
Safe Control Algorithms Using Energy Functions:
A Unified Framework, Benchmark, and New Directions

Tianhao Wei and Changliu Liu

Abstract— Safe autonomy is important in many application
domains, especially for applications involving interactions with
humans. Existing safe control algorithms are similar to one
another in the sense that: they all provide control inputs to
maintain a low value of an energy function that measures
safety. In different methods, the energy function is called
a potential function, a safety index, or a barrier function.
The connections and relative advantages among these methods
remain unclear. This paper introduces a unified framework to
derive safe control laws using energy functions. We demonstrate
how to integrate existing controllers based on potential field
method, safe set algorithm, barrier function method, and sliding
mode algorithm into this unified framework. In addition to
theoretical comparison, this paper also introduces a benchmark
which implements and compares existing methods on a variety
of problems with different system dynamics and interaction
modes. Based on the comparison results, a new method, called
the sublevel safe set algorithm, is derived under the unified
framework by optimizing the hyperparameters. The proposed
algorithm achieves the best performance in terms of safety and
efficiency on the vast majority of benchmark tests.

I. INTRODUCTION

Safe autonomy has become increasingly critical in many
application domains. We should ensure not only the safety of
the ego robot, but also the safety of other agents (humans or
robots) that directly interact with the autonomy. For example,
robots should be safe to human workers in human-robot
collaborative assembly; autonomous vehicles should be safe
to other road participants. For complex autonomous systems
with many degrees of freedom, safe operation depends on the
correct functioning of all system components, i.e., accurate
perception, optimal decision making, and safe control. This
paper focuses on safe control which is the last defense to
ensure the safety of a system.

A safe control law needs to guarantee that the unsafe
region of the system’s state space is not reachable. Addition-
ally, it requires forward invariance of the safe region in the
sense that once entered, the state of the system will stay in
the safe part of the state space. To achieve forward invariance
or set-invariant control [1], a scalar energy function is usually
designed such that the control objective (e.g., safety) is
with low energy. Then the desired control law should drive
the energy function in the negative direction whenever the
system state is outside of the desired set (e.g., the safe
region). An energy function has many other variations, e.g.,

This work was supported in part by the National Science Foundation
under Grant #1734019, and in part by Holomatic.

T. Wei and C. Liu are with the Robotics Institute, Carnegie
Mellon University, Pittsburgh, PA, USA (e-mail: twei2,
cliu6@andrew.cmu.edu).

Safe Set Algorithm
(SSA)

Barrier Function Method
(BFM)

Sliding Mode Algorithm
(SMA)

Potential Field Method
(PFM)

𝜙 = 5
𝜙 = 0
𝜙 = -5

Fig. 1: Illustration of different safe control algorithms on phase
graphs. The plane represents the state space. The contours represent
level sets of the energy function φ. The system is safe when φ ≤ 0.
An arrow indicates the direction and magnitude of the safe control
input at a given state (dot).

a potential function, a barrier function, or a safety index.
Representative methods include potential field method (PFM)
[2], sliding mode algorithm (SMA) [3], barrier function
method (BFM) [4], and safe set algorithm (SSA) [5]. Though
the aforementioned methods all have similar structures in the
sense that they provide control inputs to decrease the value
of the energy function, the connections and relative advan-
tages among them remain unclear. This paper introduces a
unified framework for safe controllers to demonstrate how to
interpret different safe algorithms as variants of a common
energy-function-based control.

Moreover, verification and validation of safe control al-
gorithms are important. Lyapunov analysis [6] is usually
adopted to prove invariance of the safe region using safe
control laws. In addition to safety performance, we are also
interested in understanding how conservative a control law
is, and how much optimality or efficiency is sacrificed for
the sake of safety. In general, it is difficult to mathemat-
ically analyze the trade-off between safety and efficiency
in complex tasks. Empirical studies are needed to compare
the performance of different algorithms in diverse complex
situations. This paper introduces a benchmark system to test
safe control algorithms on different dynamic systems (ball,
unicycle, SCARA, 4 DoF robot arm) and different interaction
modes (passive human model, interactive human model). We
focus on three major metrics: safety, efficiency, and a hybrid
score that incorporates both safety and efficiency. These met-
rics reflect the three most concerned aspects: human safety,

