

The Wg and Dpp morphogens regulate gene expression by modulating the frequency of transcriptional bursts

5 Rachael Bakker^{1,2}, Madhav Mani^{1,2,3,*}, and Richard W. Carthew^{1,2,*}

7 1. Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208

8 2. NSF-Simons Center for Quantitative Biology, Northwestern University, Evanston, IL 60208

⁹ 3. Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, IL

10 60208

11

12

13 *Corresponding authors (M.M., madhav.mani@gmail.com; R.W.C., r-carthew@northwestern.edu)

14

15

16 **Running Title:** Morphogens and Burst Frequency

17

19 **ABSTRACT**

20 Morphogen signaling contributes to the patterned spatiotemporal expression of genes during development.

21 One mode of regulation of signaling-responsive genes is at the level of transcription. Single-cell quantitative

22 studies of transcription have revealed that transcription occurs intermittently, in bursts. Although the effects

23 of many gene regulatory mechanisms on transcriptional bursting have been studied, it remains unclear how

24 morphogen gradients affect this dynamic property of downstream genes. Here we have adapted single

25 molecule fluorescence *in situ* hybridization (smFISH) for use in the *Drosophila* wing imaginal disc in order to

26 measure nascent and mature mRNA of genes downstream of the Wg and Dpp morphogen gradients. We

27 compared our experimental results with predictions from stochastic models of transcription, which indicated

28 that the transcription levels of these genes appear to share a common method of control via burst frequency

29 modulation. Our data helps further elucidate the link between developmental gene regulatory mechanisms

30 and transcriptional bursting.

31 **INTRODUCTION**

32 Paracrine signaling is a highly conserved means for cells within a tissue to communicate with one
33 another to regulate diverse activities including proliferation, differentiation, apoptosis, and movement. Many
34 of these activities are mediated by changes in gene transcription that are brought about by reception of the
35 signals. Paracrine factors acting as morphogens are a particularly important class of gene regulators.
36 Morphogens form spatially-extended gradients from the source of their synthesis, and elicit different
37 transcription outputs from target genes, depending on local concentration of the morphogen (Tabata and
38 Takei, 2004). Many paracrine signals regulate gene transcription via control of the availability or activity of
39 sequence-specific transcription factors. Some transcription factors regulate assembly of the preinitiation
40 complex composed of Pol II and general factors at the transcription start site (Esnault et al., 2008). Other
41 factors recruit coregulators that modify nucleosomes or remodel the chromatin architecture of the gene
42 (Bannister and Kouzarides, 2011).

43 However, transcription is a dynamic process, and thus, molecular models of regulation via PIC
44 assembly or chromatin structure, do not adequately capture what kinetic steps in transcription initiation
45 are being regulated. Recently developed methods have uncovered greater complexity in the transcription
46 initiation process than previously imagined. Genes that are constitutively expressed rarely show uniform and
47 continuous mRNA synthesis. Rather, mRNA synthesis occurs in bursts that are interrupted by periods of
48 dormant output. This phenomenon is known as transcriptional bursting (Chen et al., 2019; Chubb et al.,
49 2006; Dey et al., 2015; Raj et al., 2006; Suter et al., 2011).

50 Various studies have explored how mechanisms of gene regulation affect the size and frequency of
51 transcriptional bursts, and thereby affect transcription output. The availability of transcription factors has
52 been shown to affect burst frequency (Ezer et al., 2016; Larson et al., 2013; Senecal et al., 2014). For
53 example, the *Drosophila* transcription factors Bicoid and Dorsal have been studied in great detail with respect

54 to their effects on transcription burst frequency in the embryo (Garcia et al., 2013; He et al., 2012; Holloway
55 and Spirov, 2017; Little et al., 2013; Xu et al., 2015). Enhancer strength and enhancer-promoter contact
56 correlate with burst frequency of genes (Bartman et al., 2016; Bothma et al., 2014; Chen et al., 2019; Fukaya
57 et al., 2016; Larsson et al., 2019). These studies altogether suggest that bursting frequency is potentiated by
58 enhancer-promoter contact and is mediated by transcription factors binding to DNA.

59 In this study, we have explored how the Wnt protein Wingless (Wg) and BMP
60 protein Decapentaplegic (Dpp) regulate transcription dynamics of genes in the *Drosophila* wing imaginal disc.
61 The Wnt and BMP families of proteins are two highly conserved paracrine factors that can act as
62 morphogens. In canonical Wnt signaling, the binding of extracellular Wnt protein to its transmembrane
63 receptor Frizzled causes β -catenin to be stabilized and free to enter the nucleus, where it relieves repression
64 of Wnt-responsive genes by binding to the sequence-specific transcription factor TCF (Clevers and Nusse,
65 2012; Swarup and Verheyen, 2012). In canonical BMP signaling, ligand binding to receptor triggers
66 phosphorylation of SMAD proteins, which translocate to the nucleus along with co-SMADs, bind to
67 responsive genes, and activate their transcription (Hamaratoglu et al., 2014; Shi and Massagué, 2003).

68 To explore the effects of Dpp and Wg signaling on transcription dynamics, we have adapted single
69 molecule fluorescent *in situ* hybridization (smFISH) for use in imaginal disc tissues. We use smFISH to
70 quantify nascent and mature mRNAs for several genes expressed in highly diverse spatial patterns within the
71 wing disc. Taken together, our data suggests that all of the genes investigated are regulated by modulation of
72 their transcription burst frequency by Dpp and Wg even though their mean expression patterns are distinct
73 from one another.

74

75 **RESULTS**

76 In this study, we have explored how the Wg and Dpp morphogens regulate transcription dynamics in
77 the wing disc. Each morphogen is synthesized in a narrow stripe of cells within the disc. Wg is produced in
78 cells at the boundary between Dorsal and Ventral (DV) compartments of the wing pouch, while Dpp is
79 produced in cells at the boundary between Anterior and Posterior (AP) compartments (Figure 1A). These
80 factors form concentration gradients across the disc, and in the case of Dpp, it regulates gene expression in a
81 concentration-dependent manner.

82 **smFISH detection of mRNA molecules in the wing disc**

83 In order to assay gene expression in the wing imaginal disc, we quantified mRNA numbers using
84 smFISH. With smFISH, a tandem array of fluorescently-labeled oligonucleotides complementary to a given
85 mRNA are hybridized to fixed and permeabilized tissue. When a sufficient number of oligo probes anneal to
86 one mRNA molecule, the aggregate fluorescence can be detected by standard confocal microscopy (Raj et al.,
87 2008). This method has been developed and applied to many systems, including cell culture, *C. elegans*, and
88 the *Drosophila* embryo (Ji and van Oudenaarden, 2012; Little and Gregor, 2018; Youk et al., 2010). We
89 developed a robust smFISH method applicable for imaginal discs (see Materials and Methods for details).

90 We first probed for expression of the *senseless* (*sens*) gene in the wing disc. *Sens* is required for cells
91 to adopt a sensory organ fate, and the gene is expressed in two stripes of cells adjacent to and on either side
92 of the DV boundary in the wing pouch (Figure 1B,C) (Nolo et al., 2000). *Sens* expression in the wing pouch is
93 induced by Wg, which is expressed by cells located at the DV boundary (Jafar-Nejad et al., 2006). We probed
94 for *sens* mRNAs expressed from a transgenic version of the *sens* gene. We did so for a number of reasons.
95 First, the genomic transgene rescues the endogenous gene based on function and expression (Cassidy et al.,
96 2013). Second, the transgene is tagged such that the amino-terminal coding sequence corresponds to super-
97 fold GFP (sfGFP). By using oligo probes directed against sfGFP, we could easily determine the specificity of
98 detection.

99 Discs from *sfGFP-sens* animals were probed and imaged by confocal microscopy, revealing the
100 expected pattern of fluorescence localized to two stripes adjacent to the DV midline in the wing pouch
101 (Figure 1D). The fluorescence signal was specific for *sfGFP-sens* since wing discs from larvae not carrying
102 the transgene gave a low background fluorescence pattern (Figure 1 - figure supplement 1A,B). The
103 fluorescence signal from *sfGFP-sens* discs was sufficiently bright that spots were readily detected in
104 optical sections when imaged under higher magnification (Figure 1E). The size of each 2D spot was
105 approximately the expected diffraction limit of ~ 600 nm for smFISH probes emitting at 633 nm wavelength
106 (Lipson 1995). A custom image-analysis pipeline was developed to segment and analyze all of the 3D
107 fluorescent spots in an entire stack of optical sections (Figure 1 - figure supplement 1C). Details of the
108 segmentation and analysis are provided in the Materials and Methods.

109 We tested the ability of the pipeline to correctly identify RNA spots by several means. First we
110 expected *sfGFP-sens* mRNA molecules to generate fluorescence spots with a homogeneous composition
111 since the mRNAs could equivalently anneal to the probes. The distribution of fluorescence intensity for the
112 identified 3D spots was unimodal, suggesting that the spots had a homogeneous composition (Figure 1 -
113 figure supplement 1D). Second, we incubated wing discs in media containing actinomycin-D, an inhibitor of
114 mRNA synthesis. The number of fluorescence spots was greatly diminished, as would be expected if they
115 were localized to mRNA molecules (Figure 1 - figure supplement 1E). Third, if the method is accurate, almost
116 all spots would correspond to *sfGFP-sens* mRNAs. We compared the number of identified spots in discs
117 expressing the *sfGFP-sens* transgene versus discs lacking the transgene. From this, we estimated that 0.5% of
118 identified spots are false-positive (Figure 1 - figure supplement 2A). Finally, we estimated the number of
119 *sfGFP-sens* mRNAs that fail to be identified as fluorescent spots. We simultaneously hybridized *sfGFP-sens*
120 wing discs with two sets of non-overlapping probes - one set recognized *sfGFP* and the other set recognized
121 *sens* sequences. Each probe-set was labeled with a different fluor. If a spot identified using the *sfGFP* probe
122 set was not identified by the *sens* probe-set, we classified that spot as a false-negative. The analysis indicated

123 that a maximum of 6% of mRNAs (232 out of 3,842 spots scored) were not identified by both probe-sets
124 (Figure 1 - figure supplement 2B). This rate of false-negative identification is comparable to smFISH methods
125 in other systems (Raj et al., 2008).

