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Abstract—In this paper, the problem of effective and robust
delivery of Dynamic Adaptive Streaming over HTTP (DASH)
videos over an orthogonal frequency-division multiplexing access
(OFDMA) network is studied. Motivated by a measurement
study, we propose to explore the request interval and robust
rate prediction for DASH over OFDMA. We first formulate an
offline cross-layer optimization problem based on a novel quality
of experience (QoE) model. Then the online reformulation is
derived and proved to be asymptotically optimal. After analyzing
the structure of the online problem, we propose a decomposition
approach to obtain a user equipment (UE) rate adaptation problem
and a BS resource allocation problem. We introduce stochastic
model predictive control (SMPC) to achieve high robustness on
video rate adaption and consider the request interval for more
efficient resource allocation. Extensive simulations show that the
proposed scheme can achieve a better QoE performance compared
with other variations and a benchmark algorithm, which is mainly
due to its lower rebuffering ratio and more stable bitrate choices.

Index Terms—Dynamic Adaptive Streaming over HTTP
(DASH), rate adaptation, resource allocation, Quality of
Experience (QoE), Orthogonal Frequency Division Multiple Access
(OFDMA).

I. INTRODUCTION

ECENT years have witnessed the tremendous increase in
mobile video traffic. Video has now dominated the mobile
data traffic for over 60 percentin 2016, and is expected to account
for over 75 percent in 2021 [2]. At the same time, the rapidly
growth in both the overall mobile traffic (which has increased
18-fold since 2011) and the number of mobile devices (429 mil-
lions were added in 2016) have made mobile video streaming
a great challenge. In addition, the instability nature of wireless
links makes the situation even worse. There is a compelling need
to achieve high efficiency and robustness of video delivery over
wireless networks, while guaranteeing users’ Quality of Experi-
ence (QoE). This problem should be studied from both wireless
infrastructure and user aspects.
Video streaming has drawn great attention for decades. The
early works are mainly based on the User Datagram Protocol
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Fig. 1. DASH mobile video streaming system architecture.

(UDP), which can provide timely transmission compared with
Transportation Control Protocol (TCP) that is designed for reli-
ability rather than timeliness. However, the deployment of UDP
based algorithms is challenging due to the incompatibility with
firewalls and other types of middleboxes. On the other hand, TCP
is supported by most middleboxes for its reliability and security.
The congestion control algorithms facilitate timely transmission
as well. Therefore, Hypertext Transfer Protocol (HTTP) based
video streaming is now the mainstream technique. In particular,
Dynamic video streaming over HTTP (DASH), which can adapt
to the variation of network conditions, is recognized as a promis-
ing technique to enhance the user QoE. Many commercial video
services, e.g., YouTube and Netflix, are based on DASH, which
have accounted for more than half of the total Internet traffic in
North America in 2016 [3].

Among different generations of mobile transmission tech-
niques, the 3GPP-Long Term Evolution (LTE) and Wi-Fi
(802.11 standards) are the two most popular. The Orthogo-
nal frequency-division multiplexing (OFDM) is the common
method of both standards that encode and transmit digital data
on multiple subcarriers of a broadband channel. OFDM is ex-
pected to continue serving the next generation wireless net-
works for its ability on tackling narrowband interference and
frequency-selective fading with a low complexity. OFDM also
introduces great flexibility by allowing dynamically assigning
subcarriers, time, and power to each user in order to accom-
modate customized QoS requirements, such as transmission
rate [4], [S] or power efficiency [6].

We consider the scenario that a video user equipment (UE)
receives a DASH video through an OFDM network, as shown
in Fig. 1. The two techniques are in different layers in the pro-
tocol stack and have different design goals. However, for video
streaming, both of them should be designed for the ultimate goal
of guaranteeing user QoE. In this paper, we study the cross-layer,
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Fig. 2. The variations of request intervals obtained in our measurement study
over an LTE link.

joint design of DASH and OFDM. In DASH, the video con-
sumers take control of choosing different data rates for future
video segments, which are coded (or stored) at the video server.
The corresponding information is sent to the consumers at the be-
ginning of video transmission. Resource allocation in OFDMA
networks, on the other hand, is executed at the cellular base sta-
tion, which takes into account various factors such as channel
state information (CSI), power budget, and user QoE require-
ment and determines the optimal resource allocation for multiple
video UEs.

A. Motivation

To provide useful insights into the problem of DASH based
video streaming over OFDMA networks, we conducted a mea-
surement study using dash.js [7] in Broun Hall, Auburn Univer-
sity, Auburn, AL, USA over Version LTE. The video source is
placed on a remote server and coded into 10 different bit rates
ranging from 254 kbps to 14931 kbps. We collected the video
playback trace information over LTE in 1 hour daytime and 1
hour night time. Define request interval as the period between
when the request for the next segment is sent and when the
first byte of the requested video segment arrives at the user. In
this experiment, we measured the request interval of the DASH
video session, as well as the link capacity that can be acquired
by measuring the download speed of each video segment.

As shown in Fig. 2, the request interval could be as large as
1.3 s, while 80 percent of the intervals are in the range from
0.2 to 0.4 s. However, most of the joint design of DASH and
scheduling algorithms do not fully consider this relatively large
period of time and still allocate resources to the video users, even
though not much transmissions are needed during this interval.
Motivated by this observation, we propose a new formulation
of the resource allocation problem at the BS by exploiting the
request intervals (see Section III).

In addition, we measured the capacity of the LTE link during
playback. Usually the capacity will be influenced by factors such
as fading and shadowing, which will all trigger the capacity vari-
ation at small timescales. In DASH, many existing rate adaption
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Fig. 3. The variations in the average capacity of an LTE video link.

schemes are based on the average downloading capacity over
one segment, which is assumed to be slowly varying and rela-
tively stable. In Fig. 3, we present the average capacity of one
segment, which exhibits quite large variations over time. Such
large variations could make the existing rate adaptation schemes
ineffective. Motivated by this observation, we propose a model
predictive control based optimization of the rate adaption at the
video user side to achieve robustness (also see Section III).