2019 IEEE 58th Conference on Decision and Control (CDC)
Palais des Congrès et des Expositions Nice Acropolis
Nice, France, December 11-13, 2019

978-1-7281-1398-2/19/$31.00 ©2019 IEEE 238

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on June 25,2020 at 18:25:45 UTC from IEEE Xplore. Restrictions apply.

robot efficiency, and robot safety. To the best knowledge of
the authors, this is the first comprehensive benchmark on safe
control. It can be used to evaluate not only energy-function-
based safe control algorithms, but also controllers based on
non-analytical methods such as those based on reinforcement
learning [7] and imitation learning [8].

Based on theoretical analysis and comparison results of
existing algorithms, it is observed that SSA and BFM have
the best performance. Both SSA and BFM have relative
advantages over the other in certain circumstances. SSA is
triggered less frequently but reacts more radically, hence
good for scenarios that are less safe. BFM reacts more
gently but is triggered more often, hence good for scenarios
that are safer. Based on the observation, we propose a new
method, the sublevel safe set algorithm (SSS), combining the
strengths of SSA and BFM. This method achieves the best
performance on the vast majority of our benchmark tests.

The contributions of the paper are listed below.
1) This paper introduces a unified framework to derive

safe control algorithms and shows that existing meth-
ods fit into the framework.1

2) This paper develops a benchmark for existing safe
control methods on a variety of problems with different
system dynamic and different interaction modes.2

3) This paper proposes a new safe control algorithm SSS
that outperforms exiting algorithms on most bench-
mark tests.

II. PROBLEM AND FRAMEWORK

A. Notation and Problem Definition

Consider the following affine dynamical system with nx
states and nu inputs

ẋ = f(x) + g(x)u, (1)

where x ∈ X ⊂ Rnx is the state vector defined in
configuration space, u ∈ U ⊂ Rnu is the control input
vector assumed to be unconstrained, f : Rnx → Rnx and
g : Rnx → Rnx×nu defines the system dynamics.

The objective of the system can either be to track a
trajectory or to regulate around a settle point. A reference
control u0 is provided to fulfill the system objective. In a
safe environment, the robot can just execute u0. Otherwise,
the reference control u0 may need to be modified by a safe
control algorithm to prevent collisions with obstacles. The
resulting safe control input u depends on u0.

The robot is occupying a certain region of the Cartesian
space denoted as Cr ⊂ R3. Similarly, the space occupied
by the obstacle is denoted Co ⊂ R3. We denote cr as the
closest point on the robot to the obstacle, co as the closest
point on the obstacle to the robot. Mathematically,

cr, co = argmin
c∗
r∈Cr,c∗

o∈Co

‖c∗r − c∗o‖2. (2)

1An extended version with proof and additional information can be
found at https://arxiv.org/abs/1908.01883.

2The benchmark is available at https://github.com/
intelligent-control-lab/BIS.

H�

Cartesian SpaceConfiguration Space

obstacle

robot

cr
x

X
Cr

h�

Fig. 2: Illustration of the configuration space X , the state vector x,
the occupied area Cr in the Cartesian space, and the closest point
cr on the robot to the obstacle.

Let H : x 7→ Cr be a mapping from the robot state x to its
occupied region Cr. Let h : x 7→ cr be a mapping from the
robot state x to the closest point cr. The mappings depend
on the robot model. The notations are shown in Fig. 2.

The relation between time derivative of cr and time
derivative of x is

ċr = h′(x) ẋ = Jcr ẋ, (3)

where Jcr = h′(x) is the Jacobian matrix.
The relative distance between the obstacle and the robot is

denoted by d := ‖cr − co‖2. The relative velocity is denoted
by ḋ = d

dt‖cr − co‖2. We define dmin as the minimum
required safe distance.

