geo1 ✗ ✓ ✓ ✓ ✓

geo2 ✗ ✓ ✓ ✓ ✓

geo3 ✗ ✓ ✓ ✓ ✓

ps2 ✓ ✗ ✓ ✓ ✓

ps3 ✗ ✗ ✓ ✓ ✓

ps4 ✗ ✗ ✓ ✓ ✓

ps5 ✗ ✗ ✓ ✗ ✓

ps6 ✗ ✗ ✓ ✗ ✓

especially for preventing high order terms from dominat-
ing the training process. Without weight regularization, the
problems which involve inequalities over multiple variables
cannot be solved; 7 of the 27 problems cannot be solved with-
out dropouts, which help avoid the degenerate case where
the network learns repetitions of the same atomic clause.
Fractional sampling helps to solve high degree (5th and 6th

order) polynomials as the distance between points grow fast.

6.3 Stability

We compare the stability of the gated CLNs with standard
CLNs as proposed in [30]. Table 4 shows the result. We ran
the two CLN methods without automatic restart 20 times
per problem and compared the probability of arriving at
a solution. We tested on the example problems described
in [30] with disjunction and conjunction of equalities, two
problems from Code2Inv, as well as ps2 and ps3 from NLA.
As we expected, our regularization and gated t-norms vastly
improves the stability of the model as clauses with poorly
initialized weights can be ignored by the network. We saw

117

Learning Nonlinear Loop Invariants with G-CLNs PLDI ’20, June 15ś20, 2020, London, UK

Table 4. Table comparing the stability of CLN2INV with our
method. The statistics reported are over 20 runs per problem
with randomized initialization.

Problem Convergence Rate Convergence Rate

of CLN of G-CLN

Conj Eq 75% 95%

Disj Eq 50% 100%

Code2Inv 1 55% 90%

Code2Inv 11 70% 100%

ps2 70% 100%

ps3 30% 100%

improvements across all the six problems, with the baseline
CLN model having an average convergence rate of 58.3%,
and the G-CLN converging 97.5% of the time on average.

6.4 Linear Invariant Dataset

We evaluate our system on the Code2Inv benchmark [35]
of 133 linear loop invariant inference problems with source
code and SMT loop invariant checks. We hold out 9 problems
shown to be theoretically unsolvable in [30]. Our system
finds correct invariants for all remaining 124 theoretically
solvable problems in the benchmark in under 30s.

7 Related Work

NumericalRelaxations. Inductive logic programming (ILP)
has been used to learn a logical formula consistent with a set
of given data points. More recently, efforts have focused on
differentiable relaxations of ILP for learning [8, 17, 27, 38] or
program synthesis [36]. Other recent efforts have used formu-
las as input to graph and recurrent nerual networks to solve
Circuit SAT problems and identify Unsat Cores [1, 31, 32].
FastSMT also uses a neural network select optimal SMT
solver strategies [3]. In contrast, our work relaxes the seman-
tics of the SMT formulas allowing us to learn SMT formulas.

Counterexample-Driven Invariant Inference. There is
a long line of work to learn loop invariants based on coun-
terexamples. ICE-DT uses decision tree learning and lever-
ages counterexamples which violate the inductive verifica-
tion condition [11, 12, 40]. Combinations of linear classifiers
have been applied to learning CHC clauses [40].
A state-of-the-art method, LoopInvGen (PIE) learns the

loop invariant using enumerative synthesis to repeatedly
add data consistent clauses to strengthen the post-condition
until it becomes inductive [25, 26, 34]. For the strengthening
procedure, LoopInvGen uses PAC learning, a form of boolean
formula learning, to learn which combination of candidate
atomic clauses is consistent with the observed data. In con-
trast, our system learn invariants from trace data.

Neural Networks for Invariant Inference. Recently, neu-
ral networks have been applied to loop invariant inference.

Code2Inv combines graph and recurrent neural networks
to model the program graph and learn from counterexam-
ples [35]. In contrast, CLN2INV uses CLNs to learn SMT
formulas for invariants directly from program data [30]. We
also use CLNs but incorporate gating and other improve-
ments to be able to learn general nonlinear loop invariants.

