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Abstract— The raise of collaborative robotics has allowed
to create new spaces where robots and humans work in
proximity. Consequently, to predict human movements and
his/her final intention becomes crucial to anticipate robot next
move, preserving safety and increasing efficiency. In this paper
we propose a human-arm prediction algorithm that allows
to infer if the human operator is moving towards the robot
to intentionally interact with it. The human hand position
is tracked by an RGB-D camera online. By combining the
Minimum Jerk model with Semi-Adaptable Neural Networks
we obtain a reliable prediction of the human hand trajectory
and final target in a short amount of time. The proposed
algorithm was tested in a multi-movements scenario with
FANUC LR Mate 200iD/7L industrial robot.

I. INTRODUCTION

In the recent years, the raise of collaborative robotics has
allowed to create new spaces where robots and humans work
in proximity. Robots are no longer separated inside safety
cages, but they are considered as collaborators and helpers
inside a shared workspace. This close interaction allows to
create a human-robot synergy that merges complementary
strengths of both agents: the high precision and repetitiveness
of machines and human high-level skills [1].

In this new scenario, humans and robots play a different
role [2]. Since robots can reactively adapt to environment
changes and replan their trajectory in a very short time, they
can be considered as human followers.

As a consequence, to predict future human movements
and to infer his/her final intention becomes of paramount
importance. For collision avoidance purposes, if the robot
knows the human future behavior in advance, it can replan
the action more efficiently, still preserving human safety.
Conversely, for collaborative or physical interactive tasks,
the robot should behave coherently. In assembling scenarios,
for example, if the human is approaching to grasp the
object carried by the robot, the robot should pause and
wait for him/her. Otherwise, if the human is approaching
to manually apply a modification to the robot path [3], the
robot should keep following the desired trajectory, waiting
for the correction to be made.
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Different approaches to predict human hand trajectory
and infer the final target have been proposed, especially for
collaborative tasks.

A modelling approach for 3D hand trajectories in reaching
motions is presented by Faraway et al. [4]. They propose a
method for fitting the trajectory data to the control points
of a Bézier curve. However, the method is largely empirical.
Tamura et al. [5] predict the target of the human hand move-
ment among the objects placed on the table. They define the
certainty of a target based on how much the hand reduces
the distance with respect to it. This is a successful approach
only if the objects are placed along a row in front of the
human and their positions are known a priori. Mainprice et
al. [6] generate a prediction of human workspace occupancy
exploiting the swept volume of learnt human trajectories.
This volume is computed by summing the likelihood for
each class of human movements using a Gaussian Mixture
Model. The robot trajectory is then planned in such a way
to minimize the penetration cost, avoiding collisions. This
method allows to plan robot trajectories in a conservative and
safe way, without inferring human target though. In Kaeami
et al. [7], the robot builds a belief over human intentions
by observing human actions. A Markov Decision Process is
used to finally predict human goals. However, human actions
are defined a priori.

Although there are several ways to approach to an object
and users are generally different, human arm movements
tend to be quite similar. Different approaches in literature
try to model and describe human arm behavior: the Min-
imum Torque Change Model [8] [9] and the Minimum
Jerk Model [10] are commonly used. The Minimum Torque
Change Model is an intrinsic-dynamic-mechanical represen-
tation whose objective is to minimize the time derivative
of joint torque. However, the dynamics equation of the
musculoskeletal system must first be specified.

Conversely, the Minimum Jerk Model is independent of
the arm dynamics, arm posture, external forces and move-
ment duration. The basic idea is that, for point-to-point
movements, human arms tend to follow a path that minimizes
the third-order derivative of the position (i.e. jerk). These
trajectories are usually straight and characterized by a bell-
shaped velocity. The model allows to infer human goals, by
fitting the parameters of the Minimum Jerk solution to exper-
imental observations and including in the parameter set the
final human arm position. A Minimum Jerk implementation
for collision avoidance and human safety is presented by
Dihn et al. [11]. The end position of the human movement
is derived by finding the closest object to the current hand
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velocity vector. Objects are fixed in the space and their
position is known a priori. Bratt et al. applied Minimum
Jerk in a catching ball task. Since the ball is thrown at high
speed, the human approaches to the expected point of impact
and then he/she makes a small correction. For this reason
the whole human movement can be approximated with one
Minimum Jerk trajectory and the point of impact can be
inferred. The main limitation of this approach is that half
of the motion has to be observed before a prediction can be
made. Namiki et al. [12] propose an assistive control system
for a master-slave-type humanoid robot, to increase the speed
of a reaching-and-grasping motion. Minimum Jerk is used
to predict human arm trajectory towards different objects,
whose position is known a priori. Then a particle filter is
used to infer human target.