B. Energy Function and Control

Energy-function-based methods use a customized energy
function to measure safety. The lower, the safer. The value of
φ, which is usually called a safety index, increases when the
robot is going toward the obstacle. The goal of the algorithm
is to provide a control input that draws the robot away from
the obstacle by decreasing the safety index.

We denote φ : X → R as an energy function defined on
the configuration space and φ̃(cr) : C → R as an equivalent
energy function on the Cartesian space, where

φ(x) = φ̃(cr) = φ̃(h(x)). (4)

The function φ should be designed such that the system is
safe if φ(x) ≤ 0. By the chain rule,

∇φ(x) = ∂φ(x)

∂x
= JTcr

∂φ̃(cr)

∂cr
= JTcr

∇φ̃(cr). (5)

For safety, φ(x) should be maintained negative. Once φ(x)
is high, i.e., in danger, it should be made decreasing, i.e.,
its time derivative φ̇(x) should be less than 0. Even in the
safe situations, φ(x) should not increase too fast, i.e., its
time derivative may be upper bounded. Hence, we have an
inequality constraint on φ̇(x) where

φ̇(x) = ∇φT(x) ẋ (6a)

= ∇φT(x) (f(x) + g(x) u) (6b)

= ∇φT(x) f(x)︸ ︷︷ ︸
Lfφ

+∇φT(x) g(x)︸ ︷︷ ︸
Lgφ

u ≤ ξ. (6c)

The slack term ξ ∈ R is tunable. If ξ > 0, φ(x) is allowed to
increase within a certain rate. If ξ < 0, φ(x) must decrease.
The inertia term Lfφ ∈ R represents how the current state x

239

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on June 25,2020 at 18:25:45 UTC from IEEE Xplore. Restrictions apply.

affects φ̇(x). The Lie derivative Lgφ ∈ Rnu represents how
the control input u affects φ̇(x).

C. Safe Control Algorithms

Safe control methods that use energy-function-based ap-
proaches are reviewed below, in particular, the four methods
shown in Fig. 1. These methods have different definitions
of the energy functions. Since our framework focuses on
the control strategies and can be generalized to any kind
of energy function, we only review their control strategies
below. Moreover, to focus on the main idea and reduce
the number of hyperparameters in the unified framework,
these algorithms are presented in their simplest forms. In
section II-D, we show how these methods are related.

1) PFM: Instead of deriving a control input u in config-
uration space directly, PFM derives a control input uc in the
Cartesian space first considering the following dynamics:

ċr = uc := u0
c + u∗c , (7)

where u0
c is the reference control in the Cartesian space

transformed from u0 based on (1) and (3) such that

u0
c = Jcr

g u0, (8)

and u∗c is a repulsive “force” added to the reference u0
c

whenever the safety constraint is violated. In particular,

uc =

{
u0
c − c1 ∇φ̃ if φ̃ ≥ 0

u0
c otherwise

, (9)

where c1 > 0 is a tunable constant. Then the equivalent
control input u in the configuration space can be derived
from uc.

2) SMA: It adds a correction term to the reference u0

along the direction of the Lie derivative whenever the safety
constraint is violated.

u =

{
u0 − c2 Lgφ

T if φ ≥ 0
u0 otherwise

, (10)

where the constant c2 > 0 should be set large enough such
that φ̇ = Lfφ− c2 ‖Lgφ‖2 + Lgφ u0 is always negative.

3) SSA: It computes a control input that is closest to the
reference u0 and decreases φ when φ > 0.

u = min
u
||u0 − u||2, s.t. φ̇ ≤ η or φ < 0, (11)

where η < 0 corresponds to the slack term in (6). SSA only
deviates from the reference u0 when φ ≥ 0.

4) BFM: It computes a control input that is closest to the
reference u0 and satisfies φ̇ < λ φ for a constant number
λ < 0.

u = min
u
‖u0 − u‖2, s.t. φ̇ ≤ λ φ, (12)

where λφ corresponds to ξ in (6). BFM may always deviate
from the reference u0. When safe, i.e., φ < 0, the control
input may lead to the increase of the safety index φ.

