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Abstract Sensory neuron numbers and positions are precisely organized to accurately map

environmental signals in the brain. This precision emerges from biochemical processes within and

between cells that are inherently stochastic. We investigated impact of stochastic gene expression

on pattern formation, focusing on senseless (sens), a key determinant of sensory fate in Drosophila.

Perturbing microRNA regulation or genomic location of sens produced distinct noise signatures.

Noise was greatly enhanced when both sens alleles were present in homologous loci such that each

allele was regulated in trans by the other allele. This led to disordered patterning. In contrast, loss

of microRNA repression of sens increased protein abundance but not sensory pattern disorder.

This suggests that gene expression stochasticity is a critical feature that must be constrained

during development to allow rapid yet accurate cell fate resolution.

Introduction
The irreversible progression from a disordered to an ordered arrangement of cells within tissues is a

hallmark of development. Developing organisms rely on precise control of cellular gene expression

in order to achieve this outcome. However, biochemical reactions such as transcription and transla-

tion involve stochastic molecular collisions subject to intrinsic variability (Blake et al., 2003;

Cai et al., 2006; Elowitz et al., 2002; Newman et al., 2006; Ozbudak et al., 2002;

Taniguchi et al., 2010). Therefore, a central question in developmental biology concerns how prob-

abilistic gene expression generates deterministic developmental outcomes.

Fluctuations in mRNA and protein numbers occur because of random birth and death of these

molecules (Paulsson, 2005; Thattai and van Oudenaarden, 2001). Since one molecule of mRNA is

usually translated into multiple copies of proteins, small fluctuations in mRNA number can lead to

larger fluctuations in protein number (Elowitz et al., 2002; Ozbudak et al., 2002; Paulsson, 2005;

Thattai and van Oudenaarden, 2001). In theory, the stochasticity in protein copy number caused by

birth-death processes will be mitigated if large numbers of protein molecules are present in each

cell (Seneta, 2013). Indeed, many transcription factors are reported to be expressed in excess of

104–105 protein copies in terminally fated cells (Biggin, 2011). However, it is unclear how many cop-

ies of such fate-determining proteins are present at cell-fate decision points, and therefore how

extensively the stochasticity inherent to birth-death processes impinges upon fate decisions.

There are additional sources of noise in gene expression. Many genes are transcribed in bursts

(Bothma et al., 2014; Chubb et al., 2006; Dar et al., 2012; Garcia et al., 2013; Golding et al.,

2005; Raj et al., 2006; Rodriguez et al., 2019; Suter et al., 2011). Such genes switch stochastically
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between an actively transcribing state and an inactive non-transcribing state. This generates bursts

of newly synthesized mRNA molecules interspersed with periods of dormancy. Various physical fea-

tures of gene promoters, their enhancers, and the transcription factors that bind to them have been

shown to affect the burstiness of gene transcription (Jones et al., 2014; Sanchez and Golding,

2013). Several mechanisms have been proposed to buffer protein numbers against bursty mRNA

fluctuations. These include spatial and temporal averaging of transcript numbers (Bahar Halpern

et al., 2015; Garcia et al., 2013; Gregor et al., 2007; Raj et al., 2006), polymerase pausing

(Boettiger and Levine, 2009), and autoregulation of gene expression (Boettiger and Levine, 2013;

Papadopoulos et al., 2019).

Since tissues are patterned by the actions of gene regulatory networks (GRNs) across diverse

temporal and spatial-scales, efforts are being made to understand how stochastic expression of

these genes affects pattern formation (Boettiger and Levine, 2013; Bothma et al., 2015;

Gregor et al., 2007; Raj et al., 2010; Tkacik et al., 2008; Zoller et al., 2018). We have focused on

a patterning system involving the Wnt and Notch signaling pathways, which are two widespread

means for cells to communicate with one another (Hayward et al., 2008; Pires-daSilva and

Sommer, 2003).

Often, Wnt and Notch signals intersect upon a set of cells, and from this emerge precise patterns

of differentiated cells (Collu et al., 2014; van Es et al., 2005; Hayward et al., 2008; Peter and

Davidson, 2011; Sonnen et al., 2018). A classic example of such an intersection is the emergence

of rows of sensory organ (S) cells located alongside the dorsal and ventral (DV) compartment bound-

ary of the Drosophila wing imaginal disc (Figure 1A). Each row of S fated cells develops into a highly

ordered row of sensory bristles located at the anterior margin of the adult wing (Figure 1B). DV

boundary cells in the wing disc secrete the Wnt ligand Wingless (Wg) (Couso et al., 1993;

Zecca et al., 1996), which induces stripes of nearby cells to express proneural genes including

senseless (sens) (Eivers et al., 2009; Jafar-Nejad et al., 2006; Phillips and Whittle,

1993; Figure 1C).

Each proneural stripe then self-organizes into a periodic pattern of high and low Sens expressing

cells (Figure 1A). This is orchestrated by two counteracting regulatory loops. The proneural proteins

are transcription factors that proportionally stimulate expression of the Notch ligand Delta

(Hinz et al., 1994; Nolo et al., 2001). Delta activates Notch in neighboring cells and thereby inhibits

proneural gene expression in these cells. This generates classic lateral inhibition. At the same time,

the proneural proteins co-activate their own transcription within each cell (Acar et al., 2006; Jafar-

Nejad et al., 2003; Jafar-Nejad et al., 2006; Nolo et al., 2000). These interlinked positive feedback

loops ensure that initially small differences in proneural protein abundance between neighboring

cells evolve into large differences (Figure 1C). While sustained and strong expression of Sens is suffi-

cient to drive a cell towards the S fate, neighboring cells downregulate Sens and adopt an epidermal

(E) fate (Jafar-Nejad et al., 2003).

Since lateral inhibition harnesses the variation in proneural protein abundance, we have sought to

understand if stochasticity in proneural gene expression is filtered out by spatial signal integration

between cells; or transmitted across scales to disrupt ordered sensory bristle patterning. We have

measured the stochastic properties of Sens protein expression and have used experimental pertur-

bations and mathematical modeling to determine the sources of noise. As anticipated, we discover

that molecular birth-death processes and transcriptional bursting influence the stochastic features of

Sens expression. Surprisingly, we find that stochastic features of Sens protein expression are greatly

enhanced when one sens allele influences the expression of its paired homolog in trans. When this

occurs, cells in the proneural stripes experience abnormally high noise in Sens protein output, which

resolves by lateral inhibition into a disordered pattern of sensory bristles. Thus, cis versus trans

modes of gene regulation can have major effects on the regularity of sensory pattern formation.

Results

Counting sens proteins to measure expression noise
Protein fluctuations can be observed by counting molecules in single cells over time (Figure 1D).

Alternatively, noise can be estimated by tagging the two alleles of a gene with distinct fluorescent

proteins and measuring fluorescence correlation in individual cells (Figure 1E; Elowitz et al., 2002;
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Figure 1. Measuring sens gene expression stochasticity during sensory organ fate selection. (A) Sens protein is expressed in two stripes of cells

bordering the dorsoventral (DV) boundary of the wing disc. The pattern refines into a periodic pattern of S-fated cells in the anterior region, which can

be seen as expressing high levels of Sens protein. Anterior (A), left. Ventral (V), top. Right panel is a micrograph of Sens protein immunofluorescence.

(B) This generates the highly ordered pattern of sensory bristles along the anterior margin of the adult wing. S denotes chemosensory bristles that had

Figure 1 continued on next page
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Raser and O’Shea, 2004). Protein number from each allele is stochastically fluctuating over time,

and their fluctuations are independent of one another. When one fixes a population of cells and

measures protein output from each allele per cell, the limited correlation between allele output for

the population closely approximates the stochastic variability if one were to measure noise tempo-

rally (Swain et al., 2002). We created sens alleles tagged with superfolder GFP (sfGFP) or mCherry

(Figure 1F). This was done by modifying a 19.2 kb fragment of the Drosophila genome containing

sens by singly inserting either sfGFP or mCherry into the amino terminus of the sens ORF

(Figure 1F). These transgenes were independently landed into the 22A3 locus on the second chro-

mosome, a standard landing site for transgenes (Venken et al., 2006; Venken et al., 2009). Endog-

enous sens activity was inhibited with amorphic loss-of-function mutations (Jafar-Nejad et al., 2003;

Nolo et al., 2000). The transgenes completely rescued all detectable sens mutant phenotypes and

exhibited normal expression (Figure 1—figure supplement 1). We then mated singly-tagged

sfGFP-sens with mCherry-sens animals to generate trans-heterozygous progeny in an endogenous

sens null background. Wing imaginal discs of these offspring were fixed and imaged by confocal

microscopy (Figure 1—figure supplement 2A). Cells were computationally segmented in order to

measure intensity of sfGFP and mCherry fluorescence within each cell (Figure 1—figure supplement

2).

Relative fluorescence units (RFU) were converted into absolute numbers of Sens protein mole-

cules via Fluorescence Correlation Spectroscopy (FCS), which measured the absolute concentrations

of sfGFP-Sens and mCherry-Sens protein in live wing discs (Figure 1G). For both sfGFP and mCherry

FCS measurements, the highest Sens levels were no greater than 250 nM (Figure 1G), correspond-

ing to approximately 25 RFU obtained from imaging (Figure 1—figure supplement 3A). This gives

an approximate conversion factor of 1 RFU equivalent to 10 nM. To validate this estimate, we classi-

fied Sens-positive cells and mapped them onto the raw images (Figure 1—figure supplement 3C).

An accurate estimate of a conversion factor would recreate the expected expression pattern of

Sens, where S-fated cells are periodically dispersed along both sides of the DV boundary surrounded

by first and second order neighbors (Figure 1—figure supplement 3B). We reproducibly observed

this pattern for a conversion factor of 10 but not when it was varied three-fold lower or higher (Fig-

ure 1—figure supplement 3C). Since the average wing disc cell nuclear volume is 23 � 10�15 L

(Papadopoulos et al., 2019), 1 RFU is estimated to correspond to ~138 Sens molecules.

Sens protein noise displays a signature arising from birth-death
processes
Applying the conversion factor, we observed that wing disc cells displayed a broad range of Sens

protein molecule numbers (Figure 2A). This observation is consistent with earlier studies using anti-

Sens immunofluorescence (Jafar-Nejad et al., 2006). Although both sfGFP and mCherry tagged

alleles contributed equally to total Sens protein output on average (Figure 1G), there were signifi-

cant intracellular differences between sfGFP-Sens and mCherry-Sens molecule numbers (Figure 2A).

Figure 1 continued

been determined at the stage visualized in (A). (C) Cells are induced by Wg to a proneural state expressing moderate levels of Sens. Notch-mediated

lateral inhibition causes cells to switch to either low stable expression (E fate) or high stable expression (S fate) of Sens. Cell-autonomous positive

feedback by Sens and non-autonomous feedback by mutual inhibition are key to this process. (D) Gene expression output is inherently variable due to

stochastic synthesis and decay of mRNA and protein molecules. Therefore, single cell protein counts fluctuate stochastically around the expected

steady state expression level. The magnitude of these fluctuations is determined by the rate constants of individual steps (in blue). (E) Stochasticity can

be measured by tagging the two alleles of a gene with distinct fluorescent proteins and measuring fluorescence correlation in individual cells. Each

datapoint is red and green fluorescence in one cell. Cells with greater gene expression stochasticity deviate further from the expected average

fluorescence (black line). (F) A genomic fragment containing sens was N-terminally tagged with either single sfGFP or mCherry tags. These were used

to rescue sens mutant animals by site-specific insertion into genomic location 22A3 (Figure 1—figure supplement 1). (G) Single-cell mCherry and

sfGFP protein numbers counted by FCS in sfGFP-sens/mCherry sens wing cells (see also Figure 1—figure supplements 2–3).