B. Contributions and Organization

We address the cross-layer QoE-driven optimization problem
of DASH over OFDMA networks in this paper. The contribution
of this work is three-fold:

1) We develop a new QoE model and formulate an offline
optimization problem jointly considering the new QoE
model as well as the specific resource allocation model in
OFDMA networks.

2) We then derive an online optimization problem to approx-
imate the offline problem. We analyze the online problem
and decompose it into a BS resource allocation problem
and an UE rate adaptation problem, for each of which
effective solution algorithms are developed. More impor-
tant, we also prove the asymptotic optimality of the online
algorithm.

3) Extensive simulations are conducted to validate the per-
formance of the proposed algorithms. The results show
that the proposed algorithms can achieve a 40% less re-
buffering ratio than the state-of-art MPC based algorithm.

The remainder of this paper is organized as follow. The System
model is presented in Section II. In Section III, we first formu-
lated a globe optimization, offline problem and then transform it
to an online optimization problem. The analysis and problem de-
composition are presented in Section I'V. In Section IV, we fur-
ther explicitly take the request interval of the users into consid-
eration for more efficient resource allocation. The rate-adaption
process is analyzed and then a robust scheme is proposed. Our
simulation study and results are presented in Section V. The re-
lated works are discussed in Section VI and we conclude this
paper in Section VII.
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II. SYSTEM MODEL
A. Network Model

We consider a wireless video streaming network as shown in
Fig. 1, consisting of video servers, the wireline network, a cel-
lular base station (BS), and multiple UEs. The videos are stored
in the remote servers. To reduce the delay of transmission, more
and more servers are deployed closer to end UEs. Generally, the
capacity bottleneck in the end-to-end transmission path is the
last hop, where a BS serves multiple UEs. The transmission in
the Internet before the last hop could be modeled as a request
interval time since the network conditions such as capacity and
congestion level mainly influence the propagation time before
the BS.

We consider an OFDMA based cellular system with one BS
serving N video streaming UEs, which are denoted as N =
{1,2, ..., N'}. We assume the total available bandwidth is W Hz,
which consists of M subcarriers denoted as Ml = {1, 2, ..., M }.
Each subcarrier m € M is assumed to have an equal bandwidth
of K = W/M Hz. Since the bandwidth of each subcarrier is suf-
ficiently small, they only experience flat fading. For a resource
block in OFDM, the time length of each resource allocation is
denoted as 7, the time step is denoted as t = 1, 2, ..., and each
time slot contains an integer number of OFDM symbols and is
an integer multiple of 7.

Denote g;,, (t) as the channel gain of UE ¢ € N on subcarrier
m € M at time ¢, and p;,, () accounts for the total transmission
power assigned to subcarrier m for UE ¢ at time ¢. Assume the
total power can be assigned is P. Since multiple users can share
subcarriers in each time slot, denote the non-overlapping time
fraction of user ¢ on subcarrier m in time slot ¢ as 0 < v;,, (t) <
1. Without loss of generality, assume the duration of a time slot
is unit time. We have

N
> vim(t) <1, Vm,t. (1)
=1

The additive white Gaussian noise (AWGN) at the receiver has
unit spectrum density. According to Shannon formula, user 7’s
maximum rate on subcarrier m at time ¢ is

Tim (t)

v m

; 2 .
_ {wim(t)nlogz (1 + MZE)K(U) , ifvg,(t) >0 @)

0, otherwise.

The BS will first estimate the CSI on each subcarrier. Then
with different targets, e.g., maximizing the total data rate or
maximizing the energy efficiency, the BS assigns transmit power
Dim (t) and time fraction v;,,, (¢) to each UE 7 on each subcarrier
m at each time ¢. Naturally, the total data rate for UE ¢ at time ¢
is the summation of all the data rate 7, (t) on each subcarrier,
denoted as 7;(t) = SN 7 (1),

B. Streaming Video Model

The video for UE ¢ is S;, which has been partitioned into K;
consecutive segments, each coded with different bit rates. As-
sume each segment of all videos is [ s. Without lost of generosity,
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Fig. 4. Timeline of the discrete time DASH system.

assume all the coded bit rates R; are in the same set R. Naturally,
the size of segment k; in bits can be represented as R;[k;] x [.

During the video session, the playback buffer dynamic pro-
cess at a user is illustrated in Fig. 4. When a new segment is
completely downloaded, the buffer occupancy (in seconds) is
immediately increased. The buffer occupancy decreases linearly
with time when the segment is played out. When the buffer is
empty, the playback stalls. The time till the next segment arrives
is the rebuffering time (the interval before the Sth segment in
Fig. 4). After downloading a segment, the UE estimates the av-
erage rate of the segment and sends a request back to the video
server for the next segment. The period since the request is sent
till the first byte of the next segment arrives at the UE, is the
request interval (see the 2nd segment in Fig. 4). Depends on the
computational complexity of the UE algorithm and the server it
chooses, the request interval could be as large as several seconds,
as shown in Section I.

Denote B; [k;] € [0, B; max] as the playback buffer occupancy
at UE ¢, which represents the amount of video data stored in the
buffer after downloading segment k;, as measured in playback
time. Users may have different buffer sizes B; ,.x, which rep-
resents the total amount of storage measured in playback time.
The UE can play each video segment only after it is fully down-
loaded, since the segment itself contains the playback metadata.

Let s;[k;] represent the time slot when segment k; is down-
loaded at UE . During playback, the UE calculates the average
rate C;[k;] of downloading segment k;, as an important indica-
tor of future capacity in most existing algorithms. The request
interval is denoted by 7;[k;], which depends on the network pa-
rameters and network congestion level. During this period, this
UE does not need any resource from the BS for transmission.
Since this period could be considerably large, it should be con-
sidered in the resource allocation scheme.

The playback buffer process can be modeled as follows. The
timeline of the operations and updates is presented in Fig. 4.

B;[k;] = min {max {0, Bilki — 1] — milks] — Ri[ki]l}

+ l, Bi,max}
540k
= s e s T T ()
Cilki] = == igy
silki] = silks = 1) + k] + FHA

3)

In (3), the first equation describes the bounded behavior of buffer
occupancy (i.e., finite playout buffer size and nonnegativity).
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The second equation describes how to calculate the average ca-
pacity, while the third equation describes how s; [k;] evolves over
time, as illustrated in Fig. 4. The rebuffering time for one seg-
ment downloading event is max{0, 7;[k;] + %"l_[[%i]]l — Bilk; —
1]}. Rebuffering event happens when this value is larger than 0,
which significantly degrades the user QoE [8].