𝛾 Lgφ

𝕀A(𝛾)=1

φ=5

φ=0

𝕀A(𝛾)=0
Lgφ

u

ue

us

Control Space of x*State Space

𝕀B(𝛾)=0

𝕀B(𝛾)=1

x*
x*

Fig. 3: Illustration of the Lie derivative Lgφ, perpendicular de-
composition of u, and the indicator functions IA(γ) and IB(φ).
Left: Decomposition of u along and perpendicular to Lgφ. Right:
Constraint on the control space. Blue arrows are examples of u0

that comply with the constraint; Orange arrows are examples of u0

that violate the constraint. It is assumed that ẋ = u in the figure.

D. Unified Framework

Before proposing the unified framework, we first introduce
a perpendicular decomposition of the control input u,

u = us + ue, (13)

where us is parallel to Lgφ, and ue is orthogonal to Lgφ as
shown in Fig. 3. We call us the safety component, since the
change of φ depends solely on us. We call ue the efficiency
component. When safety is ensured, we can add control
input orthogonal to Lgφ to improve the efficiency of system
performance.

Similarly, the reference control input u0 can be decom-
posed as u0 = us0 + ue0 where

us0 = µ Lgφ
T,ue0 = u0 − us0, (14)

where

µ :=
Lgφ u0

‖Lgφ‖2
. (15)

For convenience, we introduce two indicator functions.
Function IB(φ) indicates whether a state is dangerous, i.e.,

IB(φ) :=

{
1, if φ ≥ 0

0, otherwise.
(16)

Function IA(γ) is for optimization-based methods, e.g.,
SSA and BFM. It indicates whether u0 violates the optimiza-
tion constraint φ̇ ≤ ξ. According to (6), the optimization
constraint defines a half space in the control space as shown
in Fig. 3, whose normal direction is along Lgφ. Define

γ :=
ξ − Lfφ

‖Lgφ‖2
. (17)

Then an input u satisfies the optimization constraint (6c) if
and only if Lgφ u ≤ γ‖Lgφ‖2. Hence, u0 is feasible with
respect to the constraint if and only if Lgφ u0 ≤ γ‖Lgφ‖2
or equivalently µ ≤ γ. Then we define

IA(γ) :=

{
1, if µ > γ

0, otherwise.
(18)

240

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on June 25,2020 at 18:25:45 UTC from IEEE Xplore. Restrictions apply.

Definition 1 (Energy-Function-Based Safe Control). A safe
control method is called an energy-function-based safe con-
trol method if:

1) it uses a scalar energy function φ to measure safety;
2) it provides safe control inputs in the following form{

us = α Lgφ
T

ue = ue0 + β uei
, (19)

where α ∈ R is a tunable parameter for safety
response, β ∈ R is a tunable parameter for efficiency
level, and uei ∈ Rnu is some vector orthogonal to Lgφ.

Theorem 1. PFM in (9), SMA in (10), SSA in (11), and BFM
in (12) are all energy-function-based safe control methods.
They all satisfy (19) with difference choices of parameters.
In all methods, β = 0.

1) for PFM:
α = µ− IB(φ) c1. (20)

2) for SMA:
α = µ− IB(φ) c2. (21)

3) for SSA:

α = (1− IA(γ) IB(φ)) µ+ IA(γ) IB(φ) γ, (22)

where γ follows from (17) and ξ = η.
4) for BFM:

α = (1− IA(γ)) µ+ IA(γ) γ (23)

where γ follows from (17) and ξ = λφ.

E. Sublevel Safe Set Algorithm

Looking into the control strategies for different methods,
we notice that

1) BFM’s slack term in (12) is a dynamic term that is
related to energy function value, while SSA’s slack
term in (11) is not.

2) SSA may only provide control correction when φ > 0.
The corresponding hyperparameter is (16). Yet BFM
may provide control correction regardless of the value
of φ.

