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Abstract

The brain is worthy of study because it is in charge of behavior. A flurry of recent
technical advances in measuring and quantifying naturalistic behaviors provide an important
opportunity for advancing brain science. However, the problem of understanding unrestrained
behavior in the context of neural recordings and manipulations remains unsolved, and
developing approaches to addressing this challenge is critical. We discuss considerations in
computational neuroethology — the science of quantifying naturalistic behaviors for
understanding the brain — and propose strategies to evaluate progress. We point to open
questions that require resolution and call upon the broader systems neuroscience community to
further develop and leverage measures of naturalistic, unrestrained behavior, which will enable

us to more effectively probe the richness and complexity of the brain.



Leveraging naturalistic behavior to explore brain function

Two distinct traditions have shaped how neuroscientists think about behavior in the lab
(Gomez-Marin et al., 2014). Comparative psychology studies the ability of the brain to generate
behaviors in response to rewards and punishments (Domjan, 1987). This perspective has led to
a large body of work in which animals are trained in the laboratory to respond to specific
sensory cues. By combining these behavioral methods with neural recordings and
manipulations, modern neuroscience is now addressing fundamental questions about how task-
related variables are encoded in the brain, and about how neurons and circuits generate task-
related behaviors (Jazayeri and Afraz, 2017; Krakauer et al., 2017). Animals are typically trained
to produce simple actions (e.g., to lick a port, or to reach for a target) that are easy to measure
and readily correlated with neural activity patterns. In addition, animals are often (but not
always) physically restrained, both to facilitate neural recordings and to avoid spurious
movements that complicate inferences about the meaning and purpose of measured patterns of

neural activity.

Ethology, on the other hand, has historically focused on natural behavior (Tinbergen,
1951; Tinbergen, 1963). The underlying hypothesis of ethology is that exposing the structure of
behavior — how behavior in the natural environment is built from components and organized
over time in response ecologically-relevant stimuli — will yield insights into how the brain
creates behavior (Simmons and Young, 1999; Tinbergen, 1951). However, traditional ethology
has focused on observing the behavior of animals without neural recordings or interventions.
Exploring neural activity during the expression of “naturalistic” behaviors (which here is taken to
mean behaviors that are representative of actions generated during complex real-world tasks,
like exploring new environments, obtaining food, finding shelter, and identifying mates, and
therefore largely self-motivated and expressed freely without physical restraint; see Glossary)
has the potential to reveal how the brain does much of what the brain evolved to do.
Furthermore, ethology has revealed that many naturalistic behaviors are built from sequences of
smaller components, a feature that in principle can be used to reveal dependencies in both
neural activity and actions across multiple timescales, and to illuminate how longer-lasting brain
states specify the moment-to-moment contents of behavior (Baerends, 1976; Manoli et al.,
2006; Tinbergen, 1951).



We argue that understanding the relationship between brain and behavior will require
bringing the traditions of psychology and ethology together, towards an integrated study of
naturalistic behavior spanning a gamut of questions from brain mechanisms to evolution.
Despite the compromises imposed by training and restraint, the comparative psychology
framework for relating neural activity to behavior has yielded, and will continue to yield, key
insights into the mechanisms that support perception, govern decision making and regulate
action (Juavinett et al., 2018; Panzeri et al., 2017). Technical advances — ranging from the
development of virtual reality-based tasks to the use of touchpads for operant conditioning
— are integrating rich contexts and increasingly detailed behavioral measures into training-
based experiments (Mar et al., 2013; Minderer et al., 2016). Furthermore, the recent
development of pose estimation methods to measure paws during reaching (see below) has
revealed the behavioral richness and variability that underlies even simple behavioral reports
like pellet grabs or lever presses (Graving et al., 2019; Guo et al., 2015; Mathis et al., 2018;
Nath et al., 2019; Pereira et al., 2019). In contrast, the technical and conceptual challenges of
relating naturalistic, unrestrained and minimally shaped behavior to neural activity are

formidable and only beginning to be addressed, leaving that area ripe for further development.

In the past decade, a field we now call “computational ethology” has begun to take
shape. It involves the use of machine vision and machine learning to measure and analyze the
patterns of action generated by animals in contexts designed to evoke ethologically-relevant
behaviors (Anderson and Perona, 2014). Technical progress in statistical inference and deep
learning, the democratization of high-performance computing (due to falling hardware costs and
the ability to rent GPUs and CPUs in the cloud), and new and creative ideas about how to apply
technology to measuring naturalistic behavior have dramatically accelerated progress in this

research area.

Approaches from computational ethology may be particularly important in a future in
which we have access to recordings from many thousands of neurons, with the richness of
neural codes on full display. Indeed today, nearly all of the neurons in the brains of the worm C.
elegans and the zebrafish D. Rerio can be recorded simultaneously, thereby allowing a large
fraction of the brain’s neural dynamics to be observed (Cong et al., 2017; Kim et al., 2017;
Nguyen et al., 2016; Symvoulidis et al., 2017; Venkatachalam et al., 2016). Given that subtle
movements can have pervasive effects on neural dynamics, obtaining unbiased and holistic

measurements of an animal’s behavior — even in restrained animals — will be important to



understanding dense neural activity (Musall et al., 2019; Stringer et al., 2019). We further
propose that making sense of high-dimensional neural data will ultimately be facilitated by
access to behaviors whose complexity and dimensionality approaches that of the neural space
that is concurrently being surveyed. This perspective makes urgent the need to develop
methods that combine analysis of naturalistic, unrestrained behavior with measures of neural
activity. Here we review progress towards a science of computational neuroethology — the
problem of relating naturalistic behavior to neural recordings or manipulations in order to better

understand brain function.

Challenges in computational neuroethology

Studying neural activity as animals behave freely has led to some of the most exciting
discoveries in brain science over the past 50 years, including place cells (Hartley et al., 2014),
grid cells (Rowland et al., 2016), replay (Foster, 2017), mechanisms of non-associative learning
(Kandel et al., 2014), and the escape response (Medan and Preuss, 2014). However, to
approach these problems without the benefit of restraint (i.e., head fixation), researchers have,
by necessity, focused on those behaviors that are simplest to quantify. For example, an animal’s
head direction can be quantified by a single angle; its location can be quantified by an (x,y) pair
of spatial coordinates; and a gill-withdrawal or escape reflex can be quantified by a single binary
variable. These behaviors are trivial to estimate by eye, easy to plot on a graph, and

unambiguous in their timing.