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. The sens transgene inserted at 22A3 expresses Sens similarly to the endogenous sens gene and it rescues all mutant

phenotypes.

Figure supplement 2. Image analysis of developing wing tissue to quantify Sens protein in single cells.

Figure supplement 3. Calibrating a conversion factor between confocal microscopy fluorescence and FCS molecule counting.
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This was due to two independent sources of noise: (1) stochastic gene expression, (2) stochastic pro-

cesses in the measurement of protein number. The latter source of noise arises from differential rates

of protein folding and turnover, probabilistic photon emission and detection, as well as image analy-

sis errors. To estimate measurement noise, we constructed a third transgene containing both sfGFP

and mCherry fused in tandem to the sens ORF (Figure 2B). sfGFP-mCherry-sens was inserted at

locus 22A3, and fluorescence was measured in disc cells from such animals. Since sfGFP and

mCherry molecule numbers should be perfectly correlated when expressed as a tandem-tagged pro-

tein in vivo, we attributed any decrease in fluorescence correlation to measurement noise

(Figure 2B). Negligible Fluorescence Resonance Energy Transfer (FRET) was observed between

mCherry and sfGFP proteins in tandem-tagged sfGFP-mCherry-sens cells, indicating that stochastic

noise was not under-estimated due to FRET interactions (Figure 2—figure supplement 1).

Intrinsic noise of protein expression h
2 has been defined as the extent to which protein output

from two alleles of a gene fail to correlate in the same cell (Elowitz et al., 2002). The value of h2

indicates the mean relative difference between the two reporter proteins in the same cell; for

instance, a value of 0.10 would indicate the two reporter proteins differ by about 10% of the average

expression. Since we had quantified the absolute number of protein molecules, we expressed noise

as the Fano factor, which is defined as
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Figure 2. Sens Fano factor relative to protein copy number in single cells. (A) sfGFP- and mCherry-Sens protein numbers measured from single cells in

sfGFP-sens/mCherry-sens wing discs. 12,000 cells were plotted for comparison in (A,B). Colors represent cell count in each hexagonal plot region. (B)

Estimated sfGFP and mCherry numbers generated from the tandem-tagged sfGFP-mCherry-sens gene in single cells of wing discs. Note that these

numbers are not perfectly correlated with one another due to noise in the measurement process (see also Figure 2—figure supplement 1). As

expected, median expression of the tandem tag was 2.1 ± 0.03 fold higher than allelic tag expression. (C) Top panel: The Fano factor was calculated in

bins of cells expressing either tandem-tagged Sens or the singly-tagged allelic pairs of Sens (Figure 2—figure supplement 2). Bottom panel: The Fano

factor of Sens expression was calculated by subtracting out the Fano factor from tandem-tagged cells. Plotted region encompasses data from 88% of

tagged cells (Sens < 1000 molecules). Shading demarcates 95% confidence intervals.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Fluorescence Resonance Energy Transfer (FRET) from sfGFP to mCherry molecules is negligible under experimental imaging

conditions.

Figure supplement 2. Fano factor calculation from nuclear fluorescence signals of Sens positive cells.
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Fano factor¼ h
2:�

where m is the mean protein number. This factor indicates the average difference in number of mole-

cules between the two reporter proteins at any given time.

A benefit of calculating the Fano factor is to determine if the protein noise can be modeled as a

Poisson-like process. Previous studies using dissociated cells have shown that protein noise,

expressed as the Fano factor, remains constant as protein output varies (Bar-Even et al., 2006;

Elowitz et al., 2002). This is due to stochastic birth and death of mRNA and protein molecules

(Paulsson, 2005; Thattai and van Oudenaarden, 2001). We estimated the empirical Fano factor as

a function of Sens protein output in cells expressing either singly-tagged Sens or tandem-tagged

Sens (Figure 2C and Figure 2—figure supplement 2). To estimate the Fano factor due to stochas-

ticity of Sens expression, we subtracted out the technical contribution as measured in tandem-

tagged cells. The Fano factor for Sens expression displayed a complex relationship to protein out-

put, with a minor peak in cells containing fewer than 200 molecules, and then dropping to a level

that slowly rose with higher Sens output (Figure 2C).

To understand the origins of this profile, we created a simplified model of gene expression

(Figure 3A). Each reaction in the model was treated as a probabilistic event, reflecting the stochastic

nature of gene expression (Figure 3—figure supplement 1A–C; Paulsson, 2005; Thattai and van

Oudenaarden, 2001). Using rate parameters that we measured for sens expression in the wing (Fig-

ure 3—figure supplement 2 and Figure 3—source data 1), we ran thousands of simulations mim-

icking protein output from two independent alleles in each virtual cell (Figure 3—figure

supplement 1B,C).

We first considered a model in which the promoter was always active (Figure 3A). The simulated

Fano factor was constant irrespective of protein number, consistent with the noise being caused by

random birth-death events. This somewhat resembled the Sens profile of Fano factor experimentally

observed in cells containing more than 200 molecules of Sens (Figure 2C). However, there was a

weak rise in the observed Fano factor, and so we hypothesize that one of the post-transcriptional

rate constants weakly varies as a function of protein output (Figure 3—figure supplement 1D).

Experimental validation of model prediction on birth-death processes
and noise
The model predicts that mRNA and protein birth-death processes contribute a uniform level of

noise, expressed as the Fano factor, across the entire spectrum of Sens output. Note that the experi-

mentally measured Fano factor is the cumulative sum of Fano noise from each allele. Therefore,

expression stochasticity from one allele contributes to half the cumulative sum. This value of the

Fano factor is predicted to be equivalent to the average number of protein molecules translated

from one mRNA molecule in its lifetime, also called the translation burst size (Paulsson, 2005;

Schmiedel et al., 2015; Thattai and van Oudenaarden, 2001). To test this model prediction, we

experimentally altered the translation burst size for Sens. We did so by eliminating the post-tran-

scriptional repression of sens by the microRNA miR-9a (Cassidy et al., 2013; Li et al., 2006). Since

microRNAs inhibit translation output and/or mRNA lifetime, loss of microRNA-mediated repression

should increase the translation burst size of a target gene proportional to the magnitude of de-

repression of the target.

We eliminated miR-9a regulation of sens by mutation of the two binding sites for miR-9a in the

sens mRNA 3’UTR. This abolishes the impact of miR-9a on sens gene expression (Cassidy et al.,

2013). We then estimated the fold-increase in Sens protein number when miR-9a regulation is lost.

We did so by comparing Sens output from sens alleles with intact or mutated miR-9a sites

(Figure 4A). Loss of miR-9a repression increased Sens protein number an average of 1.8-fold in all

cells (Figure 4B,C). Similar fold-repression values were observed irrespective of the fluorescent tag

used to estimate the ratio of mutant-to-wildtype Sens molecules (Figure 4—figure supplement 1).

If Sens noise arises from birth-death processes, we predicted that the Fano factor would uniformly

increase by ~1.8 fold for the mutant sens gene, reflecting its greater translation burst size. We mea-

sured the Fano factor for cells where both sens alleles contained mutated miR-9a sites (Figure 4D).

Loss of miR-9a regulation increased the Fano factor uniformly across the entire range of Sens protein
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output. The increase in overall Fano factor was approximately two-fold. This result is consistent with

stochastic birth-death processes uniformly contributing to Sens protein noise.

Sens protein noise displays a signature arising from transcription bursts
Strikingly, when miR-9 repression was lost, the small peak in Fano factor was strongly enhanced in

cells with 300 molecules/cell or less (Figure 4D). The existence of this peak was not predicted by
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Figure 3. Mathematical modeling of Sens protein noise. (A) The model of gene expression with a constitutively active promoter. (B) The two-state

model with a promoter having distinct on and off states, and independent rate constants for state conversion (see also Figure 3—figure supplements

1–2). (C) The relation between transcription rate constants and transcription burst frequency and burst size. (D-F) The Fano factor derived from

simulations of the two-state model. In each panel, a different transcription rate constant is varied to generate a range of Sens protein output. Trend

lines were generated by smoothing the Fano factor profiles obtained from binning 5,000 simulated cells. (D) The rate constant Sm is systematically

varied from 0.1 to 1 mRNA/min. Rate constants kon and koff are fixed at the values shown for each simulation curve. The promoter switches rapidly at

high values of kon and koff such that the Fano factor is similar to one from a constitutively active promoter (dark purple line). (E) The rate constant kon is

systematically varied from 0.025 to 10 min-1. Rate constant Sm is fixed at 0.25 mRNA/min, and koff is fixed at the values shown for each simulation curve.

(F) The rate constant koff is systematically varied from 0.025 to 3 min-1. Rate constant Sm is fixed at 0.5 mRNA/min, and kon is fixed at the values shown

for each simulation curve.

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Source data 1. Rate parameters used in modeling.

Figure supplement 1. Modeling of Sens expression and noise.

Figure supplement 2. Measurement of sens mRNA and protein decay in the wing disc.
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(Figure 4—figure supplement 1). (D) Loss of miR-9a regulation leads to an increase in Fano factor across the entire range of Sens protein output.

Shaded regions are 95% confidence intervals. (E) Model simulations with a 1.8-fold increase in translation burst size (defined as Sp/Dm) reproduces the

experimentally observed Fano profile. Error bars are 95% confidence intervals.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Fluorescent protein tags sfGFP and mCherry behave interchangeably in vivo.
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stochastic birth-death processes alone. Therefore, we considered a more complex model of gene

expression (Figure 3B). The promoter was allowed to switch between active and inactive states such

that it transcribed mRNA molecules in bursts (Figure 3C). When we systematically varied the pro-

moter activation parameter kon, the in-silico Fano factor profile exhibited a peak when protein out-

put was low (Figure 3E). This trend was seen when the other parameters were fixed at different

values, with the amplitude and position of the peak changing but always biased to lower protein out-

put. In contrast, varying the initiation parameter Sm or inactivation parameter koff did not yield a

Fano peak when protein output was low (Figure 3D,F). These trends were also seen when the other

parameters were fixed at different values. Thus, the model predicted qualitatively different noise

profiles in protein data. The noise profile most similar to the experimentally observed profile was the

one in which kon varies between cells to generate a range of protein output. We surmise from these

results that transcription of sens at the DV boundary of the wing disc might be regulated by modu-

lating promoter burst frequency via kon. Indeed, analysis of mRNA expression in the wing disc by sin-

gle-molecule fluorescence in situ hybridization (smFISH) indicates that burst frequency is modulated

for the sens gene (Bakker et al., 2020). Burst frequency modulation has also been observed for

other developmental genes (Bakker et al., 2020; Bartman et al., 2019; Fukaya et al., 2016;

Zoller et al., 2018).

Results from the mathematical model suggest that Sens protein noise comes from two distinct

sources: (1) transcriptional bursting kinetics, and (2) mRNA and protein birth-death processes. The

latter source generates a constant amplitude of protein fluctuations (Fano factor) across the entire

spectrum of Sens output. When cells have a low transcription burst frequency, they experience larger

fluctuations in mRNA numbers, which transmits to larger protein fluctuations, and generates the

Fano factor peak. As promoter activation events become more frequent, they approximate a consti-

tutively active promoter such that RNA-protein birth-death processes dominate the noise, and the

Fano factor drops to a constant level.

