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Abstract—With the development of virtual reality (VR)
technology, the future of VR systems is evolving from single-
user wired connections to multi-user wireless connections.
However, wireless online rendering and transmission incur
extra processing and transmission latency, as well as high-
er bandwidth requirements. To meet the requirements of
wireless VR applications and enhance the quality of the VR
user experience, this paper designs a view synthesis-based
360° VR caching system over Cloud Radio Access Network
(C-RAN), where both mobile edge computing (MEC) and
hierarchical caching are supported. In the system, an MEC-
Cache Server is deployed in the pooled Base band Units
(BBU pool) and used for view synthesis and caching. In
addition, the remote radio heads (RRHSs) can also cache some
video contents. If the requested content of a specific view is
cached in the BBU pool or RRHs, or can be synthesized with
the aid of the cached adjacent views, it is unnecessary to
request the content from the remote VR video source server.
Therefore, the transmission latency and backhaul traffic load
for VR services can be decreased. We formulate a hierarchical
collaborative caching problem aiming to minimize the trans-
mission latency, which is proved NP-hard. To address the
impractical expenses of the offline optimal method, an online
MaxMinDistance caching algorithm with low complexity is
proposed. Numerical simulation results demonstrate that the
proposed caching strategy provides significantly improved
cache hit rate, backhaul traffic load, transmission latency,
and Quality of Experience (QoE) performances relative to
conventional caching strategies.

Index Terms—Virtual Reality (VR), Hierarchical Caching,
View Synthesis, MEC, C-RAN, Quality of Experience (QoE).

I. INTRODUCTION

IRTUAL reality (VR) is a human computer interface

technology that enables users to interact with each
other in the virtual environment with three-dimensional
spatial information [1]. With their rapid development
in recent years, VR technologies have attracted much
attention in many fields, ranging from education and
military training to entertainment. A recent market re-
port forecasts that the data consumption from mobile
VR devices (smartphone-based or standalone) will grow
by over 650% between 2017 to 2021 [2], [3]. 360° video
is an integral part of VR. As a user can freely change
his/her viewing direction while watching, it can pro-
vide panoramic and immerse experience. Nevertheless,
wireless 360° video delivering incurs 4-5 times higher
bandwidth requirements than that of traditional videos.
Research by Huawei ilab shows that a general 360° VR
video data rate with 4K resolution is 50 Mbps, and the

data rate with 8K resolution increases to 200 Mbps [4].
Therefore, with the rapid increase in the number of VR
headsets (wireless VR headsets are going to increase to
50 million by 2021) [2], the communication network can
potentially become a bottleneck.

Some VR solutions use user’s field of view (FoV)
streaming to reduce bandwidth consumption. The FoV
of a user is defined as the portion of the 360° video that is
in the user’s line of sight, and a User FoV can be spatially
divided into small parts called tiles, each is encoded into
multiple versions of different quality levels [5], [6], [7],
[8]. Bandwidth consumption can be reduced by sending
tiles in User Fov only in high resolution, while other tiles
are sent in low resolution or not at all [9].

While FoV adaptive 360° video streaming is useful for
reducing bandwidth requirements, 360 video streaming
from remote content servers is still challenging due to
network latency. The Latency restriction is critical for
VR services. Many studies indicate that the motion-to-
photon (MTP) latency for VR should be less than 20
ms; otherwise, the user will feel dizzy. To alleviate the
transmission latency, an efficient approach is caching
popular VR contents at the edge of the network, such
as RRHs and base stations. The existing literature has
studied a number of problems related to caching in VR
systems [10], [11], [12], [13]. However, these caching
schemes do not take the view synthesis character into
consideration. View synthesis is a feature of multi-view
video. A multi-view video is generated by capturing
a scene of interest with multiple cameras from differ-
ent angles simultaneously. A view is provided by one
camera capturing both texture maps (i.e., images) and
depth maps (i.e., distances from objects in the scene).
Many methods [14], [15], [16], [17] can be used for view
synthesis, for example, Depth-Image-Based Rendering
(DIBR) [14] technique, which is the most widely used
method, can synthetically generate free-viewpoint video
by using a reference 2D video and its associated depth
map.

View synthesis is not only a common way to generate
free-viewpoint video from a limited number of views,
but also an effective method for predictive coding in
multi-view video compression [18], [19], [20] and can
achieve good performance. Moreover, view synthesis can
be utilized in VR systems to generate corresponding
views according to the viewpoint of users [21]. Indeed,
the user’s current desired FoV can be synthesized by the
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previous requested nearby ”left and right” or “up and
down” FoVs in the 360° VR video streaming, because
the adjacent FoVs usually share many similar parts.
Based on this, if a required FoV which can be used for
synthesizing more incoming FoVs is cached, the user
requests can be largely satisfied by transmitting only a
part of FoVs (correspondingly, a part of tiles) from the
source. Therefore, we propose a new 360° VR system
over C-RAN, where both mobile edge computing (MEC)
and hierarchical caching are supported. In the system,
an MEC-Cache Server is deployed in the BBU pool and
used for view synthesis and caching. In addition, the
RRHs can also cache some video content. If the requested
view is cached in the BBU pool or the RRHs, or can be
synthesized with the aid of the adjacent cached views, it
is unnecessary to request contents from the remote VR
video source server. Therefore, the transmission laten-
cy and backhaul traffic load for 360° VR services can
be decreased, and the energy consumption on mobile
phones is significantly relaxed. Different from [22], i)
in the proposed VR system, the video data do not need to
be pre-fetched, so there are no additional remote access cost
and local transmission cost; ii) the caching is hierarchical and
cooperative, which is more suitable for the C-RAN architecture
and iii) The view synthesis is done by MEC-Cache server
in the BBU pool, due to the ample computing resource, the
processing latency is less than the smartphones, which can
significantly increase the QoE of VR users.

Furthermore, to fully exploit the benefits of the pro-
posed view synthesis-based 360° VR caching system,
several challenges need be addressed. First, view syn-
thesis is a computationally intensive task. The concurrent
video synthesis could quickly exhaust the available pro-
cessing resources of the MEC-Cache Server. Therefore, an
efficient cache scheme needs to be designed for the given
processing resources. Second, caching multiple views of
video incurs high overhead in storage. Although hard
disks are now very cheap, storing all of these files is
neither economical nor feasible. Finally, the impact of
caching data at the BBU pool and at different RRHs
should be quantified, and the questions of what contents
and where to be placed should be addressed.