C. Quality of Experience (QoE) Model

The QoE is an important indicator of the performance of video
communication systems. How to design a QoE model to capture
the user’s viewing experience has been extensively studied. In
the past, the QoE is mainly divided into two parts: objective
measures and subjective evaluation. Objective measures, e.g.,
Peak Signal-to-Noise Ratio (PSNR), represent the quality of
video frames, while subjective evaluation, such as Mean Opin-
ion Score (MOS) [9], reflects user’s assessment of the viewing
experience [10].

In [11], the authors study how the factors, such as playback
buffer and average bit rate, influence the user engagement. It is
suggested that new QoE models should be developed that con-
sider both video quality and user experience, which could be rep-
resented coarsely as user engagement. The authors in [8] suggest
that the main factors of a QoE model should include buffering
ratio, video starting time, average bit rate, and attributes such
as type of video, Internet service provider (ISP), region, etc.
In [12], the QoE model is defined as a weighted sum of several
main factors. The weights could be adjusted for different scenar-
ios. Recent studies such as [11], [13], [14] suggest that the video
quality and its variation have strong correlation with the MOS.
In this paper, we aim to be as general as possible to model user
QoE as a weighted sum of several important factors. Each of the
weighted factors should reflect one attribute that has a specific
physical meaning, and can influence the experience of users.
The weights, on the other hand, accounts for the importance of
each factor in the overall QoE. Research has been conducted on
finding the best weights to better approximate the QoE of users,
and the state-of-art results could be applied directly here.

Intuitively, the larger the bit rate, the better the video quality.
The relationship between video quality and bit rate could be
modeled as [14]

q(t) = f(R[t]) = a-log(R[t]) +b. ©)

The coefficients a,b could be adjusted according to specific
video type and playback device for stored videos. On the other
hand, the variance of video quality across segments influences
the user experience as well. The tradeoff between the average
quality and variance is a key factor to be taken into consideration.
The key factors of our QoE model is listed below for UE i
along with the explanation of their physical meanings.
e Average video quality m;|K]: it represents the video qual-
ity level averaged over the entire video playback pe-
riod [12], defined as: m; [K] = + Zszl q(R;[k]).
® Variance of video quality Var;[K]: it accounts for the qual-
ity variation from segment to segment, given by Var;[K| =
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+ S (q(Ri[k]) — mi[K])2. As the average video qual-
ity, the variance also has a considerable impact on the
QoE [12].

® Rebuffering ratio Reb; [ K]: rebuffering occurs when there
is underflow at the playback buffer. The rebuffering ratio
is defined as the total rebuffering time over the total video
duration L; = K; x [, as

1 & R
Reb, = I kz_:lmax {O,Wi [ki] +

(&)

This factor affects the QoE even more significantly than
variance [15].

o Startup delay T} : it represents the time between user re-
quests a video and the playback begins. Normally, a certain
length of buffer occupancy need to be accumulated before
playback starts [12]. It depends on the transmission rate
and how the video is encoded.

As different user might focus on different factors, we use a
weighted sum to ensure flexibility of this model. This weighted
form follows the linear model practice when conducting the re-
gression analysis of how multiple relevant factors influence the
subject metric. Each term has a clear physical meaning, and
the weights tell the story of how and at what scale each term
influences the overall QoE. For segment k;, user i’s QoE is
defined as

Qlkil = q(Rilki]) + 0 - (q(Rilks]) — mi[K;])?
+ K max {0,71’1‘ (k] + %}{Zj}l — Bilk; — 1]} .
(6)

in which 6 < 0 and A < 0 are tunable weights. The reason we
divide the rebuffering time by the total length of the video is
to normalize the rebuffering time, since the same rebuffering
time should have different impacts on user QoE when the video
lengths are different. For the entire playback process, the QoE
of user 7 can be defined as

K;
Qi=> Qlki|+n-Ty, )
ki=1

where 17 < Ois a tunable weight, and 77’ is the startup delay. This
model can be flexibly tuned for different users and application
scenarios with different parameter sets {6, A, n}. Furthermore, if
the viewing process is emphasized instead of the startup phase,
the overall QoE can be defined as @; = 25:1 Q[ki], i.e., re-
moving the startup delay term.

To consider fairness among users, we adopt the concave utility
function U, (-) defined as [16]

1 if o =1
Uolo) = { og(x), ifa ®

mloa .
r otherwise.
1-a?

For instance, when o = 1, \maximizing the utility sum en-
sures proportional fairness. We define the fairness QoE as
Q74" (k;) = U, (Q(k;)) and the QoE through the playing pro-
cess Q; = Zle QF (k;).
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III. PROBLEM FORMULATION

To achieve the goal of QoE maximization, the challenge is
that the BS and video UEs are operating at different timescales.
At each time ¢, the BS adapts to the variation of network states,
e.g., updated CSI. On the other hand, each video user adjusts the
bit rate of the next video segment after downloading the present
one. In this section, we first formulate an offline problem and
then provide an online transformation with reduced complexity.
The decomposition of the online problem is then presented and
the decomposed problems will be solved in Section IV.

A. The Offline Optimization Problem

The offline optimization problem is formulated based on the
assumption that we know all the information about the video pro-
cesses. The optimization variables related to the BS are wireless
resources: Vi, (t) and p;p, (t) for UE ¢ on subcarrier m. Video
rate adaption is executed each time when the UE finishes down-
loading a segment. The data-rate R;[k;] can only be chosen from
a given set R; defined by the video encoder (or, server). The of-
fline QoE maximization problem, denoted by Prob-Offline, is
formulated as follows.

K;

max A= fair (g, (&)
{Pim (t),vim (t),Ri[ki]} ; ,; @ [ ]
N
S.t.: vim(t) < 1, Vm,t  (10)
i=1
N M
D> pim(t) <PVt (11
i=1 m=1
Biki] € [0, Bimax|, Vi ki.  (13)

In terms of p;;,, (¢) and v;,, (), problem Prob-Offline is convex.
For rate adaption, it is an integer programming problem with a
limited solution set (for example, most Youtube videos offer 3 to
6 resolutions). The optimal value could be solved with dynamic
programming (DP).