When the parameters (e.g., the energy function φ) are
designed less conservative, SSA only starts to provide control
correction at a close distance, while BFM may deviates from
the optimal reference all the time. In this situation, SSA
will be more efficient. When the parameters are designed
more conservative, though BFM’s control correction goes
into effect from a far distance, BFM only makes a minor
correction for most of the time. Meanwhile, SSA still pro-
vides radical corrections. In this way, BFM will be more
efficient. These analyses will be supported by experimental
results in section IV.

We propose a new method, Sublevel Safe Set (SSS), to
combine the strengths of SSA and BFM. SSA only provides
control correction when φ ≥ 0, while the control correction
relies on the value of the energy function φ. The phase
graph for SSS is shown in Fig. 4. Thus, no matter how

Sublevel Safe Set
Fig. 4: Phase graph for SSS. Fig. 5: Screenshot of BIS.

the parameters are designed, SSS should be more efficient
than both SSA and BFM, which will also be verified in the
experiment results in section IV.

By combining the slack term ξ in BFM and the parameter
α (22) in SSA, hyperparameters for SSS are designed to be

α = (1− IA(γ) IB(φ)) µ+ IA(γ) IB(φ) γ
β = 0

γ = ξ−Lfφ
‖Lgφ‖2

ξ = λφ

. (24)

The corresponding control strategy in its optimization
form is

u = min
u
||u0 − u||, s.t. φ̇ < λ φ or φ < 0. (25)

III. BENCHMARK OF INTERACTIVE SAFETY

A. Overview of the Benchmark
The unified framework provides a powerful tool to analyze

connections and differences among algorithms. However, it
is insufficient to solely rely on mathematical analysis to
derive the performance of different algorithms in stochastic
environments. In this paper, we are interested in the trade-
off between safety and efficiency when these algorithms are
applied on interactive tasks. Empirical studies are needed to
compare different algorithms and understand their relative
advantages in diverse complex situations.

We introduce the benchmark of interactive safety (BIS)
to perform empirical studies on safe control methods. BIS
consists of a collection of robot models which can be used
to benchmark and compare the performance of different safe
control algorithms. A set of ready-made robot models can
be easily extended by users. By changing robot models, we
can test an algorithm with different system dynamics. By
replacing the robot controller, we can test different control
algorithms on a same dynamic system. By instantiating two
robot models and letting a human subject (or a human-like
controller) control one of them, we can test human-robot
interactions. This paper is focused on the two agent case
with one human and one robot, while multi-agent cases will
be studied in the future.

In the simulation, the human agent is represented as an
orange ball. The task of both the human and the robot is to
reach a series of goals, which is represented by transparent
balls. Screenshot of the scenario is shown in Fig. 5. BIS
includes a data generator to generate test scenarios and an
evaluator which evaluates all algorithms under the same
condition.

241

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on June 25,2020 at 18:25:45 UTC from IEEE Xplore. Restrictions apply.

B. Robot Models under Comparison

All robot models contains two modules: control module
and execution module. In the control module, the robot
first uses a Kalman filter to update the state of itself and
the environment based on the measured data. Then the
robot performs a collision check and computes the minimum
distance and the closest point to the obstacle. Finally, the
robot calls a control algorithm to compute the desired control
input. In the execution module, the control input is applied
to the robot simulator. The configuration of the robot is
updated according to the dynamic model specified in the
robot simulator. The robot simulator can also be replaced by
a robot hardware to achieve hardware-in-the-loop evaluation.

BIS currently include four different robot dynamic mod-
els: ball robot model, unicycle robot model, SCARA robot
model, and 4 DoF robot arm robot model.

The robot model library in BIS can be easily extended.
Adding a robot model into the robot model library requires
two functions h and h′. Function h maps the robot state x
into Cartesian critical point cr as shown in Fig. 2. Function
h′ is the Jacobian in (3).

C. Controllers under Comparison

Controllers are called by robot models in the control
module. BIS has included five energy-function-based control
methods, i.e., PFM, SMA, BFM, SSA, SSS, and a human-
like controller. The human-like controller models human
behavior and generates control input that is similar to human.
An imitation learning algorithm is designed to learn human
behavior models from real human subjects. We asked 3
human subjects to control the human agent to achieve 100
goals one by one. The human model is learned from the
demonstration data.

