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Towards Efficient Human-Robot Collaboration With
Robust Plan Recognition and Trajectory Prediction

Yujiao Cheng ', Liting Sun

Abstract—Human-robot collaboration (HRC) is becoming in-
creasingly important as the paradigm of manufacturing is shifting
from mass production to mass customization. The introduction of
HRC can significantly improve the flexibility and intelligence of
automation. To efficiently finish tasks in HRC systems, the robots
need to not only predict the future movements of human, but also
more high-level plans, i.e., the sequence of actions to finish the tasks.
However, due to the stochastic and time-varying nature of human
collaborators, it is quite challenging for the robot to efficiently and
accurately identify such task plans and respond in a safe manner.
To address this challenge, we propose an integrated human-robot
collaboration framework. Both plan recognition and trajectory
prediction modules are included for the generation of safe and
efficient robotic motions. Such a framework enables the robots
to perceive, predict and adapt their actions to the human’s work
plan and intelligently avoid collisions with the human. Moreover,
by explicitly leveraging the hierarchical relationship between plans
and trajectories, more robust plan recognition performance can be
achieved. Physical experiments were conducted on an industrial
robot to verify the proposed framework. The results show that
the proposed framework could accurately recognize the human
workers’ plans and thus significantly improve the time efficiency
of the HRC team even in the presence of motion classification noises.

Index Terms—Industrial robots, human-centered robotics,
assembly, recognition.

I. INTRODUCTION

S THE emphasis of manufacturing is shifting from mass

production to mass customization, the demands for flex-
ible automation keep increasing. Human-robot collaboration
(HRC), as an effective and efficient way to enhance the flexibil-
ity, has attracted lots of attention both in industry and academia
in the past decade. The idea of HRC is to let robots work safely
and collaboratively with humans in a shared space. To achieve
this, robots should be equipped with various capabilities from
fundamental skills, such as perception of human activities, to
higher-level social skills, including reasoning about intentions
and collaboration [1].
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Collaboration between humans and intelligent robots can be
categorized into three levels: 1) low-level collision avoidance,
2) middle-level efficient cooperation with task plan recognition
and trajectory prediction, and 3) high-level collaboration mode
selection and automatic task assignments. Many researches have
been conducted for all these three levels. The first category
regards human as moving obstacles and designs algorithms to
let the robot avoid collisions with human. The third category,
e.g., [2], studies the task assignment algorithms in peer-to-peer
human-robot interaction where humans and robots work as
partners.

In this letter, we focus on the second category which includes
three key elements. The first one is human trajectory prediction
which aims to predict the continuous human movement used
for safe robot trajectory planning. It is different from discrete
intention recognition such as [3]-[6]. Many approaches have
been proposed for continuous trajectory prediction, from early
attempts such as Kalman filter and particle filter [7] [8] to recent
effort such as recurrent neural networks [9], inverse reinforce-
ment learning [10], [11] and semi-adaptable neural network [12].
A human-aware robotic system which incorporated both motion
predictions and trajectory planning has also been presented
in [13].

The second element is human plan recognition. It aims to
recognize what plan the human is doing given the observed
trajectories and his/her influence to the objects. Human activ-
ity/plan recognition has attracted a great amount of effort. Some
work focused on deep learning frameworks with RGBD images
as inputs [14]-[16]. Typically, the features selected mainly focus
on human, for instance, the body pose, hand positions, motion
information and histogram of oriented gradients (HOG). No
information about the objects of interaction are included. How-
ever, the objects can provide rich information for inferring what
the human is doing via the intrinsic hierarchy among actions,
motions and the objects. Hence, in this letter, we explore such
hierarchy to design more robust plan recognition algorithm.

With good plan recognition module and trajectory predic-
tion module, the third key element for efficient human-robot
collaboration is the behavior/action generation for robots, i.e.,
the planner. Although there are many robot behavior generation
approaches [1], [6], [17]-[20], most of them focus on the action
level rather than the plan level.