126 We next looked to partition identified mRNAs into the cells from which they were expressed. Since
127 the smFISH method denatured the epitopes of all tested antibodies and it also denatured sfGFP, we were
128 unable to segment cells using standard approaches. In the absence of a direct approach, we adopted a
129 computational approach to resolving the smFISH signal at single-cell resolution. Using the fluorescent dye
130 DAPI to visualize cell nuclei in the imaged samples, we segmented nuclei into 3D objects (Figure 1 - figure
131 supplement 2C-E), which are located throughout the apical-basal axis of the pseudostratified epithelium of
132 the wing disc (Aldaz and Escudero, 2010). Based on segmented nuclei, we were able to construct effective
133 cell boundaries by performing a 3D Voronoi tessellation (Figure 1 - figure supplement 2F). RNAs were then
134 partitioned into the distinct Voronoi cells (Figure 1 - figure supplement 2G). Despite the local inaccuracies in
135 our protocol for assigning transcripts to single cells, the Voronoi based tessellation of the three-dimensional
136 tissue is a democratic prescription, lacking any hyperparameters, that is able to reveal the global quantitative
137 trends in the data. The same democratic approach has been used by others in assigning mRNA transcripts to
138 early embryonic nuclei when cell boundaries are unseen (Little et al., 2013). Details of tessellation are
139 provided in the Materials and Methods.

140 The abundance of *sens* mRNAs within the DV stripes varied from one to fifty molecules per cell
141 (Figure 1F), reflecting the graded expression pattern of Sens protein induced by the Wg morphogen across
142 the width of each stripe (Jafar-Nejad et al., 2006). Binning cells according to their distance from the DV
143 boundary, we were able to observe peaks in mRNA number per cell as a function of distance from the
144 boundary (Figure 1G).

145 We also used the *sfGFP-sens* gene to determine whether the smFISH method could detect mRNAs in
146 other imaginal discs. In the eye disc, *sens* is expressed in a stripe of cells located within the morphogenetic
147 furrow, and indeed we were able to detect smFISH signals in furrow cells of the eye disc (Figure 1 - figure
148 supplement 3). Thus, our method is broadly applicable to imaginal discs.

149 **smFISH detection of gene expression regulated by Dpp**

150 We extended the analysis to genes downstream of the BMP family protein Dpp. Dpp is expressed in a
151 stripe of cells located at the AP boundary of the wing disc, orthogonal to the Wg stripe (Figure 2A). Dpp
152 protein is transported bidirectionally to form gradients across the disc, and several genes are regulated by
153 Dpp in a concentration-dependent manner. *Spalt-major (salm)*, *optomoter-blind (omb)*, *daughters-against-*
154 *dpp (dad)*, and *brinker (brk)* are expressed in symmetric domains within the anterior and posterior
155 compartments of the wing pouch (Figure 2A,B). *Salm* is symmetrically expressed in a domain somewhat
156 broader than the Dpp stripe, whereas *omb* and *dad* are expressed more broadly, and *brk* is expressed only
157 near the wing pouch border (Celis et al., 1996; Grimm and Pflugfelder, 1996; Tabata and Takei, 2004). When
158 smFISH was used to detect mRNAs of these genes, it qualitatively recapitulated their known expression
159 patterns (Figure 2C-F). We quantified the number of mRNAs per cell and attempted to map the distribution
160 to cell position within the wing pouch. Since the only landmark we could reliably use was the border
161 between the wing pouch and the rest of the disc, we measured cell position as a function of distance from
162 the border (Figure 2G). When we did so, the distributions in mRNA number per cell displayed profiles that
163 were consistent with previous qualitative descriptions of their expression patterns (Figure 2H). To ensure
164 that these distributions were not an artifact of landmarking the border, we probed for mRNAs produced
165 from the *scalloped (sd)* gene. The *sd* gene is expressed uniformly throughout the wing pouch (Campbell et
166 al., 1992; Williams et al. 1993), and thus we anticipated a uniform distribution of mRNAs/cell if our method

167 was accurate. Indeed, there was a fairly constant level of mRNAs/cell across the wing pouch as determined
168 by our smFISH pipeline (Figure 2 -figure supplement 1A).

169 **smFISH detects sites of nascent transcription**

170 A further benefit to smFISH is that it can detect and quantify RNA as it is being transcribed from a
171 gene. We sought to identify and characterize these sites of nascent transcription in the wing disc.
172 Quantification of pixel intensity of all fluorescent spots revealed two discrete populations: a large population
173 of dim spots of uniform intensity, and a smaller population of brighter spots with more variable intensity
174 (Figure 3A,B). The former population corresponded to those described earlier, and they were primarily
175 located in the cytoplasm - these are the mature mRNAs. The latter population was primarily located inside
176 nuclei, and thus we hypothesized that these were sites of nascent transcription. To confirm that these bright
177 spots corresponded to transcription sites, we used probes complementary to an intron in the *omb* gene.
178 These probes only detected the brighter population of spots localized to nuclei (Figure 3C). Since introns are
179 not spliced out until after transcription, this result supports the conclusion that the brighter nuclear spots are
180 sites of nascent transcription.

181 Although wing disc cells are diploid, fewer than 15% of nuclei contained more than one transcription
182 site for a given gene. One explanation is that transcription is infrequent enough that 85% of the time only
183 one allele is actively transcribing. Another explanation is that two alleles are physically co-localized, and their
184 nascent transcripts cannot be resolved by confocal microscopy. *Drosophila* and other animals have extensive
185 physical pairing of homologous chromosomes in somatic cells (McKee, 2004). Consequently, alleles on
186 paired chromosomes are often spatially juxtaposed (Szabo et al., 2018). For genes such as *omb* that we
187 probed far upstream of the transcription termination site, it is likely that we were observing transcription
188 from both alleles at once, given that a detectable nascent RNA would stay at the transcription site for a long
189 time (~50 minutes). Even for these very bright transcription spots, only one transcription site per nucleus

190 was observed (Figure 3 B,C). This observation is consistent with a single transcription spot in a nucleus
191 representing transcription from both alleles.

192 **Transcription occurs in bursts**

193 Transcription sites were counted by applying a cutoff that only included spots with at least twice the
194 intensity of a mature mRNA spot (Figure 3D, Figure 3 - figure supplement 1). There was a broad distribution
195 of transcription site intensities, suggesting a large range of nascent RNA numbers that were present on a
196 gene at a given time.

197 Strikingly, many cells did not have a detectable transcription site even though the cells contained
198 mature mRNAs (Figure 3E). Between 50 - 80% of all cells had this feature, and it was observed for all genes.
199 This observation is not an artifact of segmentation erroneously assigning mature mRNAs to cells that do not
200 express the genes. For all genes, the number of transcription sites strongly correlated with mRNA number
201 when discs were binned but not segmented (Figure 3 - figure supplement 2). Hence, although assignment
202 errors occur at the local scale, they cannot account for the quantitative global trends where 2 -5 fold more
203 cells lack a transcription site than lack any mature mRNAs.

204 Why do cells with mature mRNAs lack detectable transcription sites? One explanation is that each
205 gene's promoter is always open, but since transcription is stochastic, there would be times when zero or just
206 a few Pol II molecules are presently transcribing the gene. In this scenario, the birth and death of mRNAs can
207 be described as a Poisson process, where the ratio of the variance of the distribution of number of mRNAs to
208 its mean is expected to be one (Munsky et al., 2012; Raj and van Oudenaarden, 2008). Since mRNA number
209 per cell varied systematically across the wing disc because of Wg and Dpp signaling, we binned cells
210 according to their position in the disc, as had been described earlier (Figure 1G, 2H), and empirically
211 estimated the ratio of a bin's variance to its mean. The ratio of variance to mean mature mRNA number per
212 cell was between 5 and 10 for all genes, and was fairly independent of mRNA output (Figure 3F). This

213 indicated that a Poisson process could not explain why we failed to detect transcription sites in every cell
214 expressing mRNA.

215 To determine if our observations were possibly caused by transcription bursting, we invoked a two-
216 state model of transcription (Figure 4A). A promoter exists in one of two possible states - ON and OFF. The
217 promoter switches between states at particular rates k_{on} and k_{off} . When the promoter is in the ON state, Pol II
218 is permitted to initiate transcription that is subject to a rate constant k_{ini} . When the promoter is in the OFF
219 state, Pol II is unable to initiate transcription. The model also includes a transcription elongation step, which
220 is assumed to be 100% processive, and whose timescale depends on the gene length and the rate of
221 elongation. The latter is assumed to be 1,100 nucleotides/min, which is a value that has been experimentally
222 determined in *Drosophila* (Ardehali et al., 2009).

223 In the model, transcriptional bursts have a characteristic size (number of transcripts per burst) and
224 frequency (rate at which bursts occur). The average burst size is defined as k_{ini} / k_{off} , whereas the average
225 burst frequency is defined as $(k_{on}^{-1} + k_{off}^{-1})^{-1}$ (Dar et al, 2012). We systematically and independently varied the
226 parameters k_{on} , k_{off} , and k_{ini} to tune the frequency and size of virtual bursts. For each parameter set, we ran
227 1,000 simulations of the model. To capture the stochastic nature of gene expression, reactions in the model
228 were treated as probabilistic events, with the exception of the transcript elongation time.

229 To directly relate the results of model simulations to experimental data, we performed the following
230 treatment of simulation data. First, we transformed output of each simulation to mimic the experimentally
231 detected fluorescence at a single gene allele. Fluorescence intensity depends on how many probe-binding
232 sites are present in nascent RNAs on a gene allele at a given time (Figure 4B). This varies with the number
233 of elongating Pol II molecules on the allele, and the position of the probe-binding sites relative to the
234 transcription start and stop sites. We normalized the output of simulated nascent RNAs by calculating the
235 number of Pol II molecules upstream, within, and downstream of the binding region at the completion of a

236 simulation. This normalization provided an approximation of fluorescence intensity from one gene allele.
237 Second, we randomly paired two independent simulations to mimic the transcription site fluorescence of
238 paired alleles within a nucleus. If simulated transcription site fluorescence fell below a cutoff of twice
239 the fluorescence of a single RNA, we counted that simulation as having no "detectable" transcription site.
240 This mimicked the cutoff that was applied to experimental data for identifying a transcription site.