Using the Minimum Jerk model for human motion pre-
diction requires to record the initial part, of suitable length,
of the hand trajectory and then fit the parameters, including
final position and time. By limiting the number of recorded
points of such initial part, we can anticipate the detection
of the human final target. As a consequence, the robot can
also advance the planning of a collision-free trajectory if the
human is not moving towards it. To reduce the number of
recorded points, without affecting the long-term prediction
accuracy, this paper will also exploit a short-term prediction
of the future human arm trajectory, based on a different and
data-driven model.

To address nonlinearity, stochasticity and individual differ-
ences related to the human motion estimation problem [13],
Recurrent Neural Networks (RNNs) proved to be a powerful
prediction tool [14]. RNNs allow to store past information
inside hidden states, but due to this reason they are also
computationally heavy to train. To take into account past
history and individual differences in human motion, Semi-
Adaptable Neural Networks (S-ANNs) can be used [15].
The parameters in the last layer of the Neural Network are
adapted online using the Recursive Least Square Parameter
Adaptation algorithm (RLS-PAA). The main advantage is
that S-ANNs produce a reliable human prediction with a
limited computational load.

In this paper we propose a human prediction algorithm
that allows to infer if the human operator is moving towards
the robot to intentionally interact with it, or he/she acciden-
tally passing nearby to grasp a different object. The human
hand position is tracked by an RGB-D camera and the initial
hand movement is recorded. We adopt the Minimum Jerk
model to infer the final target of the human arm movement,
given the collected initial points. To anticipate the target
detection, we add the short-term prediction of the human
arm trajectory, based on a Neural Network, to the past
collected points. To accommodate time-varying behaviors
and individual differences in human motion, the parameters
of the last layer of the Neural Network are adapted online,
according to the Semi-Adaptable Neural Networks (S-ANN)
presented in [15]. By combining the Minimum Jerk model
with S-ANN we obtain a reliable prediction of the human
hand trajectory and final target in a short amount of time.

The prediction of the human final target allows to define if
the human is going to intentionally interact with the robot. In
this case, the robot should continue its trajectory, waiting for
the human operator to manually execute the modification [3]
or start the robot manual guidance [16]. If the final human
target is a different object in the workspace, the robot should
instead pause its movement to preserve human safety. The
advantage of this method is to combine the accuracy of the S-
ANN prediction with the long-term prediction of Minimum
Jerk to obtain a reliable detection of human intention.

The main contributions of our work are:
• We only rely on the robot position to infer if the human

is approaching to the robot itself. Hence, only prior
knowledge of the robot trajectory is required, while
an object detection system or prior knowledge of other
objects positions are not necessary.

• We combine a long-term Model-Based approach (i.e.
Minimum Jerk) with an accurate Data-Driven (i.e. S-
ANNs) approach to obtain a reliable prediction of
human hand trajectory.

• With respect to [15], we found a suitable size of the
prediction horizon for the S-ANN output. This size is a
trade-off between the S-ANN adaptation convergence,
the accuracy of the final target detection and the time
required to compute the latter.

• We detect online all the point-to-point hand movements
of an arbitrary sequence, which represents a realistic
working scenario.

II. PROBLEM STATEMENT

In novel industrial scenarios, it is likely that a robot
executes its task while a human operator is working nearby,
either to collaborate at the same task or to perform a different
operation. The focus of this work is to determine whether the
human operator is going to approach to the robot, in order to
physically interact with it. This kind of predictive approach
on human intention allows to guarantee human safety and
an effective collaboration.