We propose an integrated HRC framework which includes
both trajectory prediction and plan recognition. At trajectory
planning level, robots take future human trajectory into account
to avoid potential collisions, which improves safety. At task
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planning level, robots perceive the human‘s actions, infer the
human plan and adapt to the human’s actions in advance to boost
the collaboration efficiency. The proposed framework advan-
tages HRC in three aspects. First, the robot is more responsive
to the human‘s plans, particularly when there might be change
of plans in the human’s operations. By using our proposed plan
recognition method, the robot can quickly recognize the human’s
new plan, and adapt its actions accordingly. Experimental results
showed that the average task completion time is significantly
reduced, i.e., more efficient HRC can be achieved. Second, our
system is robust with respect to noises in the model inputs and
errors in the intermediate steps such as motion classification.
We combine a long short-term memory (LSTM) network with
algorithms based on Bayesian inference instead of end-to-end
learning. Moreover, a set of hierarchical relationships among
trajectories, motions, actions, plans and tasks are explicitly de-
fined and utilized in the plan recognition algorithm. This not only
helps improve the robustness of the algorithm, but also reduce
the dimension of the problem, and enhance its generalization
ability using less data.

The key contributions of this work are:

1) We propose a robot system interleaving predic-
tion/recognition and adaptation at both trajectory and task
planning level.

2) We propose a robust plan recognition algorithm by lever-
aging the hierarchical relationship between the plan and
the trajectories.

3) We provide physical experiments to evaluate the whole
system in a desktop assembly task using an industrial
robot arm. Results demonstrate that the system improves
the efficiency of HRC, and the plan recognition algorithm
is robust in the presence of noises such as false motion
classification.

II. AN INTEGRATED PLAN RECOGNITION AND TRAJECTORY
PREDICTION FRAMEWORK

In this work, we focus on enabling better HRC systems via
plan recognition and trajectory prediction. The terminologies we
used in this letter are defined as follows:

® Trajectory: a time series of the joint positions of an agent

(either a human or a robot) in Cartesian space. It represents
the continuous movements of an agent.
® Motion: A discrete variable/label to represent different
types/patterns of trajectories. For instance, typical motions
in factory scenarios include “Fetching,” “Picking,” “Screw-
ing” and “Taping”. Different trajectories can be generated
to perform the same motion pattern.
® Action: A paired discrete variable/label including a
motion pattern and the target object to act on, i.e.,
action = {motion, object}. For example, we can de-
fine “action 1 = {Fetching, a screwdriver},” “action 2 =
{Taping, a bunch of cables}” and so on.

® Subtask: A subtask is an element of completing a larger
task (defined below), whose initial states and the goal states
do not depend on other subtasks. It might be implemented
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Fig. 1. A hierarchical and temporal decomposition of a task.

with several sequences of actions, depending on their
orders.

® Plan: A plan is comprised of a sequence of ordered sub-

tasks. It represents the preferences to finish a fask (defined
below). Different orders of actions in different plans come
from either orders of subtasks, or the orders of actions
within subtasks.

® Task: A task represents the work to be conducted by

agents. It specifies the initial states, the goal states and
the participants. A task can be decomposed into a set of
subtasks and executed via a variety of plans.

We use Fig. 1 and a desktop assembly example to illus-
trate the hierarchical relationship of the terminologies. A task
(“desktop assembly™) can be decomposed into three subtasks
(“installing a CPU fan,” “installing a system fan,” “taping ca-
bles”). Suppose each of them has a unique action order, then
the permutation of three subtasks totally generates six different
plans, all of which are stored in the plan library as action'
sequences of the human and the robot. Furthermore, within each
action, the motion can be executed by infinite many (theoreti-
cally) trajectories. Trajectory prediction is to forecast the future
movement of the human, thus the robot can make safe trajectory
planning avoiding potential collisions. Plan recognition is to
choose the correct plan in human’s mind, which is to choose
the predefined action sequence in the plan library. As shown in
Fig. 1, without plan recognition, the robot (the “reactive” robot)
can only acquire its next action after the human finishes some key
actions (such as Action H1, Action H4 and Action H7), while
with a plan recognition, the robot (the “predictive” robot) can
foresee the future actions of the human and execute its following
actions in advance to boost the efficiency of the collaboration.

However, human plans are not directly observable for the
robot. The only observable variables of humans are their tra-
jectories, which means that the robot has to infer and reason
about the probable plans by observing the trajectories of humans.