When we implemented this more complex model to simulate the loss of miR-9a regulation, the

result was similar to the experimental increase in Fano factor (Figure 4D,E). This result was observed

whether the translation rate (Sp) or mRNA decay rate (Dm) parameter was altered 1.8-fold to simu-

late loss of miR-9a repression.

Experimental validation of model predictions on transcription bursts
and noise
The model predicts that transcription bursting is a significant contributor to Sens protein noise when

cells contain fewer than 300 molecules (Figure 3E). To test this prediction, we landed the sens trans-

gene in a different location of the genome. We reasoned that a different genomic neighborhood

might change transcriptional bursting dynamics due to altered chromatin accessibility. We chose

57F5 to land sens, since both 22A3 and 57F5 are widely used landing sites for Drosophila transgenes

(Figure 5A; Venken et al., 2006; Venken et al., 2009). There was no difference in the percentage

of imaged cells positive for Sens between 22A3 (34.3 ± 3.7% positive) and 57F5 wing discs (34.7 ±

3.4% positive). The sens transgene inserted at 57F5 was also comparable to the 22A3 site in its abil-

ity to rescue the mutant endogenous sens, as well as express Sens protein in a similar pattern at the

wing disc DV boundary (Figure 5B–D). Median Sens output was modestly higher (30–35%) when

expressed from 57F5 (Figure 5—figure supplement 1A,B). However, the distribution of Sens output

was not significantly different between 57F5 and 22A3 when normalized to the median value (Fig-

ure 5—figure supplement 1D). This result indicates that sens expression from 57F5 was uniformly

higher across the entire spectrum of cells expressing the protein.

We generated animals where the alleles at 57F5 were singly tagged with sfGFP and mCherry

(Figure 5C,D), and we quantitated the Fano factor after correction for measurement noise at 57F5.

We then compared the Fano factor profile from the gene located at 57F5 versus 22A3 (Figure 5E).

Strikingly, the Fano factor peak from the 57F5 gene was greatly increased in amplitude and width,

and was maximal in cells with higher levels of Sens protein, compared to the peak from the 22A3

gene. However, the peak from 57F5 did relax to a constant Fano factor in cells with higher Sens out-

put. This level was indistinguishable from the constant Fano level in 22A3 cells with comparable Sens

output (Figure 5E). Thus, the 57F5 alleles do not appear to alter birth-death processes for sens

mRNA and protein but do appear to affect some other process related to stochasticity.
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Figure 5. Genome location of the sens gene dramatically affects Sens noise. (A) The sens transgenes were inserted into one of two locations on

chromosome II - 22A3 or 57F5. (B) Histograms depicting the frequency distribution of Sens protein number per cell. 10,000 cells were randomly

sampled from 22A3 and 57F5 datasets each for comparison (see also Figure 5—figure supplement 1). (C) Scatter plot with hexagonal binning of

single-cell sfGFP-Sens and mCherry-Sens protein numbers from sens genes inserted at 22A3 or 57F5. Randomly chosen subsets of 6,000 cells were

Figure 5 continued on next page
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Allele pairing at 57F5 generates trans regulation and enhanced noise
We looked for local properties of the genome at 22A3 and 57F5 that might be responsible for the

different noise properties of sens inserted at those sites. Metazoan chromosomes are physically seg-

regated into self-associating domains of chromatin called TADs (Topologically Associated Domains)

(Dixon et al., 2016; Szabo et al., 2018). Domains vary in length, gene density and chromatin acces-

sibility (Dowen et al., 2014). TADs are separated from each other by insulator sequences (Ali et al.,

2016; Stadler et al., 2017; Van Bortle et al., 2014). Using published Hi-C and ChIP-seq data for

the Drosophila genome (Stadler et al., 2017), we determined that the sens insertion site at 22A3 is

in the middle of a large TAD, ~50 kb from its 5’ and 3’ insulators (Figure 6—figure supplement 1A).

In contrast, the sens insertion site at 57F5 is in a small TAD, ~1 kb from its 3’ insulator (Figure 6—fig-

ure supplement 1B).

Insulators physically associate with one another, leading to altered chromatin configurations

(Yang and Corces, 2011). When insulators associate in cis, they form loops along a chromosome.

DNA loops alter enhancer interactions with cis promoters or prevent the spread of heterochromatin

into looped regions (Fujioka et al., 2016; Yang and Corces, 2011). In contrast, when insulators

associate in trans, they facilitate enhancer regulation of promoters on other chromosomes by bring-

ing them into close proximity (Fujioka et al., 2016; Lim et al., 2018; Piwko et al., 2019). Such trans

regulatory phenomena, called transvection, appear to be a mode of gene regulation in several spe-

cies including humans (Hark et al., 2000; Liu et al., 2008; Masui et al., 2011;

Rassoulzadegan et al., 2002). In Drosophila, homologous chromosomes are extensively paired in

somatic cells throughout most life stages (Metz, 1916), leading to physical co-localization of paired

alleles in nuclei. This sometimes leads to trans regulation of one allele by its paired allele due to

dynamic inter-TAD contacts in trans (Szabo et al., 2018). Since the sens gene was positioned either

close to or distant from a TAD insulator in 57F5 or 22A3 respectively, we wondered if insertion

altered the cis or trans regulation of sens.

To test this hypothesis, we examined protein output from the mCherry-sens allele alone. When

this allele was placed at 22A3 in trans to a sfGFP-sens allele at 22A3, a unimodal distribution of

mCherry-Sens protein was observed (Figure 6A). A strikingly different distribution was observed

when mCherry-sens was placed at 57F5 in trans to a sfGFP-sens allele at 57F5 (Figure 6A). A sizable

fraction of cells expressed higher levels of mCherry-Sens, creating a broader, bimodal distribution.

We then placed a 57F5 mCherry-sens allele in trans to a 22A3 sfGFP-sens allele (Figure 6A). If

enhanced expression of mCherry-sens at 57F5 was dependent on trans regulation between paired

alleles, then unpaired 57F5/22A3 cells would behave like 22A3/22A3 cells. Conversely, if enhanced

mCherry-sens expression was due to cis regulation at 57F5, then the mCherry-Sens output from

57F5/22A3 cells would behave like 57F5/57F5 cells. Strikingly, the observed distribution of mCherry-

Sens from 57F5/22A3 cells was identical to that of 22A3/22A3 cells (Figure 6A). A similar result was

observed when sfGFP-Sens output was monitored (data not shown). Single-molecule FISH analysis of

sens nascent RNA confirmed that alleles positioned at the same locus (either 22A3 or 57F5) were

physically co-localized in nuclei, whereas alleles positioned at heterologous loci were not co-localized

(Bakker et al., 2020). Thus, even though sens alleles are physically paired at either 22A3 or 57F5,

they regulate one another in trans when located at 57F5 but not at 22A3.

We then asked whether cis or trans regulation of sens at 57F5 is responsible for the enhanced

noise in Sens protein output observed in 57F5/57F5 cells (Figure 5E). We generated animals with

the mCherry-sens allele at 57F5 and the sfGFP-sens allele at 22A3, and quantitated the Fano factor

after correction for measurement noise (Figure 6B). If cis regulation of sens at 57F5 was responsible

Figure 5 continued

plotted for each genotype for ease of comparison. Colors represent cell counts in respective hexagonal bins. (D) Confocal micrographic images of

sfGFP- and mCherry-Sens fluorescence in wing discs expressing the sens gene inserted at 22A3 or 57F5. Nuclei are counterstained with DAPI (blue).

Scale bars are 20 mm. Image brightness is enhanced (identically across 22A3 and 57F5) for ease of visualization. (E) The Fano factor profiles from cells

expressing sens at 57F5 or 22A3. Cells with more than 800 molecules have identical Fano values at both genomic positions. The Fano peaks at lower

Sens levels are very different between the genomic locations. Shaded regions are 95% confidence intervals.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Comparison of Sens expression profiles for various allelic pairs.

Giri et al. eLife 2020;9:e53638. DOI: https://doi.org/10.7554/eLife.53638 11 of 34

Research article Developmental Biology

https://doi.org/10.7554/eLife.53638


A

B

0 500 1000 1500 2000

0

5

10

15

20

mCherry-Sens (molecules)
P

ro
b

a
b

ili
ty

 d
e

n
s
it
y
 o

f 
c
e

lls

x10-4

Chr. II

22A3 57F5

22A3 / 22A3

57F5 / 57F5

22A3 / 57F5

0 500 1000 1500

0

50

100

150

F
a

n
o

 f
a

c
to

r 
(m

o
le

c
u

le
s
)

Sens protein (molecules)

Chr. II

22A3 57F5

22A3 / 22A3

57F5 / 57F5

22A3 / 57F5

C

0 500 1000 1500

100

50

150

0

Transcription burst size

F
a

n
o

 f
a

c
to

r 
(m

o
le

c
u

le
s
)

Sens protein (molecules)

10 mRNAs

8 mRNAs

6 mRNAs

4 mRNAs

Model Simulations

Figure 6. Enhanced protein noise requires trans regulation at 57F5. (A) Frequency distribution of mCherry-Sens

protein number in cells. The mCherry-sens allele is located at either 22A3 or 57F5 as indicated. The sfGFP-sens

allele is either paired or unpaired with the mCherry-sens allele as indicated. Lines are 95% confidence intervals of

moving averages (see also Figure 6—figure supplement 1). (B) The Fano factor of Sens from cells expressing

Figure 6 continued on next page
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for the enhanced noise, then the Fano factor from 57F5/22A3 cells would still be high (Figure 6—

figure supplement 2A). However, the observed Fano factor from 57F5/22A3 cells resembled that

from 22A3/22A3 and not 57F5/57F5 cells (Figure 6B). This result strongly suggests that the

enhanced noise is due to trans regulation of sens at 57F5.

We turned to our modeling framework to elucidate how trans regulation might enhance noise in

protein output. Paired alleles sometimes inhibit each other’s transcription output (Lim et al., 2018).

Such inhibition would lead to greater differences in allelic output of protein, which might explain the

enhanced Fano factor. We tested this by simulating trans-inhibitory alleles. When one allele’s tran-

scriptional state was ‘on’, the rate of activation (kon) of the other allele was decreased. While this

resulted in an increased amplitude in the Fano peak, it did not affect peak width and it did not shift

the peak position to greater Sens output (Figure 6—figure supplement 2B). Both of these latter

features were observed experimentally (Figure 6B). We then considered a simpler scenario in which

trans regulation increased transcription, as suggested by the modest increase in protein output from

paired 57F5 alleles (Figure 6A, Figure 5—figure supplement 1A,B). When the transcriptional

parameters in the model were varied, we found that a small increase in transcription burst size could

capture the effect of changing sens gene location from 22A3 to 57F5 on the Fano factor

(Figure 6C). This suggests that changing burst size by trans regulation might account for the dra-

matic effects on Sens protein noise.

Sensory bristle patterns become disordered by enhanced sens noise
Stripes of cells 4–5 cell diameters wide are induced to express Sens by Wg at the DV boundary

(Alexandre et al., 2014; Eivers et al., 2009; Phillips and Whittle, 1993). Within each stripe, cells

near the center undergo lateral inhibition, and consequently, some of these upregulate Sens to

become S cells (Alexandre et al., 2014; Troost et al., 2015). This pattern was experimentally

observed whether sens was transcribed from the 22A3 or 57F5 locus (Figures 5D and 7A).