To deal with variables R;[k;], we relax the constraint to allow
them to take any values (rather then chosen from a give set R;),
to obtain an approximation problem. Notice that the video rate
and quality can be mapped with function g;(-). Therefore, the
quality ¢; also belongs to a set of scalar values O, (as R;[k;] is
chosen from R;). Furthermore, we can select the optimal quality
and then derive the corresponding rate using ¢~ *(-) and round
it to the closest rate in set R;. Here, we abuse the notation of
qi, but the reader can easily differentiate the ¢(-) and ¢; as the
quality function and the scalar value of quality, respectively. As
¢i() is monotonically increasing, we have ¢; € [¢i min, ¢i,max)
in which ¢; min and g; max can be calculated by substitut-
ing the minimum and maximum rates into ¢;(+), respectively.
The mapping is unique. The approximation problem can be
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written as

N K;
max APPP = Ua | qilki
{p’t'm(t)avim(t)vqi[k‘i]} Z Z (q [ ]

i=1 k;=1

(14)

+ 0 (qi[ks] — mi[K3))?
max {O,Wz‘[ki] + M — By[k; — 1}})

5)

+

A
K;l
S.L.1 @i min < qz[kz] < Qi,max(lo)N(13)'

Theorem 1: The approximation problem defined in (14) is a
convex optimization problem.

The proof is given in Appendix A. With Theorem 1, we can
solve this problem with the Karush-Kuhn-Tucker (KKT) con-
ditions to acquire the optimal quality and then round the rate
down to the closest feasible rate. However, solving this problem
is based on the knowledge of the entire (and future) playback
process and network states), e.g., the mean video quality m;[ K]
over the entire playback process K. It is an offline problem
which may not be practical in many cases.

B. Online Optimization Formulation

Following Prob-Offline, an online version Prob-Online is de-
rived in this section. Notice that the only term that involves fu-
ture information is the overall mean quality m;[K;]. We first
propose the formation of Prob-Online with an approximation to
this term and then prove the asymptotic convergence property
of Prob-Online to Prob-Offline.

For a single user, we define the online QoE as follows.

Q" [ki] = Ua(q(Rilki]) + 0 - (q(Rilki)) — rivi[k; — 1])?
in which m; [k;] is updated as

Gi

1]+

(q(R5[ks]) — rivilks — 1)),

A7)
where q(R}[k;]) is the video quality corresponding to the opti-
mal rate R[k;], and ¢; is a tunable parameter for different users.
This way, we rewrite the problem from over the entire time win-
dow T to the problem that can be solved at each time slot using
past and present information.

Lemma 1: The 7i;[k] in (17) approximates the average of the
optimal quality with k goes to infinity.

The proof is given in Appendix B. Lemma 1 is on the con-
vergence property of 1m;[k], which we use to replace the term
of overall average quality m;[K;]. It lays the foundation for the
proof of the convergence of the online algorithm.

Lemma 2: Prob-Online is a convex optimization problem.

The proof for lemma 2 is similar to theorem 1 and is omitted
for brevity. Based on Lemmas 1 and 2, we can take a step further
to claim that the solution to the online problem converges to the
offline problem solution asymptotically.

Theorem 2: The solution of Prob-Online asymptotically con-
verges to the solution of Prob-Offline.
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The proof is given in Appendix C. With Theorem 2, we can
derive the solution for Prob-Online with past and present infor-
mation. More important, the solution converges to the offline
optimal solution with the increase of time.

With the lemmas and theorems, we can solve the online prob-
lem to acquire the optimal solution {p;,,, (t), v}, (t), R} [k;]} for
each time slot. However, the user rate adaption may not be syn-
chronized, and more important, the user rate adaptation is ex-
ecuted at a different timescale from BS resource allocation. In
addition, the number of video UEs that are actually transmitting
packets is varying over time (i.e., due to the request interval). To
address all these challenges, we further decompose the optimiza-
tion problem into two sub-problems: a BS resource allocation
problem and a video rate adaptation problem, which are solved
in the next section.

IV. SOLUTION ALGORITHMS AND ANALYSIS

A. Prob-Online Analysis

We first rewrite the online formulation by adding the equality
constraints on the capacity of each user.

N
max Aonline _ Qqnline
{pim (t)"uim(t):Rz‘ [kz]} ; g
M
Ci(t) =Y rim(t),¥i € N,¥t € T

m=1
(10)~(13). (18)

In the above formulation, the BS operation, i.e., resource al-
location, is coupled with UEs’ rate adaptation in the average
capacity term C; [k;]. At each time slot s;[k;], the controller will
try to optimize the QoE by estimating the capacity for the next
segment C;[k; + 1]. On the other hand, the BS controller will
also optimize the QoE by allocating resource to UEs at each
time slot ¢, which updates C;(t). With asynchronous operations
of the two parties, it is natural to decompose the problem to BS
and UE subproblems, to decouple their operations.

At the UE side, rate adaption is executed based on the estima-
tion of C;[k; + 1] at time s;[k;] after downloading segment k;.
Most estimation algorithms are based on the historical data of
capacity. The value of C;[k; + 1] is influenced by the resource
allocation before time k;. On the other hand, the BS allocates
resources to each UE at a smaller timescale than rate adaption.
Therefore, at each resource allocation time step, the video rate
has already been chosen and remains fixed for a period of time.
Based on this observation, we present a primal decomposition
approach as given in [17].

B. UE Rate Adaption

Rate adaption at the UE is executed when the previous seg-
ment is downloaded. The assigned transmission rate to the UE
during the downloading process is determined by the environ-
ment conditions sensed by the BS. To choose the rate for the
next segment, the capacity is mainly an estimation based on the
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previous segment. It makes sense to optimize the QoE at each
UE by rate adaption with a given capacity estimation C;[k; + 1].