In summary, the novelty and technical contributions
of this work are as follows.

o We propose a view synthesis-based 360° VR caching
system over C-RAN. An MEC-Cache server is de-
ployed in the BBU pool for video synthesis and
caching, and the view synthesis feature of 360° VR
videos is considered in the caching algorithm.

o We formulate a hierarchical collaborative caching
problem as an integer linear program (ILP), which
aims to minimize the transmission latency subject
to the cache storage and computing capacity con-
straints.

o We prove the NP-hardness of the formulated prob-
lem, and propose a MaxMinDistance online caching
algorithm to address the NP completeness of the
problem and the impractical expenses of the offline

optimal method.

o Numerical simulation results demonstrate that the
proposed MaxMinDistance strategy provides sig-
nificantly improved cache hit rate, backhaul traffic
load, transmission latency, and QoE performances
relative to conventional caching strategies.

The remainder of this paper is structured as follows.
Section II discusses the related work. Section III presents
the system model. The hierarchical collaborative caching
problem to minimize the average transmission latency is
formulated in Section IV. In Section V, the flow of the
whole caching process and MaxMinDistance algorithm
are discussed. In Section VI, the performance evaluations
are illustrated, and finally, in Section VII, we conclude
the paper and discuss future research directions for
caching about VR video over C-RAN.

II. RELATED WORK

A. VR Transmission Solutions

To improve transmission efficiency of a 360 VR video,
many solutions have been proposed by adopting tiling
and multicast technologies [23], [24], [25], [26], [27], [28].
In [23] and [24], the authors studied two optimal multi-
cast transmission schemes for tiled 360° VR video. One
is to maximize the received video quality in orthogonal
frequency division multiple access (OFDMA) systems
by optimizing subcarrier, transmission power and trans-
mission rate allocation, and the other is to minimize
average transmission energy by optimizing transmission
time and power allocation. The view synthesis multicast
is further analyzed in [25]. In [26], the authors opti-
mized the VR video quality level selection, transmission
time allocation and transmission power allocation to
maximize the total utility under the transmission time
and power allocation constraints as well as the quality
smoothness constraints for mixed-quality tiles. In [27],
the authors proposed a multicast DASH-based tiled
streaming solution, including a user’s viewports based
tile weighting approach and a rate adaptation algorithm,
to provide an immersive experience for VR users. In [28],
the authors leveraged a probabilistic approach to pre-
fetch tiles countering viewport prediction error, and de-
signed a QoE-driven viewport adaptation system, which
can achieve a high viewport PSNR. In [29], the problem
of resource management was studied for VR application
in drone-UEs network. By taking the image quality and
format in resource management, the QoE performance
of VR is improved.

In this paper, to clarify the significance of caching in
wireless VR transmission, while a multi-view 360° VR
video to multiple users is considered and the tiling and
multicast technologies naturally can be used, we do not
focus on the design of multicast scheme and mainly
consider the transmission optimization at view level.
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B. VR Caching Algorithms

A number of studies have examined the problems
related to caching in VR systems, such as [11], [12], [13],
[30], [31], [32], [33], [34], [35]. In [11], the authors propose
a new approach for cached content replacement that al-
lows for transmission delay optimization and design an
optimization framework that allows the base stations to
select cooperative caching/rendering/streaming strate-
gies that maximize the aggregate reward they earn when
serving the users for the given caching/computational
resources at each base station. The authors in [12] study
content caching and transmission in a unmanned aeri-
al vehicle (UAV) wireless virtual reality (VR) network
and propose a distributed deep learning algorithm that
brings together new neural network ideas from a liquid
state machine (LSM) and echo state networks (ESNs) to
solve the joint content caching and transmission prob-
lem. The authors in [13] propose a proactive computing
and mmWave communication system for ultra-reliable
and low latency wireless virtual reality. By leverag-
ing information about users, proactive computing and
caching are used to pre-compute and store HD video
frames to minimize the computing latency. The authors
in [30] propose a content caching method for three
dimensional VR images, which is used to speed up any
kind of rasterized rendering on a graphics workstation
that supports hardware texture mapping. In [31], the
authors introduce the challenges and benefits of caching
in wireless VR networks and provide a relaxed analytical
treatment of caching, relying on simple toy examples.
In [32], the authors provide the specific challenges and
opportunities related to caching and VR techniques. In
[33], the authors present a novel MEC-based mobile VR
delivery framework that is able to cache parts of the
field of views (FOVs) in advance and run certain post-
processing procedures at the mobile VR device. In [34],
the authors proposed an FoV-aware caching policy based
on learned probabilistic user request model of common-
FoV, which improved cache hit ratio compared to classic
caching policies by at least 40%. The authors in [35]
designed a network function virtualization (NFV)-based
virtual cache (vCache) to dynamically manage video
chunks, which strikes a tradeoff between storage and
computing costs, and it can reduce the operational costs
of ABR streaming.

However, above caching schemes do not take the view
synthesis character of 360° VR videos into consideration,
and could not get a high performance gain compare
to traditional caching schemes. In addition, the caching
schemes have not reflected the specific features of C-
RAN and can not be used in C-RAN. In this paper,
to obtain an enhanced latency performance of 360° VR
transmission, we proposed an hierarchical and coopera-
tive caching scheme, which introduces the view synthe-
sis feature.

III. SYSTEM MODEL
A. Cache Model

The view synthesis-based 360° VR caching system
over C-RAN is shown in Fig.1, which consists of one
BBU pool and a set R = {1,2,...,,....R} of R RRHs con-
nected to the BBU pool via low-latency, high-bandwidth
fronthaul links.

,,,,,,,,,,,,,,,, , Cloud cache %

‘ dge cache =
|l Synthesis ||

| Cache |

| . | 5
| Management | SRS [5

o
BBU Pool ‘E User “

MEC-Cache Server

i‘ Requesting
)w fu(k,n)
“e__Réquesting

% View,(3,2)

VR Video
Source Server

Segment s
I (0,0) | (0,2)
It

| 0] [t | . [(N-D

(0,N-1)

View f,(0,4)

Fig. 1: Illustration of the view synthesis-based 360° VR
caching system over Cloud Radio Access Network (C-
RAN), including pooled baseband units (the BBU pool)
with an MEC-Cache Server to synthesize the views and
manage the cloud cache, remote radio heads (RRHs)
with their individual edge cache, and users requesting
different views. The requested data can be fetched direct-
ly from the edge cache/the cloud cache/the VR video
source server, or can be synthesized by the MEC-Cache
Server.