241 We then asked what combination of burst size and frequency could theoretically account for the
242 observed frequency of finding cells with a transcription site (this ranged from 20 to 50% of cells). A phase
243 diagram revealed that a broad range of burst size and frequency could explain our experimental observations
244 (Figure 4C). Therefore, according to our model results, tuning burst frequency and/or size can produce the
245 variable likelihood of detecting a transcription site by smFISH.

246 **Burst frequency is regulated by Dpp and Wg**

247 We quantified the frequency of detecting a transcription site as a function of cell position within the
248 wing pouch (Figure 5A,B). This frequency varied across the disc in a manner that was gene-specific.
249 Strikingly, the spatial distributions of transcription site frequency strongly paralleled the mRNA number per
250 cell for all genes (compare Figure 5A,B and Figures 1G, 2H). To ensure that this was not an artifact of variable
251 smFISH detection, we also quantified the frequency of detecting a transcription site for *sd*, which is uniformly
252 expressed in the wing pouch. This frequency was constant across the disc and paralleled the *sd* mRNA
253 number per cell (Figure 2 - figure supplement 1A,B).

254 We further examined the relationship between mRNA number per cell and transcription site
255 frequency (Figure 5C,D). Average mRNA number per cell and the likelihood of detecting a transcription site
256 were linearly correlated with one another for all genes. The positive correlation confirms that Dpp and Wg
257 regulate gene expression primarily through control of transcription initiation. Remarkably, the slopes of
258 linear fits for three Dpp-responsive genes, *brk*, *omb*, and *salm*, were not significantly different from one

259 another, and the slope for *dad* was similar to *brk* and *omb* but smaller than for *salm* (Figure 5E). This
260 conserved linear relationship between gene transcription and mRNA number has several implications. It
261 suggests that mRNA decay rates are not very different between these Dpp target genes since the slopes
262 would be different from one another if decay rates varied. Moreover, since the slopes are constant over a
263 broad range of mRNA output, it suggests that mRNA decay is not being actively regulated by Dpp.

264 The likelihood of detecting a transcription site increases because either the promoter is spending
265 more total time in the ON state or more RNAs are being transcribed while in the ON state. These properties
266 are affected by burst size and burst frequency in different ways. We sought to determine whether burst size
267 or frequency was being regulated. We did so by estimating the number of nascent RNAs at each transcription
268 site, which was quantified as a multiple of the median pixel intensity of mature RNA spots (Figure 3 - figure
269 supplement 1). The average number of nascent RNAs per transcription site did not significantly vary
270 between cells that were receiving different levels of Dpp and Wg signal (Figure 6A,B). This was observed for
271 all genes, including the uniformly expressed *sd* gene (Figure 2 - figure supplement 1C). Moreover, the average
272 number of nascent RNAs per transcription site was also independent of the likelihood that transcription was
273 occurring in a cell (Figure 6C). Therefore, the propensity for a cell to generate nascent transcripts does not
274 correlate with the number of nascent transcripts.

275 To understand the causes of the relationship between these observed features, we turned to our
276 mathematical model. We first considered whether modulation of transcription burst size by Wg and Dpp
277 could explain our observations. We modulated burst size by systematically varying the k_{ini} parameter, and
278 from simulations, then calculated the number of nascent RNAs per transcription site and the transcription
279 site detection frequency. There was a positive correlation between nascent RNA number in a transcription
280 site and the probability of detecting a transcription site (Figure 6D and Figure 6 - figure supplement 1A). This
281 was observed across a wide range of fixed burst frequencies. When nascent RNA number was 3 or higher,

282 the correlation with transcription site frequency was strongest. Moreover, when the probability of a
283 transcription site was very low, nascent RNA number converged to a common value irrespective of burst
284 frequency. None of these model predictions were observed in the experimental results with the target genes
285 (Figure 6C). It suggests that transcription burst size is not strongly regulated by Dpp and Wg.

286 We then modulated burst frequency in the model by systematically varying k_{on} , and calculated the
287 number of nascent RNAs per transcription site and the transcription site frequency. There was little change in
288 nascent RNA number as transcription site frequency changed, even across a wide range of fixed burst sizes
289 (Figure 6E and Figure 6 - figure supplement 1B). The burst size appeared to determine what nascent RNA
290 number value was held at a constant. Moreover, there was no convergence of nascent RNA number when
291 the probability of a transcription site was very low, irrespective of burst size. All of these model predictions
292 agree well with the experimental results (Figure 6C). This suggests that Dpp and Wg regulation of genes in
293 the wing disc primarily occurs by modulation of transcriptional burst frequency.

294

295 **DISCUSSION**

296 Morphogens elicit different transcriptional outputs from target genes, depending on local
297 concentration of the morphogen. The targets of Dpp signaling in the wing offer a well-studied example of this
298 concept. Transcription of the gene *brk* is directly regulated by the Dpp effector protein Mothers-against-dpp
299 (Mad) (Minami et al., 1999; Moser and Campbell, 2005). Mad, in complex with Medea and Schnurri,
300 represses *brk* transcription (Cai and Laughon, 2009). This generates a gradient of Brk protein expression that
301 is inverted to the Dpp gradient. In turn, the level of Brk protein is instrumental in repressing the expression of
302 *omb* and *salm*, which are induced by Dpp (Campbell and Tomlinson, 1999). Thus, opposing gradients of
303 activation and repression determine the expression domains of *omb* and *salm*. Since *omb* is less sensitive to
304 Brk repression than *salm*, its expression domain is broader. *salm* transcription is directly activated by Dpp

305 without participation of Schnurri (Moser and Campbell, 2005). Curiously, *omb* transcription does not directly
306 depend on Dpp signaling, and its transcriptional activation is brought about by unknown factors
307 (Sivasankaran et al., 2000).

308 Given the diverse molecular mechanisms by which genes such as *omb*, *brk*, and *salm* are regulated, it
309 is illuminating that regulation of transcription burst frequency occurs for all of them. In the two-state view of
310 promoter kinetics, the on-rate, k_{on} , then is the most likely rate constant being regulated since it specifically
311 affects burst frequency alone (Dar et al., 2012). It determines the average rate at which a promoter will
312 switch from its OFF to its ON state. When a promoter is in the OFF state, the next burst will only occur when
313 it switches ON, which is controlled by k_{on} and not k_{off} . When a promoter is in the ON state, the size of its burst
314 depends on when it switches OFF, which is controlled by k_{off} and not k_{on} (Dar et al., 2012). However, k_{off} also
315 affects burst frequency because the longer a promoter is ON, the longer the time it takes before a new burst
316 can occur. If Dpp regulates k_{off} , then we would have seen modulation of both size and frequency of bursts.
317 However, burst size appears to be independent of Dpp signaling.

318 If k_{on} is the kinetic rate constant under regulation for all of these genes, how does this occur given
319 such diverse enhancer architectures and transcription factor inputs? It has been found that burst frequency
320 correlates with enhancer strength and enhancer-promoter contact, suggesting that k_{on} is potentiated by
321 enhancer-promoter contact and is mediated by transcription factor binding to DNA (Bartman et al.,
322 2016; Bothma et al., 2014; Chen et al., 2019; Fukaya et al., 2016; Larsson et al., 2019). This suggests that
323 occupancy of Dpp effectors on target enhancers varies the k_{on} rate for their linked promoters, and this
324 modulation is negative for repressors such as Brk and positive for activators such as Mad.

325 Burst frequency regulation is also observed for developmental genes in the embryo (Bothma et al.,
326 2014; Chen et al., 2019; Fukaya et al., 2016; Garcia et al., 2013; Holloway and Spirov, 2017; Little et al., 2013;
327 Xu et al., 2015). Thus, a common mechanism to regulate patterned gene expression is by control of burst

328 frequency. However, burst size can also be regulated by cell-cell signaling, as is the case for Notch target
329 genes in the *Drosophila* embryo (Falo-Sanjuan et al., 2019). Moreover, *eve* gene expression in the embryo is
330 regulated by transcription factors that modulate burst frequency, plus there is an orthogonal mechanism
331 that controls the window of time over which a nucleus can transcribe the *eve* gene (Lammers et al., 2020).
332 This distinct mechanism appears to be regulated by repressors, perhaps acting on nucleosome organization.
333 Modeling of various embryonic genes suggests that they transition through several intermediate
334 transcriptionally-silent states before their transcription can begin (Desponts et al., 2016; Dufourt et al., 2018;
335 Eck et al., 2020). Chromatin remodeling factors appear to modulate these transitions (Eck et al., 2020).
336 Although a two-state model explains much of our experimental results, likely there are other factors that
337 also help determine the expression domains of Dpp-responsive genes.

338 Our results challenge the view that *salm* and *omb* expression domains have sharp boundaries due to
339 transcription thresholds set by Brk and Dpp. We find that *omb* and *salm* mRNA numbers per cell drop
340 gradually with distance from the source of Dpp (Figure 2H). As well, their gradients in mRNA number are
341 inversely correlated with the gradient in *brk* mRNA number. *Salm* has relatively constant mRNA number in
342 cells near the AP boundary, and those numbers gradually diminish in cells located more laterally. A similar
343 pattern is seen with *omb*, except the domain with constant *omb* mRNA number is smaller than for *salm*.
344 However, the *salm* and *omb* enhancer trap reporters as well as anti-Salm immunohistochemistry
345 have reported expression domains with sharp boundaries (Mayer et al., 2013). Possibly, the discrepancy
346 hints at some threshold of mRNA expression below which protein output drops sharply. It is also possible
347 that the previously characterized expression domains for *salm* and *omb* were distorted by non-
348 linear detection of antibodies that recognize Salm and the protein product of lacZ, β -galactosidase.

