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Abstract 
 

The brain is worthy of study because it is in charge of behavior. A flurry of recent 

technical advances in measuring and quantifying naturalistic behaviors provide an important 

opportunity for advancing brain science. However, the problem of understanding unrestrained 

behavior in the context of neural recordings and manipulations remains unsolved, and 

developing approaches to addressing this challenge is critical. We discuss considerations in 

computational neuroethology — the science of quantifying naturalistic behaviors for 

understanding the brain — and propose strategies to evaluate progress. We point to open 

questions that require resolution and call upon the broader systems neuroscience community to 

further develop and leverage measures of naturalistic, unrestrained behavior, which will enable 

us to more effectively probe the richness and complexity of the brain.  
  



 3 

  

Leveraging naturalistic behavior to explore brain function 
 

Two distinct traditions have shaped how neuroscientists think about behavior in the lab 

(Gomez-Marin et al., 2014). Comparative psychology studies the ability of the brain to generate 

behaviors in response to rewards and punishments (Domjan, 1987). This perspective has led to 

a large body of work in which animals are trained in the laboratory to respond to specific 

sensory cues. By combining these behavioral methods with neural recordings and 

manipulations, modern neuroscience is now addressing fundamental questions about how task-

related variables are encoded in the brain, and about how neurons and circuits generate task-

related behaviors (Jazayeri and Afraz, 2017; Krakauer et al., 2017). Animals are typically trained 

to produce simple actions (e.g., to lick a port, or to reach for a target) that are easy to measure 

and readily correlated with neural activity patterns. In addition, animals are often (but not 

always) physically restrained, both to facilitate neural recordings and to avoid spurious 

movements that complicate inferences about the meaning and purpose of measured patterns of 

neural activity.  

 

Ethology, on the other hand, has historically focused on natural behavior (Tinbergen, 

1951; Tinbergen, 1963). The underlying hypothesis of ethology is that exposing the structure of 

behavior — how behavior in the natural environment is built from components and organized 

over time in response ecologically-relevant stimuli — will yield insights into how the brain 

creates behavior (Simmons and Young, 1999; Tinbergen, 1951). However, traditional ethology 

has focused on observing the behavior of animals without neural recordings or interventions. 

Exploring neural activity during the expression of “naturalistic” behaviors (which here is taken to 

mean behaviors that are representative of actions generated during complex real-world tasks, 

like exploring new environments, obtaining food, finding shelter, and identifying mates, and 

therefore largely self-motivated and expressed freely without physical restraint; see Glossary) 

has the potential to reveal how the brain does much of what the brain evolved to do. 

Furthermore, ethology has revealed that many naturalistic behaviors are built from sequences of 

smaller components, a feature that in principle can be used to reveal dependencies in both 

neural activity and actions across multiple timescales, and to illuminate how longer-lasting brain 

states specify the moment-to-moment contents of behavior (Baerends, 1976; Manoli et al., 

2006; Tinbergen, 1951).  
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We argue that understanding the relationship between brain and behavior will require 

bringing the traditions of psychology and ethology together, towards an integrated study of 

naturalistic behavior spanning a gamut of questions from brain mechanisms to evolution. 

Despite the compromises imposed by training and restraint, the comparative psychology 

framework for relating neural activity to behavior has yielded, and will continue to yield, key 

insights into the mechanisms that support perception, govern decision making and regulate 

action (Juavinett et al., 2018; Panzeri et al., 2017). Technical advances — ranging from the 

development of virtual reality-based tasks to the use of touchpads for operant conditioning 

— are integrating rich contexts and increasingly detailed behavioral measures into training-

based experiments (Mar et al., 2013; Minderer et al., 2016). Furthermore, the recent 

development of pose estimation methods to measure paws during reaching (see below) has 

revealed the behavioral richness and variability that underlies even simple behavioral reports 

like pellet grabs or lever presses (Graving et al., 2019; Guo et al., 2015; Mathis et al., 2018; 

Nath et al., 2019; Pereira et al., 2019). In contrast, the technical and conceptual challenges of 

relating naturalistic, unrestrained and minimally shaped behavior to neural activity are 

formidable and only beginning to be addressed, leaving that area ripe for further development.  

 

In the past decade, a field we now call “computational ethology” has begun to take 

shape. It involves the use of machine vision and machine learning to measure and analyze the 

patterns of action generated by animals in contexts designed to evoke ethologically-relevant 

behaviors (Anderson and Perona, 2014).  Technical progress in statistical inference and deep 

learning, the democratization of high-performance computing (due to falling hardware costs and 

the ability to rent GPUs and CPUs in the cloud), and new and creative ideas about how to apply 

technology to measuring naturalistic behavior have dramatically accelerated progress in this 

research area.  

 

Approaches from computational ethology may be particularly important in a future in 

which we have access to recordings from many thousands of neurons, with the richness of 

neural codes on full display. Indeed today, nearly all of the neurons in the brains of the worm C. 

elegans and the zebrafish D. Rerio can be recorded simultaneously, thereby allowing a large 

fraction of the brain’s neural dynamics to be observed (Cong et al., 2017; Kim et al., 2017; 

Nguyen et al., 2016; Symvoulidis et al., 2017; Venkatachalam et al., 2016). Given that subtle 

movements can have pervasive effects on neural dynamics, obtaining unbiased and holistic 

measurements of an animal’s behavior — even in restrained animals — will be important to 
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understanding dense neural activity (Musall et al., 2019; Stringer et al., 2019). We further 

propose that making sense of high-dimensional neural data will ultimately be facilitated by 

access to behaviors whose complexity and dimensionality approaches that of the neural space 

that is concurrently being surveyed. This perspective makes urgent the need to develop 

methods that combine analysis of naturalistic, unrestrained behavior with measures of neural 

activity. Here we review progress towards a science of computational neuroethology — the 

problem of relating naturalistic behavior to neural recordings or manipulations in order to better 

understand brain function.  

 

Challenges in computational neuroethology 
 

Studying neural activity as animals behave freely has led to some of the most exciting 

discoveries in brain science over the past 50 years, including place cells (Hartley et al., 2014), 

grid cells (Rowland et al., 2016), replay (Foster, 2017), mechanisms of non-associative learning 

(Kandel et al., 2014), and the escape response (Medan and Preuss, 2014). However, to 

approach these problems without the benefit of restraint (i.e., head fixation), researchers have, 

by necessity, focused on those behaviors that are simplest to quantify. For example, an animal’s 

head direction can be quantified by a single angle; its location can be quantified by an (x,y) pair 

of spatial coordinates; and a gill-withdrawal or escape reflex can be quantified by a single binary 

variable. These behaviors are trivial to estimate by eye, easy to plot on a graph, and 

unambiguous in their timing. 