'In the desktop assembly example, Action H1-H9 are “fetching the cpu fan,”
“receiving the screwdriver A,” “screwing the cpu fan,” “fetching the system fan,”
“receiving the screwdriver B,” “screwing the system fan,” “taping the cables.”
“receiving scissors,” and “cutting the tape”. Action R1-R3 are “delivering
screwdriver A,” “delivering screwdriver B” and “delivering scissors™.
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Fig.2. The architecture of the proposed integrated HRC framework.

Such diversity, un-observability, and time-varying characteristic
of the human plans create great challenges for the HRC systems.
It requires the robot to 1) quickly and reliably recognize the
plans of humans, and 2) responsively adapt its own behavior in
a safe and predictive manner to ensure efficient and seamless
collaboration.

To address these two challenges, we propose an integrated
HRC framework, the architecture of which is shown in Fig. 2.
It includes both offline database and online modules. Online
modules include a perception module (sensors and perception
algorithms), a plan recognition module, a trajectory prediction
module, a planner, a motion control module and the actuators
(the robot). Perception Module takes visual information as inputs
and outputs the 3D positions of objects as well as the 3D human
poses. Plan Recognition Module is a key module in our proposed
framework. It aims to identify the action being executed by the
human and infer human’s plan by observing the trajectories of
their key joints. The action estimate will be sent to both the
planner module and the trajectory prediction module. Planner
Module assigns the next action (a motion-object pair) to the robot
based on the current states, the recognized plan and the current
action of the human. The action command from the planner
will be sent to the motion control module. Trajectory Prediction
Module aims to predict the future trajectories of the human.
Instead of directly predicting the future trajectories based on only
current and historical human trajectories, we leverage the action
labels from the plan recognition module. Motion Control Module
includes two controllers: an efficiency controller and a safety
controller, as in [21]. The efficiency controller is a long-term
global controller to assure the efficiency of robot, and the safety
controller is a short-term local controller for real-time safety
under uncertainties.

ITI. THE PLAN RECOGNITION ALGORITHM

As discussed in Section II, to enable efficient and seamless
human-robot collaboration, the robot needs to quickly and reli-
ably recognize the plan executed by a human, and safely adapt
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Fig. 3. The architecture of the plan recognition module.

its behavior. However, the diversity of human plans for the
same task, the time-inconsistent or time-varying characteristic of
humans, as well as the un-observability of plans have posed great
challenges for accurate and timely plan recognition. To address
these challenges, we propose a plan recognition algorithm based
on both deep learning techniques and Bayesian inference shown
in Fig. 3. Moreover, we explicitly take advantage of the hierar-
chical relationships among “trajectory,” “action,” “subtask™ and
“plan,” and design the plan recognition into three mutually com-
pensated steps for better plan recognition. The four steps of plan
recognition are: motion classification, target object estimation,
plan inference and posterior action correction.

The proposed plan recognition algorithm has advantages in
two aspects. First, the dimension of action space is reduced via
the hierarchical combination of motion and object. Notice that
an action is defined as a pair of motion and object, and the set
of candidate objects for different motions can be quite different.
Hence, a hierarchical combination of motion classification and
target object estimation can help significantly reduce the di-
mension of the classification problem compared to direct action
classification. Second, more robust recognition performance can
be achieved via the posterior update step of the action based on
the plan information. With this step, prior domain knowledge
in regard to the relationships of plan and actions is fully uti-
lized to help reduce the sensitivity of learning based methods
to noises.

A. Motion Classification

Motion classification aims to categorize different motions
given segments of trajectories of the human’s key joints. Long-
short-term-memory (LSTM) neural networks have been exten-
sively proved to be an effective approach to model the dynamics
and dependencies in sequential data. Hence, we design a LSTM
recurrent neural network for motion classification. The input
data is the human pose from the Perception module. More
specifically, in an assembly task, the input vector at time step
k is xx = {wg, hy}, where wy, is the wrist position in the
world frame and hy are the velocities of selected key points
on the human fingers. The output at time step k is a motion
label my, € {1,2,...ny}, where n,, € N is the number of mo-
tions. The LSTM is trained using the “Motion Model” database
in Fig. 2.