At s;[k; — 1], UE ¢ aims to maximize its QoE by choosing
R;[k;], based on B;[k; — 1] and historical information. We for-
mulate the UE : side rate adaptation problem as

a1} (i) - Q" [k (19)
BilK] € [0, Bimman], Vk € [silki — 1 silksl], 21

where Q9"1"¢[k;] is defined as in (16) with estimated C;[k;].
The indication function I7 (k;) is equal to 1 when the buffer is
not full and O otherwise. By the time when the buffer is full, the
video UE would pause Get for a few seconds depending on the
mechanism. Rebuffering time is updated as in (3).

The average download capacity is estimated based on histori-
cal data. From the application layer, the UE can only acquire an
estimation of the average capacity by dividing R;[k;]l with the
time difference between sending request and completely down-
loading the segment. With information from the TCP layer, we
can have a better estimation by narrowing down the downloading
period between the time of receiving the first packet and the last
packet. However, it is still hard to accurately predict the future
downloading capacity due to network dynamics in the future.
We can acquire an estimation by simply using the exponential
average over the previous capacity. Then solve the optimization
by brute-force search in the rate space R ;, which is small (e.g., 3
to 6 different resolutions/rates). In this paper, we call this simple
scheme as DORA (DASH over OFDMA Networks with Rate
Adaptation) [1].

Inspired by [18], which measures the cellular network capac-
ity and proposes an estimation model based on Poisson process,
we also consider the downloading capacity as a random variable.
Furthermore, by optimization over several future steps with es-
timated future information, we can increase the robustness of
rate adaption based on the theory of stochastic model predic-
tive control (SMPC). This way, the optimization does not rely
on accurate estimations of future information that are hard to
acquire.

Assume that the average capacity C;[k;] is a random pro-
cess based on distribution Z(-) with mean C;[k; — 1]. At each
rate adaptation time s;[k; — 1], we will first update the average
capacity C;[k; — 1] with the measurement of this segment trans-
mission. The exponential window moving average (EWMA)
method is used to update the mean as

Cilki — 1] = €Cilk; — 2 + (1 — £)Cy[k; — 1], (22)

with exponential weights & € (0,1). Suppose the prediction
horizon here is z. The z predictions over the prediction horizon
are drawn with Monte Carlo sampling based on the distribution.
By solving the optimization problem over the z steps ahead, we

can obtain control moves as follows.
Ri = {Ri[ki], Rilk; + 1], ... Rilk; + = — 1]} (23)

The first control move, R;[k;], will be taken as the choice for
the next segment. In this paper, we adopt dynamic programming
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Algorithm 1: UE Video Rate Adaption Algorithm

1 Initialize the mean of Z(-) based on historical data;

2 for k;, =1,2,...,K; do

3 Calculate the average capacity C;[k; — 1] based on the
downloading process of k; — 1;

4 Update the mean of Z(-) with EWMA;

5 Generate z steps of estimation values C;[k; + j], j = 0, 1,
z — 1, based on the distribution Z(-);
6 Initialize a vector to store the QoE maximization result for

each bit rate, Q"Ri‘xl = 6, for the DP;

7 for j =0,1,....2— 1 do

Use the DP to update Q[;];

9 end

10 Derive the optimal series of choices R; from @[z — 1].
Apply the first bit rate choice for video segment k;;

11 end

(DP) to compute the overall control moves R;.The rough idea is
to store the intermediate optimal QoE score of each prediction
step and then update it at each step. Due to limited size of the
bitrate set R; and small prediction horizon, the time complexity
of the DP algorithm, O(|R;| - 2), is acceptable in this context.
By explicitly considering the uncertainty of estimations, this
algorithm provides us a robust rate adaption solution. The new
optimization problem is formulated as

z—1
onlme 24
R;[ki],.. R[k+z 1]} ZOQ +j] ( )
S.t.ZRiU{J]‘] ERi,jG{ki,...,]{}i-i—Z—l} 25)
Bi[ki] € [0, Bi,max|, Vki, (26)

where 7;[k; 4+ j] and B; [k; + j] are updated as in (17) and (5),
respectively. The procedure is presented in Algorithm 1.

The time complexity the algorithm is O(|R;|z). Theoretically,
a longer z means looking further into the future, of which the
states are usually less accurately estimated. Thus z should not
be too large. The complexity is linear with respect to |R;| or z.
Users can tradeoff between performance and execution time by
tuning the parameter z.

C. Base Station Side Optimization

Compared to the UE rate adaption algorithm, the optimized
resource allocation at the BS is a master problem that decides the
capacity of each UE ¢ at given conditions and chosen data rate
R;[k;]. The BS will allocate resources to the UEs at each time ¢,
which is much smaller than the timescale of rate adaption (e.g.,
microseconds vs. seconds). Moreover, for each time ¢, the data
rate of each UE has been selected already. Therefore, the first two
terms in (16) are constant from the BS perspective. Since A < 0,
we only need to minimize the rebuffering time. The problem
is now transformed to minimizing the total rebuffering time of
all UEs by resource allocation at the BS. The object function is
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given by

Rebpg(t

Zmax{t—sz[k — 1] = Bylki — 1]

—IBSJ‘(t) . l, 0} R fort € (Si[k}i — 1], Sz[k‘l]],
(27)

where function I ;(t) indicates whether segment k; has been
fully downloaded, defined as

1, if 1 22m=1Tim >
Inss(t) = { ZM ks Z (1)

0, if Eu ki1 Zm 1 i (p) < -
(28)

In(27),t — s;[k; — 1] is the buffer occupancy consumed since
the last time a segment is downloaded, while the third term ac-
counts for the buffer occupancy at that time. If we can guarantee
the average capacity C[k;] be larger than the ratio 5 k[k L the
target function will be minimized. This condition for eacL UE
is hard to achieve due to limited resources at the BS. We can
reformulate the BS optimization problem as

max D(Pim (1), Vim (¢ 29
oipax B (pim(t), vim (1)) (29)
szm < ]. Vm t (30)

N M
Z Z pzm < P, Vt, 31)

=1 m=1

where
q)(pim( Uzm Z: { + - Z_: 7’7m } ’

I;(t) is an indication function on whether user 7 is in a re-
quest interval (and thus no resource is needed), and o is a small
scalar constant that prevents the denominator to be zero. In prob-
lem (29), p;(t) is the user ¢ buffer occupancy state maintained
at the BS. Each time a user requests the next video segment, it
also updates its buffer level to the BS. Then the BS sets p;(t)
to the reported buffer occupancy, i.e., p;(t) = B;[t]. Over the
next time slots, p;[t] evolves as follows to emulate the playback
process at user .

