
Table Search Using a Deep Contextualized Language Model
Zhiyu Chen

zhc415@lehigh.edu
Lehigh University
Bethlehem, PA, USA

Mohamed Trabelsi
mot218@lehigh.edu
Lehigh University
Bethlehem, PA, USA

Jeff Heflin
heflin@cse.lehigh.edu
Lehigh University
Bethlehem, PA, USA

Yinan Xu
yinanxu@wezhuiyi.com

Zhuiyi Technology
Shenzhen, China

Brian D. Davison
davison@cse.lehigh.edu

Lehigh University
Bethlehem, PA, USA

ABSTRACT
Pretrained contextualized language models such as BERT have
achieved impressive results on various natural language process-
ing benchmarks. Benefiting from multiple pretraining tasks and
large scale training corpora, pretrained models can capture complex
syntactic word relations. In this paper, we use the deep contextu-
alized language model BERT for the task of ad hoc table retrieval.
We investigate how to encode table content considering the table
structure and input length limit of BERT. We also propose an ap-
proach that incorporates features from prior literature on table
retrieval and jointly trains them with BERT. In experiments on
public datasets, we show that our best approach can outperform
the previous state-of-the-art method and BERT baselines with a
large margin under different evaluation metrics.

CCS CONCEPTS
• Information systems → Content analysis and feature se-
lection;Retrievalmodels and ranking; •Computingmethod-
ologies → Search methodologies.

KEYWORDS
table search; neural networks; pretrained language model; informa-
tion retrieval

ACM Reference Format:
Zhiyu Chen, Mohamed Trabelsi, Jeff Heflin, Yinan Xu, and Brian D. Davi-
son. 2020. Table Search Using a Deep Contextualized Language Model. In
Proceedings of the 43rd International ACM SIGIR Conference on Research and
Development in Information Retrieval (SIGIR ’20), July 25–30, 2020, Virtual
Event, China. ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/
3397271.3401044

1 INTRODUCTION
As an efficient way to organize and display data, tables are broadly
used in different applications: researchers use tables to present their

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGIR ’20, July 25–30, 2020, Virtual Event, China
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8016-4/20/07. . . $15.00
https://doi.org/10.1145/3397271.3401044

experimental results; companies store information about customers
and products in spreadsheets; flight information display systems in
the airports show flight schedules to passengers in tables. According
to Cafarella et al. [5], there are more than 14.1 billion tables on the
Web. Among those tables, many are very informative which means
they include relations and attributes of real-world entities, and have
been used for a variety of downstream tasks. For example, tables like
Wikipedia infoboxes have been used to construct knowledge bases
since they are of high quality and consistent structure [1]. Data-to-
textmodels take tables from specific domains as input and transform
them into fluent natural language sentences such as sports news
[44] and product descriptions [6]. With structure information and
metadata, tables store factual knowledge and therefore are also
used to build question answering (QA) systems [34] .

The table retrieval task is related but different from the table QA
task. Both of them aim to satisfy users’ information need. QAmodels
usually take a natural language question as input and aim to find
one or more specific answers. However, queries for table retrieval
systems may have ambiguous intent and usually consist of several
keywords. The returned tables from a table retrieval system in
Figure 1a and 1c can be both positive samples for a table QA system.
A user may want to know the list of all dog breeds in Figure 1a
and the 2nd column of the table provides the relevant and accurate
information. A user may ask the profiles of professional wrestlers
in Figure 1c and the returned table contains that information. For
this example, all the cells provide informative content for the user.
The 2nd column tells who are professional wrestlers and the other
columns provide context information. However, in Figure 1b, the
query has more ambiguous intent. The user may ask the results of
2008 Beijing Olympic Games which means the returned table is a
negative sample for a QA system. If a user does not have a clear
question and just wants to explore what he/she could find, then the
returned table is a positive sample for a table retrieval system. For
this example, the row that includes “Beijing” is relevant and the
remaining rows are less useful. We note that the unit of relevant
information in the table can be rows, columns or cells. Based on
this observation, we propose different methods to select row items,
column items and cell items from a table.

In this paper, we consider the task of ad hoc table retrieval where
given a keyword query, a list of ranked tables are returned. In
previous studies of table retrieval, various features are used. Word
level, phrase level and sentence level features are calculated by Sun
et al. [35]. Zhang et al. [49] use 23 hand-crafted features and 16
embedding based features to train a random forest for pointwise

https://doi.org/10.1145/3397271.3401044
https://doi.org/10.1145/3397271.3401044
https://doi.org/10.1145/3397271.3401044

Position Breed Registrations

1 Labrador Retriever 45,700

2 English Cocker Spaniel 20,459

… … …

Search Query: dog breeds

(a) An example of a returned table in which one col-
umn is relevant to the query.

City Country Year …

Athens Greece 1896 …

… … … …

Beijing China 2008 …

… … … …

Search Query: 2008 Beijing Olympics

(b) An example of a returned table in which one row is
relevant to the query.

Rank Name Sex …

1 Harry Elliott M …

2 Abe Coleman M …

3 Angelo Savoldi M …

… … … …

Search Query: professional wrestlers

(c) An example of a returned table in which all cells are
relevant to the query.

Figure 1: Three examples of returned tables reflecting differ-
ent relevant unit types.

table ranking. Recently, the pre-trained language model BERT [13]
and its variants like RoBERTa [21] have achieved impressive results
on different natural language understanding tasks [40]. The self-
attention structure and pre-training tasks enable BERT to learn
complex linguistic features from a large corpus. Researchers from
IR communities have applied BERT to ranking tasks and achieved
new state-of-the-art results on multiple benchmarks [23, 26, 45, 46].
Here we apply BERT to the ad hoc table retrieval task. In previous
work, the input of BERT is either a single sequence or sequence pairs.
The question of how to effectively encode a structured document
into a BERT representation has not been previously explored. We
construct input for BERT considering the structure of a table and
then combine BERT features with other table features together to
treat table retrieval as a regression task.

We summarize our contributions as the following:
• We propose three content selectors to encode different table
items into the fixed-width BERT representation.

• We experiment on two public datasets and demonstrate that
our method achieves the best results and generalizes to other
domains.

• We analyze the experiment results and discuss why the max
salience selector for row items performs the best among all
other methods.

• We analyze the fine-tuned BERT attention maps and embed-
dings, and explain what information is captured by BERT.

2 RELATEDWORK
2.1 Table Search
Zhang et al. [49] propose a semantic table retrieval (STR) method
for ad hoc table retrieval. They first map queries and tables into
a set of word embeddings or graph embeddings. Four ways to
calculate query-table similarity based on embeddings are then pro-
posed. In the end, the resulting four semantic similarity features are
combined with other features into a learning-to-rank framework.
Table2Vec [48] obtains semantic features in a similar way but uses
embeddings trained from different fields. This method is built upon
and does not outperform STR, so we only compare our methods
with STR instead of Table2Vec.

Unsupervised methods for table search are also studied. Trabelsi
et al. [37] propose custom embeddings for column headers based on
multiple contexts for table retrieval, and find representing numeri-
cal cell values to be useful. Chen et al. [8] utilize matrix factorization
to generate additional table headers and then show that those gen-
erated headers can improve the performance of unsupervised table
search.