Unfortunately, most naturalistic behaviors — from exploration of a novel environment to
mating rituals — are not well captured by simple parameters like centroid position or head
direction (Fig. 1). First, naturalistic behaviors involve coordinated movements of limbs, facial
features and other body parts, and often include rapid changes in the animal’s three-
dimensional pose, i.e., its dynamics. Understanding dynamics requires simultaneous
measurements of how the positions of many different body parts evolve over time. Second,
although naturalistic behaviors are often built from stereotyped components (referred to

” L] ”

variously as behavioral “motifs,” “modules”, “syllables,” “primitives,” and “movemes”), labeling
behaviors on a moment-to-moment basis is made complicated by spatial and temporal
variability in the execution of each behavior (Anderson and Perona, 2014; Berman et al., 2014;
Flash and Hochner, 2005; Tinbergen, 1951; Wiltschko et al., 2015). This variability, taken with

the observation that many spontaneous behaviors evolve continuously over time, makes it



difficult to assign labels and explicit start and stop times to individual actions. Third, because
naturalistic behaviors can be described at different levels of granularity, there are many
simultaneously valid descriptions of an animal’s behavior at any given time point (Dawkins,
1976). For example, replaying a video of a mouse in slow-motion will reveal kinematics of limb
movement as the animal turns its body, but the same movements when played on fast-forward
will reveal whether the animal is in the midst of sleep, courtship or escape behaviors. Finally,
identifying actions is complicated by the ability of animals to do more than one thing at once.
Some of the authors of this review, for example, claim to be able to walk and chew gum at the
same time. This parallelism undermines descriptions of action in which each moment in time is

associated with only a single behavior.

It is no coincidence that naturalistic behavior shares many characteristics with neural
activity: high dimensionality, time-evolving structure, variability and organization at multiple
temporal and spatial scales (Panzeri et al., 2015). However, efforts to develop methods to
understand the spontaneous behavior of unrestrained animals have lagged substantially behind
those to measure neural activity. In part this is because of a longstanding focus on a limited set
of assays that provide low-dimensional descriptions of complex patterns of action (e.g. the
three-chamber social assay, the open field test, and the tail-suspension test), whose aim is to
probe the psychological state of the animal, and which therefore have been heavily used in the
pharmaceutical industry (Crawley, 2003, 2008). The availability of commercial tracking software
has contributed to a perception that automatically measuring and characterizing naturalistic
behavior is either a trivial problem, or one that has already been solved (Spink et al., 2001;
Verbeek, 2005). To the contrary, a number of outstanding challenges need to be addressed if
we seek to leverage the strengths of naturalistic behavior to better understand brain function.
Below we describe the current conceptual and technical framework that supports efforts in
computational neuroethology; we later discuss additional future progress that remains to be

made.

Technology for quantifying behavior

Animal behavior inherently evolves over time. Capturing its time-varying structure
requires measuring features of an animal’s body and pose, tracking those features over time,
and then identifying patterns that correspond to different movements, behaviors, or behavioral

states (Fig. 2). Given the pervasive use of cameras as sensors, here we largely consider this



process from the perspective of video data of worms, flies, fish and mice; however, all of the
described steps have been applied to other animals (like bacteria and birds) and other types of
datastreams (like accelerometry or ultrasonic vocalizations) (Berg, 1975; Coffey et al., 2019;
Markowitz et al., 2013; Van Segbroeck et al., 2017; Venkatraman et al., 2010). It is also
important to note that although video of behaving animals is most often obtained from a single
viewpoint using standard video cameras (Drai and Golani, 2001; Spink et al., 2001; Verbeek,
2005), recent innovations (including depth cameras and image fusion approaches) allow
researchers to track freely-behaving animals to be tracked via video in three dimensions (Gunel
et al., 2019; Hong et al., 2015; Nath et al., 2019; Straw et al., 2011; Wiltschko et al., 2015).

Feature extraction

A mouse’s pose (i.e., its posture), a bird’s beak, and the angle of a fly’s wing are all
features that may be relevant to an analysis of behavior. When studying insect locomotion, for
example, one may wish to measure the position of each insect leg in relation to the other legs
(Wilson, 1966). Two decades ago, this meant recording video of the insect and manually
identifying the location of each of its legs or joints at each point in time (Strauss and
Heisenberg, 1990). Early automated techniques required painting the animal’s joint or leg,
adding a small marker or dye, or using sophisticated imaging modalities like frustrated total
internal reflection to highlight points of interest. Image processing algorithms could then
automatically extract the location of these points of interests, obviating the need for manual
identification (Bender et al., 2010; Kain et al., 2013; Mendes et al., 2013; Petrou and Webb,
2012).

Markerless approaches are an important alternative to these methods, as they enable
automatic extraction of specific kinematic features without the use of surrogate markers. For
animals whose anatomy is relatively simple, like worms or drosophila larvae, simple computer
vision algorithms can automatically identify such features without any human supervision
(Broekmans et al., 2016; Gershow et al., 2012; Liu et al., 2018b; Stephens et al., 2008). For
animals whose anatomy is more complex, “supervised” machine learning approaches — in
which humans identify which features to track and provide labeled examples to train a machine
learning-based feature detection algorithm — can be used to facilitate feature identification and
tracking from video. Platforms that use this strategy (including CADABRA and JAABA) have

been widely used in a variety of contexts (Branson et al., 2009; Dankert et al., 2009; Kabra et



al., 2013). Similarly, the LocoMouse platform uses supervised machine learning techniques to
recognize the precise position of paws, joints, the snout, and the tail in mice walking on a track
(Machado et al., 2015). Recently, there has been an explosion in artificial neural network-based
algorithms that can track human-identified anatomical keypoints in video (Graving et al., 2019;
Mathis et al., 2018; Pereira et al., 2019). By tracking several of these keypoints in parallel,
aspects of an animal’s pose can be estimated using a limited amount of training data. These

methods are gaining fast adoption for their versatility, ease of use, and robustness.

Any marker or keypoint tracking systems can only track points that an experimenter can
easily identify, such as joints and paws. In contrast, image properties can also be analyzed
without human supervision to identify statistical regularities in the pixel data themselves which
can capture or reflect important features of an animal’s behavior. Such “unsupervised”
algorithm-driven approaches can extract features that are recognizable to a human (like the
degree to which the left wing is lifted, or a grimace in a mouse face) and can also yield features
that a human would be hard-pressed to name (Berman et al., 2014; Musall et al., 2018; Stringer
et al., 2019; Wiltschko et al., 2015). Because it is not always clear which behavioral features are
most relevant or informative in a particular experiment, the ability to identify unexpected features

is a potential benefit of taking this sort of approach.