(t) _ maX{O, pl(t — ].) — 1}, Sl[kl — 1] <t< Sl[ki]
it = max{0, p;(t —1) — 1} +1, t=s;[ki],
ki =1,2, . K, (32)

until the the next user ¢ feeback is received. This way, the BS
maintains the buffer state of each UE at a minimum control
overhead. Problem (29) is to maximize a weighted sum of the
downlink rates of all UEs at each time ¢, while each weight is
inversely proportional to the playback buffer occupancy at the
corresponding UE.

Theorem 3: The problem defined in (29) is convex.
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With Theorem 3, we can solve the problem with a convex
optimization solver. Since we assume dynamic link states, the
time complexity is O(|N| - |[M|?), where |N]| is the number of
UEs and |M] is the number of subcarriers. Both |N| and | M| are
usually not very large. In addition, the algorithm is executed at
the BS, which by assumption should have much more computa-
tion power than the UE. Furthermore, some techniques such as
early stopping could be applied to achieve a trade-off between
performance and execution time.

The algorithm considers both robust rate adaption and request
interval is termed DORA-RI.

V. SIMULATION STUDY
A. Simulation Scenario and Algorithm Configuration

In this section, the performance of the proposed algorithms is
evaluated with Python multi-threading simulation. For the phys-
ical layer, the total bandwidth is W = 5 MHz and consists of
M = 32 subcarriers, each with k = 160 KHz. The energy con-
straint of the BS is P = 10 W. We generate the channel gain over
unit noise energy with the Rayleigh channel model for which the
expectation is 5 dB. The time frame for resource allocation is
7 = 5 ms. We assume the BS acquires CSI with contamination
of —60 dB W/Hz. Since the request interval mainly depends on
the network conditions, e.g., the congestion level, it could be
as large as 10 s. In this paper, we simulate the request inter-
val as a uniformly distributed process in the range of 50 ms to
500 ms. The fairness function is chosen as the natural logarithm
Ua() = In(-).

Each video lasts for 2 minutes and is partitioned into 1 s
segments and coded into five levels of rates, i.e., R = [100 kbps,
300 kbps, 500 kbps, 900 kbps, 1500 kbps, 2000 kbps], which is
consistent with the 240p, 360p, 480p, 720p," and 1080p formats
for general genres [19]. For the QoE model, we use constant
«; and 3; for all users. The quality model «; and ; are fitted
with the data from [15] and assumed to be the same for all
users. We set 6 = 0.2, A = 2.5, and 7 = 20 according to the
guidelines in [12]. The distribution of the download capacity is
set according to a normal distribution with mean C;[k;] and a
variance that is 10% of the mean. The prediction horizon z is
setto 7.

In order to evaluate the general performance and improvement
over the state-of-art techniques, the proposed algorithm DORA-
RI is first compared with the original DORA proposed in [1]
and a proportionally fair network resource allocation with water-
filling algorithm (PFWF-RM) scheme [16], [20]. The purpose
is to demonstrate the achievable improvement over these two
baseline schemes.

In addition, we would like to gain insights into the the pro-
posed algorithm. Each component of DORA-RI are isolated out
to test their impact. Specifically, the proposed scheme DORA-RI
is compared with two variants:

1) DORA-MPC, which uses a deterministic model predictive

control (MPC) algorithm for bit rate adaption. All the other
parts of this scheme are the same as DORA-RI.

'Note that 900 kbps and 1500 kbps are the rates for 720p.
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Fig. 5. Comparison of QoE values for DORA-RI, DORA, and PFWF-RM.

2) DORA-no-RI, which only considers the request interval
at the BS but does not adopt SMPC. All the other parts are
the same as DORA-RI.

In this comparison, we aim to examine the impact of each

component of DORA-RI on its performance.

B. Simulation Results and Discussions

1) Comparison With the Baseline Schemes: Fig. 5 presents
the mean QoE values achieved by DORA-RI, DORA, and
PFWF-RM. The experiments are repeated 20 times for each
algorithm and the average values are presented. The decreasing
trend of QoE over increased number of users is intuitive. The
reason lies in the fact that the average wireless resource each user
can have is diminishing. In the worst case, DORA-RI can still
achieve 1.7x and 1.3x QoE gains over PFWF-RM and DORA,
respectively. It is clear that the enhancement achieved by utiliz-
ing the request interval of each user and by making more robust
decisions based on the noisy future. DORA-RI achieves a much
better performance than the original version DORA proposed
in [1].

To better reveal the reason for the QoE gain, the average re-
buffering time ratio results of the three schemes are presented
in Fig. 6. Again, it is reasonable that the rebuffering ratio is in-
creasing with increased number of UEs. When more UEs are
served, each of them has a decreasing portion of the total re-
source. However, DORA-RI can keep the rebuffering time ratio
low over the entire range, compared with the other two schemes.
Especially when the resource is scarce for each user to smoothly
support the transmission of video data. By saving the valuable
resource form UEs that do not need them during the request
interval, we can achieve much less stalling time, which in turn
contributes to a high QoE score. Moreover, prediction of the
future can help the algorithm to make better decisions to use
a lower rate but to achieve smoother playback. Therefore, by
smartly choosing smaller rates and more efficiently allocating
resources, DORA-RI can achieve a 1/10 rebuffering time ra-
tio, which means much smoother playback and pleasant user
experience.
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2) Impact of DORA-RI Components: We compare the per-
formance of DORA-RI with DORA-MPC, which uses MPC
for rate adaption instead of SMPC, and DORA-no-RI that only
optimizes rate adaption with no request interval consideration.
In Fig. 7, the average QoE values achieved by each scheme
are presented. DORA-RI achieves a 2% gain over DORA-MPC
and an 8% gain over DORA-no-RI. Notice that the gain is un-
der the influence of the logarithm utility function (8). The real
gain in QoE values are 10% and 30% over DORA-MPC and
DORA-no-RI, respectively. By considering the request interval,
DORA-RI achieves a 30% gain and even a 1.8 gain in the
worst case. In addition, SMPC can provide a better performance
over deterministic MPC by considering the stochastic dynamics
of the network disturbances.