2.2 Retrieval Models for Multifield Documents
A table is often associated with important context information
such as its caption and can be considered as a multifield document.
Therefore, table search can be treated as a multifield document
retrieval task and we introduce some related work in the area of
multifield document ranking.

Considering the structure of a document when designing re-
trieval models can usually improve retrieval results. It has been
shown that combining similarities and rankings of different sec-
tions can lead to better performance [43]. Ogilvie et al. [27] present
a mixture-based language model combining different document
representations for known-item search in structured document
collections. They find that document representations that perform
poorly can be combined with other representations to improve the
overall performance. Robertson et al. [31] introduce BM25F which
is an extension of BM25 that combines original term frequencies in
the different fields in a weighted manner. A field relevance model is
proposed by Kim and Croft [16] to incorporate relevance feedback
for field weights estimation. There are also supervised methods for
multifield document ranking. A Bayesian networks-based model for
structured documents is proposed by Piwowarski and Gallinari [29].
Kim et al. [15] propose a probabilistic model for semi-structured
document retrieval. They calculate the mapping probability of each
query term and use it as a weight to combine the language models
estimated from each field. Svore et al. [36] develop LambdaBM25, a
machine learning approach to BM25-style retrieval that learns from
the input attributes of BM25 and performs better than BM25F for
multifield document ranking. Zamani et al. [47] propose a neural
ranking model that learns an aggregated document representation

from field-level representations and then uses a matching network
to produce the final relevance score.

2.3 BERT for Information Retrieval
Given the advances of deep contextualized language models for
natural language understanding tasks, researchers from IR commu-
nity also begin to study BERT for IR problems. Nogueira et al. [25]
describe an initial application of BERT for passage re-ranking task
where the sentence-pair classification score is used. Nogueira et
al. [26] then propose a multi-stage document ranking framework
where BERT is used for pointwise and pairwise re-ranking. Yang et
al. [46] show that treating social media text retrieval as a sentence
pair classification task can achieve new state-of-the-art results.
Then they apply BERT to a dataset with longer documents and
rank a document with linear interpolation of the original document
score and weighted top-n sentence scores. Similarly, Dai et al. [11]
use passage-level evidence to fine-tune BERT and consider all pas-
sages from a relevant document as relevant. They first predict the
relevance score of each passage independently. The document rele-
vance is the score of the first passage, the best passage, or the sum
of all passage scores. BERT has also been applied to FAQ retrieval
task by Sakata et al [32] where given a user query, a question is
scored by the combination of question-question BM25 score and
question-answer BERT score. MacAvaney et al. [23] combine the
BERT classification token with existing neural IR models. The ex-
periments show that this joint approach can outperform a vanilla
BERT ranker.

IR researchers also investigate the possible reasons why BERT
can have such substantial improvements for IR problems. Through
carefully designed experiments, Padigela et al. [28] show that BM25
is more biased towards high-frequency terms which hurt its per-
formance while BERT has a better ability to discover the semantic
meaning of novel terms in documents with respect to query terms.
They also find that BERT has less performance improvement com-
pared with BM25 for long queries. Dai et al. [11] demonstrate that
BERT can take advantage of stopwords and punctuation in the
queries which is in contrast to traditional IR models. Qiao et al. [30]
show that BERT can be categorized into interaction-based IR mod-
els because simply obtaining query and document representations
from BERT independently and then computing their cosine simi-
larity results in performance close to random. They also find that
BERT assigns extreme matching scores to query-document pairs
and most pairs get either one or zero ranking scores.

Many researchers (e.g., [11, 24, 26, 46]) find that the length limit
of BERT causes difficulties in training. Mass et al. [24] specifically
study the effect of passage length and segmentation configurations
on passage re-rank performance. They find that mid-sized (256
tokens) inputs achieve the best results for the selected datasets. Dai
and Callan’s method [11] to deal with long documents as mentioned
before may result in noisy positive samples because for a relevant
document, not all sentences are relevant to a query. The splitting
and then aggregating methods in these approaches can increase
the training and inference cost several times. In this paper, we pre-
select the segments from the input with low-cost methods and then
use BERT for the downstream table retrieval task.

3 PREREQUISITES
3.1 BERT
BERT [13], consisting of 𝐿 layers of Transformer blocks, is a deep
contextual language model which has achieved impressive results
on various natural language processing tasks. Given a sequence
of input token embeddings 𝑿 = {𝒙1, 𝒙2, ..., 𝒙𝑛}, the Transformer
block at layer 𝑙 outputs the contextualized embeddings (hidden
states) of input tokens 𝑯 𝑙 = {𝒉𝑙1,𝒉

𝑙
2, ...,𝒉

𝑙
𝑛}. The Transformer block

is originally proposed by Vaswani et al. [38] and each has the same
structure: multi-head self-attention followed by a feed-forward
network.

𝑇𝑟𝑎𝑛𝑠 𝑓 𝑜𝑟𝑚𝑒𝑟𝑙 (𝑯 𝑙−1)

= 𝐹𝐹𝑁 (𝑀𝐻_𝐴𝑡𝑡𝑛(𝑯 𝑙−1))

= 𝐹𝐹𝑁 (𝑾 [𝐴𝑡𝑡𝑛1 (𝑯 𝑙−1), ..., 𝐴𝑡𝑡𝑛𝑚 (𝑯 𝑙−1)])

(1)

Multi-head self-attention aggregates the output from𝑚 attention
heads.

When using BERT for downstream tasks, special tokens ([SEP]
and [CLS]) are added into the input. For single sequence classifi-
cation/regression tasks, [CLS] and [SEP] are added to the begin-
ning and end of the input sequence. For sequence-pair classifica-
tion/regression, the two input sequences are concatenated by [SEP]
and then processed the same as single sequence tasks. The embed-
ding of [CLS] from the last Transformer block is fed into a final
classification/regression layer.

3.2 BERT Characteristics
Limit on input length. BERT cannot take input sequences longer
than 512 tokens. In previous studies of BERT for long document
tasks like text classification [7], the input tokens are truncated.
Better ways to preprocess the inputs beyond length limitation are
worth studying since trivially throwing away part of the inputs
could lose important information. Transformer-XL [12] solves the
fixed-length issue with recursion and relative position encoding.
However, this method requires further pre-training and is only eval-
uated on text generation tasks. Though we focus on table retrieval,
our methods to alleviate the long sequence issue are off-the-shelf
without any further training and can also be applied to other do-
mains.

The secrets behind special tokens. Before BERT was pro-
posed, neural models for NLP and IR tasks usually take the em-
beddings of all input tokens for training. While for BERT and its
variants, fine-tuning on the target tasks only requires an additional
softmax layer on the top of the [CLS] embedding from the last
layer and the remaining embeddings are not used. The function
of [SEP] is often disregarded, as when constructing the input of
BERT, the role of [SEP] is just a symbol to mark the end or de-
limiter of a sequence. Recently, researchers begin to analyze why
BERT is so effective for different tasks. Clark et al. [9] suggest that
[SEP] might be used as a "no-op" sometimes and does not aggre-
gate segment-level information. However, Ma et al. [22] show that
using the embedding of [SEP] instead of [CLS] can also achieve
comparable results, which indicates that [SEP] also learns contex-
tualized information of the sequence. In our experiments, we study
the relationship between special tokens and other input tokens in

order to explore what BERT embeddings learn after fine-tuning on
the target task.

