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Abstract: Owing to their merits of simple, fast, sensitive, and low cost, electrochemical biosensors
have been widely used for the diagnosis of infectious diseases. As a critical element, the receptor
determines the selectivity, stability, and accuracy of the electrochemical biosensors. Molecularly
imprinted polymers (MIPs) and surface imprinted polymers (SIPs) have great potential to be robust
artificial receptors. Therefore, extensive studies have been reported to develop MIPs/SIPs for the
detection of infectious diseases with high selectivity and reliability. In this review, we discuss
mechanisms of recognition events between imprinted polymers with different biomarkers, such
as signaling molecules, microbial toxins, viruses, and bacterial and fungal cells. Then, various
preparation methods of MIPs/SIPs for electrochemical biosensors are summarized. Especially, the
methods of electropolymerization and micro-contact imprinting are emphasized. Furthermore,
applications of MIPs/SIPs based electrochemical biosensors for infectious disease detection are
highlighted. At last, challenges and perspectives are discussed.

Keywords: molecularly imprinted polymers (MIPs); surface imprinted polymers (SIPs);
electrochemical biosensor; biomarkers for infectious diseases

1. Introduction

Infectious diseases can be disseminated widely in various ways. They are mainly caused by
pathogenic microorganisms, such as viruses, bacteria, fungi, or parasites. Despite great achievements
in diagnosis, treatment, and prevention, infectious diseases remain a serious global health threat [1,2].
The challenges of controlling infectious diseases include irrational use of antibiotics, an increase
of multidrug-resistant pathogens, the emergence of new pathogenic microorganisms, and rapid
spread owing to globalization and overpopulation [3]. Timely diagnosis and targeted antimicrobial
treatment are important for the successful clinical control of infectious diseases. Current diagnostic
methods for infectious diseases mainly rely on laboratory-based tests including culture, microscopy;,
enzyme-linked immunosorbent assay (ELISA), and polymerase chain reaction (PCR) [4]. These
methods are time-consuming, expensive, and required to be operated by a specialist. Biosensors are
ideal alternative methods for timely diagnosis of infectious diseases. They have many merits such as
high sensitivity, quick read-out time, and are easier to be mass fabricated and miniaturized. They also
can be used as point-of-care (POC) devices at a doctor’s office or home because of their simplicity and
affordability. Therefore, extensive research has been published to report ultrasensitive electrochemical
biosensors for infectious disease detection with excellent performance.

Receptors and transducer are the two main components of biosensors. The receptor recognizes
the analyte specifically and the transducer converts the binding activity into a measurable signal
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has been reported to overcome most of these drawbacks. Molecularly imprinted polymers (MIPs) [6]
and surface imprinted polymers (SIPs) [7,8] have a great potential to be robust artificial receptors
(also called plastic antibodies) [9]. Due to its chemical and physical stability, MIPs/SIPs have provided
anew insight for creating receptors by forming specific cavities for binding analytes in the polymeric
13 d g contrast to natural receptors, MIPs/SIPs offer an inexpensive, rapid, sensitive, easy-to-use,
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hlg y selective receptors for sensors, typically for the electrochemical biosensors. Hence,
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SIPs applied in larger biomarkers were reviewed by Eersels and coworkers [11]. They pointed out that
the measurement of larger biomarkers such as viruses, bacteria, or cells met challenges when using the
classical MIPs concept. SIPs can form binding cavities directly on the surface of cured polymers, thus
making it easier to remove the templates and provide better use in larger biomarkers (Figure 1).

In this review, current trends in the development of MIPs/SIPs based electrochemical biosensors
for rapid assessment of the infectious diseases, as well as future research directions are comprehensively
summarized and discussed. Virus-imprinted polymers (VIPs) [12] for virus detection and cell-imprinted

polymers (CIPs) [13] for bacteria detection are highlighted (Figure 1).

2. Recognition Mechanisms Between Imprinted Polymers with Biomarkers

The size and morphology of cavities are critical factors for specific recognition between MIPs/SIPs
and biomarkers. Besides these, chemical recognition of the biomarkers is important. Three types of
chemical recognition methods have been reported: non-covalent, semi-covalent, and covalent. Because
of its excellent adaptability, the non-covalent recognition that includes hydrogen bonds, hydrophobic,
and electrostatic interactions is the most widely applied for the fabrication of MIPs/SIPs [14,15]. Figure 2
presents various interactions of the template (analyte) and MIPs/SIPs.