349

350 **FIGURE AND FIGURE SUPPLEMENT LEGENDS**

351

352 **Figure 1. smFISH analysis of sfGFP-sens mRNA levels in wing imaginal discs. (A)** Schematic of a wing disc
353 outlining different regional domains, and the positions of boundaries between Dorsal (D) - Ventral (V) and
354 Anterior (A) - Posterior (P) compartments of the disc. Each wing disc is composed of roughly 50,000 cells
355 organized in a pseudostratified epithelium. **(B)** Schematized expression pattern for Sens inside the wing
356 pouch centered around the DV boundary. Sens is also expressed in clusters of cells in the notum, which are
357 not shown. **(C-E)** Confocal sections of wing discs expressing sfGFP-Sens. **(C)** sfGFP-Sens protein fluorescence.
358 **(D)** sfGFP-Sens mRNAs as visualized by smFISH using sfGFP probes. Scale bar = 10 μ m. **(E)** Higher
359 magnification of sfGFP-Sens mRNAs as visualized by smFISH using sfGFP probes. Scale bar = 10 μ m.
360 **(F)** Distribution of wing disc cells as a function of the number of Sens mRNA molecules per cell. **(G)** Sens
361 mRNA number as a function of cell distance from the DV boundary displays a bimodal expression pattern for
362 Sens. Cells were binned according to the shortest path length from its centroid to the DV boundary, and
363 whether they were dorsal or ventral compartment cells. Median mRNA number/cell for each bin is plotted
364 with 95% bootstrapped confidence intervals.

365

366 **Figure 1 - figure supplement 1. Development of smFISH imaging and analysis. (A,B)** Representative optical
367 sections of wing discs probed for sfGFP mRNAs. Upper panels show 1x exposure of fluorescence from optical
368 sections. Lower panels show same sections with 4x overexposure of fluorescence. Scale bars = 5 μ m. **(A)** A
369 disc from an animal with two copies of the *sfGFP-sens* transgene. **(B)** A control disc from an animal without
370 the *sfGFP-sens* transgene. **(C)** Imaging and analysis pipeline to quantify mRNAs as 3D fluorescent objects. 1. A
371 stack of 35 optical sections is acquired per sample. 2. RNA spots are segmented by using a pixel intensity
372 value as a cutoff, above which lie true RNA fluorescent spots, and below which lies the background. To select
373 the optimal cutoff for each image stack, a broad range of potential cutoff values are systematically tested,
374 and the number of segmented objects (object > 7 contiguous pixels) is counted for each cutoff tested. Object

375 number plateaus over a range of cutoff values (red arrow). This plateau corresponds to the cutoff levels that
376 correctly identify RNA spots (< 5% error from ground truth). 3. Such a cutoff value is then applied as a
377 threshold to identify 2D objects in each section. 4. 2D objects must satisfy two criteria in order to be counted
378 as an RNA spot. One, they must have a corresponding object at least one neighboring z-plane within a
379 diffraction limited radius of 4 pixels. Two, they must be larger (contain more pixels) than corresponding
380 objects in neighboring z-planes. This criterion prevents RNA spots from being counted in multiple z-planes.
381 Centroid position and 3D object pixel intensity are then recorded. **(D)** Distribution of mean fluorescence
382 intensity for all identified 3D fluorescent objects from one wing disc expressing sfGFP-Sens mRNAs. **(E)**
383 Average number of 3D fluorescent objects per imaged wing disc after a 30 minute treatment of the discs in
384 actinomycin-D. Untreated discs were incubated in media for an identical period of time, and all discs were
385 fixed and imaged for sfGFP-Sens mRNAs. Error bars are SEM.

386

387 **Figure 1 - figure supplement 2. Determination of false-positive and false-negative rates for smFISH. (A)**
388 Wing discs were imaged and scored for 3D fluorescent objects using the sfGFP probe set. Discs were either
389 from animals with two copies of the *sfGFP-sens* transgene and two copies of the endogenous *sens*^{E1} gene, or
390 from animals with just two copies of the endogenous *sens*^{E1} gene. Error bars are SEM. **(B)** A representative
391 optical section taken from a wing disc expressing the *sfGFP-sens* transgene and endogenous *sens*^{E1} gene. The
392 disc was probed for sfGFP (red) and Sens (green) RNA using independent probe sets. Spots that fluoresce
393 both green and red are presumptive sfGFP-Sens mRNAs that have annealed to both probe sets (purple
394 arrow). Spots that only fluoresce with the Sens probe set (white arrow) are presumptive Sens mRNAs that
395 are generated from the endogenous *sens* gene. Although these *sens* alleles are mutant for protein output,
396 they still produce mRNA. The occasional spot (beige arrow) that only fluoresces with the sfGFP probe set are
397 presumptive sfGFP-Sens mRNAs that failed to hybridize with the Sens probe set. These are false-negatives.

398 Scale bar = 5 μ m. **(C-E)** Pipeline for 3D segmentation of cell nuclei. **(C)** An optical section showing DAPI
399 fluorescence. **(D)** 2D segmentation of this image. **(E)** Five contiguous z-sections of segmented nuclei are
400 colored and viewed laterally. Note the three-dimensional “stack of pancakes” nature of the nuclear objects
401 in the wing disc 3D rendering. **(F)** 3D Voronoi tessellation of an image stack of wing disc cells. The centroids
402 of the 3D nuclei (shown as circles) were used to tessellate the image stack, creating virtual cells. Cells are
403 represented with different colors. Numbers in the x-y plane refer to pixel positions in the 1024 x 1024
404 sections. Please see the Materials and Methods for a detailed description of tessellation and its meaning. **(G)**
405 An image stack showing the centroid positions of 3D mRNA objects as circles. One tessellated cell (green) is
406 superimposed to show the mRNA objects that reside in space occupied by the tessellated cell. These mRNAs
407 would be assigned to that particular cell. Shown is one stripe of sfGFP-Sens expressing cells on one side
408 of the DV boundary marked by pixel position 0.

409

410 **Figure 1 - figure supplement 3. smFISH imaging of the eye imaginal disc.** **(A)** Schematic of the eye antennal
411 disc complex showing the approximate location of cells that express the *sens* gene. Anterior is to the left.
412 **(B,C)** Optical sections through a representative eye antennal disc complex probed for sfGFP-Sens mRNAs by
413 smFISH. Anterior is to the left. **(B)** Low magnification shows a vertical stripe of positive fluorescence that
414 oscillates between clusters of high and low mRNA abundance. This is the pattern that has been reported for
415 cells in the morphogenetic furrow (Nolo et al 2000). Scale bar = 5 μ m. **(C)** Higher magnification of an optical
416 section through the morphogenetic furrow showing two complete clusters of Sens-positive cells (dashed
417 purple lines). Scale bar = 5 μ m.

418

419 **Figure 2. smFISH analysis of mRNA levels from Dpp-responsive genes.** **(A)** Schematic of wing discs
420 highlighting the graded distribution of Dpp protein in the wing pouch, centered around the AP boundary, and

421 the expression domain for *salm*, one of the targets of Dpp regulation. Not shown is Dpp localization in the
422 notum domain of the disc. **(B)** Expression domains of four target genes of Dpp signaling. **(C-F)** Confocal
423 sections of wing pouches probed for mRNAs synthesized from the *salm* **(C)**, *omb* **(D)**, *dad* **(E)**, and *brk* **(F)**
424 genes. Orange arrows mark the position of the AP boundary in each image. **(G, H)** mRNA number as a
425 function of cell distance from the anterior-most border of the wing pouch. **(G)** A border-to-boundary axis,
426 orthogonal to the AP boundary, is used to map cell position, along which distances are displayed in μm from
427 the wing pouch border. **(H)** Cells were binned according to position along the border-to-boundary axis.
428 Median mRNA number/cell for each bin is plotted with 95% bootstrapped confidence intervals.
429

430 **Figure 2 - figure supplement 1. Detection of RNAs corresponding to the *sd* gene.** **(A)** *sd* mRNA number as a
431 function of cell distance from the anterior-most border of the wing pouch. An axis orthogonal to the AP
432 boundary is used to map cell position. Numbers refer to distance in μm from the wing pouch border. **(B)** The
433 probability of detecting a cell with a *sd* transcription site does not vary with the cell's location relative to the
434 source of morphogens. Error bars are 95% bootstrapped confidence intervals. Cells are binned according to
435 their distance from the pouch border, and the fraction of cells in each bin with a transcription site is shown.
436 **(C)** The average number of nascent RNAs in a *sd* transcription site does not vary with the cell's location. Error
437 bars are bootstrapped 95% confidence intervals. Cells are binned according to their distance from the pouch
438 border, and the average number of nascent RNAs per site in each bin is shown.
439

440 **Figure 3. Sites of nascent transcription are detected by smFISH.** **(A)** Sites of nascent transcription can
441 fluoresce more brightly than single mRNA molecules due to multiple nascent transcripts localized to one
442 gene locus. **(B)** Probes recognizing an *omb* exon generate many small dim spots and a few large bright spots.
443 Right image shows the merge of probe and DAPI fluorescence. The bright spots are associated with nuclei

444 whereas most dim spots are not. **(C)** Probes recognizing an *omb* intron only generate large bright spots that
445 are associated with nuclei. Scale bars = 5 μ m. **(D)** Frequency distribution of intensity for all spots identified in
446 a wing disc probed for *sens* RNAs. Using a threshold of twice the median spot intensity, all single mRNA spots
447 were filtered out, leaving only spots that are associated with transcription sites. The frequency distribution
448 for this class of spots is shown. **(E)** Transcription sites are assigned to cells. For each cell that contains one or
449 more mRNA molecules, it is scored for whether it also has one or more transcription sites. The average
450 fraction of all such cells with a transcription site is shown for each gene. Error bars represent 95% confidence
451 intervals. **(F)** The ratio of the variance of mRNAs/cell to its mean, as a function of the mean, for all genes. This
452 ratio is larger than one, irrespective of the mRNA number for binned sub-populations of cells and the gene.
453 Error bars represent 95% confidence intervals.