4 METHOD
Here we define the task and then describe our method in detail.

4.1 Task Definition
In ad hoc table retrieval, given a query 𝑞 ∈ 𝑄 usually consisting
of several keywords 𝑞 = {𝑘1, 𝑘2, ..., 𝑘𝑙 }, our goal is to rank a set
of tables 𝑇 = {𝑡1, 𝑡2, ..., 𝑡𝑛} in descending order of their relevance
scores with respect to 𝑞. A table is a set of cells arranged in rows
and columns like a matrix. Each cell could a be single word, a real
number, a phrase or even sentences. The first row of a table is the
header row and consists of header cells. In practice, tables from
the Web could have more complex structures [10]. In this paper,
we only consider tables that have the simplest structure since they
are the most commonly used. Each table could have context fields
{𝑝1, ..., 𝑝𝑘 } depending on the source of the table. For example, a
table from Wikipedia can have a caption, its section title and page
title.

Content Selector
Regression

Layer

MLP

relevance
score

BERT

[CLS]

curated
features

query
context

fields

selected items

data table

Figure 2: Overview of the proposed model. Blue blocks are
model components. Orange blocks are raw text of the input.
Green blocks are either manually curated features or out-
puts from models (BERT and MLP).

4.2 BERT for Table Retrieval
We show the overview of our framework which includes four com-
ponents in Figure 2. The content selector extracts informative items
(rows, columns or cells) from a table. BERT is used to extract fea-
tures 𝑓𝑏𝑒𝑟𝑡 from the query, corresponding table context fields, and
selected items. A neural network is used to transform additional
features 𝑣𝑎(if provided) to 𝑓𝑎 . Then 𝑓𝑏𝑒𝑟𝑡 and 𝑓𝑎 are concatenated
into a single feature vector. This vector is fed into a regression layer
to predict the relevance score. In the rest of this section, we describe
the model components in detail.

4.2.1 Content Selector. As previously mentioned, BERT can only
take input sequences that are no longer than 512 tokens. But for
many tasks including table retrieval, the lengths of inputs can easily

exceed that limit. To deal with the limit for various downstream
tasks, inputs are typically truncated into valid lengths or multi-
ple instances for a single document are created [18, 45]. In open-
domain question answering and machine reading comprehension,
a single instance usually involves long documents or multiple docu-
ments, and the proposed methods usually have a select-then-extract
two-stage schema [14, 19, 20, 41, 42]. Inspired by those works, we
propose a select-then-rank framework for ad hoc table retrieval.
First, we select a set of potentially informative items from a table.
Then we pack the context fields of a table and its selected items
as the final table representation. Finally we extract BERT features
𝑓𝑏𝑒𝑟𝑡 for all the tables based on the new constructed representation.

In the ad hoc table retrieval task, we notice that there are three
types of relevant tables in terms of the unit of the relevant infor-
mation:

• One or more columns are relevant to the query. For example,
only the second column is relevant to the query in Figure 1a;

• One or more rows are relevant to the query. For example,
only the row that includes “Beijing” is relevant to the query
in Figure 1b.

• The relevant information is spread over the whole table. For
example, in Figure 1c, the table includes a list of records
about the entities asked by the query.

Therefore, we slice a table 𝑡 into a list of items {𝑐1, ..., 𝑐𝑚}, i.e., a
list of rows, columns or cells and select the top-ranked items for the
final BERT input representation. Here we propose three methods
to measure the salience score of a table item 𝑐:

• Mean Salience: it assumes that the relevance signal can be
captured by the similarity of query representation and item
representation. We use the average word embeddings to
represent queries and items respectively.

𝑆𝐴𝐿𝑚𝑒𝑎𝑛 (𝑐) = 𝑐𝑜𝑠𝑖𝑛𝑒 (
∑︁

𝑤∈𝑐 𝑣𝑤
𝑙𝑐

,

∑︁
𝑘∈𝑞 𝑣𝑘
𝑙𝑞

)

• Sum Salience: it assumes relevance signals between every
pair of query and item terms are useful for content selection.

𝑆𝐴𝐿𝑠𝑢𝑚 (𝑐) =
∑︂
𝑘∈𝑞

∑︂
𝑤∈𝑐

𝑐𝑜𝑠𝑖𝑛𝑒 (𝑣𝑘 , 𝑣𝑤)

• Max Salience: it assumes that only the most salient signal be-
tween any pair of query and item terms is useful for content
selection.

𝑆𝐴𝐿𝑚𝑎𝑥 (𝑐) = max
𝑘∈𝑞,𝑤∈𝑐

𝑐𝑜𝑠𝑖𝑛𝑒 (𝑣𝑘 , 𝑣𝑤)

Instead of trivially truncating table information, we rank the items
of a table and keep items with higher salience scores in the front.

4.2.2 Encoding Table for BERT. Given a query 𝑞 ∈ 𝑄 , a table 𝑡 ∈ 𝑇 ,
the context fields {𝑝1, ..., 𝑝𝑘 } and selected items of 𝑡 {𝑐1, ..., 𝑐𝑚}, we
construct the final input sequence for BERT as

𝑆 = [[𝐶𝐿𝑆], 𝑞, [𝑆𝐸𝑃], 𝑝1, [𝑆𝐸𝑃], ..., 𝑝𝑘 , [𝑆𝐸𝑃], 𝑐1, [𝑆𝐸𝑃], ..., 𝑐𝑚, [𝑆𝐸𝑃]]
Like Hu et al. [13], we use WordPiece tokenization for input se-
quences and the input representation of each token is constructed
by summing its token embedding, segment embedding and position
embedding. All the queries share the same segment embedding and
context fields, selected items share another segment embedding. As

illustrated in Section 3.1, we use the embedding of [𝐶𝐿𝑆] from the
last layer as BERT features 𝑓𝑏𝑒𝑟𝑡 .

4.2.3 Feature Fusion and Prediction. Feature-based methods have
shown impressive performance and achieved previous state-of-the-
art results on ad hoc table retrieval [49]. When additional feature
𝑣𝑎 ∈ R𝑑 for a query-table pair is available, we combine them with
BERT features 𝑓𝑏𝑒𝑟𝑡 by:

𝑓𝑎 = 𝑣𝑎𝑾1 + 𝑏1 (2)

where𝑾1 ∈ R𝑑×𝑑 . Then 𝑓𝑎 and 𝑓𝑏𝑒𝑟𝑡 are concatenated into single
vector and fed to the final regression layer.

𝑓 = [𝑓𝑎 ; 𝑓𝑏𝑒𝑟𝑡] (3)

𝑠𝑐𝑜𝑟𝑒 = 𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛(𝑓) (4)
When only BERT features are available, 𝑓 equals 𝑓𝑏𝑒𝑟𝑡 . A simple
linear transformation is used as regression layer which means
𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛(𝑓) = 𝑓𝑾2 + 𝑏2 where 𝑾2 ∈ R(𝑑+ℎ)×1 and ℎ is the
size of BERT hidden states.