B. Target Object Estimation

Given the classified motion labels and a history of human
pose, Bayesian inference is commonly used to update the beliefs
on different target objects, e.g. [22].
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Let o be an object at time step k, O be the object set,
mi.x be the historical motion labels, and h.; be the historical
human poses. Then we need to obtain the robot’s beliefs on
the object, i.e., a probability P(og|hy.x,m1.x). Applying the
Markov assumption, the following equation holds:

Plog|hi:k, mi:x) o

P(mpg|ok, hi—1,mr—1) - P(hg|ok, hx—1,mk)

> P(oklhr—1,mk1,08-1) - P(ox—1|h1k-1,m1:%-1)

op_1£0

We compute the P(hg|ok, hg—1, my) with an assumption that
humans are optimizing some value function as [23] suggests.
Then a Boltzmann policy can be applied:

P(hg|og, hx_1,my) o< exp(BVy(hy; o))

where Vj is the value function. We model V; for each motion as
a function of distance and velocity.

To compute P(mk|ok, hk—l; mk_l) and P(Ok |hk_1., M—1,
or—1), we impose conditional independence assumption of my,
and hx_1 given o and my_1, and conditional independence
assumption of o, and hy_; given op_; and my_;. Then,
with predefined or learned models of P(my|mg—_1,0r) and
P(og|mp—_1,0k-1), P(ok|h1:k, m1.x) can be updated iteratively.

C. Plan Inference

With results from motion classification and object estimation,
we can uniquely determine a sequence of actions by observing
the human trajectories. Note that a plan is a sequence of subtasks,
and each subtask is represented by one action or an ordered se-
quence of actions. Hence, a plan can be uniquely represented by
a temporal sequence of actions. Therefore, we first build a plan
library offline in the Database where each plan is represented
by a reference sequence of actions. Then we utilize the refer-
ence sequences to online infer potential plans based on Bayes’
rule,

P(glay.x) o< P(a1:x|g)P(g),

where P(g)isaprior belief of plan g, and P(g|ay.) is a posterior
belief based on the likelihood of observed action sequence a;.
given plan g. Similarly, with Boltzmann policy, the likelihood
of the action trajectory can be defined as

P(ay:k|g) o< exp(—d(a1:x; g)),

where the function d is a distance function measuring the
similarity between observed action sequence (A, namely a;.x)
and the reference action sequence (R) of the plan g. The
larger the distance is, the less likely the human is following
the plan [24]. We adopt the open-end dynamic time warping
(OE-DTW) algorithm [25] to calculate d. This algorithm is to
best match the query sequence to a reference sequence and
calculate the dissimilarity between the matched portion. Given
a reference time series R = (ry,79,...,7y) and a query se-
quence A = (ay,as,...,anr), the OE-DTW distance between
A and R is calculated via minimizing the dynamic time warping
distances (DTW) between A and any references R7 truncated
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from reference R at point j =1: N.
DOE(A,R) = . l}liDNDDTw(A,Rj).
J=Lses

Here is a short introduction to DTW. The indices of the two
series will be mapped through ¢; and ¢, t = 1,2,...,T, that
satisfy the following constraints [25]:

* Boundary condition: ¢y =1, ¢y =1 and ¢r =N,

br=M

* Monotonic conditions: ¢;_1 < ¢; and ;1 < 1fy

® Continuity conditions: ¢ — ¢;—1 < l,and ¢y — 90y <1

® Local slope constraints: certain step patterns are allowed.

The optimal & = (¢, 1;) minimizes the distance between the
two warped time series:

T

2 7 d(rg., ay,)ms,®
b, ) = arg min v et
( ‘ t) bes e ; Zt mg o

where d(-, -) is any distance function and m; ¢ is a local weight-
ing coefficient. Therefore, the dynamic time warping distance
between A and R is
T
Dprw(A,R) =)

t=1

d(rﬁaf. ! avﬁ; )mt’q)

Et mt,ﬂ)

D. Posterior Action Correction

As we obtain the posterior estimate of the plan g*, the best
matched reference sequence R*7” is also obtained. We correct
the action label estimate a, by retrieving the action in the best
matched reference plan as follows,

al™" = R*(j*) =r}..

This step is of key importance to reduce the sensitivity of the
learning models to noises, so that the robustness of the plan
recognition can be improved. The effectiveness of this step is
verified in experiments.