Sensors 2020, 20, 996 3of 14

Sensors 2020, 20, x FOR PEER REVIEW 3of14
template functional monomer
| ® @ @
é ‘ l A w c » we
R g be ®a

self-assemblyl extraction | J rebinding

crosslinker
@2 @d &0
AR ¢ S e A
R _ofc) beB@¢ a )
polymerization
ure 2. aratlon rocedures of ole .1m rmted olymers (MIP: urfac inted.
Figure 2. I§r§ Srati ﬁs rocellyres % ecu rin e? i W ac imprinted

mers on an electro e an varlous tera tions of tem ate an te

polymers {5 SdaRPirALka SBRLT A FoRRShIY ARk HOMEL IGHAR TP FATIPHS tﬁo lrﬁérmiﬂl’%ﬂ’sf
(a) electrostdtindmtenatiionsy(b jadseisibie savilent bonds, (c) van der Waals or hydrophob1c interactions,

(d) metal chelation, and (e) hydrogen bonds.

2.1. Small Molecular Biomarkers

2.1. Small Molsguims,Bieamarletsan signaling molecules produced by microorganisms can be used as

Met ]gn l:r%arker (ff infectiqus di ases Fi)r e e, both L d D-arabitol can be produced a.B K
ClaRA S AHGS bséﬁpé?‘ Sy r?&‘r‘n%ﬁ&’r&o equ BN A RN 10markers

of infectiows diseasssy E%mﬂ%@é&@@aﬁf@agmhﬁ@tmmm@dm&d b%&gmm@au&as natural
metaboliteis: BEHgylaids norhealtydadsrdsivequiet donerdis gnobiealtban didiasisnid b Bak P dbuidskildowever, only
-arabitol Sh 5 RS Sl )RR FBF te otk Hi (T Dfial?&@l SRIESHODPIIEPSISIBPE Blody fluids

tients w1th candidigsis. The used 2,2’ b th s a func nal
can be use(] 1.4 RiQMAolat (e iRAngriS ok T@’e b gkt sl feveloped
e1ectrochemmdlﬁﬁm&ar&tb@wén@grd\@&zfmmmbh@ dﬁ&ﬂﬁtm ih uwwyﬁ@ma&a& péspatients with
candidiasis offthethinpbeh? ;Mg Fibiophenthb dessbnlierddcbibiaphene tiothd bapolyormierebcisiz@weak ester

bonds car?k?@%ﬁﬂ&%y% g&?&ﬁi@ﬁ@c?"ﬁf‘o‘ﬁ&%ffasﬁ}i’&lﬂaﬁrﬁ H}%B?yi‘ll??i&‘f%‘éé WP a]r%ﬁ:ntol The

and ~1.10 th si as a eudo refere ce electrode. H 50~1.20 V asu
bithiopheng U Rl 2 SRS PO A ST RO ST Z 5L RSP OBl R BB, thiophene

ring (Figupgssidely Ehﬁ&gasalml@reﬁ&opét}u@pkwm mld&st@@kymeﬂmdauutst?acﬂ F@uaend 5’ four

positions. 3He oxidation peak of the crosslinker and functional monomer was at ~1.45V and ~1.10 V
respectivel Mfﬁ%&ﬂ?&%gwgk&f&aﬁéﬂé{&?@ ey el maenss Oflgzmﬁg‘ﬁsl@ﬂt%%nduce the
artlc ate in the quorum sensing to induce’ an ulate th ressjon o
initiated Pfoﬁ S Ca R A oo ol The b ol eE S b eehene passively
partlclpatq@dfbkb@@kptﬁmhyr(@mm’mm as aamwgcee}atpra@f ttheosatiqn mdlﬁagxae&tachﬂ&g[uﬂ@ 3A).
N-acyhhidredgetimeteMdHRY (hidilsivateeienpabitttyrie stlentilen oleagnles Adflloxdhe-melragive bacteria.
They partitigans! e delisalgabring Miensmigeress fhs parasenfP it iodha iR AsBn B eiE)-expression
of virulence [19,20]. Jiang et al. [21] used methacrylic acid (MAA) as a monomer and
2,5-dimethyl-4-hydroxy-3(2H)-furanone (DMHF) as an analog template to construct the magnetic
molecularly imprinted polymers (MMIPs) which have the capability to selectively recognize AHLs.
The hydrogen bond and the delicate binding microcavities are the main contributors to the specificity
(Figure 3B).