If the human is intentionally approaching to the robot to
start a physical interaction, the robot should not consider
the human gesture as an unsafe incoming collision. Whereas
if the human operator is doing random movements towards
other objects, that can possibly be unsafe for him/her, the
robot should modify its trajectory consequently.

The proposed human movement prediction allows to infer
the final goal early in time, in order to promptly and
accordingly modify robot’s behavior.

III. BACKGROUND ON ROBOT COACHING

In a cooperative scenario, it can happen that the user needs
to change a portion of the robot trajectory in a desired way.
This is due, for example, to the presence of an obstacle
placed along the robot’s path or a change of the working
area. This problem is known as “robot coaching”. In our
previous work [3], an admittance-controlled robot tracks the
desired trajectory. When the user needs to change a portion
of the trajectory, he/she grasps the end-effector of the robot,
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or the tool attached to it. The controller detects this operation
and the stiffness is changed to make the robot easily drivable
by the user, who manually executes the correction. Finally,
the controller detects when the user releases the end-effector,
the stiffness is restored to a high value and the correction is
optimally joined to the previous trajectory.

As previously mentioned, switch between a tracking mode
and a compliant mode (and vice versa) is achieved through
a stiffness variation in the admittance control. However, this
operation can generate unsafe robot behaviors, due to the
loss of passivity [17]. Energy tanks have been introduced to
flexibly dealing with energy exchange [18]. They allow to
store the system dissipated energy and use it to implement
active behaviors, while keeping the system passive and safe.

Formally, the dynamics of an admittance controlled robot
with time varying parameters can be represented by:

Md(t)¨̃y +Dd(t) ˙̃y +Kd(t)ỹ = Fext (1)

where Md(t), Dd(t), Kd(t) ∈ R6×6 are desired symmetric
positive definite inertia, damping and stiffness matrices re-
spectively. ỹ(t) is the pose error, with ỹ(t) = y(t) − yd(t),
y(t) and yd(t) ∈ R6 are the robot pose1 and the desired
pose. Fext ∈ R6 is the external force measured by a 6-DOFs
Force/Torque (F/T) sensor mounted on the end-effector.

If we consider a variation of the stiffness matrix, while
keeping the inertia and damping constant, the variation of
the system energy can be expressed as:

Ḣ = ˙̃yTFext +

[
− ˙̃yTDd

˙̃y +
1

2
ỹT K̇d(t)ỹ

]
(2)

Since Dd ≥ 0, the first term in the brackets is always
negative and energy can be introduced only by the second
term, when the stiffness increases.

If we augment the admittance model by adding the energy
tank, it is possible to use the dissipated energy to implement
a stiffness increase and to track back the original trajectory
after the modification is done.

The maximum value of stiffness augmentation in a time
interval [t0, tend], according to the energy T stored in the
tank, is:

k̇i(t) ≤
2 (T (t0)− δ)

‖ỹM‖2 (tend − t0)
∀i = 1, . . . , n (3)

where ki is each element on the stiffness matrix diagonal. δ
represents the minimum energy value to avoid tank depletion
and ‖ỹ‖M is the maximum tracking error that the robot can
experience in its workspace.

In conclusion, a stiffness increase can be planned accord-
ing to condition (3) in order to maintain the passivity of the
overall system and switch to the tracking mode.

1It is assumed that a low-level controller is designed and tuned in such
a way that the pose tracking error is negligible, namely y ' yd, where yd
is the reference pose computed by the admittance control.