An MEC-Cache server is deployed at the BBU
pool, providing computing, synthesizing, caching and
networking capabilities to support context-aware and
delay-sensitive applications in close proximity to the
users. The cache storage of the MEC-Cache server is
denoted by Cj (with a capacity of Cp bytes). An edge-
cache is deployed in each RRH, which is denoted by
C;. The capacity of C, is Cr bytes, where Cr is usually
much less than Cg.

A set F ={0,1,2,...,f,.,.F — 1} of F 360° VR video
files are stored in the VR video source server, which
can be transmitted and cached in the C-RAN net-
work. For each VR video f, it is composed a set S =
{fo.f1.f2s-rfss-nfs—1} of S continuous segments, and
each segment f, can be split to K x N overlapped views
in set {K,N'}, and one view can be denoted by f,(k,n),
where k € K, n € N. f,(k,n) can be synthesized by using
its left view fi(k—1,n) and its right view fs(k+1,n), or
its up view fs(k,n—1) and its down view f,(k,n+1), as
the reference views by the MEC-Cache server, since the
adjacent views are overlapped and share many similar
parts. The quality of each synthesized view depends on
its distance to its two reference views and the qualities
of its reference views. The set of all views that a user
can request is U = {fs(k,n)|f € F,s € S,k € K,n € N}
and the angle of user’s FoV is the same as the angle
of one view. Further, considering different resolutions
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TABLE I: Notation

Symbol Description
R, R, r RRH set, total number of RRHs, the r-th RRH
F, F, f Video library, total number of videos,

the f-th VR video file
K, K the view set and view numbers in each row

of one segment
S, S Segment Set, total number of segments in a file
U, U, u User set, total number of users, the u-th user
N, N the view set and view numbers in each column

of one segment
Is the s-th segment in video f

fs(kym) the (k,n)-th view of s-th segment in video f

SIZEf, (k,n) the data size of one view

Cy, CB the cache of BBU pool and its capacity

Cr, Cr the cache of the r-th RRH and its capacity

cf s (ks n> f s (km) 0-1 variables, the view cache status in the
RRH and BBU pool

B, Yru the bandwidth and the average SINR ratio of

user u in its associated RRH r
Q. the set of new request arriving at RRH r
in the considered time period

regr the proportion of the view synthesis task
requested in RRH r

O the user requests arriving rate at RRH r

Ay the video file popularity

Ve, Vo the total data rate of fronthaul and backhaul
the set of all views that a user can request

£ service rates of MEC-Cache server

and versions of VR videos, the size of fs(k,n) can be
different, and is denoted by SIZFEy (. ).

To enable the flexible transmission of views and im-
prove the transmission efficiency of the 360° VR video,
the tiling and multicast technologies can be used [23],
[24], [26]. However, due to the length of the article, the
transmission optimization and the content caching are
all at the view level.

We consider that video requests arriving at each RRH
following a Poisson process with rate d,,7 € R. The
caching design is evaluated in a long time period to
accumulate a large number of request arrivals. The set
of new request arriving at RRH r in the considered time
period is denoted as 2, C W.

AsetU ={1,2,...,u,.., U} of U users are served by the
RRHs. Basically, one user only connects to one nearest
RRH (in terms of signal strength) at the same time, which
is later referred to as the user’s associated RRH. The data
can be fetched either from the associated RRH cache or
from the BBU pool, to offload the traffic and reduce the
transmission delay of both the fronthaul and backhaul. If
the required view is not cached, it can be synthesized by
the MEC-Cache Server since the left and right views are
cached in the BBU pool. Furthermore, considering that
many users mainly download and watch videos with
little data uploading to the VR video source server, and
the uplink of the fronthaul is idle most of the time, the
requested view data can be obtained and synthesized
from other unassociated RRH caches. This method can
reduce the consumption of backhaul resource much fur-
ther. Otherwise, the users should obtain the requested
view data from the video VR source server.

B. Basic Transmission Latency Model

B, . and 7, , denote the bandwidth and the average
signal-to-interference-plus-noise ratio of user u in its
associated RRH r. Vg and Vp represent the total data
rate of fronthaul (between RRHs and the BBU pool)
and backhaul (between the BBU pool and source server),
respectively. Vp and V are known beforehand, and B, .,
and 7,,, can be estimated by the BBU pool. Without loss
of generality, the fronthaul and backhaul transmission
resources are shared equally by the U users.

Inspired by [36], [37] and [38], we denote by to, tn
and tr the average latency incurred when transferring 1
bit from the origin server to the BBU pool cache, from
the BBU pool cache to the RRH via fronthaul link, and
from the RRH cache to the user, respectively. In practice,
to and tp are usually much greater than tp [36], [37].
The definitions of them are as follows.

1
tp = 1
f By - log, (1 + %’u) M
1
tp=——
b= 7op @
1
to = o7 3)
Vo /U

C. Computational Latency Model of View Synthesis

We define req, as the proportion of the view synthesis
task requested in RRH r, and the service rates of MEC-
Cache server is defined as £. According to the queueing
theory, we can calculate the computation delay gener-
ated by the MEC-Cache server as following [39]. where
Z 1 0r is the amount of view synthesis task on MEC-

Cache server, 572 5 s the average execution delay of
i=1"T

each task at MEC-Cache server with £ — Zil o > 0.
Ziﬁ;l Teqr(sr

-0

If the MEC-cache server can synthesize a requested

view, the transmission delay t.s between the user and
the MEC-cache server is expressed as

4)

tcmp =

tes =tp +1tr + tcmp (5)

To ensure that users receive the requested view in a
timely manner, ¢.; should be lower than the transmission
latency from the source server, thus:

tcs S tO (6)

IV. PROBLEM FORMULATION

Fig.2 illustrates seven possible (exclusive) events that
happen when a user is rec%uestmg video view data.