4.2.4 Training. We use the pre-trained BERT-large-cased model
which consists of 24 layers of Transformer blocks, 16 self-attention
heads per layer and has a hidden size of 1024. Considering pro-
cessing speed, the size of GPU memory, and the fact that BERT is
good for short text tasks, the maximum input length is set to 128.
Since the selected items are at the end of the input (as described in
Section 4.2.2) and ranked by their salience scores with respect to
the query, we assume the truncated part will have the least nega-
tive impact with a given length constraint. Considering the dataset
statistics in Table 1, we limit the caption to 20 tokens, section title
and page title to 10 tokens each, and table headers to 20 tokens.
Since queries are short, we keep all the query tokens. As a result,
we leave about half of the space for table content. We fine-tune the
framework by minimizing the Mean Square Error (MSE) between
model predictions and gold standard relevance scores.1 We train
the model with 5 epochs and batch size of 16. The Adam optimizer
with learning rate of 1e-5 is used. We also use a linear learning rate
decay schedule with warm-up of 0.1. Our implementation is based
on code from an open source repository.2

5 EXPERIMENTS
In this section, we aim to answer the following research questions:
RQ1: What is the performance gain of BERTwith content selection

methods, with respect to state-of-the-art performance?
RQ2: Could BERT with content selection methods outperform

state-of-the-art performance without additional features?
RQ3: Which content selection method/item type is the most effec-

tive?

5.1 Dataset Description
We use the WikiTables dataset created by Zhang and Balog [49]
where the previous state-of-the-art method is proposed. The table
corpus is originally extracted fromWikipedia [2]. The context fields
include page title and section title. From Figure 1b and Figure 1a

1We also tried binary classification to predict relevance probabilities as in Sakata et
al. [33] and found that regression is much better in our scenario.
2https://github.com/huggingface/transformers

Table 1: The length statistics of data provided by Zhang and
Balog [49]. The length is calculated after WordPiece tok-
enization.

Field Mean Max > 512 > 128
query 3.5 8 - -

caption 4.3 76 - -
page title 5.6 26 - -

section title 3.3 22 - -
header 19.7 729 0.032% 2%
table 549.1 20545 24.2% 65.3%
all 585.5 20605 27.3% 72.4%

Table 2: The settings of all proposedmethods, which use dif-
ferent item types and content selectors.

Method Name Item type Content Selector

Hybrid-BERT-Row-Sum Row Sum Salience
Hybrid-BERT-Row-Mean Row Mean Salience
Hybrid-BERT-Row-Max Row Max Salience
Hybrid-BERT-Col-Sum Column Sum Salience
Hybrid-BERT-Col-Mean Column Mean Salience
Hybrid-BERT-Col-Max Column Max Salience
Hybrid-BERT-Cell-Sum Cell Sum Salience
Hybrid-BERT-Cell-Mean Cell Mean Salience
Hybrid-BERT-Cell-Max Cell Max Salience

we can see that the first row of a table usually contains some high-
level concepts and provides informative context. Therefore we also
consider the table header as a context field. When slicing the tables,
we still have table headers included. The queries are sampled from
the collections in [4, 39]. In total, they annotated 3120 query-table
pairs. The statistics of the corpus are shown in Table 1. We also use
the curated features proposed by Zhang and Balog [49] for feature
fusion.

5.2 Experimental Setup
The performance of table retrieval methods is evaluated with Mean
Average Precision (MAP), Mean Reciprocal Rank (MRR) and Nor-
malized Discounted Cumulative Gain (NDCG) at cut-off points 5, 10,
15, and 20. To test significance, we use a two-tailed paired t-test and
use †/‡ to denote significance levels at 𝑝 =0.05, 0.005 respectively.

Based on Section 4.2.1, we have three strategies to calculate
salience scores of items and three ways to construct items (as a
list of columns, rows, or cells) from a table. We list all the methods
settings in Table 2. To obtain the salience scores, we use fastText
word embeddings [3].3 Note that a different tokenization approach
is used because fastText is not pre-trained on WordPiece tokenized
corpus. We replace all non-numerical and non-alphabet characters
with space and simply split sequences by space. Following the same
experimental setup in [49], five-fold cross-validation is used when
evaluating different methods. We release our code on GitHub.4

3https://github.com/facebookresearch/fastText/
4https://github.com/Zhiyu-Chen/SIGIR2020-BERT-Table-Search

https://github.com/huggingface/transformers
https://github.com/facebookresearch/fastText/
https://github.com/Zhiyu-Chen/SIGIR2020-BERT-Table-Search

Table 3: The superscript † shows statistically significant improvements for the method compared with all other methods.

Method Name MAP MRR NDCG@5 NDCG@10 NDCG@15 NDCG@20

STR 0.5711 0.6062 0.5762 0.6048 0.6102 0.6111
Hybrid-BERT-text 0.6003 0.6321 0.6023 0.6284 0.6322 0.6336
Hybrid-BERT-Rand-Row 0.6056 0.6356 0.6110 0.6294 0.6340 0.6350
Hybrid-BERT-Rand-Col 0.6105 0.6441 0.6094 0.6321 0.6388 0.6392
Hybrid-BERT-Rand-Cell 0.6124 0.6411 0.6117 0.6317 0.6381 0.6386

Hybrid-BERT-Cell-Mean 0.6104 0.6364 0.6148 0.6337 0.6385 0.6388
Hybrid-BERT-Cell-Max 0.6129 0.6410 0.6166 0.6349 0.6391 0.6395
Hybrid-BERT-Cell-Sum 0.6207 0.6473 0.6227 0.6397 0.6450 0.6454
Hybrid-BERT-Row-Mean 0.6196 0.6490 0.6216 0.6406 0.6456 0.6463
Hybrid-BERT-Row-Max 0.6311 0.6673† 0.6361 0.6519 0.6558 0.6564
Hybrid-BERT-Row-Sum 0.6199 0.6487 0.6168 0.6385 0.6436 0.6445
Hybrid-BERT-Col-Mean 0.6108 0.6395 0.6168 0.6340 0.6406 0.6412
Hybrid-BERT-Col-Max 0.6086 0.6324 0.6133 0.6297 0.6357 0.6362
Hybrid-BERT-Col-Sum 0.6131 0.6399 0.6131 0.6308 0.6384 0.6390

5.3 Baselines
We implement the following baseline methods:

• Semantic Table Retrieval (STR) This is the method pro-
posed by Zhang and Balag [49] which is the previous state-
of-the-art method. It first represents queries and tables in
multiple semantic spaces. Then multiple semantic matching
scores are calculated based on the representations of queries
and tables. Pointwise regression using Random Forest is used
to fit those semantic features combined with other features.
Like the original STR implementation, we set the number of
trees to 1000 and the maximum number of features in each
tree to 3.

• Hybrid-BERT-text Only context fields are used and the
table is not encoded except the table headers which are also
considered as a context field.

• Hybrid-BERT-Rand-ColRandomly selecting column items
when constructing the BERT input.

• Hybrid-BERT-Rand-Row Randomly selecting row items
when constructing the BERT input.

• Hybrid-BERT-Rand-Cell Randomly selecting cells from
the table when constructing the BERT input.

For the BERT-based methods, we use the features proposed in [49]
as 𝑣𝑎 .