454

455 **Figure 3 - figure supplement 1. Detection of transcription sites and their quantification. (A)**
456 A representative frequency distribution of fluorescence intensity for 3D spots identified in one wing disc
457 expressing *sfGFP-sens*. The median intensity is 28 units. **(B)** The same wing disc was reanalyzed for 3D spots
458 but using a threshold of 70 units as a cutoff, below which spots are not counted. **(C)** The fluorescence
459 intensity of each 3D spot in B is divided by the median intensity of 28 units to provide a normalized number
460 of RNAs that are localized to that 3D spot. This is not an actual number of RNA molecules but the output
461 from partially transcribed RNAs annealing to a variable number of probes depending on the composition of
462 binding sites in the RNA composite. **(D)** The mean threshold used for transcription site identification for
463 each data set plotted against the median normalized RNA molecules per transcription site for
464 all transcription sites in that data set.

465

466 **Figure 3 - figure supplement 2. Transcription sites and mRNA patterns in unsegmented images. (A,B,C,D,E)**

467 Three discs were analyzed independently (green, blue, orange dots) for spots that corresponded to the

468 mRNAs from *sens* (**A**), *salm* (**B**), *omb* (**C**), *dad* (**D**) and *brk* (**E**). Spots were binned according to their positions

469 along the AP or DV axes, and total mRNAs per bin were plotted. Note the strong concordance of independent

470 discs for all genes. (**A',B',C',D',E'**) The same three discs were analyzed independently (green, blue, orange

471 dots) for spots that corresponded to transcription sites from *sens* (**A**), *salm* (**B**), *omb* (**C**), *dad* (**D**) and *brk* (**E**).

472 Spots were binned according to their positions along the AP or DV axes, and total transcription sites per bin

473 were plotted. Note the strong concordance of independent discs for all genes.

474

475 **Figure 4. Modeling transcription sites using bursting dynamics. (A)** Model framework showing the three rate

476 parameters affecting transcription initiation. Two parameters affect the promoter state, while the third

477 parameter only affects how many initiation events occur when the promoter is ON. (**B**) Pol II molecules in

478 elongation mode are distributed along the transcription unit. If Pol II is upstream of the probe binding sites,

479 the nascent transcript will not be detected. If Pol II is downstream, the nascent transcript will be detected as

480 100% signal. If Pol II is transcribing within the binding sites, the nascent transcript will be detected as a

481 partial signal. These three different scenarios are explicitly accounted for in our mathematical model. For

482 example in the simulation result shown here, four Pol II's are situated such that a total of 12 virtual probe-

483 binding sites are present. Since each mRNA has 6 binding sites, it means that this simulated transcription site

484 has 12/6 or 2 units of normalized signal. Applying our filter cutoff for identifying a transcription site as 2 or

485 more units, this simulated site would be scored as a positive. (**C**) The phase diagram of transcription site

486 detection as a function of burst size and frequency in the model. Both burst size and frequency impact the

487 likelihood of detecting a transcription site. When burst size increases at low burst frequency, the likelihood

488 of detecting a transcription site remains fairly constant. When burst size increases at high burst

489 frequency (horizontal red arrow), the likelihood of detecting a transcription site is ultrasensitive to burst size.
490 Likewise, when burst frequency increases at low burst size, the likelihood of detecting a transcription site
491 remains fairly constant. When burst frequency increases at high burst size (vertical red arrow), the likelihood
492 of detecting a transcription site is ultrasensitive to burst size. The phase diagram makes manifest that a range
493 of combinations of burst frequency and size could explain observed transcription site frequency data.

494

495 **Figure 5. Transcription site detection correlates with mRNA number. (A,B)** The probability of detecting a cell
496 with a transcription site varies with the cell's location relative to the source of morphogen. Error bars are
497 95% bootstrapped confidence intervals. **(A)** Cells are binned according to their distance from the pouch
498 border, and the fraction of cells in each bin with a transcription site are shown for each Dpp-responsive gene.
499 **(B)** Cells are binned according to their distance from the DV boundary, and the fraction of cells in each bin
500 with a transcription site is shown for the *sens* gene. **(C,D)** The probability of detecting a cell with a
501 transcription site varies linearly with the number of mRNA molecules in the cell. Fitted lines are from linear
502 regression. Error bars are 95% confidence intervals. **(C)** Cells are binned according to the number of mRNAs
503 they contain, and the fraction of cells in each bin with a transcription site are shown for each Dpp-
504 responsive gene. **(D)** Cells are binned according to the number of mRNAs they contain, and the fraction
505 of cells in each bin with a transcription site is shown for the *sens* gene. **(E)** Linear regression analysis was
506 performed on samples from C and D, shown is the slope with a parametric 95% confidence interval.

507

508 **Figure 6. Burst frequency is regulated by Dpp and Wg. (A,B)** The average number of nascent RNAs in a
509 transcription site does not vary with the cell's location relative to the source of morphogen. Error bars are
510 bootstrapped 95% confidence intervals. **(A)** Cells are binned according to their distance from the pouch
511 border, and the average number of nascent RNAs per site in each bin are shown for each Dpp-responsive

512 gene. **(B)** Cells are binned according to their distance from the DV boundary, and the average number of
513 nascent RNAs per site in each bin is shown for the *sens* gene. **(C)** The average number of nascent RNAs in a
514 transcription site does not vary with the probability of detecting a cell with a transcription site. Error bars
515 are 95% confidence intervals. **(D,E)** Model predictions of the relationship between average number of
516 nascent RNAs in a transcription site and the probability of detecting a site for the *dad* gene. **(D)** Simulations
517 are performed where the rate parameter k_{ini} has been systematically varied so as to modulate burst size
518 alone. Resulting values for nascent RNA number and fraction of cells with a site are shown. Each datapoint is
519 the average of 1,000 simulations. Simulations are repeated for three different values of k_{on} to specifically set
520 the burst frequency to 0.04, 0.2 and 0.4 min⁻¹. **(E)** Simulations are performed where the rate parameter k_{on}
521 has been systematically varied so that burst frequency alone is variable. Resulting values for nascent RNA
522 number and fraction of cells with a site are shown. Each datapoint is the average of 1,000 simulations.
523 Simulations are repeated for three different values of k_{ini} to specifically set the burst size to 1, 4 and 20.

524

525 **Figure 6 - figure supplement 1. Modeling the relationship between average number of nascent RNAs in a**
526 **transcription site and the probability of detecting a site for the *brk*, *omb*, *salm*, and *sens* genes. (A)**
527 Simulations are performed where the rate parameter k_{ini} has been systematically varied so that burst size
528 alone is variable. Resulting values for nascent RNA number and fraction of cells with a site are shown. Each
529 datapoint is the average of 1,000 simulations. Simulations are repeated for three different values of k_{on} to
530 specifically set the burst frequency to 0.04, 0.2 and 0.4 min⁻¹. **(B)** Simulations are performed where the rate
531 parameter k_{on} has been systematically varied so that burst frequency alone is variable. Resulting values for
532 nascent RNA number and fraction of cells with a site are shown. Each datapoint is the average of
533 1,000 simulations. Simulations are repeated for three different values of k_{ini} to specifically set the burst size
534 to 1, 4 and 10.

535 **Supplementary File 1.** Excel file containing the sequences of all oligonucleotide probes used for smFISH
536 experiments in this paper. Each worksheet lists the oligos specific for a gene, as indicated. Sequences are
537 ordered 5' - to - 3'.

538

539 **MATERIALS AND METHODS**

540

Key Resources Table				
Reagent type (species) or resource	Designation	Source or reference	Identifiers	Additional information
gene (<i>Drosophila melanogaster</i>)	<i>white</i> ¹¹¹⁸	Bloomington Drosophila Stock Center	<i>BDSC</i> : 3605 <i>Flybase</i> : FBst0003605 RRID:BDSC_3605	
gene (<i>Drosophila melanogaster</i>)	<i>sens</i> ^{E1}	Nolo et al 2001	<i>Flybase</i> : FBal00980 24	From Hugo Bellen
genetic reagent (<i>Drosophila melanogaster</i>)	<i>sfGFP-sens</i> [VK37]	Venken et al., 2006. From Hugo Bellen		Pacman construct containing <i>sens</i> gene with N-terminal 3xFlag-TEV-StrepII-sfGFP-FIAsH fusion tag inserted at 22A3 (VK37)
genetic reagent (<i>Drosophila melanogaster</i>)	<i>dad-GFP</i> [VK37]	Bloomington Drosophila Stock Center	<i>BDSC</i> : 81273 <i>Flybase</i> : FBti0150281 RRID:BDSC_81273	<i>y w; PBac{y[+mDint2] w[+mC]=Dad-GFP.FLAG}</i> inserted at 22A3 (VK37)
genetic reagent (<i>Drosophila melanogaster</i>)	<i>brk-GFP</i> [VK33]	Bloomington Drosophila Stock Center	<i>BDSC</i> : 38629 <i>Flybase</i> : FBti01477 30 RRID:BDS C_38629	<i>w¹¹¹⁸; PBac{y[+mDint2] w[+mC]=brk-GFP.FPTB}</i> inserted at 65B2 (VK33)

sequence-based reagent	<i>GFP</i> hybridization oligo probes	Biosearch Technologies	Custom probe set	Set of oligos with 3' modification mdC(TEG-Amino). Sequence of all oligos is in Supplementary File 1
sequence-based reagent	<i>sens</i> hybridization oligo probes	Biosearch Technologies	Custom probe set	Set of oligos with 3' modification mdC(TEG-Amino). Sequence of all oligos is in Supplementary File 1
sequence-based reagent	<i>salm</i> hybridization oligo probes	IDT	Custom probe set	Set of oligos. Sequence of all oligos is in Supplementary File 1
sequence-based reagent	<i>omb</i> hybridization oligo probes	IDT	Custom probe set	Set of oligos. Sequence of all oligos is in Supplementary File 1
sequence-based reagent	<i>sd</i> hybridization oligo probes	IDT	Custom probe set	Set of oligos. Sequence of all oligos is in Supplementary File 1
sequence-based reagent	<i>omb</i> intron hybridization oligo probes	IDT	Custom probe set	Set of oligos. Sequence of all oligos is in Supplementary File 1
sequence-based reagent	<i>omb</i> 5' exon hybridization oligo probes	IDT	Custom probe set	Set of oligos. Sequence of all oligos is in Supplementary File 1
chemical compound, drug	NHS-ester ATTO 633 dye	Sigma	#01464	
chemical compound, drug	NHS-ester ATTO 565 dye	Sigma	#72464	
chemical compound, drug	amino-11-ddUTP	Lumiprobe	A5040	

chemical compound, drug	Paraformaldehyde (powder)	Polysciences	00380-1	
chemical compound, drug	Triton X-100	Sigma Aldrich	T9284-500ML	
chemical compound, drug	VectaShield	Vector Labs	H-1000	
chemical compound, drug	4',6-diamidino-2-phenylindole (DAPI)	Life Technologies	D1306	
chemical compound, drug	salmon sperm single stranded DNA	Invitrogen	#15632	
chemical compound, drug	vanadyl ribonucleoside	New England Biolabs	#S14025	
software, algorithm	MATLAB pipeline to process raw smFISH images with no prior preprocessing	This paper		https://github.com/bakkerra/smfish_pipeline
other	Graces' Insect Medium	Sigma	#69771	Growth medium for organ culture