 

Unfortunately, most naturalistic behaviors — from exploration of a novel environment to 

mating rituals — are not well captured by simple parameters like centroid position or head 

direction (Fig. 1). First, naturalistic behaviors involve coordinated movements of limbs, facial 

features and other body parts, and often include rapid changes in the animal’s three-

dimensional pose, i.e., its dynamics. Understanding dynamics requires simultaneous 

measurements of how the positions of many different body parts evolve over time. Second, 

although naturalistic behaviors are often built from stereotyped components (referred to 

variously as behavioral “motifs,” “modules”, “syllables,” “primitives,” and “movemes”), labeling 

behaviors on a moment-to-moment basis is made complicated by spatial and temporal 

variability in the execution of each behavior (Anderson and Perona, 2014; Berman et al., 2014; 

Flash and Hochner, 2005; Tinbergen, 1951; Wiltschko et al., 2015). This variability, taken with 

the observation that many spontaneous behaviors evolve continuously over time, makes it 
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difficult to assign labels and explicit start and stop times to individual actions. Third, because 

naturalistic behaviors can be described at different levels of granularity, there are many 

simultaneously valid descriptions of an animal’s behavior at any given time point (Dawkins, 

1976). For example, replaying a video of a mouse in slow-motion will reveal kinematics of limb 

movement as the animal turns its body, but the same movements when played on fast-forward 

will reveal whether the animal is in the midst of sleep, courtship or escape behaviors. Finally, 

identifying actions is complicated by the ability of animals to do more than one thing at once. 

Some of the authors of this review, for example, claim to be able to walk and chew gum at the 

same time. This parallelism undermines descriptions of action in which each moment in time is 

associated with only a single behavior.  

 

 It is no coincidence that naturalistic behavior shares many characteristics with neural 

activity: high dimensionality, time-evolving structure, variability and organization at multiple 

temporal and spatial scales (Panzeri et al., 2015). However, efforts to develop methods to 

understand the spontaneous behavior of unrestrained animals have lagged substantially behind 

those to measure neural activity. In part this is because of a longstanding focus on a limited set 

of assays that provide low-dimensional descriptions of complex patterns of action (e.g. the 

three-chamber social assay, the open field test, and the tail-suspension test), whose aim is to 

probe the psychological state of the animal, and which therefore have been heavily used in the 

pharmaceutical industry (Crawley, 2003, 2008). The availability of commercial tracking software 

has contributed to a perception that automatically measuring and characterizing naturalistic 

behavior is either a trivial problem, or one that has already been solved (Spink et al., 2001; 

Verbeek, 2005). To the contrary, a number of outstanding challenges need to be addressed if 

we seek to leverage the strengths of naturalistic behavior to better understand brain function. 

Below we describe the current conceptual and technical framework that supports efforts in 

computational neuroethology; we later discuss additional future progress that remains to be 

made. 

 

Technology for quantifying behavior 
 

Animal behavior inherently evolves over time. Capturing its time-varying structure 

requires measuring features of an animal’s body and pose, tracking those features over time, 

and then identifying patterns that correspond to different movements, behaviors, or behavioral 

states (Fig. 2). Given the pervasive use of cameras as sensors, here we largely consider this 
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process from the perspective of video data of worms, flies, fish and mice; however, all of the 

described steps have been applied to other animals (like bacteria and birds) and other types of 

datastreams (like accelerometry or ultrasonic vocalizations) (Berg, 1975; Coffey et al., 2019; 

Markowitz et al., 2013; Van Segbroeck et al., 2017; Venkatraman et al., 2010). It is also 

important to note that although video of behaving animals is most often obtained from a single 

viewpoint using standard video cameras (Drai and Golani, 2001; Spink et al., 2001; Verbeek, 

2005), recent innovations (including depth cameras and image fusion approaches) allow 

researchers to track freely-behaving animals to be tracked via video in three dimensions (Günel 

et al., 2019; Hong et al., 2015; Nath et al., 2019; Straw et al., 2011; Wiltschko et al., 2015). 

 

Feature extraction 

 

A mouse’s pose (i.e., its posture), a bird’s beak, and the angle of a fly’s wing are all 

features that may be relevant to an analysis of behavior. When studying insect locomotion, for 

example, one may wish to measure the position of each insect leg in relation to the other legs 

(Wilson, 1966).  Two decades ago, this meant recording video of the insect and manually 

identifying the location of each of its legs or joints at each point in time (Strauss and 

Heisenberg, 1990).  Early automated techniques required painting the animal’s joint or leg, 

adding a small marker or dye, or using sophisticated imaging modalities like frustrated total 

internal reflection to highlight points of interest. Image processing algorithms could then 

automatically extract the location of these points of interests, obviating the need for manual 

identification (Bender et al., 2010; Kain et al., 2013; Mendes et al., 2013; Petrou and Webb, 

2012).  

 

Markerless approaches are an important alternative to these methods, as they enable 

automatic extraction of specific kinematic features without the use of surrogate markers. For 

animals whose anatomy is relatively simple, like worms or drosophila larvae, simple computer 

vision algorithms can automatically identify such features without any human supervision 

(Broekmans et al., 2016; Gershow et al., 2012; Liu et al., 2018b; Stephens et al., 2008). For 

animals whose anatomy is more complex, “supervised” machine learning approaches — in 

which humans identify which features to track and provide labeled examples to train a machine 

learning-based feature detection algorithm — can be used to facilitate feature identification and 

tracking from video. Platforms that use this strategy (including CADABRA and JAABA) have 

been widely used in a variety of contexts (Branson et al., 2009; Dankert et al., 2009; Kabra et 
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al., 2013). Similarly, the LocoMouse platform uses supervised machine learning techniques to 

recognize the precise position of paws, joints, the snout, and the tail in mice walking on a track 

(Machado et al., 2015). Recently, there has been an explosion in artificial neural network-based 

algorithms that can track human-identified anatomical keypoints in video (Graving et al., 2019; 

Mathis et al., 2018; Pereira et al., 2019). By tracking several of these keypoints in parallel, 

aspects of an animal’s pose can be estimated using a limited amount of training data. These 

methods are gaining fast adoption for their versatility, ease of use, and robustness.   

 

Any marker or keypoint tracking systems can only track points that an experimenter can 

easily identify, such as joints and paws. In contrast, image properties can also be analyzed 

without human supervision to identify statistical regularities in the pixel data themselves which 

can capture or reflect important features of an animal’s behavior. Such “unsupervised” 

algorithm-driven approaches can extract features that are recognizable to a human (like the 

degree to which the left wing is lifted, or a grimace in a mouse face) and can also yield features 

that a human would be hard-pressed to name (Berman et al., 2014; Musall et al., 2018; Stringer 

et al., 2019; Wiltschko et al., 2015). Because it is not always clear which behavioral features are 

most relevant or informative in a particular experiment, the ability to identify unexpected features 

is a potential benefit of taking this sort of approach. 

 

Large numbers of behavioral features are often required to capture behavior within a 

given experiment. The high-dimensionality of behavioral data can be cumbersome, and thus 

dimensionality reduction is commonly used after feature extraction to generate a lower-

dimensional dataset that approximates the original feature set. Many such approaches — like 

Principal Components Analysis (PCA) — are familiar from their use in neural data (Pang et al., 

2016). Given a set of data about behavioral features, PCA identifies an ordered set of principal 

components (PCs), each of which constitutes a different “axis” representing progressively less 

variance present in the data. A reduced subset of these PCs can be used to approximately 

reconstruct the underlying features using fewer dimensions than present in the original data.  In 

C. elegans, for example, the animal’s centerline captures most of the worm’s behavior (Croll, 

1975) but reconstructing this sinusoidal centerline requires tens of (x,y) coordinates. When 

transformed into a new basis set defined by PCA, these centerlines can be represented nearly 

as well by just three numbers, aka the “Eigenworm” (Stephens et al., 2008), thus providing a 

more tractable representation for use in subsequent analysis. It is important to note that the 

choice of how many dimensions to preserve matters, and that the largest sources of behavioral 
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variance may not always reveal those features that most meaningfully describe a particular 

behavior. 