Many cells in the center of stripes contain 500–1000 Sens molecules (Figure 7A and Figure 7—

figure supplements 1A and 2). Thus, cells undergoing lateral inhibition are comparable in Sens pro-

tein number to those cells with highest noise from the 57F5 gene. To confirm that these central cells

were high-noise for 57F5, we mapped the values of each cell’s Fano factor to their spatial positions

within wing discs. For the 57F5 gene, cells with abnormally high noise were located throughout the

stripe, including the center from which S cells are chosen (Figure 7B and Figure 7—figure supple-

ment 1B). Thus, it is highly likely that some 57F5 cells undergoing lateral inhibition were experienc-

ing enhanced fluctuations in Sens protein number. In contrast, 22A3 cells with the highest noise

were located at the edges of each stripe, distant from the central region from which S cells normally

emerge (Figure 7B and Figure 7—figure supplement 1B). Thus, 22A3 cells experiencing the largest

fluctuations contain very low Sens protein and are unlikely to adopt S-cell fates. We had observed

that only paired alleles at 57F5 caused Sens noise enhancement, and unpaired alleles at 57F5 and

22A3 did not. When we mapped 57F5/22A3 cells with the highest noise, they were largely restricted

to the edge of stripes closest to the DV boundary (Figure 7—figure supplement 1B).

We reasoned that if cells undergoing lateral inhibition experienced a large enough fluctuation in

Sens number, then an error in cell fate determination might occur. We had measured Sens protein in

cells undergoing decisions to make chemosensory bristles. Chemosensory bristles are periodically

positioned in a row near the adult wing margin, such that approximately every fifth cell is a bristle

Figure 6 continued

Sens protein either from paired alleles (22A3/22A3 and 57F5/57F5) or unpaired alleles (22A3/57F5). Moving line

averages are shown, and shaded regions are 95% confidence intervals. (C) Model simulations in which

transcription burst size (defined as Sm/koff) is set to different values as shown. The Fano peak amplitude and

position change as burst size varies, but all relax to a constant basal level. These trends are similar to those

observed in (B). Error bars and shaded regions are 95% confidence intervals (see also Figure 6—figure

supplement 2).

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Chromatin landscape of genomic loci 22A3 and 57F5 determined from Hi-C data.

Figure supplement 2. Fano factor profiles from model simulations in which sens alleles at 57F5 are regulated

independently in cis or there is promoter inhibition in trans.
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Figure 7. Self-organized sensory patterning is disrupted by stochastic gene expression. (A, B) The centroids of Sens-positive cells in 22A3/22A3 and

57F5/57F5 wing discs are mapped and color coded according to Sens protein number (A), and Fano factor level (B). Cells exhibiting high Fano factor

values are distributed throughout the proneural zone of the 57F5/57F5 disc, where S fate determination occurs (see also Figure 7—figure

supplements 1 and 2). (C) The dorsal surface of the adult wing margin displays two ordered rows of sensory organs - an outer continuous row of thick

Figure 7 continued on next page
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(Figure 7C). Mechanosensory bristles form in a continuous row most proximal to the adult wing mar-

gin, and they are selected 8–10 hr after the chemosensory cells are selected (Hartenstein and Pos-

akony, 1989). Thus, mechanosensory bristles positioned incorrectly in the chemosensory row might

be derived from proneural cells that escaped lateral inhibition during chemosensory specification

(Figure 7C).

We quantified ectopic bristles in 57F5 versus 22A3 adults and determined the frequency with

which a wing contained one or more ectopic bristles. The frequency was ten-fold higher in 57F5/

57F5 adults compared to 22A3/22A3 adults (Figure 7D, Figure 7—source data 1). Indeed, an error

was seen in one of three adult wings. Consistent with this, chemosensory bristles were also more fre-

quently specified in 57F5 adult wings compared to 22A3 (Figure 7C and Figure 7—figure supple-

ment 3). The increase in pattern disorder was not due to disruption of genes residing in the 57F5

TAD since none are annotated as neurogenic (Cassidy et al., 2013). Nor was it due to genetic back-

ground in the different lines since the 22A3 and 57F5 parental stocks had identical chemosensory

and mechanosensory bristle frequencies (Figure 7D, Figure 7—figure supplement 3 and Figure 7—

source data 1). Moreover, adults with unpaired alleles (57F5/22A3) had an ectopic bristle frequency

of 1.7%, not significantly different from 22A3/22A3 adults (Figure 7D and Figure 7—source data

1). Thus, pairing between alleles at 57F5 caused greater pattern disorder.

The pairing of sens at 57F5 led to a modest increase in the level of Sens output and a dramatic

increase in the noise of Sens output. The greater pattern disorder could be due to the enhanced

noise or level or both. To distinguish between these possibilities, we analyzed patterning of the adult

wing margin when sens was rendered insensitive to miR-9a repression. Loss of miR-9a repression

increased Sens protein levels 80–85% in all proneural cells (Figure 4C and Figure 5—figure supple-

ment 1A,C,E) and modestly increased protein noise (Figure 4D). If pattern disorder was caused by

enhanced protein levels, we reasoned that loss of miR-9a repression would generate even greater

pattern disorder than genome position, since protein levels were only increased ~35% in 57F5/57F5

cells (Figure 5—figure supplement 1A,B,D). However, loss of miR-9a repression did not increase

the frequency of patterning errors in adult wings (Figure 7E, Figure 7—figure supplement 3, and

Figure 7—source data 1). In a different perspective, the miR-9a mutant sens paired at 22A3

expressed 36% more protein than the wildtype sens paired at 57F5 (Figure 5—figure supplement

1A). However, its phenotypic error frequency was 3.6% in contrast to 29.1% for wildtype sens at

57F5 (Figure 7E). The most parsimonious explanation is that bristle pattern disorder in 57F5/57F5

animals is caused by the greatly enhanced noise in sens gene expression.

Figure 7 continued

mechanosensory bristles (blue) and an inner periodic row of thin chemosensory bristles (magenta). Disorganized patterns are observed when bristles

are incorrectly positioned. Instances of ectopic (mis-positioned) mechanosensory bristles in the chemosensory row (center) and ectopic chemosensory

bristles, which disrupt periodic spacing (right), were observed and counted. (D) Percentage of adult wings with one or more patterning error. Pattern

disorder is much greater when sens alleles are expressed from 57F5/57F5 relative to alleles at 22A3/22A3 or 57F5/22A3. This result is observed

regardless of whether miR-9a regulates sens or not. Genotypes were compared by calculating the odds ratio of mispatterning, and determined to be

significantly different from one if p<0.05 using a Fischer’s exact test: n.s., not significant; *p<0.05; **p<.005 (Figure 7—figure supplement 3). (E)

Uniformly increasing Sens protein number 1.8-fold by removing miR-9a regulation does not lead to greater pattern disorder. Genotypes were

compared by calculating the odds ratio of mis-patterning, and determined to be significantly different from one if p<0.05 using a Fischer’s exact test: n.

s., not significant (Figure 7—figure supplement 3). (F) Left: A schematic outlining the induction of sens by Wg (blue) followed by sens auto-activation

through feedback with Ac Sc (green) and through mutual inhibition between neighboring cells (red). Right: When expression noise is sufficiently small,

Sens levels progressively increase or decrease in neighboring cells. However, when noise is enhanced, a large fluctuation will alter the trajectory of Sens

expression towards an erroneous outcome.

The online version of this article includes the following source data and figure supplement(s) for figure 7:

Source data 1. Odds ratio of wings with mispositioned mechanosensory bristles.

Figure supplement 1. Maps of Sens protein number and Fano factor in replicate wing discs.

Figure supplement 2. Average Sens expression as a function of cell position relative to the DV boundary.

Figure supplement 3. Chemosensory bristle spacing is dependent on genomic location of the sens gene.
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Discussion
An outstanding challenge is to determine whether stochasticity inherent to gene expression is trans-

mitted across scales to vary the fidelity of pattern formation. We have focused on the organization

of sensory bristles along the adult wing margin. During pattern formation, cells experience noise in

Sens protein copy number that derives from two sources. One source is from the discontinuous

bursts of sens transcription, and the other source is from random birth-death events that affect sens

mRNA and protein. For sens, as defined by the 19.2 kb region constituting the transgene, this intrin-

sic noise was not sufficient to transmit disorder to the adult pattern. However, when sens was sub-

ject to trans regulation between paired alleles, protein noise was greatly enhanced, which was

sufficient to disorder the adult pattern. Therefore, trans interaction between paired homologs is an

unanticipated source of noise. It is tempting to speculate that trans regulation might be a natural

means to modulate gene expression noise.

Allelic pairing has been observed across multiple organisms (Hark et al., 2000; Liu et al., 2008;

Rassoulzadegan et al., 2002). Pairing often precedes trans regulatory interactions, such as X-inacti-

vation (Masui et al., 2011). In Drosophila, pairing and trans regulation between homologs has been

demonstrated for several developmental genes (Duncan, 2002; Fukaya and Levine, 2017;

Johnston and Desplan, 2014; Lunde et al., 1998). Indeed, trans allelic interactions appear to be a

pervasive feature of the Drosophila genome (Bateman et al., 2012; Blick et al., 2016; Mellert and

Truman, 2012). However, pairing of homologous alleles is not necessarily indicative of trans regula-

tion (Viets et al., 2019).

It remains to be determined how pairing at 57F5 enhances Sens output and noise. The noise pro-

file observed for paired sens alleles at 57F5 can be partly modeled as the effect of enhanced tran-

scription burst size (Figure 6). Since the two-state model uses general rate parameters kon, koff, and

Sm to regulate bursting, it is agnostic to the specific molecular processes that direct transcription.

Distinct mechanisms such as chromatin remodeling, enhancer looping, transcription factor binding-

unbinding, or preinitiation complex assembly-disassembly might be rate-limiting for kon, koff, or Sm
at different levels of Sens expression. Thus, the complex noise profile observed for 57F5 might be a

signature of multi-state transcription. Indeed, multi-state transcription kinetics have been observed

for other genes (Bothma et al., 2014; Rodriguez et al., 2019; Tantale et al., 2016). It is also possi-

ble that certain types of mRNA state transitions could generate an enhanced profile of protein noise.

These might include transitions from an unspliced to spliced state (Wan and Larson, 2018), cyto-

plasmic mRNA processing (Hansen et al., 2018), differential translation efficiencies, or toggling

between reversible translating and non-translating states (Yan et al., 2016). Therefore, although our

modeling implicates transcriptional bursting as a major source of protein noise, it remains to be

experimentally verified. Our use of transgenes inserted into only two sites should be augmented

with comparison to more sites and to the endogenous sens gene. Examining transcription bursting

via smFISH or MS2-MCP tagged RNA at paired and unpaired loci will be necessary to determine if

bursting kinetics are different for different genomic locations.

Noise levels differ between 22A3 and 57F5 cells only in the expression regime of 300–800 Sens

molecules. Yet, this difference appears to affect pattern order-disorder. It would suggest that a sub-

set of cells with fewer than 800 Sens molecules are at a developmental decision point between E

and S fates. This is an order of magnitude less than the approximately 8,000–10,000 Sens molecules

observed in terminal S-fated cells. Stochastic fluctuations have the largest impact when protein copy

numbers are low. Yet, production of a large number of proteins would raise the time and metabolic

cost required to undergo developmental transitions (Rodenfels et al., 2019; Wagner, 2005). It sug-

gests that expression noise of certain genes is optimized to allow accurate pattern formation without

requiring the production of large numbers of fate-determining proteins.