Polynomial Invariants. There have been efforts to uti-
lize abstract interpretation to discover polynomial invari-
ants [28, 29]. More recently, Compositional Recurrance Anal-
ysis (CRA) performs analysis on abstract domain of transition
formulas, but relies on over approximations that prevent it
from learning sufficient invariants [9, 18, 19]. Data-driven
methods based on linear algebra such as Guess-and-Check
are able to learn polynomial equality invariants accurately
[33]. Guess-and-check learns equality invariants by using
the polynomial kernel, but it cannot learn disjunctions and
inequalities, which our framework supports natively.
NumInv [21, 23, 24] uses the polynomial kernel but also

learns octahedral inequalities. NumInv sacrifices soundness
for performance by replacing Z3 with KLEE, a symbolic
executor, and in particular, treats invariants which lead to
KLEE timeouts as valid. Our method instead is sound and
learns more general inequalities than NumInv.

8 Conclusion

We introduce G-CLNs, a new gated neural architecture that
can learn general nonlinear loop invariants. We addition-
ally introduce Fractional Sampling, a method that soundly
relaxes program semantics to perform dense sampling, and
PBQU activations, which naturally learn tight inequality
bounds for verification. We evaluate our approach on a set of
27 polynomial loop invariant inference problems and solve
26 of them, 3 more than prior work, as well as improving
convergence rate to 97.5% on quadratic problems, a 39.2%
improvement over CLN models.

Acknowledgements

The authors are grateful to our shepherd, Aditya Kanade,
and the anonymous reviewers for valuable feedbacks that
improved this paper significantly. This work is sponsored in
part by NSF grants CNS-18-42456, CNS-18-01426, CNS-16-
17670, CCF-1918400; ONR grant N00014-17-1-2010; an ARL
Young Investigator (YIP) award; an NSF CAREER award; a
Google Faculty Fellowship; a Capital One Research Grant;
a J.P. Morgan Faculty Award; a Columbia-IBM Center Seed
Grant Award; and a Qtum Foundation Research Gift. Any
opinions, findings, conclusions, or recommendations that
are expressed herein are those of the authors, and do not
necessarily reflect those of the US Government, ONR, ARL,
NSF, Google, Capital One J.P. Morgan, IBM, or Qtum.

118

PLDI ’20, June 15ś20, 2020, London, UK J. Yao, G. Ryan, J. Wong, S. Jana, R. Gu

References
[1] Saeed Amizadeh, Sergiy Matusevych, and Markus Weimer. 2019.

Learning To Solve Circuit-SAT: An Unsupervised Differentiable Ap-

proach. In International Conference on Learning Representations. https:

//openreview.net/forum?id=BJxgz2R9t7

[2] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2014. Neural

machine translation by jointly learning to align and translate. arXiv

preprint arXiv:1409.0473 (2014).

[3] Mislav Balunovic, Pavol Bielik, and Martin Vechev. 2018. Learning

to solve SMT formulas. In Advances in Neural Information Processing

Systems. 10317ś10328.

[4] A. Biere, H. van Maaren, and T. Walsh. 2009. Handbook of Satisfiability:

Volume 185 Frontiers in Artificial Intelligence and Applications. IOS

Press, Amsterdam, The Netherlands, The Netherlands.

[5] Andreas Blass and Yuri Gurevich. 2001. Inadequacy of computable

loop invariants. ACM Transactions on Computational Logic (TOCL) 2,

1 (2001), 1ś11.

[6] Werner Damm, Guilherme Pinto, and Stefan Ratschan. 2005. Guaran-

teed termination in the verification of LTL properties of non-linear

robust discrete time hybrid systems. In International Symposium on

Automated Technology for Verification and Analysis. Springer, 99ś113.

[7] Leonardo De Moura and Nikolaj Bjùrner. 2008. Z3: An efficient SMT

solver. In International conference on Tools and Algorithms for the Con-

struction and Analysis of Systems. Springer, 337ś340.

[8] Richard Evans and Edward Grefenstette. 2018. Learning explanatory

rules from noisy data. Journal of Artificial Intelligence Research 61

(2018), 1ś64.

[9] Azadeh Farzan and Zachary Kincaid. 2015. Compositional recurrence

analysis. In 2015 Formal Methods in Computer-Aided Design (FMCAD).

IEEE, 57ś64.