 

 

Temporal Dynamics 

 
Imagine a video of a worm crawling on an agar plate. A single frame of video provides 

no information about the animal’s velocity, whether it is accelerating or decelerating, or even 

whether it is moving forward or backward. Multiple sequential frames, on the other hand, reveal 

the evolution of the worm’s position and pose, which can be used to create a description of 

behavior. Behavioral representations can incorporate information about time by considering 

behavioral features in either the time domain or the frequency domain. Most commonly, analysis 

of behavior takes place exclusively in the time domain — researchers consider how a given 

behavioral feature (after extraction and dimensionality reduction) evolves over time, and then 

use that information to characterize behavioral dynamics or to identify behavioral motifs. For 

example, behavioral motifs in the worm have been identified by using a sliding time window to 

capture worm postures (Brown et al., 2013).  

 

Alternatively, behavioral features can be first transformed into frequency space before 

considering how behavior evolves over time. Whereas a time domain analysis would represent 

a beating wing as the position of the wing over time, a frequency domain analysis would instead 

represent the same moving wing as its characteristic wing beat frequency. The MotionMapper 

platform takes this approach to format video data before downstream identification of behavioral 

motifs (Berman et al., 2016; Klibaite et al., 2017; Liu et al., 2018a; Pereira et al., 2019; Wang et 

al., 2016). Frequency domain analyses are well suited for representing cyclic motions (e.g., 

walking gaits, wing flapping, head swinging), and simplify the problem of identifying 

relationships between behaviors that are similar but out of phase (e.g., a walking bout starting 

with the right foot and a walking bout starting with the left foot).  

 

Importantly, both time- and frequency-domain approaches require the experimenter to 

select a relevant timescale at which behavior is thought to be organized. In the time domain, this 

timescale defines the duration or distribution of durations of each behavioral motif, and in the 

frequency domain this timescale sets the lowest frequency that can be represented. In both 



 10 

cases the choice of timescale plays an important role in determining whether an animal’s action 

is naturally represented as a single contiguous entity or as separate behavioral motifs. 

 

Organizing data and assigning labels 

 

 Behavior can be described as being continuous (i.e., following a trajectory through a 

behavioral space), discrete, or a combination of the two (Fuchs, 1967). For example, the 

behavior of a worm exploring its environment can be elegantly described using dynamical 

systems approaches as a continuous trajectory through posture space (Stephens et al., 2010). 

Similarly, brief elements of action (frequently corresponding to semantically low levels of 

behavior) can follow simple trajectories that are best described as continuous processes 

(Katsov et al., 2017; Wiltschko et al., 2015). However, animals can also express one or more of 

a large number of possible discrete behaviors that are stereotyped, distinct from each other, and 

are organized at a variety of timescales. Behavior therefore often requires labeling to identify 

which behavioral motifs or states are being expressed at a particular time point: e.g., was the 

animal awake or asleep, mating or fighting? Labeling also defines when particular behaviors 

started and stopped, and reveals the sequences of actions taken during an experiment. 

Traditionally, labeling has been done by hand — ethologists inspected either raw video of 

behavior or extracted behavioral feature data, and then segmented those data using their own 

implicit criteria to label the types of actions being exhibited by a given subject. This sort of hand-

labeling, when used to build transition probability matrices, leads to the generation of 

ethograms, the lingua franca of traditional ethologists (Baerends, 1976; Tinbergen, 1951). 

Relatively low-tech heuristic methods have automated some of these human intuitions — for 

example, when a mouse’s nose is high enough to break a laser beam placed in an open field, 

the mouse is labeled as “rearing” (Crawley, 2003).  

 

Machine learning is now revolutionizing the process of labeling behavioral data and 

generating ethograms. As with feature extraction, automated labeling often takes advantage of 

supervised learning approaches, in which machine learning algorithms are trained to identify 

particular behaviors based upon a set of human-curated examples (Branson et al., 2009; 

Dankert et al., 2009; Kabra et al., 2013; Machado et al., 2015; Mueller et al., 2019; Ravbar et 

al., 2019). JAABA, for example, includes an interface that allows researchers to indicate which 

video snippets correspond to a particular behavior of interest, and which can then be used to 

train a classifier to identify when that behavior occurred (Kabra et al., 2013). Multiple classifiers 
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can be built for different behaviors of interest, allowing researchers to flexibly extract complex 

information about when different behaviors are expressed (Robie et al., 2017).  

 

Alternatively, unsupervised methods take advantage of statistical regularities in 

behavioral feature data to identify repeatedly-used motifs of action (Berman, 2018; Brown and 

De Bivort, 2018; Nater et al., 2010). Two exemplar methods (of many) highlight the different 

paths that can be taken in using the inherent structure of behavioral data to define a description 

of behavior. MotionMapper takes as its input video data, and then after pre-processing (which 

includes a PCA-based dimensionality reduction step, and the reformatting of these 

dimensionally-reduced data into a frequency domain representation), these data are further 

dimensionally reduced by projecting them into a two-dimensional space through a non-linear 

method called t-stochastic nearest neighbor (tSNE) embedding (Berman et al., 2016; Klibaite et 

al., 2017; Liu et al., 2018a; Pereira et al., 2019; Wang et al., 2016). All unsupervised behavioral 

methods have to address the problem of “lumping” versus "splitting” — the granularity at which 

a given behavioral datastream is broken up into parts. MotionMapper addresses this challenge 

by subjecting the behavioral tSNE embeddings to watershed-based clustering, which identifies 

reused motifs of action (which appear as peaks in the tSNE embedding) as well as behaviors 

that are less stereotyped (which appear as valleys). A comparison of clustering-based 

unsupervised behavioral classification methods can be found in (Todd et al., 2017).  