We introduce xfé (k,m) fs(kn)  fs(k,n) yf&(k )

4 .1‘0 U 4
zl{u(k ™, and 2] (k w’ to descrlbe these seven possible

events, where
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Fig. 2: Illustration of possible (exclusive) events that happen when a user is requesting video view data. (a) The
requested view data are obtained directly from the cache of the associated RRH. (b) The requested view data are
obtained from the cache of the BBU pool. (c) The requested view data are not cached either in the BBU pool or
the RRH; however, the left and right view data are cached in the BBU pool, and the requested view data can be
synthesized by the MEC-Cache server in the BBU pool. (d) The requested view data are obtained from the origin
server. (e) The requested view data are obtained from the cache of other unassociated RRH caches. (f) The requested
view data are not cached either in the BBU pool or RRHs, and there are not enough left and right view data cached
in the BBU pool; however, the left and/or right view video data are cached in the RRHs.

fs(k n) fs(k n) fS(k ") fs(k’n)

xOu ’y'ru » L (7)
L (k, < (k, S (k,
S, " o)
. xffu(k’”) = 1 indicates that the desired view data

can be accessed in the associate RRH cache directly
(Fig.2(a)), and 2l:{F™ = 0 otherwise. We denote
by D;cache the latency of downloading the required
video data f,(k,n) from RRH r by user u, which
equals 2™ SIZE; (o) - th-

o T J«(:n) _ 1 indicates that the user can access the re-

qﬁ?red view data from the BBU pool cache (Fig.2(b)),
and z f S(k R 0 otherwise. Dy qche denotes the la-

tency of downloading the required video data from
s(k,n)

the BBU pool, which equals z;°, ~SIZEf (1) -
(t +tr).
. y{:u(k”) = 1 indicates that the user can access the

synthesized view data from the BBU pool (Fig.2(c)),
as only the left and right view data are cached in the
BBU pool, and yf 1) — ) otherwise. The latency
of downloading the synthesized video data from the
BBU pool is defined as Dy, g, which equals yf s (km),

SIZEf () -t

. xgik =1 indicates that the user can access the

required view data only from the source (Fig.2(d)),
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J: g(k ™) = 0 otherwise. We define the down-

load latency as Dremote, Which equals ngék’") .
SIZEfS(k’n) -to

yfu(k ™) — 1 indicates that the desired view data
can be accessed only in the unassociated RRH cache
(Fig.2(e)), and yf =(5m) — () otherwise. We denote by
Dyrcqene the latency of downloading the required
view data fs(k,n) from an unassociated RRH r by
user u, which equals y 2 (k) SIZE¢, (k) (2tp +tr).
zg u(k ™) — 1 indicates that there are no desired view
data cached in the RRHs and the BBU pool, but the
required view data can be synthesized by the BBU
pool since the needed left and right view data are
cached in the RRHs(Fig.2(f)), and zf (k) — 0 oth-
erwise. We define the download latency as Doynr,
which equals sz(k ) “SIZEf (k) - (tB + tes)-

g,glk ™) — 1 means that there are no desired view
data cached in RRHs and the BBU pool, the needed
left (right) view data are cached in an RRH, and
the right (left) data are cached in the BBU pool
(Fig.2(f)). In this situation, the required view data
can also be synthesized, and zf *(k ") = 0 Otherwise.
The download latency is defmed as Dsynpr, Which
equals zf*(k ) “SIZEf, (k) - (tB + tes).

and x;
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When requesting a view data, only one of these seven
events occurs. To ensure this, we impose the following
constraints:

f@(kn)_'_me(kn)_i_ fs(kn)+ fs(k,'n)_'_

yi u(k ,n) + Zfs(k n) + l{SSf m) = 1. (8)

To describe the view cache status in the RRH and BBU
pool, two 0-1 variables, el and cfsum) are defined.
If the required view has been cached in the r-th RRH,
Lo — 4 and ¢f*®™ = 0 otherwise. If the BBU pool
has cached the required view, ¢**™ =1 and ¢/***™ =
0 otherwise. The following constraints are imposed to
ensure that the amount of cached view data can not be

larger than the total storage of the RRH and the BBU

pool.
Z CZS(k,n) -SIZE; (jn) < Cr ©)
fs(k,n)EQ,
Z Cl]:s(k,n) -SIZEf (k) < Cp (10)
fs(k,n)EQ,
C£S(k’n)’ Cis(k»”) c {07 1} (11)

We know that only if the data is cached in the associat-

ed/unassociated RRHs or BBU pool can zf:\""™ gik )
or yf u(k ™ be true, the following constraints are imposed:
affom) < el (12)
x{:ék") < cgs(k’n) (13)
o <min( Y 1) (14)

IER,I#£r

Further, to ensure the availability of the view synthe-
sis, the following constraints are imposed:

k+1
L <min(( YD elfU)/2,1) (15)
j=k—1,j#k
n+1
s (k,n . (K yi
e <min(( Y o ®0)/2,1) (16)
i=n—1,i1#n
k+1
A <min((yS Y U2y an
I€ER j=k—1,j#k
n+1
A <min((Y N M2 as)

lERi=n—1,i#n

Zl{f,gik,n) < min((cgs(k-'rl’") + chfs(k—l,n))/z 1) (19)
lER

i < min((e Y 3B 2.0) (g
lER

Zb/ fs(k,m) < Hlll’l(( fs(k—1,n) + Z fs (k+1,n))/271) (21)
lER
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ZZ{’S(k n) < min((cgs(k’n_l) + Z:Clj”s(lﬂﬂl-ﬁ-l))/Q7 1) 22)
lER

The total download latency in the network for a user
request is the sum of the above cases, which is denoted
b Dfe(kan)

Yy Pur "
Dzjzs'r(’km) = Drcache + Dbcache + DsynB + Dremote
’ (23)
+Dr’cache + DsynR + DsynBR

To minimize the overall downloading latency in the
network, we formulate the problem as follows (24).

min DD D
Cis(kvn)7c£s(k>")

u€U reR fs(k,n)EQ,

fs(k,n)
Dy (24)

s.t. (6), (7), (8), (9), (10), (11), (12), (13), (14), (15), (16),
(17),(18), (19), (20), (21), (22)

V. HIERARCHICAL VIDEO CACHING ALGORITHM

The problem in (24) is NP-Hardness (proved in the
Theorem 2) and solving it to optimal in polynomial time
is extremely challenging. Therefore, We begin with a
brief analysis of an optimal solution to serve as a perfor-
mance baseline, and then an online view synthesis-based
caching algorithm is proposed.

Theorem 1. Problem in (24) is NP-hard.