2.2. Toxins and other Protein Biomarkers

Microbial toxins produced by microorganisms, including bacteria and fungi, are of high molecular
weight and have antigenic properties. They can promote infectious diseases by directly damaging host
tissues and disabling the immune system. Hence, the fast detection of microbial toxins is critical for
the diagnosis of infectious diseases. Most of the microbial toxins are protein. For protein biomarkers, a
simple way to improve the affinity of the target protein for its rebinding position is to locate specific
charges at its specific rebinding site. A positively charged monomer, quaternary ammonium salt,
holding a vinyl bond and an aromatic ring (VBTC), was used to assemble the MIPs for bovine serum
albumin (BSA) which holds a negative charge under analytical conditions (pH 7.4, isoelectric point
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is 5.4). It promoted the ionic interaction between BSA and the MIPs [22]. n—m interaction was used
to recognize toxic protein aflatoxin Bl by the p-aminothiophenol-based MIPs. The sensitivity of

Ermted sensor was 11 times greater than that of the non-imprinted sensor by applying the
X
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much of its ability to capture the imprinted bacteria, although the shapes of the imprints were shown
to be hardly affected which was proved by atomic force field microscopy. Hence, employing suitable
functional groups or monomers to form efficient chemical interactions between MIPs/SIPs and the
bacterial cell surface is a more important factor for cell-imprinting. Other studies also revealed that
SensofDsEB4Cah 1859 gNition plays a dominant role in bacteria recognition. Phenylboronic acid (PBA) groups 5 ¢ 14
can significantly improve bacteria affinity of the MIPs with controllable bacteria recognition due to
the reversibility between PBA and cis-diol groups of glycan chains presented on the bacterial surface
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Various methods have been applied for the production of MIPs/SIPs on electrodes to prepare
electrochemical biosensors. Generally, they can be synthesized by three main steps: (i) assembly of
functional monomer and template, (ii) polymerization of monomer-template complex with cross-linkers,
porogen, and initiators under photo-/thermal/electrical conditions, and (iii) template removal to reveal
binding microcavities that are highly specific to the template [31]. Standard free radical polymerization
and sol-gel process are usually used. Free radical polymerization can be further categorized into bulk,
multi-step swelling, suspension, emulsion, seed, and precipitation polymerizations based on their
synthesis methods [32-34]. As a result, the microcavities that resemble the original template molecules
in terms of size, shape, and orientation are generated in the polymer matrix, like the “lock-and-key”.
Morphology of the polymer is determined by various factors, including polymer reaction time, the
amount of pre-polymer, and porogenic solvent.
A broad range of markers associated with infectious diseases such as antibiotics [35],
lipopolysaccharides [36], nucleotides [37], toxin proteins [38,39], virus [40,41], bacteria [42,43], and
fungi [7] cells have been successfully used as templates in synthesizing MIPs/SIPs. Gast et al. [12]
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highlighted synthesis strategies for virus imprinted polymers. Nowadays, double-templates [44,45]
and multi-templates [46] methods have been developed, which makes MIPs/SIPs based-biosensors
able to detect more target analytes in one complex sample.

The choice of a functional monomer is particularly essential to create highly specific microcavities
for the templates. Interestingly, Su et al. [47] used computer-assisted molecular simulation calculations
to select the suitable functional monomer and solvent for the template molecule. MAA is reported as
the functional monomer which can form desirable pore shape and structure [48], meanwhile, it can be
hydrogen bond based acceptor and donor [49]. Other monomers used in MIPs/SIPs synthesis include
sulphonic acids (e.g., 2-acrylamido-2-methylpropane sulphonic acid), carboxylic acids (e.g., acrylic acid,
vinylbenzoic acid), and heteroaromatic bases (e.g., vinylpyridine, vinylimidazole) were summarized by
Choi and coworkers [33]. Typically, electropolymerizable monomers for the preparation of MIPs/SIPs
were highlighted by Crapnell and coworkers [50]. MAA, polyvinylpyrrolidone (PVP), dimethylamino
ethyl methacrylate (DMAEMA), and polyamine (PA) are usually used for bacteria imprinting to
improve the recognition affinity for bacteria [30].