IV. HUMAN TRAJECTORY PREDICTION

To avoid collisions between a human and a robot, the future
human trajectory is required to be considered in the safety
controller to generate safety constraints. We leverage two inputs:
1) the human pose estimates from perception module and 2) the
action labels from the plan recognition module. The human tran-
sition model is approximated by a feedforward neural network,
the output layer of which is adapted online using recursive least
square parameter adaptation algorithm (RLS-PAA) to address
the challenges regarding the time-varying characteristic of hu-
man trajectories. For more details of this approach, one can refer
to our previous work [12].

V. THE PLANNER

In this section, we will present the Planner module and the
workflow of the proposed framework. As shown in Fig. 2, the
output of the Plan recognition module is sent to the Planner
to generate commands for the Motion control module. With
the identified plan and the human action estimate, the Planner
module acquires the next action of the robot from the plan library,
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and sets the goal states of the Motion control module to generate
safe and executable trajectories.

Since the plan recognition results are probabilistic, we need
to design a decision-making mechanism to decide on the robot
actions. There are two cases that we might encounter. The first
one is that the probability of one plan is prominently higher
than that of others. This gives the Planner a clear idea about
the plan the human is executing, and it can directly acquire
all the following actions for the robot from the plan library.
The other case is where there are two or more candidate plans
with similar probabilities from the plan recognition algorithms.
Under this situation, the Planner will look at the two most likely
plans, and find out whether the next action of the robot for
each plan is the same. If the next action is the same, Planner
will directly let the robot execute it. Otherwise, the Planner
will wait and collect the human’s information to clear out the
confusion.

The Planner also takes changes of plan into consideration. If
the robot’s next action is not consistent with what the robot is
doing, it will recover the current action and responsively adjust
its action. For example, if the robot is delievering screwdriver
to the human, while suddenly the next action becomes bring-
ing the scissors. The robot will put back the screwdriver if it
already grabs it, and go to scissors immediately. The pseudo-
code for the workflow of our proposed system is presented as
Algorithm 1.

VI. EXPERIMENTS

A. A Desktop Assembly Scenario

We evaluate our proposed framework in a desktop assembly
task in industrial settings. The task of the HRC team is to
assemble a desktop (desktop assembly example explained in
Section II). This task can be decomposed into three un-ordered
subtasks: installing a CPU fan, installing a system fan and
taping cables. Each subtask is implemented by only one action
sequence. Thus, by a hierarchical decomposition as shown in
Fig. 1, there are at most six different plans to finish the task. The
robot is designed to assist the human by delivering necessary
tools to the human as he/she needs. Definitions of actions for
the human and the robot can be found in Section II.

As depicted in the Fig. 1, a predictive robot with an effec-
tive plan recognition will recognize the human’s plan in the
second subtask, and proactively execute the following actions
in sequence. For example, if the human is doing the first plan,
namely, installing a CPU fan, installing a system fan, and finally
taping the cables. We expect that correct plan is inferred when
the human is fetching the system fan and then the robot will
execute the following actions (“delivering the screwdriver” and
“delivering the scissors™) in sequence.

B. Experiment Design

1) Hypothesis: We evaluate the effectiveness of the proposed
plan recognition and trajectory prediction framework by verify-
ing the following three hypotheses.

® H1: The proposed framework is a safe HRC framework.

IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 5, NO. 2, APRIL 2020

Algorithm 1: Proposed HRC System.

1 Input plan library Q; motion models M, trajectory
prediction models f*; a set of objects O

2 Init: RobotlsDoing = {}, NewHumanPose = {},
RobotActionBuffer={ };

3 while true do

4 NewHumanPose = getValidPoseFromPerception();

5 if notEmpty(NewHumanPose) then

6

7

8

record historical human joint trajectory hi.x;
my <+ MotionClassification(h;.;, M);
oy + TargetObjectEstimation (mi.x, 01:x—1,