 

Motion Sequencing (MoSeq), on the other hand, takes advantage of a classic method in 

time-series analysis: the hidden Markov model (HMM)(Eddy, 2004). MoSeq (reviewed in (Datta, 

2019)) takes as its input 3D data obtained from depth cameras, and then uses statistical 

learning techniques to fit a hierarchical variant of the HMM, in which each behavioral component 

is modeled as a continuous auto-regressive process in pose space, while the components 

themselves (whose duration distributions are flexibly modeled based upon the data) are 

modeled using an HMM (Johnson et al., 2016; Markowitz et al., 2018; Pisanello et al., 2017; 

Wiltschko et al., 2015). The fitting procedures used by MoSeq allow it to flexibly learn the 

identity, number and ordering of 3D behavioral components (called “syllables”) for any given 

dataset. MoSeq — like all HMMs — is a generative model that after training can generate a 

synthetic 3D mouse (whose realism can be measured via statistical comparisons to held-out 

data). The fitting procedure underlying MoSeq explores different descriptions of behavior 

— “lumping” some movements together and “splitting” others — as it seeks a representation for 

behavior that best predicts held-out behavioral data.  
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It should be clear that all behavior pipelines — supervised or unsupervised — require 

the experimenter to make choices. These choices include which behavioral features to quantify, 

whether to analyze behavior in the time or frequency domain, which timescales to consider, 

whether behavior will be represented as continuous, discrete or both, and if discrete how to 

address the problem of granularizing behavior into elements. Optimal choices should reflect the 

nature of the ethological task the animal is solving, and the inherent structure of the data; as our 

ability to record neural activity improves, these choices should be made with an eye towards 

maximizing our ability to understand relationship between brain and behavior. 

 

 

Emerging methods in computational neuroethology are yielding insight into the 
relationship between brain and behavior. 
  

 Methods for monitoring naturalistic behavior in the laboratory are largely in their infancy, 

and yet have already made contributions to understanding the relationship between brain and 

behavior; below we review highlights. Note that for brevity here we largely focus on analysis of 

freely-behaving animals during neural recording or neural manipulation, although where relevant 

we point to examples of interesting analysis in more structured settings. 

 

Forward screens to identify neurons and circuits for behavior 

 
In Drosophila, modern genetics has yielded collections of driver lines that, either alone or 

in combination, afford specific access to nearly every neuron in the fly brain (Jenett et al., 2012). 

The near-simultaneous development of these driver libraries and methods for automated 

behavioral classification is enabling a new type of forward screen, one that seeks to identify 

neurons that are necessary or sufficient for particular behaviors or behavioral components. This 

strategy has been particularly successful at identifying and dissecting neural circuit that underlie 

fly behaviors (Albin et al., 2015; Hoopfer et al., 2015; von Philipsborn et al., 2011). For example, 

to identify neurons linked to aggression, researchers expressed neural actuators or inhibitors 

(such as the thermogenetic activator TrpA1 or the constitutive inhibitor Kir2.1) in specific neural 

populations, and used CADABRA and/or JAABA to quantify the behavioral influence of the 

targeted neuron (Asahina et al., 2014; Duistermars et al., 2018; Hoopfer et al., 2015). Because 

these automated methods dramatically reduce the time it takes to score videos, thousands of 
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lines could be quickly analyzed, enabling both screens focused on likely neurons of interest (i.e., 

neurons that express neuromodulators) as well as screens that survey the entire brain. This 

work has revealed key roles for tachykinin-expressing neurons, octopamine receptor-expressing 

neurons, P1 neurons, and fruitless-positive aSP2 neurons in driving or modulating aggression, 

and has identified population of neurons that control discrete behavioral modules that 

collectively comprise threat-related behaviors (Asahina et al., 2014; Duistermars et al., 2018; 

Hoopfer et al., 2015). It has also revealed epistasis relationships between different identified 

neural populations, for example, that P1 neurons and octopamine receptor-expressing neurons 

likely functionally converge upon aSP2 neurons (Watanabe et al., 2017). Similar optogenetic-

based screens that leverage machine vision at scale have been used to identify neural circuits 

related to fly feeding and courtship (Albin et al., 2015; von Philipsborn et al., 2011).  

 

Recent work has built upon this success to characterize the effects of neural activation 

and silencing on fly behavior more broadly (Robie et al., 2017). In this work, 20 male and female 

flies were imaged in parallel; video data was then used to identify a set of 128 hand-engineered 

features describing the behavior of each fly, which in turn was submitted to a set of supervised 

classifiers (built using JAABA) to identify specific behaviors (e.g., walking, chasing, mating). The 

behavioral consequences of thermogenetically activating each of more than 2000 Gal4 lines 

(whose anatomy was previously characterized) was assessed using this method. The output of 

this process was a map linking sub-regions of the fly brain with particular behaviors; this map 

identified likely relationships (such as that between a series of visual areas and walking 

behaviors, and between fruitless-positive neurons and wing extension) as well as an online 

resource to mine the data for further hypothesis generation.  

 

These screens demonstrate the power of scalable machine vision-based methods to 

reveal the neural substrates of behavior. Complementary experiments have also been carried 

out using unsupervised behavioral classification methods. For example, a variant of hierarchical 

clustering has been used to characterize the set of behavioral components and sequences that 

make up Drosophila larvae behavior before and after channelrhodopsin-based actuation of 

more than 1000 Gal4 lines (Vogelstein et al., 2014). This experiment identified a set of 29 

atomic movements falling into four basic categories (e.g., avoid, escape, backup, turn), and 

generated a look-up table linking each line to its characteristic behavioral consequence. A 

related set of experiments has been performed in the adult fly through the use of MotionMapper 

(Berman et al., 2014; Cande et al., 2018). Flies whose descending neurons (which connect the 
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CNS to effector motor centers in the ventral nerve cord) were optogenetically activated exhibited 

changes in each of the 5 behavioral categories identified by MotionMapper; furthermore, these 

experiments revealed dependencies between the optogenetically-induced behaviors and the 

behaviors that was expressed immediately prior (Cande et al., 2018).  

 
Probing sensorimotor processing 

 

Rich descriptions of innate animal behavior are proving critical for probing mechanisms 

of sensorimotor processing. For example, much of our understanding of neural mechanisms 

underlying sensory-driven navigation in drosophila larvae comes from machine vision-based 

behavioral quantification. Drosophila larvae exhibit a stereotyped head-swing behavior that 

probes the sensory environment before the animal commits to a new movement direction. 

Computer vision-based behavior quantification systems such as (Gershow et al., 2012) 

automatically detect these head swings, and have been used to demonstrate that larvae 

temporally compare light intensites or chemical concentrations during head swings to chart 

future movements (Gepner et al., 2015; Gershow et al., 2012; Hernandez-Nunez et al., 2015; 

Kane et al., 2013; Schulze et al., 2015). Combined behavioral measurements and cell-specific 

inactivations have also identified specific lateral neurons downstream of the Bolwig’s Organ that 

are crucial for mediating phototaxis (Kane et al., 2013).  Similarly, work spanning many labs 

(reviewed in (Calabrese, 2015) ) has used automated measures of behavior to reveal neural loci 

where chemosensory signals are integrated with photosensory signals for driving multi-sensory 

behavioral decisions (Gepner et al., 2015; Hernandez-Nunez et al., 2015; Schulze et al., 2015). 

 

One common thread to these experiments is the combined use of optogenetic 

stimulation of sensory neurons and simple neural models to link sensory inputs to the animal’s 

head-swings and turns. By automatically detecting a different set of behaviors — “hunching” and 

“bending” — Jovanic and colleagues conducted a complete neural dissection of the larvae’s 

aversive response to mechanical stimulation, which included functionally and anatomically 

mapping a set of specific reciprocal inhibitory circuits from sensory input to motor output 

(Jovanic et al., 2016; Ohyama et al., 2013); this work illustrates how the automated analysis of 

naturalistic behavior can be used in concert with connectomics, electrophysiology, optogenetics, 

genetics and modeling to probe a complete sensorimotor circuit. Similar work in C. elegans 

using a variety of methods (including MotionMapper) has quantified behavioral responses to the 

optogenetic activation of a nociceptive neuron, and characterized the neural computations 
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governing the behavioral responses of thousands of individual worms to optogenetic stimulation 

of their mechanosensory neurons (Liu et al., 2018a; Schwarz et al., 2015).  