D. Experiment Methods

The experiments are setup with the following steps:
1) Use a data generator to generate random goals and save

them as test scenarios.
2) Use the same test scenario and human model to test

each algorithm.
3) Compare the test results.

We use 40 pieces of 30 seconds long test scenarios to test
different algorithms in the experiments. The frame rate is 20
fps. In the study, it is assumed that 1) the Jacobian matrix
does not change within one frame; and 2) all noises follow
normal distribution.

The function φ is chosen to be [5],

φ = d2min − d2 − kḋ. (26)

In the experiments, we test the performance of the algo-
rithms under different values of their parameters. In partic-
ular, we tune the following two sets of parameters: 1) the
parameters associated with φ, i.e., dmin and k; and 2) the
parameters specific to each algorithms, i.e., c1 for PFM, c2
for SMA, η for SSA, λ for BFM, λ for SSS.

E. Evaluation Metrics

Three metrics are used to evaluate the performance of
different algorithms: an efficiency score and a safety score
for human-robot interactions, and a hybrid score for robot
co-working. For all scores, the higher, the better.

1) Efficiency Score: We use the average number of goals
achieved in a given period by the robot as the efficiency
score.

2) Safety Score: Intuitively, this score is similar to the
negation of a safety index. We design the safety score to be
a weight sum of the relative velocity, where the weights are
decided by the relative distance. The following factors need
to be considered.
• The score should decrease when the distance between

the robot and the obstacle decreases.
• The score should decrease when the robot is moving

faster to the obstacle.
• The weight should change rapidly when the robot is

close to the obstacle.
• The score should not accumulate when the relative

distance is larger than a threshold ds.
Based on these considerations, the safety score is defined as

safety = −
T∑
0

min(0, log(d/ds)) ḋ.

The safety score takes both physical safety and psycho-
logical safety into consideration. When the robot is near the
obstacle and rushing toward it, even if it does not end up
with a collision, it receives a penalty because the robot is
threatening the obstacle.

3) Hybrid Score: In robot-robot collaboration scenario,
physical safety is the only concern. Only collision matters,
while psychological safety should be ignored. We define the
hybrid score as the maximum efficiency without collision
to evaluate the performance of the algorithms in these sit-
uations. This score reflects an algorithm’s best performance
when it can ensure physical safety.

IV. COMPARISON RESULTS

A. Trade-off between Safety and Efficiency

We first evaluate the trade-off between the efficiency score
and the safety score for all algorithms as shown in Fig. 6.
The trade-off curve can be obtained by tuning the parameters
in the algorithms. For example, in PFM in (9), when the
magnitude of c1 is smaller, the system can be less safe but
more efficient due to fewer detours. Different parameters
may result in different safety and efficiency scores, which
corresponds to different points on the trade-off graph in
Fig. 6. If a set of parameters leads to a high safety score, we
say the parameters are conservative. The up-right convex hull
of the those points is the trade-curve for one algorithm. If an
algorithm has a trade-off curve covers all other algorithms,
i.e., higher efficiency for the same safety score, we say it
outperforms other algorithms.

SSA and SMA both provide control correction only in
the boundary of the safe region of states. However, based

242

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on June 25,2020 at 18:25:45 UTC from IEEE Xplore. Restrictions apply.

−20 −10 0

0

2

4

6

8

−30 −20 −10 0

0

1

2

3

4

5

6

7

−40 −20 0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

−30 −20 −10 0
0

2

4

6

8

10

Ball Unicycle SCARA Robot Arm

Safety

Ef
fic

ie
nc

y
BFM PFM SMA SSA SSS

Fig. 6: The trade-off curves between safety and efficiency for four robot models.

on (21)and (22), SSA provides a smoother control input
comparing to SMA, which makes it more efficient.