The crosslinker is another important component of MIPs/SIPs. It is responsible for the morphology
and stability of imprinted binding sites. Ethylene glycoldimethacrylate (EGDMA), divinylbenzene
(DVB), and trimethylolpropane trimethacrylate (TRIM) are the most reported cross-linkers [33]. The
most common crosslinker for bacteria imprinting are polydimethylsiloxane (PDMS), polyacrylate,
silica (5i0;), and polyurethane (PU) [30].

Most recently, the combination of nanoparticles with MIPs/SIPs to enhance the performance of
electrochemical biosensors is a popular topic. Noble metal nanoparticles (such as Au, Ag, Pt, Pd,
etc.), metal oxide nanomaterials (such as TiO,, Fe;Os, etc.), and carbon nanomaterials (such as carbon
nanotubes, graphene, etc.) distinctly offer many unique advantages [51].

3.1. Deposition or Spin Coating on Electrodes

Deposition and spin coating are two simple methods for preparing MIPs/SIPs modified electrode.
Tancharoen et al. [52] used spin coating method to prepare a SIPs for Zika virus (ZIKV) detection. In
their procedures, a certain amount of the prepolymer—graphene oxide mixture was coated ona 1 x 1
cm? gold electrode before spinning at 1000 rpm for 10 s to remove excess prepolymer. Subsequently,
the ZIKV template was dispersed on the composite film and exposed to UV light before keeping in
an oven at 65 °C for 15 h to allow polymerization to occur. The proposed SIPs were obtained after
removing the template from the composite polymer by washing in acetic acid and deionized water.

3.2. Assembly by Self-Assembled Monolayers

Self-assembled monolayers (SAMs) can be used to immobilize MIPs nanoparticles onto the gold
surface. Unlike the in-situ synthesis of MIPs/SIPs on an electrode surface, the method dependent on
SAMs includes two steps. Firstly, MIPs nanoparticles need to be prepared, then the MIPs nanoparticles
can be fixed on a SAMs modified electrode by the covalent bond. The solid-phase synthesis method
was used by Tothill’s research group to fabricate the MIPs nanoparticles, then the amine coupling
chemistry was used to fix nano MIPs receptors strongly to the gold chip. The principle of this method
depends on the activation of carboxyl groups on the gold surface by an EDC/NHS mixture which
forms reactive succinimide esters [53,54].

3.3. Electropolymerization or UV Light-Induced Polymerization

Electropolymerization is a simple and convenient deposition technique with a conductive polymer
layer produced on an electrode surface combined with the template. The layer thickness can be
controlled easily. The high-affinity binding sites can be formed by direct doping of templates into
the polymer matrix [50]. Usually, the thickness of the film controlled by the electropolymerization
conditions and can be characterized by electrical impedance spectroscopy (EIS) and cyclic voltammetry
(CV). The charge-transfer resistance of the surface would be increased with the thicknesses added. It is
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fabricate a layer of effective MIPs/SIPs, it is critical to control the polymeric film so that it does not
cover the whole template so that it can be removed easily and rebound later. If the MIPs/SIPs are too
thin, there are no stable microcavities formed on the electrode. It also lowers sensitivity/affinity for
the template, since a lower number of binding sites are available. In turn, if the MIPs/SIPs film is too
SenthiicR)24t iefPtentrap the template within the polymeric matrix, hence make its removal/rebindinhgf 14
more difficult. Imprinted artificial capture antibodies (cAbs) for Staphylococcus aureus (S. aureus) were
fabricated by electropolymerization £55]. By formation of a Schiff base linkage, S. aureus was fixed on
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Tokonami et al. [56] applied a MIPs film consisting of overoxidized polypyrrole (OPPy) to
recognize bacilliform bacteria specifically and rapidly. Polypyrrole (PPy) was synthesized using
electrochemical polymerization combined with dielectrophoresis (DEP) technique. The DEP resulted
in the P. aeruginosa being oriented in one direction, perpendicular to the film surface. The number of
bacteria doped in the film was counted to be 1.8 X 10° cm=2.