541

542

543 **EXPERIMENTAL MODEL AND SUBJECT DETAILS**544 For all experiments, *Drosophila melanogaster* was raised using standard lab conditions and food. Stocks

545 were either obtained from the Bloomington Stock Center, from listed labs, or were derived in our laboratory

546 (RWC). A list of all stocks and transgenics used in this study is in the Key Resources Table. The sample sizes

547 were not computed when the study was designed. Sample sizes were determined such that > 6,000 cells

548 were measured for each genotype. All *Drosophila* were raised at room temperature and grown on standard
549 molasses- cornmeal food. The *sfGFP-sens* transgenic line was used as described in (Cassidy et al.,
550 2013). Experiments were performed on *dad-GFP* and *brk-GFP* transgenes obtained from
551 Bloomington *Drosophila* Stock Center (stocks 81273 and 38629, respectively). For all transgenic
552 experiments, smFISH was performed on homozygous individuals. Experiments were performed
553 on endogenous *omb* and *salm* in *w¹¹¹⁸* individuals. There was no exclusion of any data or subjects.

554 **METHOD DETAILS**

555 **smFISH Probe Design and Preparation**

556 smFISH oligonucleotide probes were designed using Stellaris Probe Designer (Biosearch Technologies).
557 Probes sets contain between 45 and 48 non-overlapping 20-nucleotide oligos. A full list of all probe sets is
558 provided in Supplementary File 1. Anti-GFP probes were prepared by conjugating NHS-ester ATTO 633 dye
559 (Sigma 01464) to the 3' end of each oligonucleotide. Anti-Sens probes were prepared by conjugating NHS-
560 ester ATTO 565 dye (Sigma 72464) to the 3' end of each oligonucleotide. These oligos bear a mdC(TEG-
561 Amino) 3' modification to allow conjugation, and were obtained from Biosearch Technologies. Conjugation
562 and purification was performed as described (Little and Gregor, 2018). All other probe sets were prepared
563 using the enzymatic conjugation protocol as described (Gaspar et al., 2017). Briefly, amino-11-ddUTP
564 (Lumiprobe) was conjugated to NHS-ester ATTO 633. Terminal deoxynucleotidyl transferase (New England
565 Biolabs) was then used to conjugate ATTO 633-ddUTP to the 3' ends of oligonucleotides that had been
566 purchased from IDT. After enzymatic conjugation, oligos were purified from free ATTO 633-ddUTP using G-25
567 spin columns (GE Illustra) according to manufacturer's instructions. Final concentration of oligonucleotide
568 was 33 μ M in water. Probes were stored at -20°C, protected from light, until use.

569 **smFISH**

570 Wing discs were dissected from wandering 3rd instar larva in cold phosphate buffered saline (PBS) and
571 immediately fixed in 0.1% (w/v) paraformaldehyde / PBS for 15 minutes at room temperature. Discs were
572 then fixed for 30 minutes in methanol at room temperature. Discs were transferred to hybridization buffer
573 (10% w/v dextran sulfate, 4X SSC, 0.01% w/v salmon sperm ssDNA (Invitrogen 15632), 1% v/v vanadyl
574 ribonucleoside (NEB S14025), 0.2mg/mL BSA, 0.1% v/v Tween-20). Oligo probes were added to a 1.5 μ M final
575 concentration in the hybridization buffer, and hybridization was performed for 1 hour at 62^o C. After
576 hybridization, discs were washed once for 5 minutes at 62^o C in wash buffer (4X SSC, 0.1% v/v Tween-
577 20). Discs were then incubated with 2.5 μ g/mL 4',6-diamidino-2-phenylindole (DAPI) (Invitrogen) in PBS +
578 0.1% Tween-20 for 5 minutes at room temperature. Discs were washed with PBS + 0.1% Tween-20 and
579 transferred to Vectashield (Vector Labs) for mounting. Discs were mounted in 15 μ l of Vectashield on glass
580 microscope slides using an 18 X 18 mm No. 1 coverslip (Zeiss). For eye imaginal discs, discs were dissected
581 from late 3rd instar larva in cold PBS with brain and mouth hooks attached, then smFISH was performed as
582 described. Immediately prior to mounting, brain and mouth hooks were removed from eye discs and
583 discarded.

584 **Actinomycin D Treatment**

585 Wing discs were dissected in room temperature Graces' Insect Medium (Sigma 69771) supplemented with 1X
586 Pen-Strep (Gibco 15140-122) and 5 mM Bis-Tris (Sigma B4429). Half of the total dissected discs were
587 transferred to 24-well tissue culture dishes containing this prepared media + 5 μ g/mL Actinomycin D, and
588 half were transferred to untreated controls containing culture media + 1:1000 (v/v) DMSO. Discs were
589 incubated with gentle shaking for 30 minutes at room temperature, protected from light, before being
590 washed with fresh culture media, and 1X PBS. SmFISH was then performed as described.

591 **Image Acquisition**

592 3D image stacks were collected on a Leica SP8 scanning confocal microscope, using a pinhole size of 1 Airy
593 unit and a 63X oil immersion (NA 1.4) objective. Approximately 35 optical sections were collected per
594 sample, with each section 700 nm thick. Sections were spaced 345 nm apart. DAPI, ATTO 565, and ATTO 633
595 were excited by 405, 555, and 630 nm lasers, respectively. ATTO dye fluorescence was collected using a HyD
596 detector on photon counting mode and a scanning speed of 200 Hz, with 16X line accumulation.
597 DAPI fluorescence was collected using a PMT detector using 8X line averaging. Pixel intensity values are 12-
598 bit, and x-y pixel sizes are 76 nm. We modeled each z-section like a plane of width 345 nm for analysis, but in
599 reality the edges of the z point spread function (PSF) overlap between sections. Since the PSF resembles a
600 Gaussian distribution, most of the light is coming from the center of that distribution. Therefore, overlap is
601 needed between sections to ensure equivalent sampling of the entire specimen.

602 **Image Processing**

603 Raw smFISH images were processed using a custom Matlab pipeline with no prior preprocessing. Our
604 pipeline is available at https://github.com/bakkerra/smfish_pipeline. The pipeline consists of several
605 modules.

606 ***Selection of mRNA Segmentation Threshold:*** RNA segmentation is performed by applying a cutoff
607 intensity value to a stack of optical sections, and transforming all pixels above the cutoff to white and pixels
608 below the cutoff to black. Diffraction-limited fluorescent spots captured with a 63X objective at 633 nm
609 wavelength are estimated to be approximately 600 nm in diameter (Lipson, 1995). This corresponds to a
610 diameter of 8 x-y pixels in our images. Therefore, we classify a 2D object in each transformed section when \geq
611 8 white pixels are connected with one another.

612 It is important to select a cutoff where true RNA fluorescent spots are identified as 2D objects in a
613 section, and background is not. Therefore, a broad range of cutoff values is systematically applied to an
614 image stack, and 2D object number is summed for each cutoff value. The distribution of 2D object number

615 exhibits a plateau across a range of cutoff values (Figure 1 - figure supplement 1C), and thresholds applied at
616 this plateau accurately identify true RNA spots. To demonstrate this, we manually curated 347 RNA spots
617 from sub-regions of four independent image stacks, and found that when a cutoff is selected within the
618 plateau, the number of 2D objects identified by threshold segmentation is no more than +/- 5% different
619 than the ground truth. Furthermore, the centroids of identified objects have an average displacement of only
620 2 pixels from the manually identified centroids. Therefore, this plateau, a regime of relative insensitivity to
621 user-specified hyperparameters, is an appropriate threshold for accurate segmentation of RNA spots.

622 The position of the plateau varies from image stack to image stack. Therefore, for each image stack, a
623 range of cutoffs is tested, and a cutoff is selected within the plateau to perform segmentation. As a result,
624 each image stack has a unique threshold, allowing robust segmentation of spots despite variation in
625 raw fluorescence between image stacks. In practice, replicate samples from the same experiment
626 captured in the same imaging session did not require thresholds for segmentation more than 15 pixel
627 intensity units apart. If image stacks did not show an identifiable plateau, the signal-to-background of that
628 sample was determined to be insufficient and it was not used for analysis. The smFISH protocol and imaging
629 is robust enough that in our hands, this occurs in less than 10% of image stacks collected. Once a threshold is
630 selected, the following properties of each 2D object are recorded: x-y centroid position, z-section, and a list
631 of the connected pixels.