 

Automated behavior measures have also revealed new insights into the sensorimotor 

transformations driving social behaviors. For example, during courtship, adult Drosophila detect 

the sound and behavior of potential mates to dynamically coordinate its response. Male song 

production was long thought to be a fixed action pattern and any variability in the song was 

considered noise. Careful measures of social behaviors during song production instead showed 

that the details of the song, such as choice of pulse versus sine, could be quantitatively 

predicted from the kinematic details of inter-animal behavior (Coen et al., 2014). Further 

measures of song and inter-animal behavior during calcium imaging revealed new forms of 

song, detailed neural correlates of male song production, and the neural coding of male song in 

the female auditory system (Clemens et al., 2018; Clemens et al., 2015) as well as internal 

latent states that are correlated with neural processing (Calhoun et al., 2019). Generalized 

linear models were used throughout this body of work to mathematically relate inter-animal 

behavior, song features and neural coding (Clemens and Murthy, 2017).   

 

Relating global brain dynamics to naturalistic behavior 

 
Large-scale recording techniques now allow patterns of neural actively to be measured 

from hundreds to thousands of neurons at cellular resolution throughout the brain, providing an 

unprecedented view into neural computations and representational strategies (Williamson et al., 

2019). While such experiments still sub-sample neural activity in rodents or non-human 

primates, progress is being made in methods to characterize the global pattern of brain 

dynamics exhibited during naturalistic behavior in a variety of simpler model organisms. This 

work finds its origins in brain-scale recordings made at cellular resolution via calcium imaging in 

small transparent organisms like larval zebrafish or C. elegans during partial or complete 

immobilization. Investigations of whole-brain activity during fictive locomotion in zebrafish have 

been crucial for mapping and identifying functional roles of new brain areas, including those for 

motor adaptation learning (Ahrens et al., 2012), turning behavior (Dunn et al., 2016); and for 

discerning sensory vs motor areas (Chen et al., 2018). In C. elegans, measures of fictive 

locomotion inferred from interneuron activity has revealed stereotyped low-dimensional neural 

state-space trajectories that explain over 75% of the variance of brain-wide calcium activity 

during immobilization (Kato et al., 2015).  
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In the past few years, such whole-brain imaging at cellular or near-cellular resolution has 

been adapted to freely moving zebrafish and C. elegans (Cong et al., 2017; Kim et al., 2017; 

Nguyen et al., 2016; Symvoulidis et al., 2017; Venkatachalam et al., 2016).  Recordings from 

neurons in the head of larval zebrafish during innate foraging behaviors have identified brain 

regions related to the animal’s swim bout angle and bout speed (Kim et al., 2017); similarly, 

recordings have been made during prey-capture to relate neural activity to the distance between 

the zebrafish and its paramecium prey, or to features of the animal’s eye convergence angle 

and head orientation (Cong et al., 2017).  And in C. elegans, combining whole-brain recordings 

during unrestrained movements with whole body posture analysis has revealed new insights 

into where and how neural activity codes for locomotion (Scholz et al., 2018); in this work, a 

neural decoder of behavior was used to show that during unrestrained behavior only a small 

fraction of the brain’s neural dynamics (<5%) are explained by locomotory behavior, suggesting 

that the rest of the worm brain’s activity may be involved in other computations.  

 

Probing the relationship between pose dynamics and motor circuits 

 

 Animals interact with the world by generating kinematics that support precise task-

related movements (like grasping an object) and large-scale changes in pose (like rearing). 

Computational approaches have played a prominent role in quantifying the detailed kinematics 

of reaching or grasping behaviors in head-fixed primates and rodents, and to relate measured 

kinematics to neural dynamics (e.g.,(Churchland et al., 2012; Guo et al., 2015)). Improved 

measures of behavior now allow kinematic measurements during the self-generated locomotory 

behavior of unrestrained rodents. For example, LocoMouse has been used to recently 

demonstrate that the temporal and spatial aspects of adaptation to a split-belt treadmill are 

dissociated, and that a key locus within cerebellum is required to compensate for lateralized 

speed perturbations (Darmohray et al., 2019). While LocoMouse estimates gait parameters in a 

specialized apparatus (in which a camera images the mouse from two orientations), related 

future experiments exploring locomotion in the open field or other contexts will likely take 

advantage of deep learning-based point tracking methods like LEAP, DeepLabCut, and 

DeepPoseKit (Graving et al., 2019; Mathis et al., 2018; Nath et al., 2019; Pereira et al., 2019). 

 

 While point-tracking methods are well suited to monitor the position of easily-segmented 

features like paws or the base of the tail, clearly identifying keypoints can be difficult over much 
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of the surface of many animals (like furry rodents). Alternative methods may therefore play an 

important complementary role in measuring the global pose dynamics expressed by animals as 

they generate naturalistic movements (Meyer et al., 2018; Venkatraman et al., 2010). For 

example, accelerometer data has also been used to parse spontaneous mouse behavior into 

motifs through the use of unsupervised affinity propagation-based techniques; this behavioral 

clustering has been combined with miniscope recordings to show that individual behavioral 

motifs are encoded by ensembles of direct and indirect striatal medium spiny neurons whose 

variance is systematically related to morphological similarities and differences in 3D behavior 

(Klaus et al., 2017).  

 

Depth cameras have also been used to directly measure 3D information about an 

animal’s pose dynamics, and to use that information to explore brain circuits regulating action. 

By combining MoSeq with electrophysiological, multi-color photometry and miniscope methods, 

neural correlates for 3D behavioral syllables have recently been identified in dorsolateral 

striatum (DLS) (Markowitz et al., 2018). These experiments reveal a systematic fluctuation in 

neural activity associated with transitions between behavioral syllables over time, and an 

obligate role for DLS in generating appropriate behavioral sequences both during exploration 

and odor-guided naturalistic behaviors. Furthermore, MoSeq has been combined with 

optogenetic stimulation to reveal the differential consequences of activating the motor cortex, 

the dorsal and the ventral striatum (Pisanello et al., 2017; Wiltschko et al., 2015). These results 

are consistent with similar results recently obtained using marker-based approaches to explore 

the relationship between 3D posture and activity in posterior parietal cortex (Mimica et al., 

2018). Future benchmarking will reveal the trade-offs (if any) between direct measurements of 

3D pose with specialized hardware (like depth cameras) and indirect estimates using more 

accessible hardware (like standard CCDs used to generate 3D keypoint tracking through image 

fusion, or marker-based approaches).   