Large numbers of behavioral features are often required to capture behavior within a
given experiment. The high-dimensionality of behavioral data can be cumbersome, and thus
dimensionality reduction is commonly used after feature extraction to generate a lower-
dimensional dataset that approximates the original feature set. Many such approaches — like
Principal Components Analysis (PCA) — are familiar from their use in neural data (Pang et al.,
2016). Given a set of data about behavioral features, PCA identifies an ordered set of principal
components (PCs), each of which constitutes a different “axis” representing progressively less
variance present in the data. A reduced subset of these PCs can be used to approximately
reconstruct the underlying features using fewer dimensions than present in the original data. In
C. elegans, for example, the animal’s centerline captures most of the worm’s behavior (Croll,
1975) but reconstructing this sinusoidal centerline requires tens of (x,y) coordinates. When
transformed into a new basis set defined by PCA, these centerlines can be represented nearly
as well by just three numbers, aka the “Eigenworm” (Stephens et al., 2008), thus providing a
more tractable representation for use in subsequent analysis. It is important to note that the

choice of how many dimensions to preserve matters, and that the largest sources of behavioral



variance may not always reveal those features that most meaningfully describe a particular

behavior.

Temporal Dynamics

Imagine a video of a worm crawling on an agar plate. A single frame of video provides
no information about the animal’s velocity, whether it is accelerating or decelerating, or even
whether it is moving forward or backward. Multiple sequential frames, on the other hand, reveal
the evolution of the worm’s position and pose, which can be used to create a description of
behavior. Behavioral representations can incorporate information about time by considering
behavioral features in either the time domain or the frequency domain. Most commonly, analysis
of behavior takes place exclusively in the time domain — researchers consider how a given
behavioral feature (after extraction and dimensionality reduction) evolves over time, and then
use that information to characterize behavioral dynamics or to identify behavioral motifs. For
example, behavioral motifs in the worm have been identified by using a sliding time window to

capture worm postures (Brown et al., 2013).

Alternatively, behavioral features can be first transformed into frequency space before
considering how behavior evolves over time. Whereas a time domain analysis would represent
a beating wing as the position of the wing over time, a frequency domain analysis would instead
represent the same moving wing as its characteristic wing beat frequency. The MotionMapper
platform takes this approach to format video data before downstream identification of behavioral
motifs (Berman et al., 2016; Klibaite et al., 2017; Liu et al., 2018a; Pereira et al., 2019; Wang et
al., 2016). Frequency domain analyses are well suited for representing cyclic motions (e.g.,
walking gaits, wing flapping, head swinging), and simplify the problem of identifying
relationships between behaviors that are similar but out of phase (e.g., a walking bout starting

with the right foot and a walking bout starting with the left foot).

Importantly, both time- and frequency-domain approaches require the experimenter to
select a relevant timescale at which behavior is thought to be organized. In the time domain, this
timescale defines the duration or distribution of durations of each behavioral motif, and in the

frequency domain this timescale sets the lowest frequency that can be represented. In both



cases the choice of timescale plays an important role in determining whether an animal’s action

is naturally represented as a single contiguous entity or as separate behavioral motifs.

Organizing data and assigning labels

Behavior can be described as being continuous (i.e., following a trajectory through a
behavioral space), discrete, or a combination of the two (Fuchs, 1967). For example, the
behavior of a worm exploring its environment can be elegantly described using dynamical
systems approaches as a continuous trajectory through posture space (Stephens et al., 2010).
Similarly, brief elements of action (frequently corresponding to semantically low levels of
behavior) can follow simple trajectories that are best described as continuous processes
(Katsov et al., 2017; Wiltschko et al., 2015). However, animals can also express one or more of
a large number of possible discrete behaviors that are stereotyped, distinct from each other, and
are organized at a variety of timescales. Behavior therefore often requires labeling to identify
which behavioral motifs or states are being expressed at a particular time point: e.g., was the
animal awake or asleep, mating or fighting? Labeling also defines when particular behaviors
started and stopped, and reveals the sequences of actions taken during an experiment.
Traditionally, labeling has been done by hand — ethologists inspected either raw video of
behavior or extracted behavioral feature data, and then segmented those data using their own
implicit criteria to label the types of actions being exhibited by a given subject. This sort of hand-
labeling, when used to build transition probability matrices, leads to the generation of
ethograms, the lingua franca of traditional ethologists (Baerends, 1976; Tinbergen, 1951).
Relatively low-tech heuristic methods have automated some of these human intuitions — for
example, when a mouse’s nose is high enough to break a laser beam placed in an open field,

the mouse is labeled as “rearing” (Crawley, 2003).

Machine learning is now revolutionizing the process of labeling behavioral data and
generating ethograms. As with feature extraction, automated labeling often takes advantage of
supervised learning approaches, in which machine learning algorithms are trained to identify
particular behaviors based upon a set of human-curated examples (Branson et al., 2009;
Dankert et al., 2009; Kabra et al., 2013; Machado et al., 2015; Mueller et al., 2019; Ravbar et
al., 2019). JAABA, for example, includes an interface that allows researchers to indicate which
video snippets correspond to a particular behavior of interest, and which can then be used to

train a classifier to identify when that behavior occurred (Kabra et al., 2013). Multiple classifiers
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can be built for different behaviors of interest, allowing researchers to flexibly extract complex

information about when different behaviors are expressed (Robie et al., 2017).

Alternatively, unsupervised methods take advantage of statistical regularities in
behavioral feature data to identify repeatedly-used motifs of action (Berman, 2018; Brown and
De Bivort, 2018; Nater et al., 2010). Two exemplar methods (of many) highlight the different
paths that can be taken in using the inherent structure of behavioral data to define a description
of behavior. MotionMapper takes as its input video data, and then after pre-processing (which
includes a PCA-based dimensionality reduction step, and the reformatting of these
dimensionally-reduced data into a frequency domain representation), these data are further
dimensionally reduced by projecting them into a two-dimensional space through a non-linear
method called t-stochastic nearest neighbor (tSNE) embedding (Berman et al., 2016; Klibaite et
al., 2017; Liu et al., 2018a; Pereira et al., 2019; Wang et al., 2016). All unsupervised behavioral
methods have to address the problem of “lumping” versus "splitting” — the granularity at which
a given behavioral datastream is broken up into parts. MotionMapper addresses this challenge
by subjecting the behavioral tSNE embeddings to watershed-based clustering, which identifies
reused motifs of action (which appear as peaks in the tSNE embedding) as well as behaviors
that are less stereotyped (which appear as valleys). A comparison of clustering-based

unsupervised behavioral classification methods can be found in (Todd et al., 2017).