632 ***Connecting 2D Objects into 3D mRNA Spots:*** As each z-section is 340 nm in depth, it is assumed that
633 genuine diffraction-limited RNA spots will appear in 2 or 3 consecutive z-sections, depending on the spot's
634 position along the z-axis. Therefore, a 2D object must satisfy two criteria in order to be counted as an RNA
635 spot: 1) A 2D object must be linked to one or more 2D objects in at least one neighboring z-section. Linkage
636 is defined when the centroids of all objects are within a diffraction-limited radius of 4 pixels from one
637 another in the x-y plane; 2) A 2D object must be larger (contain more pixels) than linked objects

638 in neighboring z-sections. This criterion prevents RNA fluorescence spots from being counted in multiple z-
639 sections. A candidate that satisfies these criteria is recorded as an mRNA spot, and only the largest 2D object
640 is recorded.

641 The pipeline allows the images to be overlaid with markers indicating recorded spots so that each
642 image stack can be manually inspected for any significant errors or inconsistencies. The most common
643 problem detected at this stage results from images taken of discs that were “drifting” or moving significantly,
644 which can cause a large number of identified spots to be filtered out during processing for not meeting
645 criterion 1. Excessive bleaching across the stack can also cause clear inconsistencies. In this study, such
646 problems were rare enough that any sample experiencing these problems was considered to have
647 failed quality control and was simply not included for further analysis.

648 Intensity measurements are recorded from a circle of pixels of radius 4 about the centroid of each
649 recorded RNA spot. By keeping the area of each intensity measurement fixed, we uncouple user-generated
650 variation in selection of segmentation thresholds from spot intensity measurements. A 2D circle was used
651 instead of a 3D sphere to extract intensity measurements because the spots only appear in 2 or 3 z-sections.
652 This makes their 3D geometry variable from spot to spot, and they cannot be consistently described using a
653 sphere or ellipse.

654 ***Segmentation of Transcription Sites:*** In our images, transcription sites tend to contain pixels that are
655 many times brighter than mature RNA spots. As a result, the brightest transcription sites are frequently
656 misidentified during segmentation of mature RNA spots because the second criterion for spot identification
657 only records the largest object within the diffraction limit in z. For transcription sites, this is not always the
658 brightest plane. Therefore, we segment transcription sites independent of mature RNAs using a higher
659 cutoff. The objective in cutoff selection for transcription sites is to select one that includes objects with a
660 total fluorescence intensity of twice the average mature RNA, and excludes mature RNA spots. We define

661 the “average” intensity for a spot containing a single mRNA to be the median of the distribution of all
662 identified mature RNA spot objects. We empirically determined that merely doubling the cutoff for
663 segmentation does not achieve this, because mature mRNAs may contain a few pixels above the cutoff,
664 enough to still be identified as objects and included in analysis. Therefore, we use a threshold cutoff by
665 multiplying the median mature RNA intensity by a factor of 2.5 (Figure 3 -figure supplement 1A).

666 To test the accuracy of this segmentation procedure, we manually inspected three particularly RNA-
667 dense regions in independent images where automated segmentation found a total of 103 transcription sites
668 and 4,066 mature RNAs. We determined that only 7 of 4,066 mature RNAs were misidentified as
669 transcription sites, and found no examples of transcription sites that had been missed by automated
670 segmentation. After identification, object intensity measurements are recorded from a circle of pixels of
671 radius 4 (the diffraction limit) about the centroid of each identified transcription site (Figure 3 -figure
672 supplement 1B). The average transcription site threshold selected for replicates in a dataset show no
673 correlation with the average intensity of transcription sites in that dataset (Figure 3 -figure supplement 1D).
674 Therefore, the differences in transcription site intensity between genes cannot be explained merely by
675 differences in threshold selection or variability in image fluorescence between datasets.

676 ***Estimation of Nascent RNA Number per Transcription Site:*** The intensity measurement of each
677 identified transcription site in an image stack is divided by the median intensity of identified mature RNAs in
678 that sample (Figure 3 -figure supplement 1C). This serves two purposes. First, it serves to normalize these
679 measurements within each sample so transcription site intensity measurements can be pooled across
680 replicates without the effects of image-to- image variability in fluorescence. Secondly, each transcription site
681 object is presumed to be the sum of intensities of multiple nascent RNA molecules elongating at the
682 transcription site. By dividing each transcription site intensity by the average intensity of a single RNA, we
683 obtain an estimate of the number of nascent RNAs present at the transcription site. Because

684 some transcripts are partially elongated, this number cannot be completely accurate, and we attempt to
685 compensate for this in our computational model when interpreting results.

686 ***Nuclei Segmentation:*** DAPI fluorescence images are output as labeled 16-bit images, where each
687 nuclear object corresponds to a 'level' in the 16-bit image. These images are input to a nuclei segmentation
688 pipeline, which flattens the images to white nuclei objects and black background. Nuclei images are
689 segmented in 2D using the NucleAlzer platform maskRCNN Network, trained as described in Hollandi et al.,
690 (2020). We trained the neural network with an expected nuclear radius of 32 pixels (Figure 1 -
691 figure supplement 2D). To ascertain the accuracy of segmentation, we compared results to manually labeled
692 nuclei in four randomly selected disc images. The automated method identified at least 85% of nuclei objects
693 identified manually for each image.

694 The segmented black and white images are then processed using a custom Matlab script in order to
695 join overlapping 2D objects into 3D. Each nucleus object in each z-slice is assigned an identity index. For
696 each object in the first z-slice, the object with the highest number of overlapping pixels in the next z-slice is
697 identified, and this object's identity index is altered to be identical to its overlap partner. This proceeds
698 through the entire z-stack of images, creating objects that resemble 'pancake stacks' of linked 2D objects in
699 3D (Figure 1 - figure supplement 2E). The 3D-centroid and list of included pixels of these new objects is then
700 recorded. Objects not incorporated into a 3-D object are disregarded.

701 ***Generation of Voronoi Diagrams:*** A Voronoi tessellation is built from a grid of points in either 2D or
702 3D. In our case, each point is the centroid of a segmented 3D nucleus. The Voronoi cells delineate regions
703 consisting of all voxels that are closer to that centroid than to any other centroid (Voronoi, 1908). The
704 boundaries between Voronoi cells represent points that are equidistant between two centroids. These are
705 taken to represent virtual cell boundaries. It is important to be clear that the Voronoi cells do not accurately
706 describe the pseudostratified epithelial nature of wing disc cells. However, note that 3D segmentation of

707 pseudostratified epithelial cells is still something no one working in any system has achieved.

708 The 3D Voronoi tessellation used a polytope bounded Voronoi diagram available for Matlab, which
709 uses the DeLaunay triangulation to calculate the Voronoi diagram (Park, 2020). The result of this tessellation
710 is a list of 3D vertices of each Voronoi 'cell' in space, which is recorded along with the associated nuclear
711 centroid (Figure 1 - figure supplement 2F).

712 ***Assignment of RNA to cells:*** 3D Voronoi tessellation is a way to democratically assign mature
713 transcripts to cells based on vicinity to the nucleus. Clearly we get the transcript assignment incorrect at a
714 local level. However, being the most democratic approach, the trends of mRNAs/cell assigned to 100's of cell
715 across the wing disc are trustworthy. The same logic has been used by others assigning mRNA transcripts to
716 early embryonic nuclei when cell boundaries are unseen (Little et al., 2013).

717 To assign spot objects to cells, a 3D convex hull of the each Voronoi cell is constructed from the
718 vertices data for that cell. An entire set of image points, either the mRNA or transcription spot centroids, are
719 tested to determine whether they fall inside or outside of each hull (Figure 1 - figure supplement 2E). This is
720 performed using a Matlab function called `inhull`, which uses dot products to shorten calculation times
721 (D'Errico, 2020). Spots that fall inside a given cell's Voronoi hull are assigned to that cell's nuclear centroid,
722 and the number of assigned spots, as well as their centroid and z- plane information are recorded. This is
723 then repeated for every Voronoi cell in the image stack. The final result is a list of cells, their nuclear
724 centroids, the total number of RNA spots assigned, and a list of each assigned spot's centroids.

725 ***Data Analysis Binning of data:*** Each disc is imaged with the DV boundary located at the y-coordinate
726 midline of the image. Therefore the x-coordinate of the image corresponds to position along the disc's AP
727 axis, and the y-coordinate corresponds to position along the DV axis. In order to analyze data across
728 developmental axes, each image is divided into spatial bins of 64 pixels each, approximately equal to the

729 diameter of one cell nucleus. RNA spots are assigned to a bin according to the position of their associated
730 nuclear centroid.

731 ***Sample size and replicates:*** We analyzed image stacks from three independent discs for
732 each experiment. Each image stack contains approximately 1,700 identified nuclei. Therefore, the total
733 sample size is approximately 5,000 cells per experiment. Similar trends in RNA and transcription spots feature
734 are observed in each disc individually, and hence, the analysis is not distorted by artifacts in pooling and cell
735 segmentation (Figure 3 - figure supplement 2).

736 ***Alignment of replicates along developmental axes:*** While each disc is imaged roughly in the same
737 region, there is not an unambiguous landmark that precisely registers different disc images with one another.
738 To pool data across space as accurately as possible, we register discs to each other based on their mRNA spot
739 distributions over space. For each image data set, the number of RNAs per spatial bin is summed, and the
740 distributions across bins are compared. Bins are then manually registered such that the distribution profiles
741 of the 3 datasets line up with one another (Figure 3 - figure supplement 2A-E). The overlapping bins from the
742 three datasets are then assigned to a pooled bin. Pooling includes the nuclei centroids as well as
743 the transcription and RNA spots. This is repeated for all bins.

744 ***Calculations:*** *Median mature mRNAs per cell* is calculated from total number of mature mRNA spots
745 for each cell within a spatial bin of pooled data. As the distribution of mRNAs per cell is not normally
746 distributed and has a long tail, we ascertained that the median was a more robust descriptor of the “center”
747 of the distribution than mean. *Median nascent RNAs per cell* is calculated from normalized intensity
748 measurements for each transcription spot within a spatial bin of pooled data. All nascent RNA spots are
749 included. As the distribution of RNA per cell is not normally distributed and has a long tail, we
750 ascertained that the median was a more robust descriptor of the “center” of the distribution than
751 mean. Because the number of transcription sites varies over space, sample sizes vary for calculating median

752 nascent RNAs per cell. For bins where fewer than 5% of cells contain a transcription site, median nascent
753 RNAs per cell was not calculated, as the sample size was determined to be too small (<15). *Fraction of cells*
754 *with a transcription site* is calculated by dividing the number of cells in a pooled spatial bin with at least one
755 transcription site assigned to them by the total number of cells in that spatial bin. *Fano factor* is calculated
756 for each spatial bin by dividing the variance in the mRNA per cell distribution by the mean mRNA per cell for
757 all cells assigned to that pooled spatial bin.