How might this optimization be realized? Individually varying the different rate constants in our

two-state model produces very different protein noise-output relationships (Figure 3). Regulating

kon provides the most effective way to increase protein output without increasing noise. Increasing

kon increases the frequency of transcriptional bursts without increasing burst size. Indeed, smFISH

experiments show that while sfGFP-sens transcription burst size is constant across the wing margin,

mRNA output is regulated by tuning kon and burst frequency across cells (Bakker et al., 2020). We

have inferred a similar regulatory mechanism for sens transcription by coupling protein noise meas-

urements to stochastic models.
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Proper inference of transcription kinetics using protein measurements requires a straightforward

correlation between mRNA and protein numbers. Such correlations have been noted (Raj et al.,

2006). For instance, bicoid mRNA and protein numbers are reproducible to within 10% and scale

proportionately with gene dosage (Gregor et al., 2007; Petkova et al., 2014). Stochastic models of

transcription and protein production were used to correctly infer mRNA and protein copy numbers

for bacteriophage lambda repressor CI (Sepúlveda et al., 2016) and the HIV-1 Long Terminal

Repeat promoter (Dar et al., 2016; Dey et al., 2015). Indeed, protein reporters have been success-

fully used to infer transcriptional bursting parameters kon and koff for a wide variety of transgenic

and endogenous mammalian genes (Suter et al., 2011).

Our results suggest that pattern disorder is driven by Sens protein noise rather than protein lev-

els. This might seem counterintuitive since there are many examples of gene overexpression causing

developmental phenotypes. The explanation likely lies in the mechanism of wing margin patterning,

which occurs in two stages (Figure 7F). First, the Wg morphogen induces Sens expression leading

to tens to hundreds of protein molecules per cell (Jafar-Nejad et al., 2006). Second, Sens expres-

sion is self-organized into a periodic row of S and E cells by Delta-Notch mediated lateral inhibition

(Hartenstein and Posakony, 1990; Heitzler and Simpson, 1991). If all cells should express Sens to

an abnormally high level, lateral inhibition still acts on the relative differences between cells to prop-

erly resolve the pattern (Corson et al., 2017). Consistent with this, reducing endogenous sens gene

dose to one copy does not affect bristle pattern formation (Jafar-Nejad et al., 2006). On the other

hand, enhanced fluctuations in Sens output appear to cause pattern disorder. The simplest interpre-

tation is that during the second stage, cell-to-cell transmission and reception of inhibitory signals is

distorted by high intrinsic fluctuations in Sens (Figure 7F). If fluctuations are large enough to trigger

positive feedback between proneural factors, it would render a cell resistant to lateral inhibition. The

net outcome would be cells that spontaneously adopt S fates out of order.

Stochastic transcriptional fluctuations have been harnessed in bet hedging systems such as induc-

tion of lactose metabolism in E. coli (Choi et al., 2008) and cell competence in B. subtilis

(Süel et al., 2007). In mammalian cells, stochastic fluctuations confer phenotypes such as HIV latency

periods (Weinberger et al., 2005) and acquisition of cancer drug resistance (Shaffer et al., 2017).

In developmental contexts, variability in transcription factor output has been shown to affect cell-

fate switches that rely on absolute concentration thresholds (Gregor et al., 2007; Raj et al., 2010).

However, some developmental systems buffer against expression stochasticity by relying on relative

changes in expression or intercellular signaling (Sonnen and Aulehla, 2014). We show that a pat-

terning system relying on lateral inhibition can buffer against tissue-scale changes in protein output,

but is sensitive to stochastic fluctuations in protein copy numbers.

Materials and methods

Key resources table

Reagent type
(species) or resource Designation Source or reference Identifiers Additional information

Gene
(Drosophila
melanogaster)

white1118 Bloomington
DrosophilaStock
Center

BDSC: 3605
Flybase: FBst0003605

Gene
(Drosophila
melanogaster)

sensE1 Nolo et al. (2001) Flybase: FBal0098024 From Hugo Bellen

Gene
(Drosophila
melanogaster)

sensE2 Bloomington
DrosophilaStock
Center

BDSC: 5311
Flybase: FBal0098023

Strain, strain
background
(Drosophila
melanogaster)

y1 w1118;
PBac{y+-attP-3B}
VK00037

Bloomington
DrosophilaStock
Center

BDSC: 9752
Flybase: FBst0009752

22A3

Continued on next page
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Continued

Reagent type
(species) or resource Designation Source or reference Identifiers Additional information

Strain, strain
background
(Drosophila
melanogaster)

y1 w1118;
PBac{y+-attP-9A}
VK00022

Bloomington
DrosophilaStock
Center

BDSC: 9740
Flybase: FBst0009740

57F5

Genetic reagent
(Drosophila
melanogaster)

Wildtype
sfGFP-sens [22A3]

Venken et al. (2006).
From Hugo Bellen

Pacman construct containing
sens gene with N-terminal
3xFlag-TEV-StrepII-sfGFP-FlAsH
fusion tag inserted at 22A3

Genetic reagent
(Drosophila
melanogaster)

Mutant
sfGFP-sens [22A3]

This paper sens transgene with N-terminal
3xFlag-TEV-StrepII-sfGFP-FlAsH
fusion tag and two miR-9a
binding sites mutated
inserted at 22A3

Genetic reagent
(Drosophila
melanogaster)

Wildtype
mCherry-sens [22A3]

This paper sens transgene with N-terminal
3xFlag-TEV-StrepII-mCherry-
FlAsH tag inserted at 22A3

Genetic reagent
(Drosophila
melanogaster)

Mutant
mCherry-sens [22A3]

This paper sens transgene with N-terminal
3xFlag-TEV-StrepII-mCherry-FlAsH
fusion tag and two miR-9a
binding sites mutated
inserted at 22A3

Genetic reagent
(Drosophila
melanogaster)

Tandem tag
sfGFP-mCherry
-sens [22A3]

This paper sens transgene with N-terminal
3xFlag-TEV-StrepII-mCherry-sfGFP
-FlAsH fusion tag inserted at 22A3

Genetic reagent
(Drosophila
melanogaster)

Wildtype
sfGFP-sens [57F5]

This paper sens transgene with N-terminal
3xFlag-TEV-StrepII-sfGFP-FlAsH
fusion tag inserted at 57F5

Genetic reagent
(Drosophila
melanogaster)

Mutant
sfGFP-sens [57F5]

This paper sens transgene with N-terminal
3xFlag-TEV-StrepII-sfGFP-FlAsH
fusion tag and two miR-9a
binding sites mutated
inserted at 57F5

Genetic reagent
(Drosophila
melanogaster)

Wildtype
mCherry-sens [57F5]

This paper sens transgene with N-terminal
3xFlag-TEV-StrepII-mCherry-
FlAsH tag inserted at 57F5

Genetic reagent
(Drosophila
melanogaster)

Mutant
mCherry -sens [57F5]

This paper sens transgene with N-terminal
3xFlag-TEV-StrepII-mCherry-FlAsH
fusion tag and two miR-9a binding
sites mutated inserted at 57F5

Genetic reagent
(Drosophila
melanogaster)

Tandem tag
sfGFP-mCherry -
sens [57F5]

This paper sens transgene with N-terminal
3xFlag-TEV-StrepII-mCherry-sfGFP
-FlAsH fusion tag inserted at 57F5

Antibody Guinea Pig
polyclonal anti-Sens

Nolo et al. (2000).
From Hugo Bellen

IF(1:1000)

Antibody Goat anti-guinea
pig IgG Alexa 488

Invitrogen Cat# A-11073,
RRID: AB_2534117

IF(1:250)

Antibody Mouse monoclonal
anti-Flag, clone M2

Sigma Cat# F1804,
RRID: AB_262044

Elisa (1:100)

Antibody Rabbit polyclonal
anti-GFP

Molecular Probes Cat# A-11122,
RRID: AB_221569

Elisa (1:5000)

Antibody Goat polyclonal
anti-rabbit IgG –
HRP conjugated

GE Healthcare Cat# RPN4301,
RRID: AB_2650489

Elisa (1:5000)

Recombinant
DNA reagent

P[acman] wild
type sfGFP-sens

Venken et al. (2006).
Gift of Koen Venken

Continued on next page
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Continued

Reagent type
(species) or resource Designation Source or reference Identifiers Additional information

Recombinant
DNA reagent

P[acman] mutant
sfGFP-sens

This paper 19.2 kb D. melanogaster
genomic fragment including
sens gene with miR-9a binding
sites mutated and N-terminal
fusion to sfGFP

Recombinant
DNA reagent

P[acman] wild
type mCherry-sens

This paper 19.2 kb D. melanogaster
genomic fragment including
sens gene with N-terminal
fusion to mCherry

Recombinant
DNA reagent

P[acman] miR-9a
binding site
mutant mCherry-sens

This paper 19.2 kb D. melanogaster
genomic fragment including
sens gene with miR-9a binding
sites mutated and N-terminal
fusion to mCherry

Recombinant
DNA reagent

P[acman] wild type
tandem tag
sfGFP-mCherry-sens

This paper 19.2 kb D. melanogaster
genomic fragment including
sens gene with miR-9a binding
sites mutated and N-terminal
fusion to mCherry and sfGFP

Sequence-
based reagent

18S - Forward This paper PCR primers CTGAGAAACGGCTACCACATC

Sequence-
based reagent

18S - Reverse This paper PCR primers ACCAGACTTGCCCTCCAAT

Sequence-
based reagent

Rpl21 - Forward This paper PCR primers CTTGAAGAACCGATTGCTCT

Sequence-
based reagent

Rpl21 - Reverse This paper PCR primers CGTACAATTTCCGAGCAGTA

Sequence-
based reagent

Sens - Forward This paper PCR primers CAGGAATTTCCAGTGCAAACAG

Sequence-
based reagent

Sens - Reverse This paper PCR primers CGCCGGTATGTATGTACGTG

Sequence-
based reagent

Hsp70Ba - Forward This paper PCR primers AGTTCGACCACAAGATGGAG

Sequence-
based reagent

Hsp70Ba - Reverse This paper PCR primers GACTGTGGGTCCAGAGTAGC

Commercial
assay or kit

1-Step Ultra
TMB-ELISA

Thermo Fisher Cat #34028 For Elisa assays

Chemical
compound, drug

Paraformaldehyde
(powder)

Polysciences 00380–1

Chemical
compound, drug

Triton X-100 Sigma Aldrich T9284-500ML

Chemical
compound, drug

VectaShield Vector Labs H-1000

Chemical
compound, drug

40,6-diamidino-2-
phenylindole (DAPI)

Life Technologies D1306

Software, algorithm MATLAB script to
automatically segment
disc nuclei

Peláez et al. (2015) https://github.com/
ritika-giri/stochastic-noise

Software, algorithm MATLAB scripts for
modeling simulations

This paper https://github.com/ritika-giri/
stochastic-noise/tree/master/MATLAB%20
scripts%20for%20gene%20
expression%20simulation

Software, algorithm R scripts for
imaging data analysis

This paper https://github.com/ritika-
giri/stochastic-noise/tree/master/R%20
script%20for%20data
%20analysis

Other WM1 medium Restrepo et al. (2016) Growth medium
for organ culture
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Experimental model and subject details
For all experiments, Drosophila melanogaster was raised using standard lab conditions and food.