ha.x);
9 hit1:.k+0m 4 TrajectoryPrediction(hy .k, f*,
Mk, 0k);
10 obtain ay = {mg,o0r} ;
1 generate action trajectory ai.x;
12 p(glai.x), af’* + OEDTWPlanInference(Q,
@1:k);
13 G, §[? « the best and second best plan
estimates;
14 if p(¢!!|ay.x) >Threshold then
15 RobotActionBuffer+—
nextActionSequence(g!,a?***,Q) ;
16 else
17 actionl + nextAction(g!,a***,Q);
18 action2 « nextAction(g?,al***, Q);
19 if actionl==action2 then
20 | RobotActionBuffer<—actionl;
21 end
22 end
23 if notEmpty(RobotActionBuffer) then
24 if notEmpty(RobotlsDoing)&
RobotActionBuffer{1}!=RobotlsDoing
then
25 recover what robot is doing;
26 RobotlsDoing +
RobotActionBuffer{1};
27 end
28 end
29 end
30 Execute(RobotIsDoing, hjy1.k+03);
31 if ActionExecutionFinished then
32 if notEmpty(nextinBuffer) then
33 | RobotIsDoing < nextInBuffer;
34 else
35 | RobotIsDoing = {};
36 end
37 end
38 end

® H2: The proposed framework improves the efficiency of
the HRC team.

® H3: The performance of the proposed framework is robust
to noises or errors caused by some intermediate steps such
as motion classification.
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e H4: The human subjects are more satisfied with our col-
laborative robots than with a responsive robot in terms of
some criteria.

2) Experiment Setup: We test our system on an industrial
robot FANUC LR Mate 200iD/7 L. A Kinect V2 for windows
is placed close to the table on which a robot arm and a human
worker do task together. Some necessary tools lie in the tool
area and a CPU fan and a system fan are in the part area. We
conducted experiments with human in the loop. Eight human
subjects participated in the experiments.

3) Manipulated Variables: To evaluate the effectiveness of
the proposed framework, we manipulated two controlled vari-
ables in our experiments: plan recognition schemes and trajec-
tory prediction schemes. We define “plan recognition = 0” as no
plan recognition, “plan recognition = 1" as recognition ground
truths provided by human subjects, and “plan recognition =
2”7 as the recognition results generated by the proposed algo-
rithm in Section III. When “plan recognition = 0,” the robot
is completely reactive, meaning that it receives the information
of the human action after the human completes the action. The
robot only starts to move once it detects the human’s actions,
and it can only collaborate with human within subtasks. When
“plan recognition = 1,” the robot has perfect plan knowledge,
and it moves based on the ground truths of human’s actions
and plan. When “plan recognition = 2.” the proposed algorithm
will let the robot automatically identify the human’s actions and
infer about the potential plan, so that the human and robot can
collaborate across subtasks. In addition, we define “trajectory
prediction = 0” as no predictions of human trajectory, and “tra-
jectory prediction = 1 as prediction via our proposed method
in Section I'V. By manipulating the two variables, we have six
groups of experiments. Under each group, every human subject
performs the task using any plan for three times. Thus, there will
be 24 trials in each experiment group and in total we collect 144
trials for all groups.

4) Dependent Measures: To quantify the safety of the pro-
posed framework, we measure the minimum distance between a
human subject and the robot during the entire task in each trial.
Smaller the minimum distance, the less safe it is for the human.
For efficiency, we use a timer to keep track of the task completion
time. The timer starts when a human subject starts to move, and
ends when the task is finished. To quantify the plan recognition
performance, we calculate the plan recognition accuracy and the
action recognition accuracy which is intermediate result of the
plan recognition module. Plan and action recognition accuracy
is the percentage of plan estimates and action estimates that
conform to the true values labeled by human subjects. Notice
that plan recognition takes place at every time step, and there
might be multiple plan labels in the early phase. As long as the
estimate is one of the labels, it is regarded as correct. As for
the measurement of human’s satisfaction with our collaborative
robots, we ask the eight human subjects to rate the following
statements on Likert scale from 1 (strongly disagree) to 5
(strongly agree), similar to [6]: 1. The robot was collaborative
and helped; 2. The robot did the right thing at the tight time; 3.
I am satisfied working with the robot; 4. I will work with this
robot again in the future.
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C. Implementation Details

The motion model was approximated by a one-layer
LSTM network. We offline collected 200 trials of “fetching,”
“receiving,” “screwing,” and “taping,” 50 trials for each class.
The hyper-parameter was chosen by cross validation, and we
picked 60 to be the number of hidden units.

Human transition model in the module of human trajectory
was approximated by a fully connected neural network. We used
the data set as described above. We predicted the future trajectory
of 1 s given past trajectory of 1 s. The number of layers was set
to 3 and the number of hidden units was set to 40 also by cross
validation.