BFM provides control corrections even inside the safe
region. This behavior makes it less efficient when the param-
eters are conservative. However, we noticed that BFM has a
better performance than most algorithms with conservative
parameters for the following two reasons.

1) When the parameters are conservative, control correc-
tion is triggered a lot. Frequent correction eliminates
the advantage of only correcting at the boundary of
the safe region, i.e., SSA and SMA are not superior at
efficiency in this situation.

2) BFM’s control correction is a dynamic term that is
related to energy function value, while SSA is not.
Though control correction is triggered more often,
BFM only makes a minor correction for most of the
time. However, SSA treats all corrections equally. In
other words, SSA is more likely to be overreacting.

Our new algorithm SSS overcomes the drawbacks of SSA
and BFM. Thus, it achieves the best performance on the vast
majority of benchmark tests.

B. Hybrid Score

To demonstrate the performance of algorithms in a robot-
robot collaboration scenario, we record the hybrid scores on
different robot models as shown in table I. SSS has the best
average performance, which achieves two best scores and
two second scores. SMA achieves two best scores, which is
out of our expectation.

Ball Unicycle SCARA RobotArm

SSS 7.23 3.13 0.96 5.23
BFM 6.07 2.73 0.37 2.53
SSA 5.17 2.37 null 4.53
SMA 5.37 3.23 0.39 5.83
PFM 2.50 null 0.03 4.10

TABLE I: Comparison of hybrid scores (Maximum Efficiency
without Collision). The best two results are shown in bold and
underline respectively. If collision happens, the method gets a null
as the hybrid score.

V. CONCLUSION

This paper introduced a unified framework to derive safe
control laws using energy functions. We proved that a variety
of controllers can be derived from the unified framework
by applying different hyperparameters. A benchmark system
was introduced to evaluate the performance of different
algorithms on a variety of scenarios with different system
dynamics. The unified framework and the benchmark system
helped us understand how hyperparameters of an algorithm
affects the performance in terms of safety and efficiency.
Based on the unified framework and comparison results,
we proposed a new method, sublevel safe set algorithm
(SSS). This new method combined the strengths of two best-
performed algorithms: the safe set algorithm (SSA) and the
barrier function algorithm (BFM), which outperform existing
methods on most benchmark tests.

REFERENCES

[1] F. Blanchini, “Set invariance in control,” Automatica, vol. 35, no. 11,
pp. 1747–1767, 1999.

[2] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile
robots,” in Autonomous robot vehicles. Springer, 1986, pp. 396–404.

[3] L. Gracia, F. Garelli, and A. Sala, “Reactive sliding-mode algorithm for
collision avoidance in robotic systems,” IEEE Transactions on Control
Systems Technology, vol. 21, no. 6, pp. 2391–2399, 2013.

[4] A. D. Ames, J. W. Grizzle, and P. Tabuada, “Control barrier function
based quadratic programs with application to adaptive cruise control,”
in 53rd IEEE Conference on Decision and Control. IEEE, 2014, pp.
6271–6278.

[5] C. Liu and M. Tomizuka, “Control in a safe set: Addressing safety
in human-robot interactions,” in ASME 2014 Dynamic Systems and
Control Conference. American Society of Mechanical Engineers, 2014,
pp. V003T42A003–V003T42A003.

[6] M. S. Branicky, “Multiple lyapunov functions and other analysis tools
for switched and hybrid systems,” IEEE Transactions on automatic
control, vol. 43, no. 4, pp. 475–482, 1998.

[7] F. Berkenkamp, M. Turchetta, A. Schoellig, and A. Krause, “Safe
model-based reinforcement learning with stability guarantees,” in Ad-
vances in neural information processing systems, 2017, pp. 908–918.

[8] L. Sun, C. Peng, W. Zhan, and M. Tomizuka, “A fast integrated
planning and control framework for autonomous driving via imitation
learning,” in ASME 2018 Dynamic Systems and Control Conference.
American Society of Mechanical Engineers, 2018, pp. V003T37A012–
V003T37A012.

243

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on June 25,2020 at 18:25:45 UTC from IEEE Xplore. Restrictions apply.