Proof: We prove the NP-Hardness of problem (24) by
reduction from a typical knapsack problem (KP) which
is NP-Hard. In KP, there is a group of items with dif-
ferent weights and values, and a knapsack with limited
capacity. The objective is to select a subset of items that
can fit into the knapsack while having the largest total
value. Note that KP is a special case of problem (24) if
C, =0,Vr € R. In this case, the RRHs are not equipped
with caches. Thus, ¢/**™ = 0,vr,Vf,Vs,Vk,¥n. Each
view is mapped into an item in KP. The item’s weight
corresponds to the size of a view SIZEy ;) and the
item’s value corresponds to Dycache + DsynB + Dremote-
Since the reduction can be done in polynomial time,
problem (24) is NP-hard. [ ]

A. Optimal Solution

Let us now assume that the network had a priori
knowledge about all of the user requests 2. In this
case, problem (24) corresponds to an integer linear
programming problem and can be decoupled into (2
independent sub-problems, one for each user request.
Hence, its optimal solution can be easily computed in a
running time of O(|RU|log(|RU|)). The new problem is
expressed in (25). Since this solution possessing the op-
timal performance is achieved under a priori knowledge
about user requests, we call it the KP-optimal solution.

DfS(kvn)
sk, n) fb(k n) Z Z Z u,r

ueU reR f,(k,n)eN:

(25
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s.t. (6), (7), (8), (9), (10), (11), (12), (13), (14), (15), (16),
(17),(18), (19), (20), (21), (22)

However, we can not obtain all of the priori knowl-
edge about user requests in real scenario, the KP-optimal
solution is impractical. Therefore, a view synthesis based
online caching algorithm is proposed to make view
caching immediately and irrevocably upon each video
request arrival at one of the RRHs. The whole caching
process is showed in subsection V-B, and the proposed
cache replacement scheme MaxMinDistance (hereinafter
referred to as MMD) is described in subsection V-C.

B. Whole Caching Process

shown in Algorithm 1, the requested view f,(k,n)
is checked at the beginning of every process loop. If
fs(k,n) can be fetched from the BBU pool or the associ-
ated /unassociated RRH caches or can be synthesized by
the MEC-Cache server, the corresponding data will be
sent to the user immediately. Otherwise the system will
bring it to the user from the VR video source server. In
the meantime, the caching stage is launched. There are
two phases in the caching stage. One is the cache place-
ment phase, in which the data is cached immediately
since the cache storage is not full; the other is the cache
replacement phase, in which the cache storage is full.
In the cache replacement phase, if the video segment is
new, which means that no views in segment k of video
f are cached at the RRHs or the BBU pool, the least
frequently used data will be replaced. If not, considering
the view synthesis feature of 360° VR data, we use
the proposed MaxMinDistance (hereinafter referred to
as MMD) scheme to replace the cached data.

Algorithm 1 Whole Caching Process

Require: f;(k,n)
1: while TRUE do
2: if fs(k,n) is cached || (fs(k,n) can be synthesized
&& tp + temp < to) then

3: Send fs(k,n) to user

4: else

5: Fetch fs(k,n) from source, and send it to user

6: if Cache storage is not full then

7: Cache the f,(k,n)

8: else

9: if 5 is a new segment then

10: Cache replacement using LFU

11: else

12: Cache replacement using the Max-
MinDistance scheme

13: end if

14: end if

15: end if

16: end while

C. MaxMinDistance (MMD) Scheme

Before introducing the MMD scheme, the definition of
view distance is given in definition 1. It is shown that the
larger the view distance, the farther the two data views
are, and vice versa.

Definition 1. View Distance reflects the interval between
two views. Considering that f,(a,b) and fs(a’,b") are dif-
ferent adjacent cached views in segment s of video f, where
Va,a' € K and Vb,b' € N, the view distance of fs(a,b) and
fs(a',b') is defined as follows.

la —a'| —1, la—a'| < K/2, b=10
(K—la—d|)=1, la—d|>K/2, b=V

dpiet, =4 b-v| -1, b—b| < N/2, a=a
(N—|b—b])—1, [b—V|>N/2, a=d
00, a#ta,b#l

(26)

It is obviously that the smaller the maximum distance
of arbitrarily two cached adjacent views in a segment,
the more opportunities there are for view synthesis and
the less latency there are for video transmission. There-
fore, we propose the MMD scheme to get the smallest
maximum distance for any segment.

Algorithm 2 MaxMinDistance (MMD) Scheme

Require: f,(k,n), X
Ensure: D

1: for Vz,y € X,) do
2 Virtually replace f,(x,y) with fs(k,n)
3 Compute D;giz)), and put it into D
4 Compute N J{((f”
5: end for
6
7
8
9

y)), and put it into N/

. for VD;E:Z)) €D do

. fs(k,m) fs(km) .
if Dy ) SkDfs(m’,y’)’x Y € X, Y then
Put D;SEIZ)) into D
Put N5 into D
10' dif fs(zy)
: end i
11: end for

12: if Element pair in D is not unique then
13- Find the least N/**™™ in D

s (z,y)
14:  if The least N ;((f;)) is fn((zt l)mique then
15: R.andomly select D" " s
16: end if
17: end if

18: Determine (z,y)
19: Replace fs(z,y) with fs(k,n)

Assume that a 2-dimension view set (X,)) which
includes X x Y (X < K,Y < N) different views of
segment s in video f are cached in the RRH(s) and
the BBU pool. f;(k,n) is the required view number and
is not cached. First, the cached view data fs(x,y) are
temporarily replaced with f;(k,n) one by one, where
x € X and y € ). After each replacement, the maximum

1051-8215 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on June 03,2020 at 16:33:02 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCSVT.2019.2946755, IEEE

Transactions on Circuits and Systems for Video Technology

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. XX, NO. XX, XXXX 20XX 8

view distance D]Jf gfg)) and the total number of maximum
view distance N, ((f;)) can be obtained, where
s(k,n s(a,b
Tl = )
Vb6 €{¥\y,n}

All D;E’;Z)) and N ff((f:)) are in set D and N. There-
after, we put the elements with minimum value in
D and their corresponding elements in N into a two
dimensional set . Finally, if there is only one element
pair in D, such as fs(x,y), then this element will be
replaced by f,(k,n). If there are two or more element
pairs in D, then the f;(z,y) with minimum number of
maximum view distances will be replaced.