D. Results

H1: Through extensive experiments, the minimum distances
between the human subjects and the robot were, respectively,
34.9 £ 3 cm and 36.0 £+ 2 cm with “trajectory prediction = 0”
(72 trials) and “trajectory prediction = 1" (72 trials). Under both
experiment conditions, the minimum distances were within safe
distance and no collisions happened. The minimum distances
in experiments with “trajectory prediction = 1” were larger
than those in the experiments with “trajectory prediction = 0,”
although not significantly differ’ (p > 0.05). There are two
possible reasons: 1) in our scenario, the robot and the human
worked in a relatively large space, so predictions of the human
trajectory did not make much difference to the robot trajectory
planning; 2) human subjects were conservative around the robot,
and they intentionally kept a safe distance from the robot.

To show that trajectory prediction module in our framework
improves safety, we did additional tests where the human sub-
jects aggressively move towards the robot end effector (We have
safety mechanism which immediately stops the robot if contact
happens.). 100 trials with trajectory prediction and 100 trials
without trajectory prediction were collected. The collision rates
were 0/100 and 64/100, respectively. Such results qualitatively
showed that the trajectory prediction module can improve safety.

H2: The task completion time for different plan recognition
schemes were recorded among trials with the eight human sub-
jects. Without plan recognition (“plan recognition = 0), the av-
erage task completion time is 90.0 £ 10.9 s, which is the longest.
With our proposed plan recognition algorithm (*“plan recogni-
tion = 27), the average task completion time is 64.6 + 10.6 s,
which is reduced by 29.1%. Thus, the proposed framework with
planrecognition significantly improves (p < 0.01) the efficiency
of the HRC team compared to the system without the plan
recognition. As a matter of fact, our system can achieve similar
performance as a system with perfect plan recognition (“plan
recognition = 1”’) with 1.2 s more average task completion time
and larger variance.

H3: This hypothesis can be proved via quantitative results in
Table 1. One can see that although some motion classification
accuracy is low, the plan recognition accuracy still remains high.
The Pearson product-moment correlation coefficient for the two
variables is —0.11(p < 0.01), which indicates weak correlation.

2We use paired t-test for all the statistical tests.
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TABLE1
QUANTITATIVE EXPERIMENTAL RESULTS FOR RECOGNITION
Subjects MC accuracy(%) PR accuracy (%)
Subject 1 (6 trials) 853 +13 97.6 £ 03
Subject 2 (6 trials) 69.6 £ 15 98.5 £ 0.5
Subject 3 (6 trials) 814 £ 1.1 974+ 12
Subject 4 (6 trials) 879 +£ 7.0 976 £ 1.1
Subject 5 (6 trials) 794 £ 6.5 96.4 + 1.8
Subject 6 (6 trials) 80.7 £ 12.0 97.9 £ 0.1
Subject 7 (6 trials) 848 £ 95 97.6 £ 0.6
Subject 8 (6 trials) 85.8 £ 8.8 905+ 03
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Fig. 4. Simulations for plan recognition accuracy when reducing the motion
classification accuracy.

This means that the overall performance of the proposed plan
recognition algorithm is not sensitive to the errors in the interme-
diate LSTM step. This is mainly benefiting from the Bayesian
inference step and the dynamic time warping step. These two
steps serve as a low pass filter, eliminating the wrong motion
estimates. Besides, the plan is actually estimated by the nearest
neighbor in DTW step, and the six plans as action sequences lie
sparsely in an increasingly high dimensional space, and they get
farther away from each other over time. As long as the estimates
do not deviate from the true point too much, the plan estimate
should be correct.

To further validate the robustness brought by the DTW step,
we assumed that the target object detection was perfect and did
simulations by varying the motion classification (MC) perfor-
mance and then tested the plan recognition (PR) accuracy. First,
we obtained the true positive rates for each motion throughout
all the experiments with “plan recognition = 2”: 83.4% for
“screwing,” 64.2% for “fetching,” 59.1% for “receiving,” and
84.2% for “taping”. Then we varied each true positive rate by
6(%), which took values of 0, —5, —10, —15, —20, —30, —40,
and —45. Based on these sets of true positive rates, we simulated
15 trials of action sequences for each of the six plans in the
desktop assembly task, and so we had 90 trials for each é.
As we can see in the Fig. 4, when ¢ is equal to —30 (true
positive rate for each motion is 53.4%,24.2%,29.1%, 54.2%)
and the overall motion classification is 30%, the plan recognition
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Fig.5. Human subjects ratings for six types of robots on four different criteria.