IV. HUMAN MOTION PREDICTION

A. Minimum Jerk Model

Flash and Hogan [10] stated that, for unconstrained point-
to-point movements, human arms move along a smooth
trajectory while minimizing the mean-square jerk. This state-
ment can be formalized, considering a spatial trajectory [19]
moving from an initial position to a final one in a given time
interval, as model fitting problem requiring to minimize the
following cost function:

C =
1

2

∫ tf

ti

(
d3x

dt3

)T (
d3x

dt3

)
dt (4)

where x ∈ R3 is the time-varying hand position.
Given a start time ti, a final time tf and boundary

conditions at xi = x(ti) and xf = x(tf ) (i.e. position,
velocity and acceleration), the unique solution of the opti-
mization problem is a fifth-order polynomial. If we assume
that the movement starts and ends with zero velocity and
acceleration (i.e. point-to-point movement), the polynomial
solution results in:

x = xi + (xf − xi)
(
10τ3 + 15τ4 + 6τ5

)
(5)

where τ = (t− ti)/(tf − ti).
In the following, we will consider the human grasping mo-

tion as a point-to-point movement even if the robot moves in
the workspace. Indeed, the robot speed is necessarily limited
during collaborative tasks, hence if the human approaches
with the intent to physically interact, his/her hand would
reach the robot with negligible velocity and acceleration.
However, non zero velocity and acceleration at the initial
and final points could also be taken into account using the
generalized solution described in [19].

The trajectory described by (5) is a straight line between
the initial and final positions, with a bell-shaped velocity
profile. Given the parameters r = [xTi , x

T
f , ti, tf ], the human

arm trajectory can be computed for each instant of time.
However, the prediction of the human arm target must

be setup as a different problem: given an observed partial
arm movement, how can we find the parameters r in such
a way that a partial arm movement fits the Minimum Jerk
polynomial (5).

We assume that the human arm movement is observed by
a tracking system with a discrete-time output. Therefore, if
the beginning of the trajectory is observed, the vector of col-
lected positions in the Cartesian space is χ̄k = [x̄1, . . . , x̄k],
where x̄k is the observed hand position at time tk. Since
the beginning of the motion can be easily detected (i.e. by
monitoring the hand velocity), the parameters xi and ti are
known.

Determining the final goal xf at the corresponding time tf
is not trivial. In a shared human-robot workspace, different
objects can surround the robot and their location is unknown.
Hence, we cannot consider different final positions and eval-
uate the fitting for each one. This procedure would require an
object identification system and it would be computationally
expensive to be implemented online. However, the current
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position of the robot is usually known, together with its
trajectory. If we assume that the human wants to grab the
end-effector, we can exploit this information by considering
the end-effector Cartesian position as the parameter xf .
Hence, the only unknown parameter that has to be computed
is the final time tf .

Therefore, we fit the collected points with the Minimum
Jerk trajectory that ends in the end-effector position xf , by
searching the value of tf that minimizes the following cost
function:

C(tf ) =
1

2

n∑
k=i

‖xk − x̄k‖2 (6)

where the values xk are computed from (5) at the sampling
instants tk of the collected points x̄k.

Then, we can evaluate the fitting quality by computing the
Root Mean Square (RMS) norm error between the collected
points and those calculated by the fitted model. The fitting
is performed in a tridimensional space.

In conclusion, if the human is moving towards the robot,
the quality of the fitting is good and the RMS norm error
is low. Otherwise, if the human is moving towards another
object, the RMS norm error will be higher than a given
threshold. The tuning of such a threshold will be described
in Sec. VII.

V. SEMI-ADAPTABLE NEURAL NETWORKS

To anticipate the determination of human target, a predic-
tion of the human hand based on Neural Networks can be
added. In this way, the predicted trajectory points are added
to the collected points to fit the Minimum Jerk model.

To accommodate both the time varying behavior of hu-
man and individual differences among different people, we
adopted the Semi-Adaptable Neural Networks (S-ANNs). In
this model we only adapt the weights of the output layer on-
line, leaving the weights of the remaining layers as obtained
from offline training. The reason behind this choice is that
the input of the last layer can be seen as human features, that
are linearly combine to output the prediction. For different
humans, these features can be combined differently, but also
for the same human these features can vary in time.