Considering an simple example in Fig.3, the s-th
segment of video file f is split into 6 rows and 18
columns, in the row 0, a set (X,)) = {fs(0,0), fs(0,2),
fs(oa 5)/ fs(07 6)/ fs(07 9)/ fs(07 14)/ fs(oﬂ 16)/ fs(Ov 17)}
which includes 8 views are cached, and the requested
view fs(k,n) = fs(0,12) are not cached. In the MMD
scheme, it will start eight rounds of virtual replacement
first. In the 1st round of replacement, f;(0,0) is virtual
replaced by f,(0,12), and we can obtain D01 — o

fs(0,0)
and N ;‘.;((8 5)2 ) = 4, which means that the maximum

view distance between the adjacent cached views is 2
and the number of maximum distances is 4. After eight

27)

rounds of virtual replacement, a set D = {D}{:ES’&? =2,
£2(012) _ £:(012) _ £:(012) _ 7.(012) _

L e i

sz“):}‘? :)3, Df:“):}‘? :)2, Df:(oju() :)2} and a set N/
.(0,12) .(0,12) .(0,12) _

= Jf%xgm = 4} ](st(?ﬂ) - 4} ivf 05) — 1}; fvﬁvlf =1
2(0,12) 2(0,12) L(0,12) £(0,12)

NfS(O,Q) =1 Nfs(o,14) =1, NfS(O,lﬁ) =4, Nfs(0,17) =3}

are obtained. Based on these sets, we can obtain a set D =

2012) _ o \F(012) _ L P 012) oy nh(012) _
Do =2 Niwo =% Proe =2 Nijow =4

5(0,12 5(0,12 . ..
D}:EOJ?; =2, N;:((m?)) = 3}. Seeking D, the minimum

pair is {D]{sggigg =2, N}:((Sll%) = 3}. Therefore, f,(0,17)
is finally replaced by fs(0,12). The MMD scheme is

shown in Algorithm 2.

Theorem 2. The proposed online view synthesis-based
caching Algorithm 1 (simplified as online algorithm) has a
competitive ratio of V = 2, compared with the optimal KP
offline algorithm for solving the minimization optimization
problem in (24).

Proof: We assume a scenario that the following three
conditions are satisfied simultaneously:

1) the users in different RRHs are concerning different

segments of different VR video files;

2) the requested views are of new segments;

3) the requested views are less popular than the

cached views.

It is obvious that this scenario is the worst case for
the online algorithm and the largest competitive ratio
value will be achieved (i.e., an upper bound), as the
cooperative feature of C-RAN cannot be utilized and
view synthesis cannot be applied among the RRHs.

Under this circumstance, the original problem in (24)
can be divided into R + 1 independent knapsack prob-
lems. We denote by S; = {a;1,ai2,0i¢,...a;7,} the
requested view set (selected items) in RRH (knapsack) i
(1 <4 < R+ 1), which includes T; 2 < T; < Cg)
requests. For any requested view a;., its time cost by
delivering it from the VR video source can be denoted
as function f(a; ) (item value). It should be noted that
other time costs, e.g., the view synthesis latency, are
ignored for simplification. C; (0 < C; < Cpr) denotes
the remaining caching space of RRH 4. Obviously, if
C; = 0 or C; = 1, the online algorithm has the same
performance as the offline algorithm, since there will be
no chance to utilize view synthesis for both algorithms
and all the requested views should be delivered by the
VR video source.

For other C;, the proof, which is based on that the
view synthesis range is equal to 2, is given as follows.

(i) 2<C <T;/2

For the offline algorithm, [7;/2] views are selected
to be transmitted based on their View Distances (item
weight) in the best case. For example, there are 5 suc-
cessive requested views in the i-th knapsack, which is
denoted as S; = {(0,0), (0,1),(0,2), (0,3),(0,4)}, and the
optimal view set S¢ with 3 views to be transmitted
and cached can be {(0,0),(0,2),(0,4)}, since all the
priori knowledge about user requests can be obtained
according to the assumption.

However, all T; requested views should be transmitted
in the online algorithm in the worst case. The view set
is denoted as S, which equals to S;.

Let PP (S?) and P} (S]) denote the offline result and
online result, respectively. We have

[T/2]
PP (Sio) = Z f(ait) (28)
=1
and
T;
PHST =D f (@), (29)
=1

where [z] denotes the smallest integer greater than or
equal to x. Subsequently, the competitive ratio V1 can
be computed by

R+1
RS
R+1

> PO (59)

R+1 T;

% & s
- R+1 [Ti/2] (30)

5 o)

vi=

]

o)

+

—
~

7" fi,max

:2,

(VAN
o I RS
+ [l
g e

% : fi,max
1

.
Il
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(}qh!ﬁ)f (0,12)

- Required view

l:l To be replaced view

(oy=oo N0 02 [0 | NI )| (o NN .10 .. N oo N 2> ) [ cochec view

|:] Un-cached view

Replace Round 1

[0 ][0 N 03 ] o) | NS 0.7 | .5 ] NS, 0. o [N . ) [N c. ) S G

D/ 012) =2,N"(()"2’ -4

£,(0,0) £,(0,0)

(z,y)=(0,2)

Replace Round 2

M . 021 03 ) NN . . .2 o, .3 NGO

D012 =4,N"(0‘|2) -1

/:(0,2) /,(0,2)

Replace Round 3

z,y)=(0,5
NN . I 5 0 o N 2 . 2.3 O < .- OO

Do) _ 3,N/‘(0‘|2) -1

/(0,5) /(0,5)

(z.y)=(0,6)
Replace Round 4

NN N 51 o N 051 71 o 21 .1 2 N

DMO'IZ) — 3,N/\(()‘IZ) =1

/,(0,6) /:(0,6)

Replace Round 5

(z.y)=(0,9)
G o) NG 0.2) | co.4) | NGHENGIE 0.7 | (0,87 (090,10 o, 1) o, 1. N .1 NG N

D/‘((HZ) — S’N/\(U,lli — 1

£,(0,9) /:(0,9)

Replace Round 6

7,y)=(0,14)
0. [N o> [ o) NSNS 0. | 05 \-MDM)H(OJH\ﬁ ©.137](0,14) (0,15 GG

Do) _ 3,N/‘(0‘|2) -1

Replace Round 7

N . 51 N . . . .31

Replace Round 8

N . N o NN . . 21 D . .2 N .27

1,(0,14) 1,(0,14)
z,y) =(0,16) £:(0,12) _ £,(0,12) _
0,16)- D/‘(o.m) - 2, N/‘(o.m) =4
2,y)=(0,17) £,(0,12) _ £,(0,12) _
D/,(O,m =2, N/\(o,m =3

Fig. 3: An example of MaxMinDistance(MMD) caching.

where f; max is the maximum value for all f(a; ;).