 

 

Addressing the challenges that remain: a way forward for behavior-guided discovery in 
the brain 
 
 As is made plain by the examples above, although important progress is being made in 

relating brain activity to naturalistic behaviors, there are a host of conceptual and technical 

issues that remain. Behavior manifests itself as complex moment-to-moment trajectories; yet, it 
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is driven by often long-lasting internal states like e.g., sleep, wakefulness, hunger, thirst, as well 

as external states such as the availability of resources. Thus a description of natural behavior 

must be hierarchically organized in time, and it remains unclear how to best identify behavioral 

hierarchies in a given dataset (Berman, 2018; Tao et al., 2019). Furthermore, identifying this 

sort of hierarchical structure requires large-scale data, and in particular, experimental set-ups 

and analysis pipelines that enable long-term assessment of behavior; this contrasts with most 

current naturalistic behavioral experiments, in which animal behavior is measured for minutes 

rather than hours or days (but see (Jhuang et al., 2010; Ohayon et al., 2013)).  

 

Second, there is the problem of context — the richness of naturalistic behaviors is most 

fully observed in complex environments where sensory cues and affordances evoke the 

complete behavioral repertoire of the animal, and yet naturalistic behaviors in the lab are largely 

assessed in impoverished arenas. Future improvements in machine vision, virtual reality and 

robotics should allow animals explore increasingly realistic contexts while researchers monitor 

spontaneous naturalistic behavior (e.g., (Del Grosso and Sirota, 2019; Meyer et al., 2018)). One 

humble and yet not fully addressed challenge is segmentation — if a lab animal is in an arena 

with a lot of stuff (as will be the case if e.g., a mouse is imaged across its lifetime in its 

homecage during enrichment), it can be difficult to reliably tell the surface of the animal apart 

from objects around the animal. This is most difficult when considering social behaviors, which 

requires pose estimation of more than one animal at a time. Recent improvements in deep 

learning are helping to address this problem, as has the use of 3D cameras, but additional 

technical work will be required if we are to better understand the behavioral diversity of animals 

as they interact with realistic environments (which include conspecifics and predators) (Hong et 

al., 2015; Markowitz et al., 2018; Nath et al., 2019).  

 

 Finally, gaining access to multi-scale relationships between brain and behavior requires 

an understanding of how brain activity itself is organized and evolves over time. While much 

progress has been made in developing methods to infer structure in high-dimensional neural 

data, the field is still in flux (Cunningham and Yu, 2014; Williamson et al., 2019). As a 

consequence, most of the methods currently used to relate brain activity to complex naturalistic 

behavior — like linear regression — are drawn from a standard toolkit. An important road 

forward will be to build methods and model classes in which structure in the neural data and 

naturalistic behavioral data are jointly inferred (Glaser and Kording, 2016). Ideally, joint 

inference will allow trial-by-trial variability in neural data to be related to trial-by-trial behavioral 
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performance (e.g, the kinematics that underlie the expression of any given instance of an 

identified behavioral motif, which in the context of naturalistic behavior can be considered a 

“trial”). It remains to be seen whether the tools used to solve the problem of organizing 

behavioral data will be the same as those used to jointly infer joint structure in neural and 

behavioral data.  

 

Given that human-imposed design decisions suffuse any quantification of animal 

behavior, what types of behavioral representations are maximally informative for understanding 

brain function? Historically, a given behavioral analysis method has been judged to be 

successful if it can be used to discern a difference after an experimental manipulation. This 

standard arose from the tradition of behavioral neurogenetics, where observable behavioral 

differences are used to support forward screens whose goal is to identify individual genes that 

contribute to the generation of behavior (Benzer, 1971). Importantly, this standard ducks the key 

conceptual questions in computational neuroethology: how do we choose which distance 

metrics to use to tell us whether any two behaviors are similar or different, how do we balance 

“lumping” versus “splitting,” and in a given situation how do we decide whether to characterize 

behavior as continuous, discrete, or both? 

 

We argue that future development of methods in computational neuroethology should 

adopt a set of simple design principles. These principles do not address all the key questions 

posed above, but instead are intended to prompt an ongoing conversation about how we 

measure behavior:  

 

•  Timescales. Humans have traditionally applied labels to animal behavior that operate on 
timescales of seconds or longer — think running, grooming, rearing — because that is the 

timescale at which perception and language most conveniently intersect. The availability of 

automated behavioral analysis methods circumvents this limit. Thus behavioral measurements 

and segmentations should ideally include the timescale at which neural variability is expected to 

occur. Furthermore, since slow behaviors can reflect fast neural activity, and rapid behavioral 

events can reflect long-term neural dynamics, when possible behavioral descriptions should 

organize information hierarchically to facilitate multi-scale neurobehavioral discovery. 

Successfully meeting this imperative for many naturalistic behaviors will require ongoing 

improvements both in behavioral measurements (e.g., faster and higher resolution cameras, 
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better tracking, improved data compression) and in analytical methods for characterizing 

behavior at multiple timescales at once.  

 

• Interpretability. Descriptions of behavior should lend themselves to hypothesis generation. 
Representations or models whose latent variables can be directly related to neural activity are 

more useful than those whose underlying variables lack obvious meaning; from this perspective, 

a behavioral representation can be thought of as “making sense” in light of neural activity, and 

such representations are useful for generating hypotheses about neural mechanisms underlying 

action. In a similar vein, representations whose latent variables correspond to a human intuition 

about behavior are more useful than those that do not; an “Eigenworm” is interpretable by a 

human and therefore useful for articulating hypotheses about how worm behavior might be 

organized, whereas PCA over arbitrary collections of behavioral parameters may not yield to 

human intuition. While artificial neural networks are able to generate excellent predictions about 

behavior, it is often hard for a human to understand what the network actually learned that 

enabled it to make a prediction, or to relate what the network learned back to a latent variable 

that might be detected in the brain. This does not mean eschewing approaches like deep 

learning — indeed such methods are currently playing a central role in detecting behavioral 

features — but rather deploying them selectively to support hypothesis generation. One such 

example is the recent use of a variational autoencoder to reformat raw mouse videos before 

submission to an interpretable generative model (Johnson et al., 2016). 

 

• Prediction. When possible, prediction should be adopted as a standard for judging the quality 
of behavioral representations. Effective behavioral representations should be able to predict 

behavior (in those circumstances when behavior is expected to be predictable) or neural 

activity; conversely, an effective behavioral representation should enable actions to be predicted 

from neural activity. As neuroscientists, this goal of being able to predict brain from behavior 

and vice versa strikes to the heart of our motivation for studying behavior. Therefore, prediction 

quality is a natural arbiter for deciding amongst model parameters or competing behavioral 

representations. Prediction also affords the possibility of finding the right balance between 

parsimony and richness, as testing the predictive performance of different models of behavior 

potentially offers a solution to the problem of “lumping” versus “splitting.” Of course, one 

fundamental challenge that remains is deciding what sort of predictions are most relevant in a 

particular experimental context. In the long run, it is likely that multiple types of prediction 

(including of simultaneously measured neural data, of genomic or transcriptomic data, or of 



 21 

different treatment classes) will be required to fully assess and compare the performance of 

different behavioral analysis methods.  

 

The future of computational neuroethology 
 

We are now gaining access to powerful tools for recording behavior, including machine 

learning-based methods to extract key features like joint angles and body postures, and for 

organizing this information to understand how behavior is structured and evolves over time. 