Motion Sequencing (MoSeq), on the other hand, takes advantage of a classic method in
time-series analysis: the hidden Markov model (HMM)(Eddy, 2004). MoSeq (reviewed in (Datta,
2019)) takes as its input 3D data obtained from depth cameras, and then uses statistical
learning techniques to fit a hierarchical variant of the HMM, in which each behavioral component
is modeled as a continuous auto-regressive process in pose space, while the components
themselves (whose duration distributions are flexibly modeled based upon the data) are
modeled using an HMM (Johnson et al., 2016; Markowitz et al., 2018; Pisanello et al., 2017;
Wiltschko et al., 2015). The fitting procedures used by MoSeq allow it to flexibly learn the
identity, number and ordering of 3D behavioral components (called “syllables”) for any given
dataset. MoSeq — like all HMMs — is a generative model that after training can generate a
synthetic 3D mouse (whose realism can be measured via statistical comparisons to held-out
data). The fitting procedure underlying MoSeq explores different descriptions of behavior
— “lumping” some movements together and “splitting” others — as it seeks a representation for

behavior that best predicts held-out behavioral data.
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It should be clear that all behavior pipelines — supervised or unsupervised — require
the experimenter to make choices. These choices include which behavioral features to quantify,
whether to analyze behavior in the time or frequency domain, which timescales to consider,
whether behavior will be represented as continuous, discrete or both, and if discrete how to
address the problem of granularizing behavior into elements. Optimal choices should reflect the
nature of the ethological task the animal is solving, and the inherent structure of the data; as our
ability to record neural activity improves, these choices should be made with an eye towards

maximizing our ability to understand relationship between brain and behavior.

Emerging methods in computational neuroethology are yielding insight into the

relationship between brain and behavior.

Methods for monitoring naturalistic behavior in the laboratory are largely in their infancy,
and yet have already made contributions to understanding the relationship between brain and
behavior; below we review highlights. Note that for brevity here we largely focus on analysis of
freely-behaving animals during neural recording or neural manipulation, although where relevant

we point to examples of interesting analysis in more structured settings.

Forward screens to identify neurons and circuits for behavior

In Drosophila, modern genetics has yielded collections of driver lines that, either alone or
in combination, afford specific access to nearly every neuron in the fly brain (Jenett et al., 2012).
The near-simultaneous development of these driver libraries and methods for automated
behavioral classification is enabling a new type of forward screen, one that seeks to identify
neurons that are necessary or sufficient for particular behaviors or behavioral components. This
strategy has been particularly successful at identifying and dissecting neural circuit that underlie
fly behaviors (Albin et al., 2015; Hoopfer et al., 2015; von Philipsborn et al., 2011). For example,
to identify neurons linked to aggression, researchers expressed neural actuators or inhibitors
(such as the thermogenetic activator TrpA1 or the constitutive inhibitor Kir2.1) in specific neural
populations, and used CADABRA and/or JAABA to quantify the behavioral influence of the
targeted neuron (Asahina et al., 2014; Duistermars et al., 2018; Hoopfer et al., 2015). Because

these automated methods dramatically reduce the time it takes to score videos, thousands of
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lines could be quickly analyzed, enabling both screens focused on likely neurons of interest (i.e.,
neurons that express neuromodulators) as well as screens that survey the entire brain. This
work has revealed key roles for tachykinin-expressing neurons, octopamine receptor-expressing
neurons, P1 neurons, and fruitless-positive aSP2 neurons in driving or modulating aggression,
and has identified population of neurons that control discrete behavioral modules that
collectively comprise threat-related behaviors (Asahina et al., 2014; Duistermars et al., 2018;
Hoopfer et al., 2015). It has also revealed epistasis relationships between different identified
neural populations, for example, that P1 neurons and octopamine receptor-expressing neurons
likely functionally converge upon aSP2 neurons (Watanabe et al., 2017). Similar optogenetic-
based screens that leverage machine vision at scale have been used to identify neural circuits

related to fly feeding and courtship (Albin et al., 2015; von Philipsborn et al., 2011).

Recent work has built upon this success to characterize the effects of neural activation
and silencing on fly behavior more broadly (Robie et al., 2017). In this work, 20 male and female
flies were imaged in parallel; video data was then used to identify a set of 128 hand-engineered
features describing the behavior of each fly, which in turn was submitted to a set of supervised
classifiers (built using JAABA) to identify specific behaviors (e.g., walking, chasing, mating). The
behavioral consequences of thermogenetically activating each of more than 2000 Gal4 lines
(whose anatomy was previously characterized) was assessed using this method. The output of
this process was a map linking sub-regions of the fly brain with particular behaviors; this map
identified likely relationships (such as that between a series of visual areas and walking
behaviors, and between fruitless-positive neurons and wing extension) as well as an online

resource to mine the data for further hypothesis generation.

These screens demonstrate the power of scalable machine vision-based methods to
reveal the neural substrates of behavior. Complementary experiments have also been carried
out using unsupervised behavioral classification methods. For example, a variant of hierarchical
clustering has been used to characterize the set of behavioral components and sequences that
make up Drosophila larvae behavior before and after channelrhodopsin-based actuation of
more than 1000 Gal4 lines (Vogelstein et al., 2014). This experiment identified a set of 29
atomic movements falling into four basic categories (e.g., avoid, escape, backup, turn), and
generated a look-up table linking each line to its characteristic behavioral consequence. A
related set of experiments has been performed in the adult fly through the use of MotionMapper

(Berman et al., 2014; Cande et al., 2018). Flies whose descending neurons (which connect the
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CNS to effector motor centers in the ventral nerve cord) were optogenetically activated exhibited
changes in each of the 5 behavioral categories identified by MotionMapper; furthermore, these
experiments revealed dependencies between the optogenetically-induced behaviors and the

behaviors that was expressed immediately prior (Cande et al., 2018).