(i) C; > T;/2 + 1.

In this case, the offline result is equal to PP (S?). For
the online algorithm, its result P! (S?) is always less than
P (S1), since at least one view synthesis can be applied
and not all the T; requested views need to be transmitted
as C; > T;/2+ 1. The competitive ratio Vi is as follows.

R+1
WACH
i=1
V= Rl
> P (5°)
i=

R+1
> PI(S))
i=1
R+1
P2 (59)
=1

=vi.

@)

Finally, we have

V = max(V, V) = 2. (32)

D. Complexity Analysis

For one request, the algorithm searches O(KN) and
calculates O(K'N) cached view data to compute D, j
and N ]{S((f”)), and the minimum D;:g’;n)) also needs
O(K N) iterations. Further, the algorithm needs addition-
al O(2R) to find the cached left and right view data in
all the RRHs. Therefore, the complexity of Algorithm 2
becomes O((KN)?+ KN +2R). Polynomial time is need-
ed by the algorithm, and it is an efficient/easy algorithm
due to the small value of K and N (K < 32, N < 32 for
common three-dimension VR videos) and R.

In terms of space it will consume only linear space
complexity which is nothing but size of given elements.

VI. SIMULATION RESULTS

In this section, numerical simulations are presented
to evaluate the performance of the proposed MMD

algorithm. We set tg to 5 ms and tp = 10tp to be
consistent with actual network conditions. The default
cache storage of an RRH and the BBU pool are 40 GB
and 160 GB, respectively. V and Vp are set to 320 Mbps
and 640 Mbps, respectively. There are 10,000 360° VR
video files in the library. Each 360° VR video file has
100 segments, and each segment has 32 x 32 views. The
default view synthesis range (dsyn) is set to 2, namely,
only the adjacent left and right view can be used for
synthesizing. The highest video resolution is 4K, and
the maximum compressed video data rate is 50 Mbps.

The video file popularity at each RRH follows a Zipf
distribution [40] with the skew parameter oo = 0.8, and
the frequency of the f-th popular video is inversely
proportional to f:

1
A= 1<f<F
Z j=1357

Considering that the user would watch the successive
video segment of the current VR video or change to an-
other new video file at different time, the probability of
a user’s request for segment f, follows Markov process
[41], [42]. For Further, the the view popularity follows
uniform distribution [22]. Video requests arrive one-by-
one at each RRH r following a Poisson distribution with
rate 6, = 10 [requests/min]. For each simulation, we

randomly generate 50,000 requests at each RRH.
furthermore, the users may watch different versions
of a single video file or different video files, the estab-
lished data sizes to be cached are different for different
users. No cache space is occupied at the beginning. The

simulation configurations are listed in TABLE 1.

(33)

A. Baseline Algorithms

Five existing algorithms, including the KP-optimal
algorithm, the traditional LFU algorithm, VS-RANDOM
algorithm, VS-LFU algorithm and Efficient View Explo-
ration Algorithm (EVEA) [22], are compared with the
proposed scheme.

(1) KP-optimal algorithm. An impractical algorithm
possessing the optimal performance, which assumes a
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priori knowledge about the complete user requests, as
described in Subection V-A.

(2) LFU algorithm. The LFU algorithm only keeps a
sorted list recording the frequency of the cached views.
Whenever a cache miss happens, the last element (with
the lowest frequency) in the list is replaced.

(3) VS-LFU algorithm. Similar to the traditional LFU,
the VS-LFU algorithm further considers the view syn-
thesis feature.

(4) VS-RANDOM algorithm. Different from the VS-
LFU, the cache replacements are randomly.

(5) EVEA algorithm. The EVEA algorithm is a heuristic
approach based on the Markov decision process that
leverages DIBR in multi-view 3D videos.

TABLE II: STANDARD SIMULATED C-RAN 360° VR
CACHING SYSTEM RELATED PARAMETERS

Parameters Description Values
F Number of video files 10000
S Number of segments of a video 100
K x N Number of views of a segment 32 x 32
L Available bitrate level set [10, 50] M bps
SIZE; (k,n) Size of view [10,40|M B
R Number of RRHs [5, 50]
U Number of users [50, 150]
Cr Cache storage of an RRH 40GB
Cp Cache storage of the BBU pool 160GB
' Average latency from B
e an RRH to a user
Average latency from
B the BB% pool ’roy a user oms
Average latency from
fo the sgurce to Z user 50ms
B Bandwidth of user u in its B
Y associated RRH r
Total data rate
VB between RRHs and the BBU pool 320Mbps
Total data rate between
Vo the BBU pool and source server 640Mbps

B. Performance Metrics

The performance metrics used for the evaluation are
as follows.

(1) Average cache hit rate: we define Cj;; as the
number of cache hits during window w, Cy, as the
number of syntheses during window w and C,., as the
request number during window w. The cache hit rate
performance can be evaluated using the average cache
hit rate (AHR), which is defined as follows.

1 Chit + Cs n
AHR= — § Zhit T Zswn
T
weW

A higher AHR indicates that a higher number of video
segment requests are directly downloaded from caches
over a succession of W time windows of length w, which
consequentially reduces the average response time.

(2) Backhaul traffic load [GB]: the volume of video
downloaded by the user from the source server going
through the backhaul network.

(3) Average latency [ms]: the average transmission
delay of 360° VR video content to a requesting user,

(34)

including the delay of traveling from the RRH and the
BBU pool caches, the synthesis delay, and the delay of
fetching directly from the source server.

(4) Quality-of-experience (QoE): inspired by [43], the
QoE model reflects the user-perceived performance of
the 360° VR video during a period of time (i.e., T) and
can be enumerated by the function that has the following
key elements.

i) Average video quality: Assuming that v(7, u), which
is a collection of symbols about the view f;(k, n), repre-
sents the data required by user u at time 7, the bitrate
and the quality of v(7,u) can be denoted by L,
and q(Ly(r,)), respectively, where ¢(Ly(-,,)) is a non-
decreasing function that maps the selected bitrate L, ).
The higher the bitrate selected, the higher the video
quality perceived by the user will be.