The transition model of human joint motion can be
formulated as

χ(k + 1) = f∗(χ∗(k)) + wk, (7)

where χ(k + 1) ∈ R3M denotes human’s M -step future
trajectory state of the hand joint at time steps k + 1, k +
2, . . . , k+M in a Cartesian coordinate system. M ∈ N is the
prediction horizon. Denoting xk ∈ R3 the Cartesian position
of the joint at time step k, χ(k + 1) is a stack of M future
joint positions xk+1, xk+2, ..., xk+M . χ∗(k) ∈ R3N denotes
human’s past N -step trajectory of the joint at time steps
k, k−1, . . . , k−N +1, constructed by stacking the position
vectors xk, xk−1, ..., xk−N+1. wk ∈ R3M is a zero-mean
white Gaussian noise. The function f∗(χ∗(k)) : R3N →
R3M represents the transition of the human motion, which

takes historical trajectory as inputs, and outputs the future
positions of the joint.

The human motion transition model f∗ is approximated
by an n-layer neural network with ReLU (Rectified Linear
Unit) activation function:

f∗(χ∗(k), a) = WT max(0, g(U, χ∗(k))) + ε(sk), (8)

where sk = [χ∗(k)T , 1]T ∈ R3N+2 is the input vector, g
denotes (n − 1) - layer neural network, whose weights are
packed in U . ε(sk) ∈ R3M is the function reconstruction
error, which goes to zero when the neural network is fully
trained. W ∈ Rnh×3M is the weights of the last layer, where
nh ∈ N is the number of neurons in the hidden layer.

By stacking all the column vectors of W , we get a
time varying vector θ ∈ R3Mnh to represent the weights
of last layer. θk denotes its value at time step k. To
represent the extracted features, we define a new data ma-
trix Φk = diag(max(0, g(U, sk))1, ...,max(0, g(U, sk))M ),
Φk ∈ R3M×3Mnh .

Using Φk and θk, (7) and (8) can be written as

χ(k + 1) = Φkθk + wk. (9)

Let θ̂k denotes the parameter estimate at time step k, and let
θ̃k = θk − θ̂k be the parameter estimation error. We define
the a priori estimate of the state and the estimation error as:

χ̂ (k + 1|k) =Φkθ̂k, (10)

χ̃ (k + 1|k) =Φkθ̃k + wk. (11)

In this paper, recursive least square parameter adaptation
algorithm (RLS-PAA) with forgetting factor [15] is applied
to asymptotically adapt the parameters in the neural network.
The core idea of RLS-PAA is to iteratively update the
parameter estimation θ̂k and predict χ(k + 1) when new
measurements become available. The parameter update rule
of RLS-PAA can be summarized as:

θ̂k+1 = θ̂k + FkΦT
k χ̃ (k + 1|k) , (12)

where Fk is the adaptation gain updated by:

Fk+1 =
1

λ1(k)

[
Fk − λ2(k)

FkΦkΦT
k Fk

λ1(k) + λ2(k)ΦT
k FkΦk

]
(13)

where 0 < λ1(k) ≤ 1 and 0 < λ2(k) ≤ 2. Typical choices
for λ1(k) and λ2(k) are:

1) λ1(k) = 1 and λ2(k) = 1 for standard least squares
gain.

2) 0 < λ1(k) < 1 and λ2(k) = 1 for least squares gain
with forgetting factor.

3) λ1(k) = 1 and λ2(k) = 0 for constant adaptation gain.

VI. PROPOSED PREDICTION ALGORITHM

The proposed approach combines Minimum Jerk fitting
with Semi-Adaptable Neural Networks (S-ANNs) to obtain
a long-term human arm prediction, inferring if the human is
moving towards the robot or not.
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Algorithm 1: Proposed prediction algorithm
1 Collect the initial portion χ̄k of the observed human hand

trajectory
2 Add the predicted points χ̂(k + 1|k) given by the S-ANN
3 Perform the Minimum Jerk trajectory fitting, considering xf

in (5) as the future robot position
4 Evaluate the RMS norm error between the points in

χ̄k ∪ χ̂(k + 1|k) and the points fitted by the Minimum Jerk
5 Output: If RMS norm error < threshold then the human is

approaching the robot, else the human is approaching a
different object.