UV light-induced polymerization also can be used to prepare MIPs/SIPs on the electrode. It has
been used to prepare SIPs-graphene oxide composites on the electrode for Zika virus (ZIKV) detection

(Figure 5B) [52]. Idil et al. fabricated SIPs under UV-polymerization for E. coli detection [57].

3.4. Micro-Contact Imprinting

The micro-contact imprinting approach is a soft lithography method that involves the conformal
stamping of a template-immobilized layer in a specific pattern on a polymer surface (e.g., PU, PDMS, or
Si0y), so that it is able to form shape-complementary recognition sites for relatively large templates on
the surface. There are three main types of direct micro-contact imprinting methods: stamp imprinting,
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flagellar filaments with the MIPs that was fixed on their home-made paper-printed electrodes. Their
results showed that the limit of detection (LOD) for the flagellar filaments was as low as 0.6 ng/mL.

4.2. Detection of Infectious Diseases Caused by Viruses

MIPs/SIPs based biosensors have wide applications for the detection of virus in medical diagnostics.
Malik and coworkers [62] summarized the state-of-the-art application of MIPs for virus detection.
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The detection performance for influenza, Dengue virus, Japanese encephalitis virus (JEV), human
immunodeficiency virus (HIV), hepatitis A virus, hepatitis B virus, adenovirus, and picornaviruses were
discussed. However, the studies cited in their review paper mainly used quartz crystal microbalance
(QCM), surface plasmon resonance (SPR), fluorescence resonance energy transfer (FRET), and resonance
light scattering (RLS) as transducers. In this section, the MIPs/SIPs based electrochemical biosensors
for virus detection are emphasized.

Human papillomavirus (HPV) is a group of more than 200 related viruses, some of which are
spread through anal or vaginal sex. Long-lasting or chronic infections caused by HPV can induce
cancer. Cai and coworkers [63] presented a MIPs based nano-sensor to detect human papillomavirus
derived E7 protein. Analysis of EIS data revealed that the detection of E7 protein can be as low as sub
pg L-1 levels. Notably, the human papillomavirus E6 protein (type-16) was not recognized by the E7
imprinted polymers. It shows outstanding specificity.

As a member of the Flaviviridae virus family, Zika virus usually infects human beings and
typically causes a skin rash, conjunctivitis, red eyes, malaise, muscle and joint pain, headache, or mild
fever. Recently, Tancharoen et al. [52] developed an electrochemical sensor based on SIPs and graphene
oxide composite for Zika virus detection. The sensor was applied to detect virus in both PBS solutions
and serum. In the PBS solution, LOD was found to be 2 x 1072 PFU/mL in the presence of the dengue
virus. For serum samples, dilution steps were added to reduce the background signal. The LOD found
to be 2 x 1073 in 10% serum samples and 5 X 102 PFU/mL (10~250 RNA copies/mL) in 1% serum
samples. Generally, the lowest LOD in real samples should be 6000 (~10%) particles (or ~10~2 PFU) per
mL. This performance is sufficient for Zika virus detection in practical applications.

Acquired immune deficiency syndrome (AIDS) is a severe infectious disease caused by HIV. HIV
is a member of retroviruses, it is disseminated mainly by contaminated blood transfusions, unprotected
sex, and others. Ma et al. [64] developed an electrochemical biosensor based on multi-walled carbon
nanotubes modified MIPs for the detection of HIV-p24. They proved that MIPs have a specific
recognition capacity for HIV-p24. The linear range was found to be from 1.0 X 10~% ng cm™3 to0 2.0
ng/cm~3. The LOD was tested to be 0.083 pg/cm?. The reported biosensor showed excellent selectivity
and stability. It was successfully used for the detection of HIV-p24 in a human serum sample.