[10] Carlo A Furia, Bertrand Meyer, and Sergey Velder. 2014. Loop invari-

ants: Analysis, classification, and examples. ACM Computing Surveys

(CSUR) 46, 3 (2014), 34.

[11] Pranav Garg, Christof Löding, P Madhusudan, and Daniel Neider.

2014. ICE: A robust framework for learning invariants. In International

Conference on Computer Aided Verification. Springer, 69ś87.

[12] Pranav Garg, Daniel Neider, Parthasarathy Madhusudan, and Dan

Roth. 2016. Learning invariants using decision trees and implication

counterexamples. In ACM Sigplan Notices, Vol. 51. ACM, 499ś512.

[13] Felix A Gers, Jürgen Schmidhuber, and Fred Cummins. 1999. Learning

to forget: Continual prediction with LSTM. (1999).

[14] Petr Hájek. 2013. Metamathematics of fuzzy logic. Vol. 4. Springer

Science & Business Media.

[15] Charles Antony Richard Hoare. 1969. An axiomatic basis for computer

programming. Commun. ACM 12, 10 (1969), 576ś580.

[16] Sergey Ioffe and Christian Szegedy. 2015. Batch normalization: Ac-

celerating deep network training by reducing internal covariate shift.

arXiv preprint arXiv:1502.03167 (2015).

[17] Angelika Kimmig, Stephen Bach, Matthias Broecheler, Bert Huang,

and Lise Getoor. 2012. A short introduction to probabilistic soft logic.

In Proceedings of the NIPS Workshop on Probabilistic Programming:

Foundations and Applications. 1ś4.

[18] Zachary Kincaid, Jason Breck, Ashkan Forouhi Boroujeni, and Thomas

Reps. 2017. Compositional recurrence analysis revisited. ACM SIG-

PLAN Notices 52, 6 (2017), 248ś262.

[19] Zachary Kincaid, John Cyphert, Jason Breck, and Thomas Reps. 2017.

Non-linear reasoning for invariant synthesis. Proceedings of the ACM

on Programming Languages 2, POPL (2017), 1ś33.

[20] Hai Lin, Panos J Antsaklis, et al. 2014. Hybrid dynamical systems: An

introduction to control and verification. Foundations and Trends® in

Systems and Control 1, 1 (2014), 1ś172.

[21] ThanhVu Nguyen, Timos Antonopoulos, Andrew Ruef, and Michael

Hicks. 2017. Counterexample-guided approach to finding numerical

invariants. In Proceedings of the 2017 11th Joint Meeting on Foundations

of Software Engineering. ACM, 605ś615.

[22] ThanhVu Nguyen, Deepak Kapur, Westley Weimer, and Stephanie

Forrest. 2012. Using dynamic analysis to discover polynomial and

array invariants. In Proceedings of the 34th International Conference on

Software Engineering. IEEE Press, 683ś693.

[23] ThanhVu Nguyen, Deepak Kapur, Westley Weimer, and Stephanie

Forrest. 2012. Using dynamic analysis to discover polynomial and

array invariants. In Proceedings of the 34th International Conference on

Software Engineering. IEEE Press, 683ś693.

[24] Thanhvu Nguyen, Deepak Kapur, Westley Weimer, and Stephanie

Forrest. 2014. DIG: a dynamic invariant generator for polynomial

and array invariants. ACM Transactions on Software Engineering and

Methodology (TOSEM) 23, 4 (2014), 30.

[25] Saswat Padhi and Todd D. Millstein. 2017. Data-Driven Loop Invariant

Inference with Automatic Feature Synthesis. CoRR abs/1707.02029

(2017). arXiv:1707.02029 http://arxiv.org/abs/1707.02029

[26] Saswat Padhi, Rahul Sharma, and Todd Millstein. 2016. Data-driven

precondition inference with learned features. ACM SIGPLAN Notices

51, 6 (2016), 42ś56.

[27] Ali Payani and Faramarz Fekri. 2019. Inductive Logic Program-

ming via Differentiable Deep Neural Logic Networks. arXiv preprint

arXiv:1906.03523 (2019).

[28] Enric Rodríguez-Carbonell and Deepak Kapur. 2004. Automatic gen-

eration of polynomial loop invariants: Algebraic foundations. In Pro-

ceedings of the 2004 international symposium on Symbolic and algebraic

computation. ACM, 266ś273.