5.4 Experimental Results
We summarize our experimental results in Table 3. We can see that
all BERT-based models can achieve better results than semantic
table retrieval (STR). Even without encoding the tables, Hybrid-
BERT-text can still outperform STR, which demonstrates that BERT
can extract informative features from tables and context fields for
ad hoc table retrieval. Randomly selecting columns, rows and cells
have a marginal improvement on Hybrid-BERT-text, indicating
that encoding the table content has the potential to further boost
performance. In addition, the differences in performance among
randomly selecting columns, rows and cells are not statistically
significant. The answer to RQ1 is very straightforward: all BERT

based models with different content selection methods can perform
better than the previous state-of-the-art method. Though the gain
of performance is statistically significant at 𝑝 = 0.005 level, BERT
makes the main contribution, since only encoding context fields
can achieve impressive results.

Next, we discuss the impact of item type and content selector.
Comparing the results in Table 3, we observe that in general row
item based methods are better than cell item based methods, and
cell item based methods are better than column item based methods.
Among all the methods, Hybrid-BERT-Row-Max achieves the best
results across all metrics compared with all other methods. The
improvement over all other methods is statistically significant at
0.05 level for MRR, and statistically significant at 0.05 level for
NDCG@5, NDCG@15 and NDCG@20 except for Hybrid-BERT-
Cell-Sum. It means that selecting rows that have themost significant
signals is an effective strategy to construct BERT input within
the length limit. In contrast to row items, column selection and
cell selection based methods seem to be less effective. For several
cases, content selection strategies for column/cell items even have
worse performance than randomly selecting columns/cells. For
example, Hybrid-BERT-Col-Max has MRR of 0.6324 while Hybrid-
BERT-Rand-Col has MRR of 0.6441. Different from row items, max
salience selector does not show superiority over other selectors for
column items and cell items. It is expected that Hybrid-BERT-Rand-
Col has better performance than Hybrid-BERT-Rand-Row, because
a table is less likely to have more columns than rows, which means
the probability of a potential optimal column to be selected is higher
than that of a potential optimal row to be selected. For cell items,
the sum salience selector shows marginally better performance
than the other two selectors. And for column items, there is no
clear best content selector but max salience selector seems to be
the least effective.

Three types of items are coherent units of the table with different
granularities. A cell is the smallest unit compared with a row item
or a column item. Usually, a column item is longer than a row item
depending on the layout of the table. After manually examining
some returned items, we find that cell item based methods are more

Table 4: The setting of our methods where only BERT features are used.

Method Name MAP MRR NDCG@5 NDCG@10 NDCG@15 NDCG@20

BERT-text 0.5958 0.6240 0.5972 0.6206 0.6283 0.6287
BERT-Rand-Row 0.6005 0.6271 0.6063 0.6266 0.6310 0.6314
BERT-Rand-Col 0.6067 0.6400 0.6093 0.6327 0.6374 0.6380
BERT-Rand-Cell 0.6075 0.6358 0.6116 0.6287 0.6362 0.6369

BERT-Cell-Mean 0.6056 0.6331 0.6017 0.6274 0.6340 0.6343
BERT-Cell-Max 0.5967 0.6275 0.6013 0.6209 0.6299 0.6307
BERT-Cell-Sum 0.6149 0.6436 0.6151 0.6345 0.6420 0.6424
BERT-Row-Mean 0.6055 0.6365 0.6064 0.6314 0.6358 0.6363
BERT-Row-Max 0.6277 0.6600 0.6274 0.6465 0.6517 0.6532
BERT-Row-Sum 0.6113 0.6302 0.6077 0.6307 0.6356 0.6370
BERT-Col-Mean 0.6026 0.6318 0.6079 0.6269 0.6334 0.6339
BERT-Col-Max 0.6095 0.6398 0.6109 0.6319 0.6379 0.6385
BERT-Col-Sum 0.6059 0.6257 0.6050 0.6260 0.6339 0.6343

Table 5: Results using feature-based approaches. The superscript ‡ denotes statistically significant improvements over all
baseline methods.

Method Name MAP MRR NDCG@5 NDCG@10 NDCG@15 NDCG@20

Hybrid-BERT-text 0.6287 0.6546 0.6171 0.6489 0.6531 0.6536
Hybrid-BERT-Rand-Col 0.6590 0.6722 0.6481 0.6629 0.6692 0.6694
Hybrid-BERT-Rand-Row 0.6139 0.6418 0.6107 0.6345 0.6409 0.6411
Hybrid-BERT-Rand-Cell 0.6195 0.6554 0.6195 0.6382 0.6465 0.6466

Hybrid-BERT-Row-Max 0.6737‡ 0.7139‡ 0.6633‡ 0.6875‡ 0.6924‡ 0.6926‡
Hybrid-BERT-Col-Mean 0.6379 0.6582 0.6229 0.6449 0.6540 0.6542
Hybrid-BERT-Cell-Sum 0.6643 0.6806 0.6529 0.6686 0.6739 0.6740

biased towards returning items including query terms, while the
methods based on the other two item types are forced to include
some context information. Taking Figure 1c as an example, all the
returned items include the term “wrestler” which appears in the
rightmost column that includes a list of short biographies of profes-
sional wrestlers. However, for row items, other context information
such as the names of the wrestlers are forced to be included. Since
column items are usually longer than row items, if the content
selector fails to return the most relevant column item as the first
one, the model is less likely to achieve good performance. Based on
our experiment results, we observe that max salience selector with
row items has the best balance between accuracy and robustness,
which answers RQ3.

6 DISCUSSION
In this section, we continue the discussion of our proposed methods.

6.1 Ranking Only with BERT
To answer RQ2, we run the experiments that only use BERT fea-
tures which means 𝑓 equals 𝑓𝑏𝑒𝑟𝑡 in Equation 3. The results are
shown in Table 4 where the method names correspond to the ones
in Table 3 except the STR baseline and the prefix “Hybrid-” is re-
moved. In all cases, performance decreases slightly when additional
features are not used. In answer toRQ2, without additional features,

all the proposed methods including baselines can outperform STR.
Even without encoding table content, BERT-text can still achieve
good performance which means the context fields are very impor-
tant for ad hoc table retrieval. The conclusions are consistent with
Section 5.4: sum salience selector is the best for cell items and max
salience selector with row items still performs the best when only
BERT features are used.

6.2 Generalization to Another Domain
Thoughwe conclude that themax salience selectorwith row items is
the best method, the conclusion may depend on the corpus. There-
fore, we also conduct experiments on the dataset from another
domain. To do this, we use an open-domain dataset WebQuery-
Table5 introduced by Sun et al. [35]. Unlike WikiTables where all
the tables are from Wikipedia, the tables in WebQueryTable are
collected from queried web pages returned by a commercial search
engine. In total, 21,113 query-table pairs are manually annotated
and the dataset is pre-split into training (70%), development (10%)
and test (20%). In this scenario, no additional features are avail-
able for this corpus so only BERT features are used. Additionally,
table caption, sub-caption and headers are used as context fields.
The preprocessing is the same with WikiTables. We do not use the
development set since we do not search for hyperparameters. We
5https://github.com/tangduyu/Table-Intelligence/tree/master/table-search

https://github.com/tangduyu/Table-Intelligence/tree/master/table-search

Table 6: Results on WebQueryTable dataset.