Different from traditional video system, the user will
receive a synthesized view, whose quality is always low-
er than that of the original view. Based on the evaluation
in [44], for example, if the PSNR of the original data
is 42.3 dB, when the view distances are 2, 3, 4, and 5,
the PSNR of the synthesized data becomes 41.9 dB, 41
dB, 40.7 dB, and 40.2 dB, respectively, with slight, linear
degradation.

Therefore, the average per-view quality Q over all
requested view data is denoted by (35).

1 T
Q =T ZT:O (q(Lv(‘r,u)) - B : dsynl{synthesized v(T,u)})

T
(35)

where § is the decline slope of view quality caused by
synthesizing, and 1(,, = 1 when x is true and 1., =0
when z is false.

ii) Average quality variations (V): This tracks the mag-
nitude of the changes in the quality from one set of view
data to another. Once the quality of the data required at
time 7+ 1 is lower than that of the data required at time
7, the QoE will decrease.

V= % ZZ:O(Q(LU(T,u))

iii) Rebuffer time (7): For each required dataset, re-
buffering occurs only if the download time is longer
than the playout time of buffered video when the view
download begins (i.e., P- ). Thus, the total rebuffer time
is expressed by (37), where V; is the download data rate
of v(r,u). It should be replaced by B, ,logy(1 + v,),
VB/U, or Vo /U according to the location of v(r,u).

- q(Lv(T+1,u))) (36)

T SIZED(T,u)
T= ZT:O ( V., B

iv) Startup delay (Tsiqrt): Assume Tsiort <K Pmax,
where P,.x means the playout time of full buffered
video.

As users may have different preferences on which of
the four components is more important, we define the

P)
+

(37)
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Fig. 4: Simulated cache hit rate, backhaul traffic load, average transmission latency and QoE performance among
the MMD algorithm, KP-Optimal algorithm, LFU algorithm, VS-LFU algorithm, VS-RDM algorithm, and EVEA

algorithm with respect to different cache capacity.

QOoE of user u by a weighted sum of the aforementioned
components:

QoE, = Q— AV — uT — nTstart (38)

Here ), i1, and 7 are non-negative weighting parame-
ters corresponding to video quality variations, rebuffer-
ing time and startup delay, respectively. In the 360° VR
system, the weights A\, u, and n are set to 0.1, 8 and
10, respectively, which means that the user is deeply
concerned about rebuffering time and prefers a low
startup delay.

C. Impact of Cache Storage

In this subsection, we change the total cache size from
160 GB (10% of the total file size) to 480 GB (30% of the
total file size) to observe the performance in terms of the
cache hit rate, backhaul traffic load, average latency and
QoE.

Fig.4 presents the cache hit rate, average transmission
latency and backhaul traffic load of the six algorithms
with R = 50, respectively. the performance of the six

algorithms improves as the cache size grows, and the
MMD algorithms always achieve an obviously superior
performance, which is benefit from considering view
synthesis feature in caching and processing.

As shown in Fig.4(a), When the cache capacity is small
(160 GB), the cache hit rate of the proposed algorithm is
almost 1.67 times that of the traditional LFU algorithm.
When the cache capacity increases to 480 GB, the cache
hit rate of the proposed algorithm is still 1.4 times that
of the traditional LFU algorithm and 5% higher than
that of the EVEA algorithm. While there is a 10% gap
between the proposed MMD algorithm and the KP-
Optimal algorithm (160 GB), the gap becomes smaller
as the cache storage increases.

As shown in Fig.4(b), the backhaul traffic load of the
proposed algorithm is 25% lower than that of the other
algorithms in the worst case.

As shown in Fig.4(c), the MMD algorithm always
achieves the lowest average latency. In the best case, the
average latency of the MMD algorithm is less than 16 ms,
which is only 1 ms more than the KP-Optimal algorithm,
and almost 30% less than that of the LFU algorithm.
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Fig. 5: Simulated cache hit rate, backhaul traffic load, average transmission latency and QoE performance among
the MMD algorithm, KP-Optimal algorithm, LFU algorithm, VS-LFU algorithm, VS-RDM algorithm, and EVEA

algorithm with respect to different view synthesize range.

The QoE of the six algorithms with respect to cache
capacity is presented in Fig.4(d). When the cache ca-
pacity is low, the proposed algorithm is not the best
because not enough views can be synthesized, and the
requested data should be fetched from the source server.
As the cache capacity increases, the QoE of the MMD
algorithm increases sharply and is higher than that
of other algorithms. In the best case, the QoE of the
proposed algorithm is 60% higher than the results of the
LFU algorithm.

D. Impact of View Synthesis Range

In subsection VI-C, only the adjacent left and right
view is used for synthesizing. Knowing that he quality
of each synthesized view depends on its distance to its
two reference views, we fix the cache capacity to 160 GB
and change the view synthesize range from default 2 to
10 to observe the influence on the performance in this
subsection.

From Fig.5, we can see that the larger the view syn-
thesis range, the more obvious the advantage of this
algorithm is, in addition to the KP-optimal algorithm.

For KP-optimal algorithm, since almost all the necessary
views can be cached with the increasing of view synthe-
size range, the gap between KP-optimal algorithm and
the proposed MMD algorithm becomes larger and larger.

Further, while the average video quality will decrease
when the view synthesis range increases, the rebuffer
time and start up delay will decrease sharply. There-
fore, we can see from Fig.5(d) that the QoE remains
increasing as the view synthesis range increases and the
performance of MMD algorithm is the best among all of
imported schemes.

VII. CONCLUSION

In this paper, we design a view synthesis-based 360°
VR caching system over C-RAN, where MEC is enabled
for view synthesizing and hierarchical caches are de-
ployed at both BBU pool and RRHs. To decrease the
transmission latency and backhaul traffic load for VR
services, an integer linear program (ILP) problem aimed
at minimizing the total transmission latency for 360°
VR video contents is formulated and is proved to be
NP-Hard. Due to the NP-completeness of the problem
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and the absence of the request arrival information in
practice, we propose an efficient online MMD caching re-
placement algorithm, which performs cache replacement
upon arrival of each new request. Rigorous numerical
simulations show that the proposed algorithm always
yields better performance in terms of cache hit rate,
backhaul traffic load, average transmission latency and
QoE than the other employed caching algorithms.
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