5. Conclusion and Look into the Future

Molecular imprinting is an attractive technology used to create selective recognition sites within
a polymer network. MIPs/SIPs as tailor-made biomimetic materials have the obvious priority over
other recognition elements. The major advantages are their robustness, long-term stability, and
cost-effectiveness, which cannot be obtained by fragile biomolecules. In this review, applications
of MIPs and SIPs based electrochemical biosensors are focused on, especially in the detection of
infectious diseases. Recognition mechanisms, preparation methods, and application performance
of MIPs/SIPs were discussed. Although tremendous progress has been achieved, there still exist
several challenges. The most important one is that the sensitivity (Table 1) and selectivity need further
improvement since MIPs/SIPs do not always possess properties comparable to antibodies. In this case,
more functional monomers are worth exploring to promote chemical recognition. Another strategy
is using nanopatterned electrodes as the transducer. The design and application of nanopatterned
electrodes could promote MIPs/SIPs to generate more effective cavities with excellent spatial matching
effect. Moreover, in the era of artificial intelligence, using machine learning to design MIPs/SIPs and
improve the recognizing ability of MIPs/SIPs based electrochemical biosensors is very promising.
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Table 1. Analytical performance of MIPs/SIPs based electrochemical biosensors for infectious diseases.
Analytes Preparation Methods of MIPs/SIPs Device/Indicator Label/Label Free Method LOD LR Ref.
. . MMIPs: Fe304@ MGCE/ 10 o 107
N-acyl-homoserine-lactones (AHLs) SiO2-MIP [Fe(CN) P-4 Label free DPV 10" M 25x1077-10" M [21]
Bacterial surface proteins 3-aminophenol electropolymerization S[II:GI:Z(S(EEIS\]V)V%}T/;FE/ Label free EIS 0.60 nM NR [65]
6
Bacterial flagellar filaments Phenol electropolymerization PPE/[Fe(CN)g]>/4- Label free SWV 0.6 ng mL~! 0.01-100 pug mL~? [61]
Staphylococcus epidermidis 3-APBA electropolymerization GE//[Fe(CN)g]>~/*~ Label free EIS NR 103-107 CFU mL™! [28]
E. coli O157:H7 PDA-SIPs N-GQDs Label ECL 8 CFU mL~! 10-107 CFU mL"! [66]
E. coli UV-polymerization NR Label free Capacitance 70 CFUmL™' 1.0 x 10%-1.0 x 107 CFU mL~! [57]
Bacillus cereus spores Pyrrole electropolymerization CPE/[Fe(CN)g]> /4~ Label free cv 102 CFUmL™! 102-10° CFU mL™! [67]
Zika virus Prepolymer-GO composites under UV light ~ SPGE//[Fe(CN)g]>~/4~ Label free CV/EIS ~1073 PFU 1073-102 PFU mL™! [52]
HIV-1 gene Directly electropolymerization of ITO electrode/EsNCs Label ECL 03 fM 3.0 fM-03 nM [37]
phenylenediamine
polymerization using AAM as functional
HIV-p24 monomer, MBA as crosslinking agent and GCE DPV 0.083 pg mL~! 1.0 x 10742 ng mL~! [64]
APS as initiator.
Aflatoxin Bl PATP-AuNPs electropolymerization GE/[Fe(CN)g >4~ Label free LSV 3fM 3.2 fM-3.2 uM [23]

3-APBA: 3-aminophenylboronic acid. AAM: acrylamide. APS: ammonium persulfate. CPE: carbon paste electrode. CV: cyclic voltammetry. ECL: electrochemiluminescence.
EsNCs: Europium sulfide nanocrystals. GCE: glassy carbon electrode. GE: gold electrode. LOD: limit of detection. LR: linear range. LSV: linear sweep voltammetry. MBA:
N,N’-methylenebisacrylamide. N-GQDs: nitrogen-doped graphene quantum dots (N-GQDs). NR: not reported. PDA: polydopamine. PPE: paper-printed electrodes. SIPs: surface
imprinted polymers. SPGE: screen-printed gold electrode.
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Until now, few studies explored the recognition mechanism of MIPs/SIPs and larger bioparticles

(viruses and bacteria). Research on the exact mechanisms behind target recognition should be
emphasized because that can lead to an in-depth understanding, which will eventually help in designing
MIPs/SIPs and electrochemical biosensors with even higher selectivity, sensitivity, and accuracy.
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