Method Name MAP

Feature + NeuralNet [35] 0.6718
BERT-Rand-Cell 0.6414
BERT-Row-Max 0.7104

calculate the MAP scores of our models which are also reported by
Sun et al. [35]. The results of the best BERT baseline method and
the proposed method are shown in Table 6. The final results are
also consistent with conclusions in Section 5.4—that max salience
selector with row items is the best strategy.6 Therefore, we can see
that training BERT on row items with max salience selector is also
an effective strategy for datasets in other domains, which makes
the answers to RQ2 and RQ3 more convincing.

6.3 Feature-Based Approach of BERT
In Section 5.4, we use the fine-tuning approach that jointly fine-
tunes the whole framework. In the experiment, we tried different
methods to incorporate additional features. For example, we can
directly concatenate additional features without any transforma-
tion with BERT features and feed the concatenated vector to the
regression layer. We also tried to predict two relevance scores with
BERT features and additional features separately, and then linearly
transform them into a weighted relevance score. However, all of
those variants perform worse than BERT-text. It is possible that
BERT performance highly depends on the optimization strategy
and adding other components for joint training can have negative
impact on the fine-tuning process. To avoid such a case, we adapt
BERT to a feature-based approach. First we use the fine-tuning ap-
proach to train BERT without additional features like in Section 6.1.
Then we optimize the whole framework as in Section 5.4 except that
BERT weights are not updated. The results are shown in Table 5.
For the three item types, we only include the results of models using
the best content selectors. All methods have significant improve-
ments compared with fine-tuned approaches. Among the baselines,
Hybrid-BERT-Rand-Col has the most improvement, which is even
better than the best performance of BERT using content selectors
for column items. Hybrid-BERT-Row-Max still achieves the best
performance and the improvements over baselines are statistically
significant at the level of 𝑝 = 0.005.

So far, we observe that max salience selector with row items is
the best strategy to construct inputs for BERT. In the feature-based
approaches, it is more obvious that sum salience selector is the best
one for cell items and mean salience selector is the best one for
column items.

7 ANALYSIS OF BERT FEATURES
Though BERT achieved new state-of-the-art results on various tasks,
it is still unclear what are the exact mechanisms behind its success.
In this section, we dive into the analysis of BERT for the table
retrieval task. For illustration purposes, the results presented in
this section are based on the weights of BERT-Row-Max. However,
6We did not reproduce their method. We assume the results are comparable since the
dataset is pre-split.

we observe similar patterns among different BERT-based methods
and therefore the conclusions can also be applied to other methods.

7.1 Self-Attention Patterns
Compared to general scenarios where BERT is used for single-
sequence or sequence-pair tasks, there are more than two sequences
involved in the input of BERT for the table retrieval task and the
sequence could have a lot of [SEP] tokens. BERT practitioners know
[SEP] is a special token that is used as a delimiter of sequences. For
our case, there could be a lot of [SEP] tokens in a single input and
the number of [SEP] tokens are different across different samples. In
this section we explore whether the self-attention patterns of BERT
used in this paper which involve multiple sequences are different
from a BERT model fine-tuned on single sequence/sequence pair
tasks.

We draw all the attention maps of a random example from the
test set in Figure 3. We find all the types of self-attention maps
categorized in [17]: vertical, diagonal, vertical with diagonal, block
and heterogeneous. We find that [SEP] embeddings in lower layers
are attended or attending more differently than those in higher
layers. Taking the 1st self-attention head in the 4th layer as an
example, the 1st [SEP] embedding mainly attends to itself, while
the other [SEP] embeddings mainly attend to [CLS] embedding. In
contrast, the attentions for [SEP] tokens are very similar in higher
layers resulting in a lot of grid-like attention maps (head 1 in the
last layer as shown in Figure 3). We also quantitatively measure
the embeddings of different [SEP] tokens and calculate the smallest
cosine similarity among all pairs of [SEP] in the same layer. The
smallest cosine similarity is 0.78 in the 1st layer but increases close
to 1 in higher layers, which means [SEP] tokens have different
embeddings in lower layers, and after layers of self-attention, they
have almost the same representations.

Besides the types of attention maps described by Kovaleva et
al. [17], we observe some attention maps that look like scatter
plots, which include sparse small blocks (e.g., head 1 in the 4th
layer). This is because multiple sequences are included in a single
input separated by [SEP] and some attention heads have a strong
preference to put attention on multiple sequences (inter-sequence
attention). We also observe there are self-attention heads that show
intra-sequence attention patterns. For example, caption and section
title both attend to themselves a lot in head 9 of the 1st layer.
Query tokens attend a lot to themselves in head 5 of the 1st layer
(right in Figure 3). The existence of intra-sequence and inter-
sequence attention patterns may indicate that BERT can learn
various sequence-level features through self-attention.

7.2 BERT Embedding Comparison
In the experiments, only the [CLS] embedding in the last layer
is used as BERT features and the rest are not utilized. Here we
further analyze the relationships among different types of BERT
embeddings.

For each sample in the testing set, we extract embeddings corre-
sponding to query tokens and average them as the query represen-
tation. We do the same for [SEP] and caption. Then we calculate
the cosine similarity between every two of [CLS], [SEP], query

Figure 3: Middle figure includes all attention maps of a random test set example. Left figure shows the attention map of head
1 in the last layer. Similar attentions for [SEP] tokens result in the grid-look. Right figure shows the attention map of head 5
in the 1st layer with intra-sequence attention pattern. Attention weights with larger absolute values have darker colors.

-0.2

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

C
o

si
n

e
Si

m
ila

ri
ty

Layer

CLS-Query CLS-SEP CLS-Caption SEP-Query SEP-Caption Query-Caption

Figure 4: Average cosine similarity among different types of
tokens in different layers.

and caption. We show the average cosine similarity of testing sam-
ples at different layers in Figure 4. We observe that the patterns
between special/query tokens and table/context field tokens are
similar, which means in Figure 4, if we replace caption with other
context fields or selected items, the general patterns do not change.
For example, “Query-Caption” is similar to “Query-Page title” and
“CLS-Caption” is similar to “CLS-Page title”.

In the 1st layer, [SEP] is close to query and caption while [CLS]
is far from [SEP], query and caption. From layer 2 to layer 8, we
note that [CLS] is very close to [SEP], which may indicate that
[CLS] aggregates segment-level information through these layers.
In contrast, the similarities among [SEP], query and caption do not
change significantly from layer 2 to layer 14. It is interesting that
from layer 23 to the last layer, query and [CLS] become closer but
far away from caption. In the last layer, [SEP] is closer to query
than [CLS], which may indicate [SEP] captures more query features
than [CLS].

8 CONCLUSION
We have addressed the problem of ad hoc table retrieval with the
deep contextualized language model BERT. Considering the struc-
ture of a table, we propose three content selectors to rank table
items in order to construct input for BERT which effectively utilize
useful information from tables and overcome the input length limit

of BERT to some extent.We combine BERT features and other tables
features to solve the table retrieval task as a pointwise regression
problem. Our proposed Hybrid-BERT-Row-Max method outper-
forms the previous state-of-the-art and BERT baselines with a large
margin on WikiTables dataset. Through empirical experiments, we
find that using the max salience selector with row items is the
best strategy to construct BERT input. Overall, we also find that
sum salience selector is the best for cell items. While for column
items, mean salience selector only seems to be the best when a
feature-based approach is used. We further show that the feature-
based approach of BERT is better than jointly training BERT with
a feature fusion component. We also conduct experiments on Web-
QueryTable dataset and demonstrate that our method generalizes
to other domains.