Probing sensorimotor processing

Rich descriptions of innate animal behavior are proving critical for probing mechanisms
of sensorimotor processing. For example, much of our understanding of neural mechanisms
underlying sensory-driven navigation in drosophila larvae comes from machine vision-based
behavioral quantification. Drosophila larvae exhibit a stereotyped head-swing behavior that
probes the sensory environment before the animal commits to a new movement direction.
Computer vision-based behavior quantification systems such as (Gershow et al., 2012)
automatically detect these head swings, and have been used to demonstrate that larvae
temporally compare light intensites or chemical concentrations during head swings to chart
future movements (Gepner et al., 2015; Gershow et al., 2012; Hernandez-Nunez et al., 2015;
Kane et al., 2013; Schulze et al., 2015). Combined behavioral measurements and cell-specific
inactivations have also identified specific lateral neurons downstream of the Bolwig’s Organ that
are crucial for mediating phototaxis (Kane et al., 2013). Similarly, work spanning many labs
(reviewed in (Calabrese, 2015) ) has used automated measures of behavior to reveal neural loci
where chemosensory signals are integrated with photosensory signals for driving multi-sensory

behavioral decisions (Gepner et al., 2015; Hernandez-Nunez et al., 2015; Schulze et al., 2015).

One common thread to these experiments is the combined use of optogenetic
stimulation of sensory neurons and simple neural models to link sensory inputs to the animal’s
head-swings and turns. By automatically detecting a different set of behaviors — “hunching” and
“bending” — Jovanic and colleagues conducted a complete neural dissection of the larvae’s
aversive response to mechanical stimulation, which included functionally and anatomically
mapping a set of specific reciprocal inhibitory circuits from sensory input to motor output
(Jovanic et al., 2016; Ohyama et al., 2013); this work illustrates how the automated analysis of
naturalistic behavior can be used in concert with connectomics, electrophysiology, optogenetics,
genetics and modeling to probe a complete sensorimotor circuit. Similar work in C. elegans
using a variety of methods (including MotionMapper) has quantified behavioral responses to the

optogenetic activation of a nociceptive neuron, and characterized the neural computations
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governing the behavioral responses of thousands of individual worms to optogenetic stimulation

of their mechanosensory neurons (Liu et al., 2018a; Schwarz et al., 2015).

Automated behavior measures have also revealed new insights into the sensorimotor
transformations driving social behaviors. For example, during courtship, adult Drosophila detect
the sound and behavior of potential mates to dynamically coordinate its response. Male song
production was long thought to be a fixed action pattern and any variability in the song was
considered noise. Careful measures of social behaviors during song production instead showed
that the details of the song, such as choice of pulse versus sine, could be quantitatively
predicted from the kinematic details of inter-animal behavior (Coen et al., 2014). Further
measures of song and inter-animal behavior during calcium imaging revealed new forms of
song, detailed neural correlates of male song production, and the neural coding of male song in
the female auditory system (Clemens et al., 2018; Clemens et al., 2015) as well as internal
latent states that are correlated with neural processing (Calhoun et al., 2019). Generalized
linear models were used throughout this body of work to mathematically relate inter-animal

behavior, song features and neural coding (Clemens and Murthy, 2017).

Relating global brain dynamics to naturalistic behavior

Large-scale recording techniques now allow patterns of neural actively to be measured
from hundreds to thousands of neurons at cellular resolution throughout the brain, providing an
unprecedented view into neural computations and representational strategies (Williamson et al.,
2019). While such experiments still sub-sample neural activity in rodents or non-human
primates, progress is being made in methods to characterize the global pattern of brain
dynamics exhibited during naturalistic behavior in a variety of simpler model organisms. This
work finds its origins in brain-scale recordings made at cellular resolution via calcium imaging in
small transparent organisms like larval zebrafish or C. elegans during partial or complete
immobilization. Investigations of whole-brain activity during fictive locomotion in zebrafish have
been crucial for mapping and identifying functional roles of new brain areas, including those for
motor adaptation learning (Ahrens et al., 2012), turning behavior (Dunn et al., 2016); and for
discerning sensory vs motor areas (Chen et al., 2018). In C. elegans, measures of fictive
locomotion inferred from interneuron activity has revealed stereotyped low-dimensional neural
state-space trajectories that explain over 75% of the variance of brain-wide calcium activity

during immobilization (Kato et al., 2015).
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In the past few years, such whole-brain imaging at cellular or near-cellular resolution has
been adapted to freely moving zebrafish and C. elegans (Cong et al., 2017; Kim et al., 2017;
Nguyen et al., 2016; Symvoulidis et al., 2017; Venkatachalam et al., 2016). Recordings from
neurons in the head of larval zebrafish during innate foraging behaviors have identified brain
regions related to the animal’s swim bout angle and bout speed (Kim et al., 2017); similarly,
recordings have been made during prey-capture to relate neural activity to the distance between
the zebrafish and its paramecium prey, or to features of the animal’s eye convergence angle
and head orientation (Cong et al., 2017). And in C. elegans, combining whole-brain recordings
during unrestrained movements with whole body posture analysis has revealed new insights
into where and how neural activity codes for locomotion (Scholz et al., 2018); in this work, a
neural decoder of behavior was used to show that during unrestrained behavior only a small
fraction of the brain’s neural dynamics (<5%) are explained by locomotory behavior, suggesting

that the rest of the worm brain’s activity may be involved in other computations.

Probing the relationship between pose dynamics and motor circuits

Animals interact with the world by generating kinematics that support precise task-
related movements (like grasping an object) and large-scale changes in pose (like rearing).
Computational approaches have played a prominent role in quantifying the detailed kinematics
of reaching or grasping behaviors in head-fixed primates and rodents, and to relate measured
kinematics to neural dynamics (e.g.,(Churchland et al., 2012; Guo et al., 2015)). Improved
measures of behavior now allow kinematic measurements during the self-generated locomotory
behavior of unrestrained rodents. For example, LocoMouse has been used to recently
demonstrate that the temporal and spatial aspects of adaptation to a split-belt treadmill are
dissociated, and that a key locus within cerebellum is required to compensate for lateralized
speed perturbations (Darmohray et al., 2019). While LocoMouse estimates gait parameters in a
specialized apparatus (in which a camera images the mouse from two orientations), related
future experiments exploring locomotion in the open field or other contexts will likely take
advantage of deep learning-based point tracking methods like LEAP, DeepLabCut, and
DeepPoseKit (Graving et al., 2019; Mathis et al., 2018; Nath et al., 2019; Pereira et al., 2019).

While point-tracking methods are well suited to monitor the position of easily-segmented

features like paws or the base of the tail, clearly identifying keypoints can be difficult over much
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of the surface of many animals (like furry rodents). Alternative methods may therefore play an
important complementary role in measuring the global pose dynamics expressed by animals as
they generate naturalistic movements (Meyer et al., 2018; Venkatraman et al., 2010). For
example, accelerometer data has also been used to parse spontaneous mouse behavior into
motifs through the use of unsupervised affinity propagation-based techniques; this behavioral
clustering has been combined with miniscope recordings to show that individual behavioral
motifs are encoded by ensembles of direct and indirect striatal medium spiny neurons whose
variance is systematically related to morphological similarities and differences in 3D behavior
(Klaus et al., 2017).