Fig. 8 illustrates how the average rebuffering time ratio is
influenced by each component. It is obvious that all the three
schemes outperform the two baseline schemes (i.e., DORA and
PFWF-RM) comparing to Fig. 5. DORA-RI achieves a 45%
smaller rebuffering time ratio than DORA-MPC in the worst
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MPC and DORA-no-RI.

case. This benefit is introduced by taking uncertainty into con-
sideration while conducting the optimization. In addition, the
consideration of request interval does enhance the rebuffering
performance. However, we notice that when the resource gets
really scarce, e.g., when the number of UEs becomes larger
than 35, the performances of DORA-no-RI and DORA-MPC
get closer. This is because the deterministic MPC lacks the abil-
ity to properly handle the more random request intervals when
the network gets congested. This result actually justifies the ne-
cessity of incorporating SMPC.

InFig. 9, the average standard deviation (STD) of bit rate over
one playback process is presented. Here, we aim to understand
how the bit rate varies during the process. Counter-intuitively,
the STD does not always increase as the number of UEs is in-
creased. We found that initially, there is sufficient resources such
that each user could always choose the largest bit rate, leading
to minimal STDs. When the number of UEs gets higher, the re-
source for each user is decreasing, which leaves them less choice
on bit rates. Therefore, the STD also gets smaller. In the middle
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range, however, the STD is relatively larger. This is because the
resource is sufficient to alter the capacity largely but not enough
to satisfy the largest bit rate. That is, it is harder to accurately
predict future capacity in this range. We can see that DORA-RI
still achieves the lowest STD of video rates among the variants.

VI. RELATED WORK

HTTP based video streaming technologies has drawn great
attention. Some interesting works are on modeling the new QoE
model to support bit rate adaption, while bit rate adaptation strat-
egy is an important problem in DASH. Many existing techniques
could be generally categorized into: (i) buffer based (BB) tech-
niques, (ii) capacity based (CB) schemes, and (iii) integrated
techniques. In FESTIVE [21], the authors focused on improv-
ing the stability and fairness of multiple users that share a bottle-
neck link. PANDA [22] adopted a TCP congestion control like
method to adjust video segment rate, but required certain over-
head for probing. In [23], the authors considered rate adaptation
with adjustment of a threshold. The authors in [24] proposed a
regression method to predict the future capacity and a classical
PID based controller for rate adaption. In [12], the authors pro-
posed an MPC based approach for rate adaption at the user side
and a fastMPC method. However, the authors used a different
QoE model and did not consider the prediction method for ro-
bustness. Markov decision process (MDP) based rate adaption
algorithms have been proposed in [25]-[27]. In [25], the au-
thors applied DP to optimize the data rate adaption and showed
that the DP algorithm in a shot horizon could be better than a
stochastic decision just on the last network capacity. In [26], the
authors proposed a solution, termed mDASH, that was based on
MDP for DASH data rate adaption. Decision of the next seg-
ment data rate was made by taking factors into consideration,
such as buffered video time, and history bandwidth and data rate.
The work in [27] was focused on the vehicular environment. For
MDP based algorithms, the high computational complexity is an
obstacle for realtime applications. However, techniques such as
Microsoft SmoothStreaming [28] have been shown to perform
poorly in wireless networks [29]. Most rate adaption methods
can only passively adapt to the variation in throughput.

The integration of video streaming and wireless network
scheduling is a promising direction to maximize the perfor-
mance of videos in the wireless environment. The authors in [30]
tackled video transmissions in MU-MIMO networks and [31]
investigated the adaptive video streaming and scheduling prob-
lem. Both works utilized Lyapunov optimization to achieve good
performance with assumption of helper(s) as a centralized entity
that can acquire user information. The authors in [32] proposed
a joint optimization framework of scheduling and rate-adaption
with a proof of optimality. However, this work did not explicitly
consider the resource allocation details (e.g., power, subcarrier,
and time assignment) and the QoE model used in this work was
more based on a mathematical formation. Lin [33] proposed a
cross layer method for scalable video streaming over OFDMA
networks. The tradeoff between efficiency and fairness was ad-
dressed. In this work, the authors used the traditional PSNR as
indication of video quality instead of the modern QoE models,
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which incorporate more important factors that influence user
QoE. The authors of [34] tackled the problem of heterogeneous
network streaming on the client side. The network cost con-
straints were considered and the goal was to achieve high quality
streaming and low energy cost on the UE. In [35], on the other
hand, the authors proposed a method that utilize both unicast
and multicast concurrently to reduce the energy consumption of
UEs when streaming video over a cellular network. These works
are focused mainly on the UE side to achieve a tradeoff between
video quality and energy efficiency.

Resource allocation in OFDM networks has been extensively
studied in the past decades [4]-[6], [36]. Refer to [16] for a
comprehensive survey. Two main topics, i.e., energy efficiency
optimization and system throughput optimization, were gener-
ally addressed. The original problem is a mixture of integer
programming (subcarrier assignment) and linear programming
(power allocation), which is NP-hard. Therefore, suboptimal so-
lutions were developed by relaxation of time sharing in one time
frame [5], [36]. In [5], the authors proved that the suboptimal
solution will converge to the optimum asymptotically assuming
ergodic noise processes.

VII. CONCLUSION

We investigated the problem of resource allocation for de-
livering multiple videos using DASH over the downlink of an
OFDMA network. We first presented an offline formulation
based on a novel QoE model. We then derived a more practical
online formulation, and developed a distributed solution algo-
rithm, which consisted of an resource allocation algorithm at
the BS side and a rate adaptation algorithm at the user side. The
proposed scheme was validated with simulations and was shown
to outperform several baseline schemes and variants with con-
siderable gains. For future work, if subjective data is available,
it would be interesting to develop machine learning techniques
to learn the weights in the QoE model.

APPENDIX A
PROOF FOR THEOREM 1

Proof: By redefining the QoE maximization problem as
in (14), the QoE function can be written as

Q™" = g;[ki] + 0(q[ki] — mi[Ki])?