These tools will only get better, and enable increasingly dense characterization of action. 

Thanks to ongoing technical progress in both brain recording and behavioral analysis, we will 

soon face the serious problem of relating high dimensional time-varying neural data to high 

dimensional time-varying behavioral data. A major goal for future research will be to identify 

those behavioral representations that will give us the most insight into how neural circuits create 

behavior. Meeting this goal will require a dedicated effort on the part of neuroscientists to build 

tools for characterizing naturalistic behavior with the same vigor and creativity that they have 

thus far largely reserved for measuring and characterizing neural activity. 

 

In looking towards this future it is helpful to ask what it means to “understand” the 

relationship between naturalistic behavior and the brain. Psychologists would likely agree that 

this answer requires a full account of those brain circuits that regulate a given behavior, 

including testable predictions about how circuit manipulations will affect behavior. Ethologists 

would wish to understand how behavior helps a given species prosper in its ecological niche, 

including accounts of how behavior emerges through evolutionary pressures, and arises in each 

individual through the interplay of genetics and learning. These different levels of explanation 

are interdependent and equally valid (Barlow, 2012). 

 

And yet, the conceptual difficulties in reaching this understanding may sometimes 

appear rather daunting (Gomez-Marin et al., 2014; Jazayeri and Afraz, 2017; Krakauer et al., 

2017). How do we search the immense brain for the circuits that are relevant for a given 

naturalistic behavior? How should we interpret the neural signals that we record, some of which 

may be as complex as the behavior itself and many of which may be irrelevant? Which is the 

right representation of behavior, and at what temporal and semantic scale should we look? How 

do we know which behavioral features are meaningful and which are idiosyncratic? How do we 

relate the goal we presume the animal is pursuing with the observed behavior? And when we 
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finally describe a circuit, how do we think about the computation that it is intrinsically carrying 

out to support behavior, independently of the circuit details?  

 

We argue that progress in computational neuroethology will require researchers to 

propose mechanisms that might allow an animal to reach an ethological goal. Identifying 

possible mechanisms requires answering three questions that echo Marr’s three levels of 

analysis of perception (Marr, 1982): First, what ethological goal is any given behavior to meant 

to address and how shall we measure whether a particular action helps an animal reach its 

goal? Second, given the available sensory inputs and physical constraints, what computational 

strategies could allow an animal to reach its goal? Third, how should algorithms that support 

goal-oriented behavior be implemented in the hardware of a nervous system? The book 

‘Vehicles’ by Valentino Braitenberg suggests an approach for addressing these questions: 

testable hypotheses about how the brain creates naturalistic task-driven behaviors can be 

generated by attempting to design simple automata that can accomplish that same task 

(Braitenberg, 1986). This perspective has successfully yielded insight into e.g., the mechanisms 

and algorithms that enable bacteria to chemotax towards a chemical cue.   

 

Importantly, this process of mapping goals to algorithms produces normative models. 

These models are valuable in many ways: to generate hypotheses about which neural signals to 

look for in the brain with relation to behavior, to evaluate whether the observed neural signals 

are sufficient for a particular task, to assess which behavioral features are noise and which are 

diagnostic of the main design choices and trade-offs (for example sensitivity to input noise vs. 

circuit complexity), and to taxonomize behaviors in the context of a goal at different scales of 

temporal and semantic resolution. The use of methods in computational neuroethology 

— whether focused on simple trained behaviors or complex, unrestrained patterns of action, 

whether done in single animals or at scale — will teach us about the structure of behavior; 

extracting meaning from these experiments and understanding how behavior meaningfully 

relates to brain activity will require a notion of the animal’s goals in generating a behavior, and in 

the long run, normative models for how a brain might accomplish that goal. This approach has 

been very fruitful in understanding perception and learning (Nakayama and Shimojo, 1992; 

Navalpakkam et al., 2010; Reichardt et al., 1983; Shadlen and Newsome, 1998; Sutton and 

Barto, 1998). When taken with the conceptual and technical advances in computational 

neuroethology, we predict this  will play an equally powerful role in the study of naturalistic 

behavior. 
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Fig 1. Challenges in computational ethology. A characteristic sequence of behaviors 
exhibited by a mouse in its home cage as it thigmotaxis around the walls, approaches some 

food, eats and then sleeps (center, mouse cartoons). Several key challenges face any 

segmentation of continuous behavior into components are illustrated. First, the behavior of most 

model organisms occurs in three dimensions (green). Second, behaviors need to be labeled, 
which raises the problem of “lumping” versus “splitting” (red); for example, mice thigmotax, a 
behavior in which mice exhibit locomotion and turning behaviors that are deterministically 

sequenced to generate an action where the animal circumnavigates its cage. Is thigmotaxis a 

singular behavior (because its elements are deterministically linked during its expression), or it 

is a sequences of walking, turning and walking behaviors? Third, should behavior be considered 

at a single timescale that serially progressed, or instead considered a hierarchical process 

organized at multiple timescales simultaneously (blue). Fourth, when the mouse is sniffing and 
running at the same time, is that a compositional behavior whose basis set includes “run” and 

“sniff,” or is “running+sniffing” a fundamentally new behavior (purple)?  
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Fig. 2. Typical stages in a behavioral analysis pipeline.  
 
Conceptual steps involved in any behavior analysis pipeline (left) with references to published 
example pipelines (right). Shaded region indicates the steps that each method implements. a. 
Animal behavior is recorded. b. Features are extracted. Features may be interpretable, e.g. a 
mouse’s paw position; or abstract e.g. an algorithmically defined weighted set of pixels. 

Automatic feature extraction can roughly be divided into algorithms that use classical computer 

vision feature detection, supervised learning, or unsupervised learning. High-dimensional 

descriptions of behavior features can optionally be approximated with fewer-dimensions via 

dimensionality reduction.  c. To leap from features to behavior requires first representing the 
temporal dynamics of the features. Feature dynamics can be represented in either the time- or 

frequency domain.  Additional dimensionality reduction can optionally be performed at this 

stage. d. The resulting temporal dynamics are organized into behavior which can be either 
discrete or continuous. For discrete behavior representations, feature dynamics are clustered 

and labeled (e.g. ‘Sniffing’ or ‘Turning’) using either supervised or unsupervised machine 

learning. For continuous descriptions of behavior, trajectories through behavior space are 

analyzed and interpreted e.g. using dynamical systems models. 