Depth cameras have also been used to directly measure 3D information about an
animal’s pose dynamics, and to use that information to explore brain circuits regulating action.
By combining MoSeq with electrophysiological, multi-color photometry and miniscope methods,
neural correlates for 3D behavioral syllables have recently been identified in dorsolateral
striatum (DLS) (Markowitz et al., 2018). These experiments reveal a systematic fluctuation in
neural activity associated with transitions between behavioral syllables over time, and an
obligate role for DLS in generating appropriate behavioral sequences both during exploration
and odor-guided naturalistic behaviors. Furthermore, MoSeq has been combined with
optogenetic stimulation to reveal the differential consequences of activating the motor cortex,
the dorsal and the ventral striatum (Pisanello et al., 2017; Wiltschko et al., 2015). These results
are consistent with similar results recently obtained using marker-based approaches to explore
the relationship between 3D posture and activity in posterior parietal cortex (Mimica et al.,
2018). Future benchmarking will reveal the trade-offs (if any) between direct measurements of
3D pose with specialized hardware (like depth cameras) and indirect estimates using more
accessible hardware (like standard CCDs used to generate 3D keypoint tracking through image

fusion, or marker-based approaches).

Addressing the challenges that remain: a way forward for behavior-guided discovery in

the brain

As is made plain by the examples above, although important progress is being made in

relating brain activity to naturalistic behaviors, there are a host of conceptual and technical

issues that remain. Behavior manifests itself as complex moment-to-moment trajectories; yet, it

17



is driven by often long-lasting internal states like e.g., sleep, wakefulness, hunger, thirst, as well
as external states such as the availability of resources. Thus a description of natural behavior
must be hierarchically organized in time, and it remains unclear how to best identify behavioral
hierarchies in a given dataset (Berman, 2018; Tao et al., 2019). Furthermore, identifying this
sort of hierarchical structure requires large-scale data, and in particular, experimental set-ups
and analysis pipelines that enable long-term assessment of behavior; this contrasts with most
current naturalistic behavioral experiments, in which animal behavior is measured for minutes

rather than hours or days (but see (Jhuang et al., 2010; Ohayon et al., 2013)).

Second, there is the problem of context — the richness of naturalistic behaviors is most
fully observed in complex environments where sensory cues and affordances evoke the
complete behavioral repertoire of the animal, and yet naturalistic behaviors in the lab are largely
assessed in impoverished arenas. Future improvements in machine vision, virtual reality and
robotics should allow animals explore increasingly realistic contexts while researchers monitor
spontaneous naturalistic behavior (e.g., (Del Grosso and Sirota, 2019; Meyer et al., 2018)). One
humble and yet not fully addressed challenge is segmentation — if a lab animal is in an arena
with a lot of stuff (as will be the case if e.g., a mouse is imaged across its lifetime in its
homecage during enrichment), it can be difficult to reliably tell the surface of the animal apart
from objects around the animal. This is most difficult when considering social behaviors, which
requires pose estimation of more than one animal at a time. Recent improvements in deep
learning are helping to address this problem, as has the use of 3D cameras, but additional
technical work will be required if we are to better understand the behavioral diversity of animals
as they interact with realistic environments (which include conspecifics and predators) (Hong et
al., 2015; Markowitz et al., 2018; Nath et al., 2019).

Finally, gaining access to multi-scale relationships between brain and behavior requires
an understanding of how brain activity itself is organized and evolves over time. While much
progress has been made in developing methods to infer structure in high-dimensional neural
data, the field is still in flux (Cunningham and Yu, 2014; Williamson et al., 2019). As a
consequence, most of the methods currently used to relate brain activity to complex naturalistic
behavior — like linear regression — are drawn from a standard toolkit. An important road
forward will be to build methods and model classes in which structure in the neural data and
naturalistic behavioral data are jointly inferred (Glaser and Kording, 2016). Ideally, joint

inference will allow trial-by-trial variability in neural data to be related to trial-by-trial behavioral
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performance (e.g, the kinematics that underlie the expression of any given instance of an
identified behavioral motif, which in the context of naturalistic behavior can be considered a
“trial”). It remains to be seen whether the tools used to solve the problem of organizing
behavioral data will be the same as those used to jointly infer joint structure in neural and

behavioral data.

Given that human-imposed design decisions suffuse any quantification of animal
behavior, what types of behavioral representations are maximally informative for understanding
brain function? Historically, a given behavioral analysis method has been judged to be
successful if it can be used to discern a difference after an experimental manipulation. This
standard arose from the tradition of behavioral neurogenetics, where observable behavioral
differences are used to support forward screens whose goal is to identify individual genes that
contribute to the generation of behavior (Benzer, 1971). Importantly, this standard ducks the key
conceptual questions in computational neuroethology: how do we choose which distance
metrics to use to tell us whether any two behaviors are similar or different, how do we balance
“lumping” versus “splitting,” and in a given situation how do we decide whether to characterize

behavior as continuous, discrete, or both?

We argue that future development of methods in computational neuroethology should
adopt a set of simple design principles. These principles do not address all the key questions
posed above, but instead are intended to prompt an ongoing conversation about how we

measure behavior:

* Timescales. Humans have traditionally applied labels to animal behavior that operate on
timescales of seconds or longer — think running, grooming, rearing — because that is the
timescale at which perception and language most conveniently intersect. The availability of
automated behavioral analysis methods circumvents this limit. Thus behavioral measurements
and segmentations should ideally include the timescale at which neural variability is expected to
occur. Furthermore, since slow behaviors can reflect fast neural activity, and rapid behavioral
events can reflect long-term neural dynamics, when possible behavioral descriptions should
organize information hierarchically to facilitate multi-scale neurobehavioral discovery.
Successfully meeting this imperative for many naturalistic behaviors will require ongoing

improvements both in behavioral measurements (e.g., faster and higher resolution cameras,
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better tracking, improved data compression) and in analytical methods for characterizing

behavior at multiple timescales at once.