PR is short for plan recognition and TP is short for trajectory prediction.

accuracy remains higher than 85%, which shows robustness of
our plan recognition to the motion accuracy.

H4: Fig. 5 shows the comparison of human subjects’ ratings
for the six types of robots on four criteria mentioned above.
Human subjects rated the robot with our proposed plan recog-
nition algorithm (“plan recognition = 2”) significantly higher
(p < 0.01) than the robot without plan recognition (*plan recog-
nition = 0”) on all four criteria. Between robots with ground
truths of plan recognition (“plan recognition = 1”) and robots
with our plan recognition algorithm (“plan recognition = 2”),
there is no significant difference (p > 0.05) on all the criteria
except for the criteria “The robot did the right things at the
right time” (p = 0.04). Furthermore, there is also no signifi-
cant difference (p > 0.05) between the robots with trajectory
prediction (“trajectory prediction” = 1) and the robots without
trajectory prediction (“trajectory prediction” = 0). This might
be because the trajectory prediction is too short to influence the
human’s feedback. Recalling the fact that “plan recognition™ has
significant influence, we can see that human care more about
efficient plan recognition.

Aside: The sensitivity of threashold is not obvious. We de-
signed a new experiment by varying the threshold value in
Algorithm 1 on the experiment data we collected. It was found
that the plan recognition results remained the same when the
threshold was dropped from 0.70 to 0.58, where 0.70 is the
threshold we used in other experimental results.

VII. EXTENSION TO MULTIPLE TASKS

Our plan recognition algorithm also works to distinguish
different tasks. We test our algorithm on three different tasks
in the CAD-60 Cornell Activity Datasets [14]: cooking (stir),
opening a pill container and drinking water. Table II shows the
comparison of the results in the “new person” setting using
our algorithm and the two-layered maximum entropy Markov
model (MEMM) method in [14]. We can see that our plan
recognition algorithm can also achieve very high accuracy
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TABLE I
THE RESULT TABLE FOR THE THREE TASKS

Tasks Precision Recall Fos
ours | MEMM | ours | MEMM | ours | MEMM
DE‘;E? € | 970 | 879 | 954 | 808 |97 | 864
(E::?nkg:gg) 88.9 65.5 98.4 439 90.6 59.7
ngﬁ::igngri 1843 | 864 |870| 580 |844| 787

compared to the approach in [14]. This verifies our claim that
exploiting the rich object information can help improve the
task/plan recognition performance.

In addition, compared to end-to-end leanring, our algorithm
advantages in two aspects: 1) the learning process is easier,
since a hierarchical combination of motion classification and
target estimation reduces the dimension of the classification
problem; 2) the learning pipeline is more interpretable and
predictable. As a cost, however, the proposed method requires
stronger prior knowledge, i.e., all possible plans of the new task
should be predefined offline, which might be hard when the
task is complicated.

VIII. CONCLUSION

In this letter, we proposed an integrated framework for human-
robot collaboration, including both the plan recognition and
trajectory prediction. By explicitly leveraging the hierarchical
relationships among plans, actions and trajectories, we designed
a robust plan recognition algorithm based on neural networks
and Bayesian inference. Experiments with human in the loop
were conducted on an industrial assembly task. The results
showed that with our proposed framework, the efficiency and
safety of the human-robot collaboration can be improved. The
average task completion time was reduced by 29.1%. Moreover,
the proposed plan recognition algorithm was robust and reliable.
Correct plan recognition was achieved even when the motion
labels via neural networks are of low accuracy. The trajectory
prediction module also enhanced the safety of the human by
keeping a safe distance between the human and the robot, which
is shown in our experiment video.

We verified the effectiveness of the proposed algorithms
on both an designed computer-assembly experiment and the
CAD60 dataset, with comparison to the MEMM approach. More
extensive comparison studies will be explored in the future to
fully investigate the advantages of the proposed work, with in-
tegration with different human-robot collaboration frameworks.
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