The proposed procedure is described in Alg. 1. It is worth
noting that, since in (Line 2) we add the predicted points
from the S-ANN, the robot position used as the Minimum
Jerk parameter xf has to be determined consequently, to
obtain a coherent fitting. Hence, if the last point of the
S-ANN prediction is, for example, 0.5 s in the future,
the corresponding future position of the robot has to be
considered. Since we assume that the robot trajectory is
known in advance, as is common in industrial scenarios, this
data can be easily obtained.

To distinguish whether the human is approaching to the
robot or to a different object, a proper threshold on the
prediction model fitting quality has to be defined a priori. Its
value depends on how wide the grasping area on the robot is.
In our case we consider that human operator always approach
to the tool placed on the end-effector, to grab it and apply
the manual modification. A discussion on the threshold value
is done in Section VII. If the human is moving towards a
different object, the robot behaves to guarantee human safety
(i.e. it stops, it pauses or it replans the trajectory to avoid
the collision).

A. Sub-movements detection

In a cooperative scenario, the human operator executes
several sequential movements inside the workspace: a few
of them can be directed towards the robot for collaborating,
others can be directed somewhere else. To properly fit data
with Minimum Jerk model, it is important to detect the
beginning and ending of each sub-movement.

For point-to-point movements the initial and final veloc-
ities and accelerations are zero. Hence, a velocity-based
threshold logic can detect when the human is starting and
stopping the movement. Since skeletal data coming from
vision sensors are usually noisy, a smoothing differentiation
filter, based on the Savitzky-Golay algorithm [20], was used
to compute the hand velocity while reducing the noise.

VII. EXPERIMENTAL RESULTS

The experiments are performed on a FANUC LR Mate
200iD/7L as shown in Fig.1. To track human right hand
position, we used a Kinect V2 RGB-D camera and the
skeleton tracking software based on the Kinect for Windows
SDK. The robot low-level controller is deployed in Simulink
Real-Time on a target PC with Intel i5-3340 Quad-Core
CPU. The Kinect sensor is connected to the Windows host

PC, that executes the algorithm of Sec. VI and the fitting
error as described in Sec. IV-A. Both the host and the target
PC communicate with an external PC through a UDP socket.
On the external PC the admittance control and the manual
correction software components are implemented using Oro-
cos real-time framework. Both the low-level controller and
the Orocos components run at a 125 Hz frequency, whereas
the Kinect frames are updated every 0.033 s.

A three-layer neural network was trained with 100 move-
ments going towards different objects in the workspace,
either random ones or the robot end-effector. The number
of nodes in the input and output layers is respectively 9 and
30: 3 points (x, y, z coordinates) are used as a past history
and 10 points are predicted in the future.

Fig. 1. Experimental setup. The Kinect tracks the human right hand. The
robot is a Fanuc LR Mate 200iD/7L.

A. Adaptable Neural Network prediction points

After several experimental trials, we found that 30 points
are necessary to perform a reliable Minimum Jerk fitting.
Since the Kinect updates every 33 ms, the collection of
30 points would require almost 1 s. Point-to-point hand
movements are usually within a similar time interval (i.e. one
to few seconds), hence we would like to anticipate as much
as possible the detection of the human goal, to guarantee
his/her safety. For this reason we added the Adaptable Neural
Network, in such a way that the number of collected data
from Kinect can be reduced and the decision making process
can start earlier. However, reducing the number of predicted
data can cause a loss of accuracy and the target identification
can be negatively affected. The final solution should be a
trade-off between accuracy and time.

Neural Networks are usually not suitable for long-term
predictions. Moreover, if we want to adapt the last layer
parameters, an error computation between the predicted
points and the collected ones (i.e. ground truth) should
be performed. By choosing 3 points as a past history and
10 points as the number of predictions, we can exploit
the advantages of parameters adaptation still reducing the
detection time to 0.66 s (i.e. 20 points collected from Kinect
and 10 point predicted). In Table I the error computation
sequence (i.e. (11)) is depicted. The table shows that, by

5954

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on June 25,2020 at 18:37:24 UTC from IEEE Xplore.  Restrictions apply. 