* Interpretability._Descriptions of behavior should lend themselves to hypothesis generation.
Representations or models whose latent variables can be directly related to neural activity are
more useful than those whose underlying variables lack obvious meaning; from this perspective,
a behavioral representation can be thought of as “making sense” in light of neural activity, and
such representations are useful for generating hypotheses about neural mechanisms underlying
action. In a similar vein, representations whose latent variables correspond to a human intuition
about behavior are more useful than those that do not; an “Eigenworm?” is interpretable by a
human and therefore useful for articulating hypotheses about how worm behavior might be
organized, whereas PCA over arbitrary collections of behavioral parameters may not yield to
human intuition. While artificial neural networks are able to generate excellent predictions about
behavior, it is often hard for a human to understand what the network actually learned that
enabled it to make a prediction, or to relate what the network learned back to a latent variable
that might be detected in the brain. This does not mean eschewing approaches like deep
learning — indeed such methods are currently playing a central role in detecting behavioral
features — but rather deploying them selectively to support hypothesis generation. One such
example is the recent use of a variational autoencoder to reformat raw mouse videos before

submission to an interpretable generative model (Johnson et al., 2016).

* Prediction. When possible, prediction should be adopted as a standard for judging the quality
of behavioral representations. Effective behavioral representations should be able to predict
behavior (in those circumstances when behavior is expected to be predictable) or neural
activity; conversely, an effective behavioral representation should enable actions to be predicted
from neural activity. As neuroscientists, this goal of being able to predict brain from behavior
and vice versa strikes to the heart of our motivation for studying behavior. Therefore, prediction
quality is a natural arbiter for deciding amongst model parameters or competing behavioral
representations. Prediction also affords the possibility of finding the right balance between
parsimony and richness, as testing the predictive performance of different models of behavior
potentially offers a solution to the problem of “lumping” versus “splitting.” Of course, one
fundamental challenge that remains is deciding what sort of predictions are most relevant in a
particular experimental context. In the long run, it is likely that multiple types of prediction

(including of simultaneously measured neural data, of genomic or transcriptomic data, or of
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different treatment classes) will be required to fully assess and compare the performance of

different behavioral analysis methods.

The future of computational neuroethology

We are now gaining access to powerful tools for recording behavior, including machine
learning-based methods to extract key features like joint angles and body postures, and for
organizing this information to understand how behavior is structured and evolves over time.
These tools will only get better, and enable increasingly dense characterization of action.
Thanks to ongoing technical progress in both brain recording and behavioral analysis, we will
soon face the serious problem of relating high dimensional time-varying neural data to high
dimensional time-varying behavioral data. A major goal for future research will be to identify
those behavioral representations that will give us the most insight into how neural circuits create
behavior. Meeting this goal will require a dedicated effort on the part of neuroscientists to build
tools for characterizing naturalistic behavior with the same vigor and creativity that they have

thus far largely reserved for measuring and characterizing neural activity.

In looking towards this future it is helpful to ask what it means to “understand” the
relationship between naturalistic behavior and the brain. Psychologists would likely agree that
this answer requires a full account of those brain circuits that regulate a given behavior,
including testable predictions about how circuit manipulations will affect behavior. Ethologists
would wish to understand how behavior helps a given species prosper in its ecological niche,
including accounts of how behavior emerges through evolutionary pressures, and arises in each
individual through the interplay of genetics and learning. These different levels of explanation

are interdependent and equally valid (Barlow, 2012).

And yet, the conceptual difficulties in reaching this understanding may sometimes
appear rather daunting (Gomez-Marin et al., 2014; Jazayeri and Afraz, 2017; Krakauer et al.,
2017). How do we search the immense brain for the circuits that are relevant for a given
naturalistic behavior? How should we interpret the neural signals that we record, some of which
may be as complex as the behavior itself and many of which may be irrelevant? Which is the
right representation of behavior, and at what temporal and semantic scale should we look? How
do we know which behavioral features are meaningful and which are idiosyncratic? How do we

relate the goal we presume the animal is pursuing with the observed behavior? And when we
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finally describe a circuit, how do we think about the computation that it is intrinsically carrying

out to support behavior, independently of the circuit details?

We argue that progress in computational neuroethology will require researchers to
propose mechanisms that might allow an animal to reach an ethological goal. Identifying
possible mechanisms requires answering three questions that echo Marr’s three levels of
analysis of perception (Marr, 1982): First, what ethological goal is any given behavior to meant
to address and how shall we measure whether a particular action helps an animal reach its
goal? Second, given the available sensory inputs and physical constraints, what computational
strategies could allow an animal to reach its goal? Third, how should algorithms that support
goal-oriented behavior be implemented in the hardware of a nervous system? The book
‘Vehicles’ by Valentino Braitenberg suggests an approach for addressing these questions:
testable hypotheses about how the brain creates naturalistic task-driven behaviors can be
generated by attempting to design simple automata that can accomplish that same task
(Braitenberg, 1986). This perspective has successfully yielded insight into e.g., the mechanisms

and algorithms that enable bacteria to chemotax towards a chemical cue.

Importantly, this process of mapping goals to algorithms produces normative models.
These models are valuable in many ways: to generate hypotheses about which neural signals to
look for in the brain with relation to behavior, to evaluate whether the observed neural signals
are sufficient for a particular task, to assess which behavioral features are noise and which are
diagnostic of the main design choices and trade-offs (for example sensitivity to input noise vs.
circuit complexity), and to taxonomize behaviors in the context of a goal at different scales of
temporal and semantic resolution. The use of methods in computational neuroethology
— whether focused on simple trained behaviors or complex, unrestrained patterns of action,
whether done in single animals or at scale — will teach us about the structure of behavior;
extracting meaning from these experiments and understanding how behavior meaningfully
relates to brain activity will require a notion of the animal’s goals in generating a behavior, and in
the long run, normative models for how a brain might accomplish that goal. This approach has
been very fruitful in understanding perception and learning (Nakayama and Shimojo, 1992;
Navalpakkam et al., 2010; Reichardt et al., 1983; Shadlen and Newsome, 1998; Sutton and
Barto, 1998). When taken with the conceptual and technical advances in computational
neuroethology, we predict this will play an equally powerful role in the study of naturalistic

behavior.
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Fig 1. Challenges in computational ethology. A characteristic sequence of behaviors
exhibited by a mouse in its home cage as it thigmotaxis around the walls, approaches some
food, eats and then sleeps (center, mouse cartoons). Several key challenges face any
segmentation of continuous behavior into components are illustrated. First, the behavior of most
model organisms occurs in three dimensions (green). Second, behaviors need to be labeled,
which raises the problem of “lumping” versus “splitting” (red); for example, mice thigmotax, a
behavior in which mice exhibit locomotion and turning behaviors that are deterministically
sequenced to generate an action where the animal circumnavigates its cage. Is thigmotaxis a
singular behavior (because its elements are deterministically linked during its expression), or it
is a sequences of walking, turning and walking behaviors? Third, should behavior be considered
at a single timescale that serially progressed, or instead considered a hierarchical process
organized at multiple timescales simultaneously (blue). Fourth, when the mouse is sniffing and
running at the same time, is that a compositional behavior whose basis set includes “run” and

“sniff,” or is “running+sniffing” a fundamentally new behavior (purple)?
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Fig. 2. Typical stages in a behavioral analysis pipeline.