Our analysis on fine-tuned BERT shows that various sequence-
level features are captured by the self-attention of BERT and [CLS]
embedding tends to aggregate sequence-level information, which
could explain why using it as features is effective for the ad hoc
table retrieval task. We also find that [SEP] embeddings from the
last layer of BERT are very close to query embeddings, which
indicates that making use of [SEP] has the potential to further
improve the performance. Though the motivation behind this paper
is that different content selection strategies should be used for
different queries, we do not explore how to design a model to
choose the best selector. In fact, it is possible that for different types
of queries, we should choose different content selector. Future work
could design a framework that automatically chooses the strategy
considering the query types. Besides, designing pretraining tasks
for tables and pretraining BERT on a large table collection could be
promising to further improve the performance of BERT on table-
related tasks such as table retrieval.

ACKNOWLEDGMENTS
This material is based upon work supported by the National Science
Foundation under Grant No. IIS-1816325. The authors would like
to thank the anonymous reviewers for valuable comments, and Ao
Luo and Shengfeng Pan from Shenzhen Zhuiyi Technology Co., Ltd.
for useful discussion about BERT.

REFERENCES
[1] Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyganiak,

and Zachary Ives. 2007. DBpedia: A nucleus for a web of open data. In The
semantic web (ISWC). Springer, 722–735.

[2] Chandra Sekhar Bhagavatula, ThanaponNoraset, andDougDowney. 2015. TabEL:
entity linking in web tables. In Proc. Int’l Semantic Web Conf. (ISWC). 425–441.

[3] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. 2017. En-
riching Word Vectors with Subword Information. Transactions of the Association
for Computational Linguistics 5 (2017), 135–146.

[4] Michael J Cafarella, Alon Halevy, and Nodira Khoussainova. 2009. Data integra-
tion for the relational web. Proc. of the VLDB Endowment 2, 1 (2009), 1090–1101.

[5] Michael J Cafarella, Alon Halevy, Daisy Zhe Wang, Eugene Wu, and Yang Zhang.
2008. Webtables: exploring the power of tables on the web. Proceedings of the
VLDB Endowment 1, 1 (2008), 538–549.

[6] Zhangming Chan, Xiuying Chen, Yongliang Wang, Juntao Li, Zhiqiang Zhang,
Kun Gai, Dongyan Zhao, and Rui Yan. 2019. Stick to the Facts: Learning towards
a Fidelity-oriented E-Commerce Product Description Generation. In Proceedings
of the 2019 Conference on EMNLP and the 9th IJCNLP. 4958–4967.

[7] Wei-Cheng Chang, Hsiang-Fu Yu, Kai Zhong, Yiming Yang, and Inderjit Dhillon.
2019. X-BERT: eXtreme Multi-label Text Classification with using Bidirectional
Encoder Representations from Transformers. In Proceedings of NeurIPS Science
Meets Engineering of Deep Learning Workshop.

[8] Zhiyu Chen, Haiyan Jia, Jeff Heflin, and Brian D. Davison. 2020. Leveraging
Schema Labels to Enhance Dataset Search. In European Conference on Information
Retrieval. Springer, 267–280.

[9] Kevin Clark, Urvashi Khandelwal, Omer Levy, and Christopher D. Manning.
2019. What Does BERT Look At? An Analysis of BERT’s Attention. In Black-
BoxNLP@ACL.

[10] Eric Crestan and Patrick Pantel. 2011. Web-scale table census and classification.
In Proceedings 4th ACM International Conference on Web Search and Data Mining
(WSDM). ACM, 545–554.

[11] Zhuyun Dai and Jamie Callan. 2019. Deeper Text Understanding for IR with
Contextual Neural Language Modeling. In Proceedings of the 42nd International
ACM SIGIR Conference on Research and Development in Information Retrieval.
985–988. https://doi.org/10.1145/3331184.3331303

[12] Zihang Dai, Zhilin Yang, Yiming Yang, William W Cohen, Jaime Carbonell,
Quoc V Le, and Ruslan Salakhutdinov. 2019. Transformer-xl: Attentive language
models beyond a fixed-length context. In Proceedings of the 57th Annual Meeting
of the Association for Computational Linguistics. 2978–2988.

[13] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. In
Proceedings of NAACL-HLT. 4171–4186.

[14] Minghao Hu, Yuxing Peng, Zhen Huang, and Dongsheng Li. 2019. Retrieve, Read,
Rerank: Towards End-to-End Multi-Document Reading Comprehension. In Proc.
57th An. Meeting of the Assoc. for Computational Linguistics (ACL). 2285–2295.

[15] Jinyoung Kim, Xiaobing Xue, and W Bruce Croft. 2009. A probabilistic retrieval
model for semistructured data. In Proc. European Conference on Information
Retrieval (ECIR). Springer, 228–239.

[16] Jin Young Kim and W Bruce Croft. 2012. A field relevance model for structured
document retrieval. In Proc. European Conf. on Info. Retrieval. Springer, 97–108.

[17] Olga Kovaleva, Alexey Romanov, Anna Rogers, and Anna Rumshisky. 2019.
Revealing the Dark Secrets of BERT. In Proceedings of the 2019 Conference on
EMNLP and the 9th IJCNLP (EMNLP-IJCNLP). 4364–4373.

[18] Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur
Parikh, Chris Alberti, Danielle Epstein, Illia Polosukhin, Matthew Kelcey, Jacob
Devlin, Kenton Lee, Kristina N. Toutanova, Llion Jones, Ming-Wei Chang, Andrew
Dai, Jakob Uszkoreit, Quoc Le, and Slav Petrov. 2019. Natural Questions: a
Benchmark for Question Answering Research. TACL 7 (2019), 453–466.

[19] Kenton Lee, Ming-Wei Chang, and Kristina Toutanova. 2019. Latent Retrieval for
Weakly Supervised Open Domain Question Answering. In Proceedings of the 57th
Annual Meeting of the Association for Computational Linguistics. Association for
Computational Linguistics, Florence, Italy, 6086–6096. https://doi.org/10.18653/
v1/P19-1612

[20] Yankai Lin, Haozhe Ji, Zhiyuan Liu, and Maosong Sun. 2018. Denoising distantly
supervised open-domain question answering. In Proc. 56th Annual Meeting of the
Assoc. for Computational Linguistics (Vol. 1: Long Papers). 1736–1745.

[21] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer
Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. RoBERTa:
A Robustly Optimized BERT Pretraining Approach. (2019). arXiv preprint
arXiv:1907.11692.

[22] Xiaofei Ma, Peng Xu, Zhiguo Wang, Ramesh Nallapati, and Bing Xiang. 2019.
Universal Text Representation from BERT: An Empirical Study. arXiv preprint
arXiv:1910.07973 (2019).

[23] Sean MacAvaney, Andrew Yates, Arman Cohan, and Nazli Goharian. 2019. CEDR:
Contextualized Embeddings for Document Ranking. In Proc. 42nd Int’l ACM SIGIR
Conference on Research and Development in Information Retrieval. 1101–1104.