TABLE II
ERROR COMPARISON BETWEEN 5 AND 10 PREDICTED POINTS

Number of
predicted points 5 10

RMS Error [m]

0.061 0.074
0.037 0.050
0.069 0.046
0.055 0.048
0.041 0.088
0.059 0.057
0.063 0.072
0.060 0.039
0.065 0.069
0.062 0.037

Mean [m] 0.058 0.057
Standard Deviation [m] 0.009 0.016

considering 20 recorded points and 10 predicted, the Neural
Network adaptation is performed 8 times (from point 13th

to point 20th).
To show the reliability of choosing 10 predicted points, we

compare the RMS error in two cases. The human operator
is tracked while is moving towards the robot end-effector
for 10 times. In the first experiment, out of the 30 points
needed for the Minimum Jerk fitting, 25 are collected from
Kinect and 5 points are predicted from the Neural Network.
In the second experiment, 20 points are collected from the
Kinect and 10 predicted. As show in Table II, the computed
mean value of the RMS error is similar and the movement
towards the end-effector is always detected correctly. The
small difference in the Standard Deviation shows that, even
in the case of 10 predicted points, the intention of going
towards the robot is correctly detected. In fact, since we
chose an error threshold of 0.10 m, in both cases the error
values are under this threshold.

In conclusion, we chose to use 10 predicted point as a
trade-off to exploit the advantages of the Adaptable Neural
Network yet anticipating the detection of the human inten-
tion.

B. Comparison between recorded data and Adaptable Neu-
ral Network prediction

As mentioned previously, we experimentally found that
30 points are required to obtain a suitable trajectory fitting
using the Minimum Jerk. However, a total of almost 1 s
would be necessary to predict the final human target. In
a human-robot collaborative scenario, human safety is of
paramount importance. In this context, anticipating human
final intention gives more time to the system to behave
accordingly, i.e. to replan the trajectory or to temporarily
stop. For this reason we chose to consider 20 recorded points
from the Kinect and then to add 10 predicted points from
the Neural Network. By adopting this strategy, the overall
prediction time is reduced to 0.66 s.

To show the reliability of the Neural Network prediction,
we compare the RMS error obtained in two different cases.
In the first one, 30 recorded points from Kinect were used
to fit the Minimum Jerk trajectory. In the second one, only
20 points were used and then we add 10 predicted points,

referred to the last recorded point and derived from the
Adaptable Neural Network.

(a) x-direction

(b) y-direction

Fig. 2. Comparison between recorded points (dashed red line) and recorded
points (blue points) with predicted ones (green points) from the Adaptable
Neural Network.

Figure 2 shows the trajectories along x and y directions
(similar behavior along z). The first 20 points are the same in
both cases (dashed red line and blue dots). As can be clearly
seen, the predicted points (green dots) follow the trend of the
recorded ones.

The difference between the two RMS errors is 6 mm,
hence we can consider the ANN prediction accurate enough
to substitute the recorded points. For the sake of complete-
ness, all the recorded trajectory is depicted in Figure 2 (red
dashed line), but only 30 points were used to compute the
RMS error.

C. Comparison between different movements

The objective of the presented work is to infer if the
human is approaching to the robot or is going towards
another object. To evaluate the performance of the proposed
method, two types of movement are compared.

In the first one, the human is approaching to the tool
attached to the robot end-effector, to grasp it and manually
modify the trajectory. As depicted in Fig. 3, the Minimum
Jerk (red squares) fits the reference data (blue dots). As
described in Sec. VII-B, the reference data are given by 20
recorded points of human right hand, and then 10 predicted
points from the Adaptable Neural Network are added. The
computed RMS error is 0.05 m.