Conceptual steps involved in any behavior analysis pipeline (left) with references to published
example pipelines (right). Shaded region indicates the steps that each method implements. a.
Animal behavior is recorded. b. Features are extracted. Features may be interpretable, e.g. a
mouse’s paw position; or abstract e.g. an algorithmically defined weighted set of pixels.
Automatic feature extraction can roughly be divided into algorithms that use classical computer
vision feature detection, supervised learning, or unsupervised learning. High-dimensional
descriptions of behavior features can optionally be approximated with fewer-dimensions via
dimensionality reduction. c¢. To leap from features to behavior requires first representing the
temporal dynamics of the features. Feature dynamics can be represented in either the time- or
frequency domain. Additional dimensionality reduction can optionally be performed at this
stage. d. The resulting temporal dynamics are organized into behavior which can be either
discrete or continuous. For discrete behavior representations, feature dynamics are clustered
and labeled (e.g. ‘Sniffing’ or ‘“Turning’) using either supervised or unsupervised machine
learning. For continuous descriptions of behavior, trajectories through behavior space are

analyzed and interpreted e.g. using dynamical systems models.
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Fig. 3. Pose estimation. Recent advances in artificial neural networks allow identifiable points
on an animal’s surface (e.g., joints) to be automatically detected from images with minimal
human supervision, even when animals interact or are in rich and complex backgrounds
(Graving et al., 2019; Mathis et al., 2018; Pereira et al., 2019). Examples of a. flies, b. giraffes

and c. mice are shown from (Pereira et al., 2019 and unpublished).
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GLOSSARY

Behavioral representation - A quantitative distillation of any aspect of the time-varying
behavior exhibited by an animal in an experiment. Such representations can vary in form from
classical ethograms to low-dimensional plots capturing the trajectory of an animal in space.

Naturalistic — as with “ethologically-relevant,” (see below) there are many definitions for
naturalistic, and indeed most experiments in behavioral neuroscience can justifiably be argued
to be naturalistic at some level. Here, we take the word “naturalistic’ to mean behaviors that are
representative of actions generated during complex real-world tasks, like exploring new
environments, obtaining food, finding shelter, and identifying mates; naturalistic behaviors as
referred to herein are also largely self-motivated and expressed freely without physical restraint.
This definition is meant to distinguish such behaviors from those that are imposed by
researchers on animals through overtraining, or those that are more constrained due to e.g.,
head fixation (although, as mentioned above, there are contexts in which those types of
behaviors are quite reasonably also referred to as “naturalistic”).

Ethologically-relevant - as with “naturalistic,” (see above), “ethologically-relevant” is an
adjective whose meaning is in the eye of the beholder; again, this term can be appropriately
applied to many kinds of behavioral experiments, including those in which animals are subject to
training and restraint. Here, we take “ethologically-relevant” to mean a set of behaviors that
support tasks animals have to address as part of the existential challenge of living in a particular
environmental niche.

Behavioral label — a behavioral label is a descriptor applied to an epoch of behavioral data.
Behavioral labels can cover descriptions of behavior at many levels of granularity, and run the
gamut from “a twitch of motor unit 72 in the soleus muscle” to “hibernating.”

Behavioral motif — a stereotyped and re-used unit of movement. The terms “motif,” “moveme,”
“‘module,” “primitive” and “syllable” have all been used interchangeably, and none of these terms
is linked to a rigorous definition of the spatiotemporal scale at which a unit behavior is
organized. Similarly, action and behavior here and elsewhere are used to refer to collections of
units of behavior, but again, there is no rigorous line that separates these or related terms.
Perona and Anderson have argued for a taxonomy in which moveme is the simplest movement
associated with a behavior, an action is a sequence of movemes, and an activity is a species-
characteristic set of movemes and actions (Anderson and Perona, 2014).

Behavioral sequence — an epoch in which more than one behavioral motif is expressed;
sequences cof motifs an be either deterministic (e.g., motif A always follows motif B), or
probabilistic (e.g., motif A follows motif B fifty percent of the time).

Artificial neural network — class of machine learning algorithms that operate by simulating a
network of simplified neurons. These often are trained through supervised learning.

Behavioral feature — a relevant attribute of an animal that, when observed over time, helps
define behavior. For example, the location of a paw.
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Trajectory— the motion of a point in space over time. This can be either a physical object, like
an animal’s paw through real space, or it can be abstract like the animal’s current behavior state
as it travels through behavior state space.

Behavior analysis pipeline — a set of algorithms that, all together, take a raw recording of
behavior (usually video) and returns high level representations of the animal’s behavior, such as
trajectories, motifs, sequences or behavior labels.

Dimensionality — number of variables required to describe a dataset. For example the (x,y)
position of a mouse paw has dimensionality of 2. A complete description of its pose requires
many more variables and thus has higher dimensionality.

Dimensionality reduction —mathematically approximating a dataset using fewer than the
original dimensions. For example, Stephens et al 2008 showed that a worm’s centerline
originally requiring 100 points could be well-approximated by three numbers. Dimensionality
reduction usually requires a change in the representation of the data.

Embedding — a type of dimensionality reduction that takes data, which is assumed to exists on
a high manifold, and unwraps it into a lower dimensional space where it is more easily
visualized. T-SNE and U-MAP are two examples of embeddings that are gaining adoption in the
life sciences.

Temporal dynamics — here, how behavior features change over time. These can be
mathematically represented in the time-domain, or in the frequency-domain

Key-point — region of interest in an image, such as an animal’s joint or appendage

Supervised learning — a computer algorithm that learns to performs a task, such as identifying
an animal’s joint in an image, through human provided examples.

Behavior state-space — a mathematical space (possibly high dimensional) such that a point in
this space corresponds to a specific instance of animal behavior.

Behavior map —visualization of a behavior state-space, usually refers to a two-dimensional
visualization. Convenient for visualizing how an animal’s behavior is organized into clusters or
how it might differ from another animal.

Principal Components Analysis (PCA). A mathematical change of basis that is commonly
used for dimensionality reduction in many behavioral analysis pipelines. PCA identifies a new
basis set in which to represent data. A truncated version of this dataset serves as a useful
lower-dimensional approximation of the original data.
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