Stocks were either obtained from the Bloomington Stock Center, from listed labs, or were derived in

our laboratory (RWC). A list of all mutants and transgenics used in this study is in the Key Resources

Table. All experiments used female animals unless stated otherwise. The sample sizes were not com-

puted when the study was designed. Sample sizes were determined such that >12,000 cells were

measured for each genotype, as detailed in the section Quantitation and Statistics. Since

only ~1,000 cells could be segmented per disc sample,>12 discs were analyzed for each genotype.

N-terminal 3xFlag-TEV-StrepII-sfGFP-FlAsH tagged sens, originally generated from the CH322-

01N16 BAC, was a kind gift from K Venken and H Bellen (Venken et al., 2006; Venken et al.,

2009). It has been shown to rescue sensE1 and sensE2 mutations (Cassidy et al., 2013;

Venken et al., 2006). To generate mCherry tagged sens, the sfGFP coding sequence in 3xFlag-TEV-

StrepII-sfGFP-FlAsh was swapped out for mCherry by RpsL-Neo counter-selection (GeneBridges).

The sfGFP-mCherry tandem tagged sens transgene was generated similarly by overlap PCR such

that sfGFP and mCherry sequences were separated by a 12 amino acid (GGS)4 linker. The miR-9a

binding site mutant alleles of the tagged sens transgenes were created by deletion of the two identi-

fied binding sites in the 607 nt sens 3’’ UTR as had been described previously (Cassidy et al., 2013)

to generate sensm1m2 mutant transgenes. Cloning details are available on request. All BACs were

integrated at PBacy+-attP-3BVK00037 (22A3) and PBacy+-attP-9AVK00022 (57F5) landing sites by

phiC31 recombination (Venken et al., 2006).Transgenic lines were crossed with sens mutant lines to

construct stocks in which sens transgenes were present in a sensE1/sensEE2 trans-heterozygous

mutant background. Both mutant alleles show greatly reduced levels of anti-Sens staining in cells,

and the E2 allele is a nonsense mutant that cuts off the protein’s DNA-binding domain.

Method details
Adult wing imaging and pattern analysis
Adult females from uncrowded vials were collected on eclosion and aged for 1–2 days before being

preserved in 70% ethanol. Wings from preserved animals were plucked out with forceps and kept

ventral side up on a glass slide. Approximately, 10 pairs of wings were arranged per slide using a

thin film of ethanol to lay them flat. Left and right wings from the same animal were positioned next

to each other. Once specimens were arranged as desired, excess ethanol was wiped away. A second

glass slide was coated with heptane glue (10 cm2 double sided embryo tape dissolved overnight in

4 ml heptane) and pressed down onto the specimen slide to affix them dorsal side up. Then wings

were mounted in 70% glycerol in PBS and sealed with nail polish for imaging. Wings were imaged

using an Olympus BX53 upright microscope with a 10x UPlanFL N objective in brightfield. To

achieve optimal resolution, 8–10 overlapping images were taken for each wing and stitched together

in Adobe Photoshop.

Wings with at least one mechanosensory bristle placed ectopically in or adjacent to the chemo-

sensory bristle row were counted as mis-patterned. The proportion of mis-patterned wings was cal-

culated for each genotype (n � 60). Genotypes were compared by calculating the odds ratio of

mispatterning and determined to be significantly different from 1 if p < 0.05 using Fischer’s exact

test. For chemosensory bristle density, wing images were used to identify and mark chemosensory

bristles along the margin in Fiji. The Euclidean distance between successive bristles was measured

and bristle density was calculated as the inverse of mean spacing. 95% confidence intervals were cal-

culated by bootstrapping and bristle distributions across genotypes were compared statistically

using a student’s t-test.

Fluorescence microscopy
All fluorescence microscopy experiments used white pre-pupal animals. The white pre-pupal stage

was chosen because it is a major transition in the life cycle and lasts for only 45-60 minutes

(Bainbridge and Bownes, 1981), ensuring a high degree of developmental synchronization. Further,

wing margin chemosensory precursor selection was observed to be tightly linked to the transition

from late third larval instar to pre-pupal stage. Wing discs from staged animals were dissected out in

ice-cold Phosphate Buffered Saline (PBS). Discs were fixed in 4% paraformaldehyde in PBS for 20
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minutes at 25C and washed with PBS containing 0.3% Tween-20 (PBS-Tween). Then they were

stained with 0.5 mg/ml DAPI and mounted in Vectashield. Discs were mounted apical side up and

imaged with identical settings using a Leica TCS SP5 confocal microscope. All images were acquired

at 100x magnification at 2048 x 2048 resolution with a 75 nm x-y pixel size and 0.42 mm z separation.

Scans were collected bidirectionally at 400 MHz and 6x line averaged in the red and green channels

to detect mCherry and GFP, respectively. Wing discs of different genotypes were mounted on the

same microscope slide and imaged in the same session for consistency in data quality.

For immunofluorescence, discs were dissected and fixed before incubating with the primary

guinea pig anti-Sens antibody (gift from H. Bellen) diluted 1:1000 in PBS-Tween. Tissues were

washed three times for 5–10 min each in PBS-Tween, and incubated with goat anti-guinea pig

Alexa488 (diluted 1:250, Invitrogen) for 1 hr. After three washes in PBS-Tween, they were stained

with DAPI, and mounted in VectaShield (Vector Labs) for imaging.

Image quantification and analysis
Cell segmentation
For each wing disc, five optical slices containing proneural cells were chosen for imaging and analy-

sis. A previously documented custom MATLAB script was used to segment nuclei in each slice of the

DAPI channel (Peláez et al., 2015; Qi et al., 2013). Briefly, high intensity nucleolar spots were

smoothed out to merge with the nuclear area to prevent spurious segmentation. Next, cell nuclei

were identified by thresholding based on DAPI channel intensity. Segmentation parameters were

optimized to obtain nuclei with at least 100 pixels and no more than 4000 pixels. To estimate the

accuracy of the automated segmentation procedure, we compared its results to a manually curated

dataset of over 500 nuclei from randomly chosen optical slices. Approximately 95.1% of nuclei were

correctly identified using this algorithm, with a false positive rate of 2.6% and false negative rate of

2.3%. For each nuclear area so identified, the average signal intensity for the sfGFP and mCherry

channels was recorded along with the relative position of its centroid in x and y. Since segmentation

was based exclusively on the nuclear signal, it identified all cells present in the imaged area (Fig-

ure 1—figure supplement 2A).

Background fluorescence normalization
The majority of cells imaged did not fall within the proneural region and therefore displayed back-

ground levels of fluorescence scattered around some mean level (Figure 1—figure supplement 2B).

Sens expressing cells were present in the right-hand tail of the distribution. The background was

channel specific and varied slightly from disc to disc (Figure 1—figure supplement 2C). Therefore,

we calculated the ‘mean channel background’ for each channel in each disc individually. We did this

by fitting a Gaussian distribution to the population and finding the mean of that fit. In order to sepa-

rate Sens positive cells, we chose a cut-off percentile based on the normal distribution, below which

cells were deemed Sens negative. We set this cut-off at the 84th percentile for all analysis (Figure 1—

figure supplement 2D).

This was determined empirically by mapping cell positions relative to the pronueral region. At

and above the 84th percentile, mapped cells followed the proneural striped pattern. Lowering the

cut-off led to addition of cells randomly scattered across the imaging field. Increasing the cut-off led

to progressive narrowing of the proneural stripes. From this we inferred the fluorescence level at

84th percentile as a tolerant but specific threshold to identify Sens positive cells. Thus, to normalize

measurements across tissues and experiments, this value was subtracted from the total measured

fluorescence for all cells in that disc and channel. Only cells with values above the threshold for both

mCherry and sfGFP fluorescence were assumed Sens positive (usually 30% of total cells) and carried

forward for further analysis (Figure 1—figure supplement 2E).

mCherry and sfGFP fluorescence scaling
We required the relative fluorescence of the mCherry and sfGFP channels to be scaled in equivalent

units. To do this, we fit a linear equation as shown, and derived best-fit values for slope and constant

intercept.

RFUsfGFP ¼ Slope RFUmCherry

� �

þConstant
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To preserve data integrity, the slope and constant was calculated for each wing disc separately.

Linear correlation coefficients were consistently high between mCherry and sfGFP fluorescence,

ranging from 0.85 to 0.95. Finally, to rescale single cell mCherry fluorescence in units of sfGFP-Sens

fluorescence, we applied the following transformation to each cell’s raw mCherry intensity (Fig-

ure 2—figure supplement 2A).

ScaledRFUmCherry ¼ Slope RFUmCherry

� �

þConstant

Once the two-channel RFUs were made equivalent, they were summed to obtain total Sens RFU

for each cell as shown.

RFUSens ¼ RFUsfGFPþ ScaledRFUmCherry

Fluorescent tag similarity
As an additional control, we checked by various means if indeed sfGFP-Sens and mCherry-Sens pro-

teins behaved similarly in vivo such that the nature of the protein tag did not affect quantitative

assays.

First, we measured the molecule counts of sfGFP-Sens and mCherry-Sens in the same cells using

Fluorescence Correlation Spectroscopy (FCS). As can be seen in Figure 1G, we obtained similar

numbers of Sens molecules irrespective of which fluorescent tag was attached. This indicated that

both alleles express equal numbers of proteins in vivo.

Second, using the microRNA repression assay detailed in Figure 4A–C, we sensitively assayed

whether the nature of the tag affects protein output quantitatively. If one tag were differentially

expressed relative to the other, we would expect the fold-repression values calculated using

mCherry tagged sens alleles to be different from sfGFP tagged sens alleles. This was not observed

(Figure 4—figure supplement 1).

Third, to ensure that we did not under-estimate stochastic noise due to Fluorescence Resonance

Energy Transfer (FRET), we imaged tandem tagged sfGFP-mCherry-Sens samples in both channels

after exciting only the donor (sfGFP) molecules. There was negligible FRET from sfGFP to mCherry

when using imaging parameters identical to experimental runs (Figure 2—figure supplement 1).

Intrinsic noise and Fano factor calculation according to protein level
We used the following formula to calculate intrinsic noise (Elowitz et al., 2002). Mathematically, it is

the variance remaining after the co-variance term of two variables is subtracted from their total vari-

ance. This value is then normalized to the squared mean (h2 ¼ s
2=�2) to obtain the following dimen-

sionless quantity:

h
2

intrinsic ¼
ðx� yÞ2

D E

2 xh i yh i

Here x and y represent number of sfGFP molecules and mCherry molecules, respectively, in a

given cell. Angled brackets denote averages over a population of cells. This term provides a single

value of intrinsic noise for the entire cell population. Since Sens expression varies over three orders

of magnitude, we partitioned cells into small bins according to their Sens protein number (x + y).

Sens RFU was log-transformed and we used a bin width of 0.02 log(RFU) to partition cells (Figure 2—

figure supplement 2B, C). We then calculated intrinsic noise and mean Sens protein number for

each binned sub-population. These were multiplied together to calculate the Fano factor for each

bin.