Conversely, the example of a movement going towards
another object is depicted in Fig. 4. The object is located
along the same y direction, but at a different x location and
height z. In Figure 1, it is the left box position. As can be
seen in Fig. 4, the fitting is inaccurate and the final RMS
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TABLE I
ERROR COMPUTATION FOR 20 COLLECTED POINTS AND 10 PREDICTED POINTS

time step collected
point

past points
(input layer)

predicted points
(output layer)

error
computation

1 x̄1

2 x̄2

3 x̄3 [x̄1,x̄2,x̄3] [x̂4,...,x̂13]
4 x̄4 [x̄2,x̄3,x̄4] [x̂5,...,x̂14]
... ... ... ...
13 x̄13 [x̄11,x̄12,x̄13] [x̂14,...,x̂23] [x̄4 − x̂4,..., x̄13 − x̂13]
... ... ... ... ...
19 x̄19 [x̄17,x̄18,x̄19] [x̂20,...,x̂29] [x̄10 − x̂10,...,x̄19 − x̂19]
20 x̄20 [x̄18,x̄19,x̄20] [x̂21,...,x̂30] [x̄11 − x̂11,...,x̄20 − x̂20]

(a) x-direction

(b) y-direction

(c) z-direction

Fig. 3. Comparison between Minimum Jerk fitting (red squares) and the
reference data (blue dots) going towards the end-effector.

error results in 0.15 m, which exceeds the error threshold of
0.10 m. Hence, the human is moving the hand towards an
object different from the robot.

It is worth noting that in this paper we consider the hand
posotion as the most relevant human joint to be tracked.
Conversely, in [15] the tracking is focused on the human
wrist. Our different choice is motivated by the fact that
the fitting accuracy improves significantly. The improvement
reflects the human movement to approach an object with
the hand, not the wrist. Therefore, the position mismatch
between the hand point and the wrist point causes an error in
the detection of the final target. The distance between these

(a) x-direction

(b) y-direction

(c) z-direction

Fig. 4. Comparison between Minimum Jerk fitting (red squares) and the
reference data (blue dots) going towards an object, that is different from
the robot end-effector.

two points can’t be compensated only along one direction,
since the arm and the wrist are rotated by an unknown angle.

D. Sub-movements and error threshold

In a cooperative scenario, it is likely that the human
operator works side by side with the robot. In the video
and the setup of Fig. 1, the human is placing objects inside
the two boxes. We make the assumption that the human
approaches to the robot to manually apply a modification
to the trajectory. Hence, the robot must continue its path,
following the desired trajectory. Conversely, if the human is
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placing an object inside a box, the robot pauses to avoid the
collision.

A Savitzky-Golay differentation filter [20] is used to
estimated the hand velocity from Kinect positions. The
Savitzky-Golay filter is non-causal and its output estimation
is inherently delayed by a number of time steps that are
half of the size of its input buffer. Such a delay can
be compensated by properly choosing data points for the
trajectory fitting. For example, if a new movement is detected
at time ts but the filter introduced a delay of five time steps,
the first point to be considered is the one at ts−5.

The velocity thresholds to detect a sub-movement stopping
and the starting are empirically set to 0.15 m/s2 and 0.2
m/s2. The RMS norm error threshold to discriminate the
interaction intent is set equal to 0.10 m . However, When
the human is retracting the arm or is reaching an object
far from the robot, the robot should not pause. Hence, if the
error is greater that 0.40 m (value experimentally found), the
robot does not modify its behavior and it keeps following its
trajectory.

VIII. CONCLUSIONS

In this paper we proposed a prediction method to infer
if the human is approaching to the robot. The human right
hand position is tracked by a Kinect and the beginning of
the arm movement is captured. The recorded points are used
to fit a Minimum Jerk model whose final position is the
robot end-effector. Then, a fitting quality evaluation is used
to distinguish if the human is approaching to the robot or is
moving towards other objects in the workspace. To anticipate
the detection and improve the human operator safety, an
Adaptable Neural Network is used, to predict future positions
of the human hand based on previous training.

Future works aim at implementing a safe and collision-free
trajectory replanning, to avoid robot pauses and to guarantee
a higher efficiency. In addition, a distinction between general
movements and movements directly pointed to an object [5]
should be added. General movements are usually limited to
a restricted working area and hands turn around frequently.
This behavior means that the human is not reaching an
object. Hence these kind of movements do not fit the
Minimum Jerk model and safety countermeasures can be
directly applied, to avoid collisions.
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