Feature Extraction

Dimensionality  
Reduction

Temporal 
Representation

Dimensionality 
Reduction

Labeling or 
Trajectory 
Analysis

Modeling

Ti
m

e 
In

de
pe

nd
en

t
Ti

m
e 

D
ep

en
de

nt

Sniff Turn

Video

Features

-0.4

-0.2

0

0.2

P
C
1 
Lo
ad
in
gs

-0.4

-0.2

0

0.2

P
C
2 
Lo
ad
in
gs

-0.4

-0.2

0

0.2

P
C
3 
Lo
ad
in
gs

-0.4

-0.2

0

P
C
4 
Lo
ad
in
gs

0 10 20
Position Along the Worm

-0.4

-0.2

0

0.2

P
C
5 
Lo
ad
in
gs

-10

0

10

-10

0

10

-10

0

10

-10

0

10

10 20 30 40 50
-10

0

10

7

3.6

1.9

1

0.5P
C
A
 M
od
e 
1

Fr
eq
ue
nc
y 
(H
z)

7

3.6

1.9

1

0.5P
C
A
 M
od
e 
2

Fr
eq
ue
nc
y 
(H
z)

7

3.6

1.9

1

0.5P
C
A
 M
od
e 
3

Fr
eq
ue
nc
y 
(H
z)

7

3.6

1.9

1

0.5P
C
A
 M
od
e 
4

Fr
eq
ue
nc
y 
(H
z)

7

3.6

1.9

1

0.5P
C
A
 M
od
e 
5

Fr
eq
ue
nc
y 
(H
z)

1

10 20 30 40 50
Time (s)

Directionaltiy

Time (s)

K
ey

po
in

t P
os

iti
on

Time

Video Recording
a.

b.

c.

d.

DeepLabCut  
(Mathis et al, 
2018) 

DeepPoseKit  
(Graving et al, 
2019) 

LEAP 
(Pereira et al, 
2019)  

Ethovision  
(Spink et 
al, 2001) 

CTrax  
(Branson 
et al, 
2009) 

Flydra 
(Straw et 
al, 2011) 

Supervised LearningClassical Computer Vision

Magat  
(Gershow 
et al, 
2012 )

SEE  
(Drai et al, 
2001)

Unsupervised Learning

MoSeq  
(Wiltschko 
et al, 2015)

MotionMap
per 
(Berman et 
al, 2014))

JABAA 
(Kabra et al, 
2001) 

CADABRA 
(Dankert et 
al, 2009)  



 27 

 
 
 
 
Fig. 3. Pose estimation. Recent advances in artificial neural networks allow identifiable points 
on an animal’s surface (e.g., joints) to be automatically detected from images with minimal 

human supervision, even when animals interact or are in rich and complex backgrounds 

(Graving et al., 2019; Mathis et al., 2018; Pereira et al., 2019). Examples of a. flies, b. giraffes 
and c. mice are shown from (Pereira et al., 2019 and unpublished).  
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GLOSSARY 
 
 
 
Behavioral representation - A quantitative distillation of any aspect of the time-varying 
behavior exhibited by an animal in an experiment. Such representations can vary in form from 
classical ethograms to low-dimensional plots capturing the trajectory of an animal in space.  
 
Naturalistic – as with “ethologically-relevant,” (see below) there are many definitions for 
naturalistic, and indeed most experiments in behavioral neuroscience can justifiably be argued 
to be naturalistic at some level. Here, we take the word “naturalistic” to mean behaviors that are 
representative of actions generated during complex real-world tasks, like exploring new 
environments, obtaining food, finding shelter, and identifying mates; naturalistic behaviors as 
referred to herein are also largely self-motivated and expressed freely without physical restraint. 
This definition is meant to distinguish such behaviors from those that are imposed by 
researchers on animals through overtraining, or those that are more constrained due to e.g., 
head fixation (although, as mentioned above, there are contexts in which those types of 
behaviors are quite reasonably also referred to as “naturalistic”). 
 
Ethologically-relevant - as with “naturalistic,” (see above), “ethologically-relevant” is an 
adjective whose meaning is in the eye of the beholder; again, this term can be appropriately 
applied to many kinds of behavioral experiments, including those in which animals are subject to 
training and restraint. Here, we take “ethologically-relevant” to mean a set of behaviors that 
support tasks animals have to address as part of the existential challenge of living in a particular 
environmental niche.  
 
Behavioral label – a behavioral label is a descriptor applied to an epoch of behavioral data. 
Behavioral labels can cover descriptions of behavior at many levels of granularity, and run the 
gamut from “a twitch of motor unit 72 in the soleus muscle” to “hibernating.” 
 
Behavioral motif – a stereotyped and re-used unit of movement. The terms “motif,” “moveme,” 
“module,” “primitive” and “syllable” have all been used interchangeably, and none of these terms 
is linked to a rigorous definition of the spatiotemporal scale at which a unit behavior is 
organized. Similarly, action and behavior here and elsewhere are used to refer to collections of 
units of behavior, but again, there is no rigorous line that separates these or related terms. 
Perona and Anderson have argued for a taxonomy in which moveme is the simplest movement 
associated with a behavior, an action is a sequence of movemes, and an activity is a species-
characteristic set of movemes and actions (Anderson and Perona, 2014).    
 
Behavioral sequence – an epoch in which more than one behavioral motif is expressed; 
sequences cof motifs an be either deterministic (e.g., motif A always follows motif B), or 
probabilistic (e.g., motif A follows motif B fifty percent of the time).  
 
Artificial neural network – class of machine learning algorithms that operate by simulating a 
network of simplified neurons. These often are trained through supervised learning. 
 
Behavioral feature – a relevant attribute of an animal that, when observed over time, helps 
define behavior. For example, the location of a paw.  
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Trajectory– the motion of a point in space over time. This can be either a physical object, like 
an animal’s paw through real space, or it can be abstract like the animal’s current behavior state 
as it travels through behavior state space. 
 
Behavior analysis pipeline – a set of algorithms that, all together, take a raw recording of 
behavior (usually video) and returns high level representations of the animal’s behavior, such as 
trajectories, motifs, sequences or behavior labels.  
 
Dimensionality – number of variables required to describe a dataset. For example the (x,y) 
position of a mouse paw has dimensionality of 2. A complete description of its pose requires 
many more variables and thus has higher dimensionality. 
 
Dimensionality reduction –mathematically approximating a dataset using fewer than the 
original dimensions. For example, Stephens et al 2008 showed that a worm’s centerline 
originally requiring 100 points could be well-approximated by three numbers. Dimensionality 
reduction usually requires a change in the representation of the data. 
 
Embedding – a type of dimensionality reduction that takes data, which is assumed to exists on 
a high manifold, and unwraps it into a lower dimensional space where it is more easily 
visualized. T-SNE and U-MAP are two examples of embeddings that are gaining adoption in the 
life sciences.  
 
Temporal dynamics – here, how behavior features change over time. These can be 
mathematically represented in the time-domain, or in the frequency-domain 
 
Key-point – region of interest in an image, such as an animal’s joint or appendage 
 
Supervised learning – a computer algorithm that learns to performs a task, such as identifying 
an animal’s joint in an image, through human provided examples.  
 
Behavior state-space – a mathematical space (possibly high dimensional) such that a point in 
this space corresponds to a specific instance of animal behavior. 
 
Behavior map –visualization of a behavior state-space, usually refers to a two-dimensional 
visualization. Convenient for visualizing how an animal’s behavior is organized into clusters or 
how it might differ from another animal.  
 
 
Principal Components Analysis (PCA).  A mathematical change of basis that is commonly 
used for dimensionality reduction in many behavioral analysis pipelines. PCA identifies a new 
basis set in which to represent data. A truncated version of this dataset serves as a useful 
lower-dimensional approximation of the original data. 
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