[29] Enric Rodríguez-Carbonell and Deepak Kapur. 2007. Generating all

polynomial invariants in simple loops. Journal of Symbolic Computa-

tion 42, 4 (2007), 443ś476.

[30] Gabriel Ryan, Justin Wong, Jianan Yao, Ronghui Gu, and Suman Jana.

2020. CLN2INV: Learning Loop Invariants with Continuous Logic

Networks. In International Conference on Learning Representations.

https://openreview.net/forum?id=HJlfuTEtvB

[31] Daniel Selsam and Nikolaj Bjùrner. 2019. Guiding high-performance

SAT solvers with unsat-core predictions. In International Conference

on Theory and Applications of Satisfiability Testing. Springer, 336ś353.

[32] Daniel Selsam, Matthew Lamm, Benedikt Bünz, Percy Liang, Leonardo

de Moura, and David L. Dill. 2019. Learning a SAT Solver from Single-

Bit Supervision. In International Conference on Learning Representations.

https://openreview.net/forum?id=HJMC_iA5tm

[33] Rahul Sharma, Saurabh Gupta, Bharath Hariharan, Alex Aiken, Percy

Liang, and Aditya V Nori. 2013. A data driven approach for algebraic

loop invariants. In European Symposium on Programming. Springer,

574ś592.

[34] Rahul Sharma, Saurabh Gupta, Bharath Hariharan, Alex Aiken, and

Aditya V Nori. 2013. Verification as learning geometric concepts. In

International Static Analysis Symposium. Springer, 388ś411.

[35] Xujie Si, Hanjun Dai, Mukund Raghothaman, Mayur Naik, and Le Song.

2018. Learning loop invariants for program verification. In Advances

in Neural Information Processing Systems. 7751ś7762.

[36] Xujie Si, Mukund Raghothaman, Kihong Heo, and Mayur Naik. 2019.

Synthesizing datalog programs using numerical relaxation. In Proceed-

ings of the 28th International Joint Conference on Artificial Intelligence.

AAAI Press, 6117ś6124.

[37] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever,

and Ruslan Salakhutdinov. 2014. Dropout: a simple way to prevent

neural networks from overfitting. The journal of machine learning

research 15, 1 (2014), 1929ś1958.

[38] Fan Yang, Zhilin Yang, and William W Cohen. 2017. Differentiable

learning of logical rules for knowledge base reasoning. In Advances in

Neural Information Processing Systems. 2319ś2328.

[39] Jianan Yao, Gabriel Ryan, Justin Wong, Suman Jana, and Ronghui Gu.

2020. Learning Nonlinear Loop Invariants with Gated Continuous

Logic Networks. arXiv:arXiv:2003.07959

119

https://openreview.net/forum?id=BJxgz2R9t7
https://openreview.net/forum?id=BJxgz2R9t7
http://arxiv.org/abs/1707.02029
http://arxiv.org/abs/1707.02029
https://openreview.net/forum?id=HJlfuTEtvB
https://openreview.net/forum?id=HJMC_iA5tm
http://arxiv.org/abs/arXiv:2003.07959

Learning Nonlinear Loop Invariants with G-CLNs PLDI ’20, June 15ś20, 2020, London, UK

[40] He Zhu, Stephen Magill, and Suresh Jagannathan. 2018. A data-driven

CHC solver. In ACM SIGPLAN Notices, Vol. 53. ACM, 707ś721.

120

	Abstract
	1 Introduction
	2 Background
	2.1 Loop Invariant Inference
	2.2 Basic Fuzzy Logic
	2.3 Continuous Logic Networks

	3 Workflow
	4 Theory
	4.1 Gated t-norms and t-conorms
	4.2 Parametric Relaxation for Inequalities
	4.3 Fractional Sampling

	5 Nonlinear Invariant Learning
	5.1 Stable CLN Training on Nonlinear Data
	5.2 Gated CLN Invariant Learning
	5.3 External Function Calls
	5.4 Fractional Sampling Implementation

	6 Evaluation
	6.1 Polynomial Invariant Dataset
	6.2 Ablation Study
	6.3 Stability
	6.4 Linear Invariant Dataset

	7 Related Work
	8 Conclusion
	References