Fano factor¼
s
2

�

� �

¼ h
2:�

Given that the number of cells in each bin was not constant, and that variance estimates are

affected by sample size, we calculated confidence intervals around the calculated Fano factor for

each bin by bootstrapping. We resampled bin populations 50,000 times with replacement. The 2.5th

and 97.5th percentile estimates were used to construct a 95% confidence interval for that bin’s Fano

factor (Figure 2—figure supplement 2D).
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Measurement noise correction
Intrinsic noise and the Fano factor were calculated as described above for tandem-tagged sfGFP-

mCherry-sens wing discs. The Fano factor profile was identical for tandem-tagged sens genes

inserted at either 22A3 or 57F5. Therefore, we pooled data generated from both locations before

binning into sub-populations. We expect the tandem-tag construct, along with our analysis pipeline,

to account for lack of correlation in red-green fluorescence due to non-linearities in imaging and

detection, differences between the two tags such as folding time and spectral properties, as well as

increased variance due to image analysis or segmentation errors.

In order to construct a statistical model for measurement noise at each level of Sens output, we

used a Lowess regression to fit a continuous line through the data (as seen in Figure 2C). The Low-

ess algorithm fits a locally weighted polynomial onto x-y scatter data and therefore does not rely

upon specific assumptions about the data itself. The local window used to calculate a fit was kept

constant for all Lowess fits. Using our statistical model, we generated a predicted Fano factor that

was due to measurement noise for each bin. This predicted value was subtracted from the Fano fac-

tor that was due to both measurement and gene expression noise for each bin. The difference

obtained is an estimate of the Fano factor due to noise in sens gene expression.

FCS sample calibration and measurements
White pre-pupal wing discs were dissected in PBS and sunken into LabTek 8-well chambered slides

containing 400 ml PBS per well (Papadopoulos et al., 2019). Discs were positioned such that the

pouch region was facing the bottom of the well to be imaged. FCS measurements were made using

an inverted Zeiss LSM780, Confocor 3 instrument with APD detectors. A water immersion 40x objec-

tive with numerical aperture of 1.2 (which is optimal for FCS measurements) was used throughout.

Fast image scanning was utilized for identification of cell nuclei to be measured by FCS. Prior to

each session, we used 10 nM dilute solutions of Alexa488 and CF586 dyes to calculate the average

number of particles, the diffusion time and define the structural parameters w2

xy and z0. Using these

we calibrated the Observation Volume Element (OVE) whose volume can approximated by a prolate

ellipsoid VOVE ¼ p
3

2w2

xyz0

� �

. Measurements were performed in Sensory Organ Precursor cells (SOPs

or S-fated), as well as first and second order neighbors, residing dorsally or ventrally of the S-fated

cell (Figure 1G). Measurements were subjected to analysis and fitting, using a two components

model for three-dimensional diffusion and triplet correction as follows:

G tð Þ ¼ 1þ
1

N

1� y

1þ t

tD1

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ
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xyt

w2
z tD1

r þ
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FCS measurements were excluded from analysis if they exhibited marked photobleaching or low

CPM that is counts per molecule (CPM < 0.5 kHz per molecule per second). Due to the higher CPM

of sfGFP, it was expected that Sens-sfGFP measurements are more accurate. We, nevertheless,

observed fairly similar molecular numbers for both sfGFP-Sens and mCherry-Sens. Normalized auto

correlation curves allowed us to compare the differential mobilities of the tagged Sens protein mole-

cules in the nucleus and their degree of interaction with chromatin. Consistently, for both sfGFP and

mCherry tagged transcription factors, we observed similar amplitudes and decay times of the slow

FCS component, suggesting that the interaction with chromatin is not substantially different for dif-

ferently tagged Sens molecules or even at different Sens concentrations.

We compared Sens protein concentrations as measured by FCS to single cell fluorescence data

from confocal imaging of the fixed tissue (Figure 1—figure supplement 3). All comparisons were

done for the genotype shown below since all FCS measurements were made in trans-heterozygous

mCherry-sens[22A3]/sfGFP-sens[22A3] animals in a sens mutant (sensE1/sensE2) background.

miR-9a repression measurements
In order to measure the fold-decrease in Sens protein output due to miR-9a repression of sens

mRNA, we compared the ratio of mCherry-Sens to sfGFP-Sens in the following genotypes:

1.Only mCherry-sens resistant to miR-9a repression
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mCherry� sensm1m2

sfGFP� sens
;
sensE1

sensE2

2.Neither mCherry-sens or sfGFP-sens resistant to miR-9a repression

mCherry� sens

sfGFP� sens
;
sensE1

sensE2

3.Only sfGFP-sens resistant to miR-9a repression

mCherry� sens

sfGFP� sensm1m2
;
sensE1

sensE2

Single cell fluorescence values were obtained after cell segmentation and background subtraction

as described earlier. Cells from individual discs were pooled together and red-green fluorescence

was linearly correlated using least squares fit (QR factorization) to determine a slope and intercept

for each disc. Next the average slope was calculated for each genotype (shown above). Fold reduc-

tion in mCherry-Sens protein output due to miR-9a was calculated as the ratio of slope-(1) to slope-

(2) with relative errors propagated. Similarly, fold reduction in sfGFP-Sens protein output due to

miR-9a was calculated as the ratio of slope-(2) to slope-(3).

Topological domain structure
Heat maps of aggregate Hi-C data were used to calculate chromosomal contact frequency for

embryonic nc14 datasets (Stadler et al., 2017) for landing sites at 22A3 and 57F5. DNase accessibil-

ity data (Li et al., 2008) and ChIP-seq of the insulator proteins CP190, BEAF-32, dCTCF, GAF and

mod(mdg4) (Nègre et al., 2010) for the corresponding coordinates were analyzed as well.

Experimental estimation of rate constants
mRNA decay rate Dm

Female pre-pupal wing discs were dissected in WM1 medium (Restrepo et al., 2016) at room tem-

perature. To inhibit RNA synthesis, discs were incubated in WM1 plus 5 mg/ml Actinomycin D in light

protected 24-well dishes at room temperature. Approximately 20 discs were collected at 0, 10, 20

or 30 minutes post-treatment and were homogenized with 300 ml Trizol for RNA extraction and RT-

qPCR analysis. Long-lived Rpl21 mRNA was used to normalize mRNA levels across time points. Simi-

lar results were obtained when 18S rRNA was used for normalization. mRNA decay was assumed

exponential and a curve fit across all time-points was used to calculate the decay constant Dm to be

0.0462 mRNA/min corresponding to a half-life t1=2 ¼ 15.75 minutes (R2 = 0.91). Hsp70 mRNA decay

was also measured as an additional short-lived control with known half-life (observed t1=2 ¼ 35 mins).

All qPCR primers used are listed in the Key Resources Table.

Protein decay rate Dp

Homozygous 3xFlag-TEV-StrepII-sfGFP-FlAsH-sens (in a sens mutant background) female pre-pupal

wing discs were dissected in WM1 medium at room temperature. Discs were incubated in WM1 plus

100 mg/ml cycloheximide for 0, 1, 2 and 3 hours at room temperature. Ten discs were harvested at

each time-point and snap frozen in liquid nitrogen. To assay Sens protein abundance, we used an

indirect sandwich ELISA (enzyme-linked immunosorbent assay) protocol as follows. Frozen discs

were homogenized in 150 ml PBS containing 1% Triton-X, centrifuged to remove crude particulate

matter and then incubated with rabbit anti-GFP (1:5000) overnight at 4˚C in anti-Flag antibody

coated wells. Wells were washed with PBS with 0.2% Tween 20 and incubated with HRP linked goat

anti-rabbit (1:5000) antibody for 2 hours at 37C. Wells were subsequently washed and incubated

with 100ml 1-Step Ultra TMB-ELISA substrate. HRP activity was terminated after 30 minutes with

100ml 2M H2SO4 and absorbance measured at 450 nm. Protein decay was assumed exponential and

a curve fit across all time-points was used to estimate the decay constant Dp to be 0.12 proteins/hr,

corresponding to t1=2 ¼ 5.09 hours (R2 = 0.84).
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Protein synthesis rate Sp
As has been theorized previously (Paulsson, 2005; Thattai and van Oudenaarden, 2001) and also

suggested by our experimental data (Figure 4), a constant Fano factor is related to the translation

burst size b as follows

Fano factor¼
s
2

�

� �

¼ 1þ b

Here b is defined by the post-transcriptional rate constants as:

b¼
Sp

DmþDp

� �

The Fano factor in the constant regime for Sens is ~ 20 molecules (Figure 4D). This is the cumula-

tive Fano factor due to expression stochasticity of two alleles. Since variance is additive, Fano factor

due to expression stochasticity of a single allele is ~10 molecules. Therefore, assuming b = (10-1) = 9

molecules and substituting the measured values for Dm and Dp, we estimate that Sp is ~ 0.5 proteins/

mRNA/min. When miR-9a binding sites are deleted from the gene, Sens protein output is 1.80±0.21

fold higher. This makes the resistant protein synthesis rate SP ~ 1 proteins/ mRNA/min. and the Fano

factor contribution from a single allele ~16.2 molecules. Thus, the cumulative Fano factor is ~ 35 mol-

ecules, as measured in experiments (Figure 4D, E). Thus, we fixed Sp at 0.5 or 1 to simulate sens

alleles with and without miR-9a binding sites respectively.

Stochastic simulation model
We modeled the various steps of gene expression, based on central dogma, as linear first order

reactions (Figure 3—figure supplement 1A). To simulate the stochastic nature of reactions, we

implemented the model as a Markov process using Gillespie’s Stochastic Simulation Algorithm (SSA)

(Gillespie, 1977). A Markov process is a memoryless random process such that the next state is only

dependent on the current state and not on past states. Simple Markov processes can be analyzed

using a chemical master equation to provide a full probability distribution of states as they evolve

through time. The master equation defining our three-variable gene expression Markov process is as

follows:

qP nP;nM ;nG; tð Þ=qt
¼ Sm P nP;nM þ 1;nG; tð Þ�P nP;nM ;nG; tð Þ½ �

þDm nM þ 1ð ÞP nP;nM þ 1;nG; tð Þ� nMP nP;nM ;nG; tð Þ½ �
þSpnM P nP � 1;nM ;nG; tð Þ�P nP;nM ;nG; tð Þ½ �

þDp nPþ 1ð ÞP nP þ 1;nM ;nG; tð Þ� nPP nP;nM ;nG; tð Þ½ �
þkon nGtotal

� nGþ 1ð ÞP nP;nM ;nG� 1; tð Þ� nGtotal
� nGð ÞP nP;nM ;nG; tð Þ½ �

þkoff nGþ 1ð ÞP nP;nM ;nGþ 1; tð Þ� nGð ÞP nP;nM ;nG; tð Þ½ �

Here nP and nM denote the number of protein and mRNA molecules respectively. nGtotal
is the total

number of genes of which nG are genes in the ‘ON’ state capable of transcription. Therefore,

nG=nGtotal
is the fraction of active genes. Time is denoted by t. The rate constants are defined in Fig-

ure 3—source data 1.

As the Markov process gets more complex, the master equation can become too complicated to

solve. Gillespie’s SSA is a statistically exact method which generates a probability distribution identi-

cal to the solution of the corresponding master equation given that a large number of simulations

are realized.

Simulation set-up and algorithm
The gene expression model is comprised of six events (Figure 3—figure supplement 1A) and their

associated reaction rates. Unless specified, the events and rate constants were kept identical

between sfGFP-sens and mCherry-sens alleles simulated in the same cell. At any given instance, for

a given allele, either of these six events could take place.