+ max{(),m k] + — Bilki— 1]} ,

(33)

A
K;l

where ¢;[k;] is a linear function. The quadratic part is a convex
function over ¢;[k;]. The max term is convex over g;[k;] and
convex over P, (t) and vy, (t). Since parameters # and A are
both negative, Q*PP" is concave for all the variables. The target
function A®PP*(NV) is the summation of QQ*PP* over time and
users, which means it is concave as well. The constraints are all
convex sets. Therefore, this is a convex problem. [ |
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APPENDIX B
PROOF FOR LEMMA 1

Proof: This Lemma could be presented as follows.
1 X
am (K ; g (R*[ki]) - de}) =0 (4

For brevity, we denote ¢;(R*[k;]) by ¢;[k;]. Rewrite (17) and
take summation from 1 to K. We have

EK: (k : C) (i [ki] — i lks — 1])

ki=1 ¢
K
= > (g k] — ki = 1]). (33)
ki=1
Expand the left hand side summation to obtain
1 K
z (Km,»[K] — kzl ki — 1]) — (s [K] — i [1])

(K] + 1 [ K] — [k — 1]).

K
To obtain the form (34), we first divide it by K and then take
limit on both sides over K. It follows that

o BOK] = S0k = 1)K — 1]
K—o00 CK K—oo K
K
= lim ]ﬂgl(q;“[ki] — i [K] + i [K] — [k — 1]).

It’s obvious that the second term goes to 0 due to finite 77; [ K|
and 772;[1]. By splitting the right-hand-side into two parts and
rearranging terms, we have:

ki=1

The left-hand-side is the limit we want to show to be 0. Note
that (17) can be viewed as a stochastic approximation update
equation for m;. Therefore, the convergence of the right-hand-
side can be proven by applying Theorem 1.1 of Chapter 6
in [37]. |

APPENDIX C
PROOF FOR THEOREM 2

Proof: The convergence proof could be transformed to show
that the Prob-Online objective value converges to the Prob-
Offline objective value. That is, we aim to prove

lim A(S") = A(S) =0,

v*(t), p*(t)} is the online solution and S =
p(t)} is the offline solution.

(36)

where S* = {q*(¢),
{a(®), v(®),

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 22, NO. 2, FEBRUARY 2020

Since Prob-Online is convex, and based on Lemma 2, we can
derive the KKT condition as follows.

Iy (A(Si™)S + @} (t) = %} min (t) + Vi max (1))
+Bi () =0
o; (t)(vj,, —1) =0
rm(Dim — 1) =0
Y5 min (¢i,min — ¢;) =0
Vi max (@ — Qimax) =0
@ ()s B (8), % min (£)s Vi max (t) = 0,

Vi € N,Vm € M,

*

(37

where Iy is the indicator that the variables belong to differ-
ent users. Lagrange multipliers o (t), B, (t), 7} yin(t), and
7V} max (t) are the dual points that the KKT conditions are satis-
fied and the optimal value is achieved.

‘We next construct the help function H(g) thatis differentiable
and concave. The definition is

H(S) = A(S) — a; (1) (v} = 1) = Bl (Pin — 1)
+ ’Y:,min(q;'k -

We have H(S) > A(S) due to the constraints in problem (14).
In addition, we can acquire the following inequality by the con-
cavity and differentiability properties of H(S).

H(S) < H(S*) + H(S")S(S* - S). (39)

From (38) and the KKT conditions (37), we obtain the following
inequality.

AS) SAS)+20) % (4

i=1 t=0

imin) — ’}/Zrnax(‘];k — Gimax)- (38)

*(q; (1) — ai(t).
In Lemma 1, we have proved that limg o0 7 >, _ (4} [ki] —
m;[K]). Here we abuse the notations of K; and T', which both
represent the total playback time. Then we have

1 a1 .
lim - > AS) < 7 Jim A(S"). (40)

T—00

Since S is the optimal offline solution, A(S) is the optimal
value for Prob-Offline. It follows that

A(S) > A(S). (41)
Combining (40) and (41), we conclude that the theorem holds
true. |
APPENDIX D

PROOF FOR THEOREM 3

Proof: Firstof all, we prove the concavity of the rate function,
which can be rewritten as r;,, (t) = v(¢)r logy (1 + p(t)(f)ét))
for brevity. For two feasible solutions (vs,p2) and (vs,p3),
suppose there exists a feasible solution (vq,p1) = €(ve, p2) +
(1 —¢€)(v3,p3), where 0 < e < 1. By the definition of con-
cavity, we need to show that r;,,(v1,p1) > €riym(ve, p2) +
(1 — €)7rim(vs, ps). There are three possible cases for vo and
vs that needs to be analyzed.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on June 03,2020 at 16:39:23 UTC from IEEE Xplore. Restrictions apply.



XIAO et al.: ROBUST QoE-DRIVEN DASH OVER OFDMA NETWORKS

® Case I: when {vy > 0,v3 > 0}. Then we have v; > 0.

Because log,(1+ p1g2,,) is a concave function of py,

its perspective viv log, (1 + %i’”) is concave given that
v1 > 0 [38]. Thus, concavity holds true for this case.
Case II: when {va > 0,v3 = 0}. Then we have v; = evy
and p; = ep2 + (1 — €)ps. It follows that

(ep2 + (1 — €)ps) g,
€VaK

7i.m(v1,p1) = €vak logy (1 +

2
> evs log, (1 + pigzn) .
2

® Case IlI: when {vy = 0,v3 = 0}. This is a trivial case that

the equality holds for v; = 0.

With the concavity of 7;,, (¢), it is convenient to show that the
Zle rim (t) is concave since it is a nonnegative combination
of concave functions 7;,,, (t). The concavity of the cost function
D(pim (t), vim(t)) can be argued for the same reason.

In addition, the utility constraints define a convex set Y. By the
definition of utility function, it’s convenient to show that for any
ri1,72 € T,ery + (1 — €)rg € T forany e with 0 < e < 1. Both
constraints Zﬁl(t)vim(t) <1 and vazl(t) Zf\f:l Pim () <
P also define convex sets. They are the intersection of half-
spaces. Intersection preserves the convexity of the sets. Thus
the constraints are convex.

We conclude that Problem (29) is convex. [ |
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