[24] Yosi Mass, Haggai Roitman, Shai Erera, Or Rivlin, Bar Weiner, and David Konop-
nicki. 2019. A Study of BERT for Non-Factoid Question-Answering under Passage
Length Constraints. arXiv preprint arXiv:1908.06780 (2019).

[25] Rodrigo Nogueira and Kyunghyun Cho. 2020. Passage Re-ranking with BERT.
arXiv preprint arXiv:1901.04085 (2020).

[26] Rodrigo Nogueira, Wei Yang, Kyunghyun Cho, and Jimmy Lin. 2019. Multi-stage
document ranking with BERT. arXiv preprint arXiv:1910.14424 (2019).

[27] Paul Ogilvie and Jamie Callan. 2003. Combining document representations for
known-item search. In Proceedings of the 26th Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval. ACM, 143–150.

[28] Harshith Padigela, Hamed Zamani, and W Bruce Croft. 2019. Investigating
the Successes and Failures of BERT for Passage Re-Ranking. arXiv preprint
arXiv:1905.01758 (2019).

[29] Benjamin Piwowarski and Patrick Gallinari. 2003. A machine learning model for
information retrieval with structured documents. In International Workshop on
Machine Learning and Data Mining in Pattern Recognition. Springer, 425–438.

[30] Yifan Qiao, Chenyan Xiong, Zhenghao Liu, and Zhiyuan Liu. 2019. Understanding
the Behaviors of BERT in Ranking. arXiv preprint arXiv:1904.07531 (2019).

[31] Stephen Robertson, Hugo Zaragoza, and Michael Taylor. 2004. Simple BM25
extension to multiple weighted fields. In Proc. 13th ACM International Conference
on Information and Knowledge Management (CIKM). 42–49.

[32] Wataru Sakata, Tomohide Shibata, Ribeka Tanaka, and Sadao Kurohashi. 2019.
FAQ Retrieval Using Query-Question Similarity and BERT-Based Query-Answer
Relevance. In Proceedings of the 42nd International ACM SIGIR Conference on
Research and Development in Information Retrieval. 1113–1116.

[33] Wataru Sakata, Tomohide Shibata, Ribeka Tanaka, and Sadao Kurohashi. 2019.
FAQ Retrieval Using Query-Question Similarity and BERT-Based Query-Answer
Relevance. In Proc. 42nd Int’l ACM SIGIR Conf. on Research and Development in
Information Retrieval (Paris, France). 1113–1116. https://doi.org/10.1145/3331184.
3331326

[34] Huan Sun, Hao Ma, Xiaodong He, Wen-tau Yih, Yu Su, and Xifeng Yan. 2016.
Table cell search for question answering. In Proceedings of the 25th International
Conference on World Wide Web. International World Wide Web Conferences
Steering Committee, 771–782.

[35] Yibo Sun, Zhao Yan, Duyu Tang, Nan Duan, and Bing Qin. 2019. Content-based
table retrieval for web queries. Neurocomputing 349 (2019), 183–189.

[36] Krysta M Svore and Christopher JC Burges. 2009. A machine learning approach
for improved BM25 retrieval. In Proc. 18th ACM Conf. on Information and Knowl-
edge Management (CIKM). 1811–1814.

[37] Mohamed Trabelsi, Brian D. Davison, and Jeff Heflin. 2019. Improved Table
Retrieval Using Multiple Context Embeddings for Attributes. In Proc. IEEE Big
Data. 1238–1244.

[38] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Processing Systems. 5998–6008.

[39] Petros Venetis, Alon Halevy, Jayant Madhavan, Marius Paşca, Warren Shen, Fei
Wu, Gengxin Miao, and Chung Wu. 2011. Recovering semantics of tables on the
web. Proceedings of the VLDB Endowment 4, 9 (2011), 528–538.

[40] AlexWang, Amanpreet Singh, JulianMichael, Felix Hill, Omer Levy, and Samuel R.
Bowman. 2019. GLUE: A Multi-Task Benchmark and Analysis Platform for
Natural Language Understanding. In Proceedings of ICLR.

[41] ZhenWang, Jiachen Liu, Xinyan Xiao, Yajuan Lyu, and TianWu. 2018. Joint Train-
ing of Candidate Extraction and Answer Selection for Reading Comprehension.
In Proceedings of the 56th Annual Meeting of the ACL. 1715–1724.

[42] Zhiguo Wang, Patrick Ng, Xiaofei Ma, Ramesh Nallapati, and Bing Xiang. 2019.
Multi-passage BERT: A Globally Normalized BERT Model for Open-domain
Question Answering. In EMNLP-IJCNLP 2019. ACL, Hong Kong, China, 5877–
5881. https://doi.org/10.18653/v1/D19-1599

[43] Ross Wilkinson. 1994. Effective retrieval of structured documents. In Proc. ACM
SIGIR Int’l Conf. on Research and Dev. in Information Retrieval. Springer, 311–317.

[44] Sam Wiseman, Stuart M Shieber, and Alexander M Rush. 2017. Challenges in
data-to-document generation. arXiv preprint arXiv:1707.08052 (2017).

[45] Wei Yang, Yuqing Xie, Aileen Lin, Xingyu Li, Luchen Tan, Kun Xiong, Ming
Li, and Jimmy Lin. 2019. End-to-end open-domain question answering with
BERTserini. In NAACL-HLT (Demonstrations). 72–77.

[46] Wei Yang, Haotian Zhang, and Jimmy Lin. 2019. Simple applications of BERT for
ad hoc document retrieval. arXiv preprint arXiv:1903.10972 (2019).

[47] Hamed Zamani, Bhaskar Mitra, Xia Song, Nick Craswell, and Saurabh Tiwary.
2018. Neural ranking models with multiple document fields. In Proc. 11th ACM
Int’l Conf. on Web Search and Data Mining (WSDM). 700–708.

[48] Li Zhang, Shuo Zhang, and Krisztian Balog. 2019. Table2Vec: Neural Word and
Entity Embeddings for Table Population and Retrieval. In Proc. 42nd Int’l ACM
SIGIR Conf. on Research and Development in Information Retrieval. 1029–1032.

[49] Shuo Zhang and Krisztian Balog. 2018. Ad hoc table retrieval using semantic
similarity. In Proc. World Wide Web Conference (TheWebConf). 1553–1562.

https://doi.org/10.1145/3331184.3331303
https://doi.org/10.18653/v1/P19-1612
https://doi.org/10.18653/v1/P19-1612
https://doi.org/10.1145/3331184.3331326
https://doi.org/10.1145/3331184.3331326
https://doi.org/10.18653/v1/D19-1599

	Abstract
	1 Introduction
	2 Related Work
	2.1 Table Search
	2.2 Retrieval Models for Multifield Documents
	2.3 BERT for Information Retrieval

	3 Prerequisites
	3.1 BERT
	3.2 BERT Characteristics

	4 Method
	4.1 Task Definition
	4.2 BERT for Table Retrieval

	5 Experiments
	5.1 Dataset Description
	5.2 Experimental Setup
	5.3 Baselines
	5.4 Experimental Results

	6 Discussion
	6.1 Ranking Only with BERT
	6.2 Generalization to Another Domain
	6.3 Feature-Based Approach of BERT

	7 Analysis of BERT Features
	7.1 Self-Attention Patterns
	7.2 BERT Embedding Comparison

	8 Conclusion
	Acknowledgments
	References