Gillepsie’s SSA is based on the fact that the time interval between successive events can be

drawn from an exponential distribution with mean 1=rtotal where
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rtotal ¼
i

X

ri

That is the sum total of reaction rates for all i events. Further, the identity of the event that will

occur is drawn from a point probability defined as

P ið Þ ¼
ri

rtotal

The algorithm proceeded as follows:

1. We initialized all simulations to start with no mRNA or protein molecules and promoter state
set to ‘off’.

2. rtotal was determined by calculating the individual rates ri at current time t which depend on
the number of substrate molecules and the rate constants in Figure 3—source data 1.

3. A random time interval t was picked from the exponential distribution with mean 1=rtotal
4. A random event i was picked with probability P ið Þ as described above.
5. The cellular state was changed in accordance with the chosen event. The possible state

changes were as follows

a. Promoter state from off fi on
b. Promoter state from on fi off
c. mRNA molecule count increased by 1
d. mRNA molecule count decreased by 1
e. protein molecule count increased by 1
f. protein molecule count decreased by 1

6. Simulation time was updated as t þ t

7. Steps 2 to 6 were iterated until total simulation time reached 5 hr.

Fano factor calculation
We ran simulations for 5 hr to approximate steady state expression, at the end of which protein and

mRNA molecules produced from each simulation were counted. Simulations were randomly paired

to mimic independent alleles within the same cell. A minimum of 5000 such simulation pairs were

generated for each set of parameter values. For simulations that tested the effect of parameter gra-

dients on Sens noise, we varied the relevant parameter across a defined range, with 20 evenly

spaced values comprising the sweep. Each parameter value was used to make paired simulations as

above, after which paired simulations from the entire sweep were pooled to generate a whole popu-

lation. This population was binned into 25–30 bins based on total Sens number per pair, and the

Fano factor was calculated for each bin. Bootstrap with resampling was used to determine 95% con-

fidence intervals for each bin’s Fano factor.

Parameter constraints
To keep simulations computationally feasible, we adjusted the slowest rate parameter, the protein

decay rate Dp, from 0.002 proteins/min to 0.01 proteins/min (half-life from 5 hours to 1 hour). This is

because we conducted simulations until protein conditions reached steady state, which is approxi-

mately five-fold longer than the half-life for the slowest reaction. For 25-hour simulations, this was

resource and time-intensive. We compared the noise trends in simulations with either Dp of 0.002

proteins/min or to 0.01 proteins/min, and found both generated similar noise trends to one another.

This indicates that protein decay is a not a major source of intrinsic noise in this model. Therefore,

we kept Dp at 0.01 proteins/min.

The transcriptional parameters Sm, kon and koff were varied in accordance with the specific hypoth-

esis being tested. We constrained them loosely to be within an order of magnitude of reported val-

ues for these rates from the literature (Milo et al., 2010). We also constrained these rates so as to

produce steady state protein numbers and Fano factors similar to experimental data. The minimum

and maximum values used are listed in Figure 3—source data 1.
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Modeling sens regulation by Wg signaling
As seen in Figure 2A, Sens-positive cells display a wide range of expression and they are patterned

in space as stripes. This is due to signaling via Wg, which is secreted from the presumptive wing mar-

gin and diffuses to form a bidirectional gradient. Wg signaling directly activates transcription of the

sens gene (Eivers et al., 2009; Jafar-Nejad et al., 2006). We assumed that at least one of the three

transcriptional rate parameters (Sm, kon or koff ) in our model must be responsive to Wg signaling. We

systematically varied one of the parameters while keeping the others constant. In all cases, varying

the parameter did produce a spectrum of Sens expression levels (Figure 3).

We next calculated the Fano profile for each case. Only a free variation in kon produced a Fano

profile that resembled the experimental data, with a Fano peak at the lowest Sens levels which dra-

matically declines as Sens levels increase (Figure 3E). Thus, to recreate a Sens gradient in silico we

kept Sm, Dm, Sp, Dp and koff constant, and we varied kon from 0.025 to 10 min�1. Since 1=kon defines

the average time the promoter is inactive, this varied from 6 seconds to 40 minutes in our model.

Impact of transcription burst kinetics
Given that average time the promoter is ‘off’ is 1=kon and average time it is ‘on’ is 1=koff , we define

transcription burst size and burst frequency as follows

BurstSize¼
Sm

koff

� �

BurstFrequency¼
1

kon
þ

1

koff

� ��1

It is worth noting these values define the average burst size or frequency across exponentially dis-

tributed values. We independently varied burst size with Sm (Figure 3D) and burst frequency with kon

(Figure 3E).

As described previously, a gradient in kon can re-create the experimentally observed noise profile.

Together, these observations suggest that perhaps the Wg gradient translates into a gradient of

sens promoter burst frequencies - at low Wg concentrations, burst frequency is low and at high con-

centration, the promoter switches states rapidly. In general, we found that as promoter state switch-

ing time-scales get smaller with respect to mRNA or protein lifetimes, bursting dynamics negligibly

contribute to expression stochasticity (Figure 3E). This is expected since frequent individual tran-

scription bursts get time-averaged on the scale of long lived mRNA or proteins (Paulsson, 2005).

From above, it is clear that either kon or koff could be rate-limiting to determine burst frequency.

Therefore, we also tested the effect of only varying koff while keeping the other 5 parameters con-

stant (kon ¼ 1/min i.e. non-limiting). Interestingly, a gradient of koff produced a very distinct Fano pro-

file that peaked at approximately half-maximal protein expression (Figure 3F). koff is a coupled

parameter that simultaneously affects both transcription burst size and frequency.

After recreating the graded expression of Sens, we next sought to understand which burst

parameter(s) could explain the effect of genomic position on Fano factor. Modulating burst fre-

quency simply regenerated the noise profile seen before, as expected. Increasing burst size with Sm

(or even with the coupled parameter koff ) mimicked the higher and larger Fano peak change as seen

for sens at 57F5/57F5 (Figure 6C). To simulate altered cis-regulation of the 57F5 allele, we simulated

cells with two sens alleles at 57F5/22A3, applying two different Sm values corresponding to a burst

size of either 4 or 8 mRNAs. As before, alleles were simulated independent of each other to gener-

ate the Fano factor profile (Figure 6—figure supplement 2A). To simulate trans allelic inhibition in

57F5/57F5 cells, we set burst size of 4 mRNAs for both alleles but decreased the kon value of one

allele if the other was in the ‘on’ state (Figure 6—figure supplement 2B). As shown, trans allelic

inhibition led to greater noise between the alleles and a higher Fano peak. Yet, even at 90% inhibi-

tion (Figure 6—figure supplement 2B) it did not affect peak width as observed experimentally.

Therefore, while promoter competition might be occurring, it alone does not explain our results.
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Relationship between protein level and ‘constant’ Fano factor
If kon and koff are not limiting so that the promoter is in the ON state 100% of the time, the steady

state protein level is described as:

Protein¼
SmSp

DmDp

� �

Thus, once the promoter is fully occupied, protein expression must be increased by regulating

the birth-death rate constants. Correspondingly, the Fano factor will be:

Fano factor ¼ 1þ b

¼ 1þ
Sp

DmþDp

� �

If b>>1, then we have:

Fano factor~
Sp

DmþDp

� �

Thus the Fano factor must rise with protein level if these rate constants are perturbed. When we

freely vary Sp, Dm or Dp in simulations, we recreate this linear relationship such that if the rate con-

stant is biased towards greater Sens protein accumulation, the corresponding Fano factor increases

(Figure 3—figure supplement 1D). We also observe signatures of a slowly rising Fano factor in our

data in the regime we describe as ‘constant’ Fano noise. We therefore speculate that Sp, Dm or Dp

might vary across the developmental field to expand the range of steady state Sens accumulation

independent of the sens promoter.

Quantification and statistical analysis
Only numbers of cells identified as ‘Sens-positive’ were used for the data analysis. We identified

N = 50,788 Sens-positive cells that were singly-tagged wildtype sfGFP-sens and mCherry-sens alleles

inserted in locus 22A3. For the miR-9a binding site mutant sens allele pair at locus 22A3 we identi-

fied N = 106,738 cells. Tandem tagged sfGFP-mCherry-sens data was gathered for N = 24,970 cells

pooled from both loci since cells from individual loci produced identical Fano factor profiles. For the

repression assay, we measured genotypes with both alleles wildtype for N = 20,353 cells; mCherry

tagged sens wildtype paired with a mutant sfGFP tagged sens for N = 19,088 cells, and sfGFP

tagged sens wildtype paired with a mutant mCherry tagged sens for N = 12,947 cells. A second set

of repression measurements shown in Figure 4B was done for both alleles mutant (N = 6369 cells)

or wild type mCherry-sens paired with mutant sfGFP-sens (N = 7557 cells). Fano factor profiles com-

paring the effect of genomic locus contain data from N = 19,549 cells (22A3/22A3), N = 27,221 cells

(57F5/57F5) and N = 13,776 cells (22A3/57F5).

Due to the nature of the experiments, there is no technical replication. Rather, the numbers listed

above refer to each Sens-positive cell as a biological replicate. Since ~1,000 cells could be measured

in one wing disc sample, the experiments utilized 12–100 wing disc biological replicates per

genotype.

For ectopic mechanosensory bristle measurements, we counted the frequency of adult wings with

at least one ectopic sensory organ. The number of adult wings analyzed per genotype ranged from

60 to 88. Each wing is considered a biological replicate. For parent stocks containing the yC31

docking site only and no sens transgene, the following frequencies were observed: N = 0/60 wings

(parent-22A3/22A3 and parent-22A3/57F5) and N = 0/88 wings (parent 5757/57F5). For transgenic

stocks with wildtype sens we observed N = 2/62 wings (sens [+ miR-9a] - 22A3/22A3), N = 1/60

wings (sens [+ miR-9a] - 22A3/57F5) and N = 23/79 wings (sens [+ miR-9a] - 5757/57F5). For trans-

genic stocks with mutant sens we observed N = 3/83 wings (sens [- miR-9a] - 22A3/22A3), N = 4/64

wings (sens [- miR-9a] - 22A3/57F5) and N = 12/65 wings (sens [- miR-9a] - 5757/57F5).

The 95% confidence intervals for all point estimates (mean, Fano factor) of Sens protein data and

model simulations were built by bootstrapping with resampling within individual binned cell popula-

tions. In all cases, the distribution generated by bootstrapping was checked for normality before

obtaining the 2.5th and 97.5th percentile values. The error frequencies of adult bristle patterns were
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statistically tested by calculating the odds ratio of error frequency between pairs of genotypes. A

Fischer’s exact test was applied to determine if the odds ratio significantly deviated from one.

For ectopic chemosensory bristle measurements, we measured the average distance between

pairs of neighboring bristles. N = 174 bristle neighbors (parent-22A3), N = 177 bristle neighbors

(parent-57F5), N = 1004 bristle neighbors (wild type sens at 22A3), N = 1063 bristle neighbors (wild

type sens at 57F5), N = 944 bristle neighbors (mutant sens at 22A3) and N = 605 bristle neighbors

(mutant sens at 57F5). Each pair of neighboring bristles comprises one biological replicate. 95% con-

fidence intervals were calculated by bootstrapping empirical distributions of bristle pair distances

across genotypes, and these were compared statistically using a student’s t-test. All other statistical

tests and image quantification procedures are listed in the corresponding methods and figure

legends sections.

There was no exclusion of any data or subjects.
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