758 **Statistics**

759 Linear models are produced by unweighted least squares linear regression. LOESS fits are performed using
760 the loess fitter in R, with an optimized span to minimize residuals. Confidence intervals are calculated by
761 bootstrap resampling analysis using the bias-corrected and accelerated method. We resample data within
762 each bin of pooled data and calculate the statistic of interest 10,000 times. The mean value of the statistic
763 and a 95% confidence interval are calculated from these resampled values.

764 **Stochastic Simulation Model**

765 We model the various steps of gene expression, based on central dogma, as linear first order reactions. To
766 simulate the stochastic nature of reactions, we implement the model as a Markov process using Gillespie's
767 Stochastic Simulation Algorithm (Gillespie, 1977). Simple Markov processes can be analyzed using a chemical
768 master equation to provide a full probability distribution of states as they evolve through time. The master
769 equation defining our gene expression Markov process is as follows:

$$\begin{aligned} \frac{\partial P(N_m, N_g, t)}{\partial t} = & K_{ini}[(N_m - 1)P(N_m - 1, N_g, t) - P(N_m, N_g, t)] \\ & + K_{deg}[(N_m + 1)P(N_m + 1, N_g, t) - N_m P(N_m, N_g, t)] \\ & + K_{on}[(N_g - N_{gtot})P(N_m, N_g - 1, t) - (N_g - N_{gtot})P(N_m, N_g, t)] \\ & + K_{off}[(N_g + 1)P(N_m, N_g + 1, t) - N_g P(N_m, N_g, t)] \end{aligned}$$

770 where N_m , N_g , and t are defined as the number of RNA molecules present, as the number of
771 transcriptionally active gene copies, and simulation time, respectively. N_{gtot} is defined as the total
772 number of gene copies present, and thus is the maximum number of active gene copies that can exist in the
773 simulation. K_{ini} , k_{deg} , k_{on} , and k_{off} are rate constants defining the rates of transcription initiation, RNA
774 degradation, promoter state switching from off to on, and promoter state switching from on to off,
775 respectively.

776 As the Markov process gets more complex, the master equation can become too complicated
777 to solve. Gillespie's Algorithm is a statistically exact method that generates a probability distribution
778 identical to the solution of the corresponding master equation given that a large number of simulations
779 are realized. A brief description of how the Gillespie simulation produces each probability distribution is as
780 follows:

- 781 1. We initialize all simulations to start with no mRNA molecules and promoter state is set to OFF.
- 782 2. For each event i in the simulation, a total rate r_{tot} is calculated by summing all r_i reaction rate
783 constants in the model, given the current promoter state and the total number of mRNA molecules
784 present.
- 785 3. A time-step τ is generated from an exponential probability distribution with mean $1/r_{tot}$. This τ is the
786 time interval between the current event and the next event.
- 787 4. Each event i is selected from the list of reaction steps in the model available at that time (promoter
788 switching, transcription initiation, mRNA decay). The probability a reaction step is selected is equal to $r_i/$
789 r_{tot} . An event is selected at random given these probabilities. For each event, the following actions are
790 taken:

791 •Promoter switches to ON: Promoter is now in ON state, transcription initiation is now included in
792 r_{tot} ,

793 •Promoter switches to OFF: Promoter is now in OFF state, transcription initiation is no longer included
794 in r_{tot} .

795 •Transcription Initiation: Number of mature mRNA molecules is increased by 1.

796 •RNA degradation: Number of mature mRNA molecules is decreased by 1.

797 5.Simulation time is updated as $t + \tau$ where t is the total time elapsed in the simulation.

798
799 Each simulation is run for 10,000 iterative events to approximate steady-state conditions, at the end
800 of which the number of mRNA molecules present in the simulation is recorded. Independent simulations are
801 then randomly paired to mimic the two alleles within a cell, and the sum of mRNA numbers is recorded as
802 the mRNA output per cell. A minimum of 1,000 simulation pairs are generated for each set of rate parameter
803 values.

804 The RNA decay parameter k_{deg} is fixed at 0.04/min for all simulations, as this rate had been
805 experimentally determined for *sens* mRNA (Giri et al., 2020). The transcriptional rate parameters are varied
806 in accordance with the specific hypothesis being tested. We constrain them loosely to be within an order of
807 magnitude of reported values for these rates from the literature (Milo et al., 2010). We also constrain these
808 rates so as to produce steady state mRNA numbers similar to experimental data.

809 • k_{ini} is varied from 0.2 to 60 /min

810 • k_{on} is varied from 0.008 to 38/min

811 • k_{off} is varied from 0.016 to 20/min

812 To perform a parameter sweep, we vary the relevant parameter across the defined range. Each rate
813 parameter value in the sweep is used to make 1,000 paired simulations as described above.

814 **Nascent Transcripts:** Thus far we have described how model simulations generate *in silico* data for
815 mature mRNA numbers. We also use the same simulations to approximate the number of nascent RNAs per
816 gene. After 10,000 iterative events are completed in a simulation, the number of nascent RNAs is counted. A
817 single nascent RNA is counted if a single transcription initiation event has occurred within an interval of time
818 (τ_{elong}) equal to the time it is estimated that RNA polymerase takes to elongate from the binding site for the
819 5'-most oligo probe to the 3' end of the RNA. To calculate τ_{elong} for each gene, we divide the number of
820 nucleotides from 5' probe-binding site to 3' end by the transcription elongation rate. This rate is assumed to
821 be 1,100 nucleotides/min, as experimentally determined (Ardehali et al., 2009).

Gene	τ_{elong} (min)
<i>brk</i>	1.35
<i>dad</i>	2.05
<i>sens</i>	5.15
<i>salm</i>	5.30
<i>omb</i>	3.05

822

823 We weight the count of nascent RNAs in a simulation to mimic the fluorescence output from these
824 nascent RNAs if they are hybridized to probes. We define τ_{probe} to be the time interval for RNA polymerase to
825 elongate from the 5'-most probe-binding site to the 3'-most probe-binding site. If a nascent RNA had been
826 initiated in a time less than τ_{probe} , then we weight the counting of that nascent RNA as 0.5 rather than 1. We
827 do this because the probe-binding region of the nascent RNA is partially transcribed at this point. For
828 simplicity, the exact locations of probes and RNA polymerase are not taken into account to calculate the
829 weighting, and instead we assign the overall probability of fluorescence for an ensemble of such

830 partially transcribed RNAs. If a nascent RNA had been initiated in a time greater than or equal to τ_{probe} and
831 less than τ_{elong} , then we weight the counting of that nascent RNA as 1. These RNAs are assumed to produce
832 100% of the fluorescence of a mature RNA spot, since all probe-binding sites are transcribed at this point.

833 We randomly pair two simulations and sum the number of weighted nascent transcripts. This mimics
834 the experimental conditions where the two gene alleles are physically paired and thus their nascent RNAs are
835 co-localized in space. We collate 1,000 paired simulations for each parameter set and calculate the following
836 statistics:

837 *Fraction of virtual cells with a transcription site* is calculated by counting how many paired simulations have a
838 total number of weighted nascent RNAs of 2.0 or more. This is done in order to be consistent with the
839 limitations of the experimental data; only nuclear spots with fluorescence greater or equal to 2 mature
840 mRNA spots were called as transcription sites. When this number of paired simulations is divided by the total
841 of 1,000 paired simulations, it is the fraction of virtual cells with a transcription site.

842 *Median number of nascent RNAs per virtual cell* is calculated from those paired simulations with a total
843 number of weighted nascent RNAs of 2.0 or more.

844
845 **DATA AND CODE AVAILABILITY**

846 Experimental analysis code is freely available at https://github.com/bakkerra/smfish_pipeline
847 All raw smFISH data after spot and nuclei segmentation is freely available at <https://doi.org/10.21985/n2-rfax-bk36>. Source data is deposited in the Northwestern University library's data repository. Each .csv file is
848 for one wing disc analyzed for either nuclei or RNA from a given gene as indicated in each file's name. XYZ
849 centroid positions and fluorescence intensity values are listed.
850

852 **ACKNOWLEDGEMENTS**

853 Fly stocks from Hugo Bellen and the Bloomington Drosophila Stock Center are gratefully appreciated. We
854 thank Jessica Hornick and the Biological Imaging Facility for help with imaging and the Keck Facility at
855 Northwestern for help with probe purification. We are very grateful to Shawn Little and Thomas Gregor for
856 hosting R.B. at Princeton and their invaluable advice on adapting the smFISH method to imaginal discs. We
857 also thank Arjun Raj and Brian Munsky for key suggestions on experimental and analytical development.
858 Financial support was provided from the NIH (T32CA080621, R.B.; R35GM118144, R.W.C.), NSF (1764421,
859 M.M and R.W.C.), and the Simons Foundation (597491, M.M. and R.W.C.). M.M. is a Simons
860 Foundation Investigator.

861

862 **COMPETING INTERESTS**

863 The authors declare no competing financial interests.

864

865 **CORRESPONDING AUTHOR**

866 Correspondence to Richard Carthew (r-carthew@northwestern.edu) and Madhav
867 Mani (madhav.mani@gmail.com).

868

869 **REFERENCES**

870 Aldaz, S., and Escudero, L. M. (2010). Imaginal discs. *Current Biology*, 20(10), R429-431.

871 doi:10.1016/j.cub.2010.03.010

872 Ardehali, M. B., Yao, J., Adelman, K., Fuda, N. J., Petesch, S. J., Webb, W. W., and Lis, J. T. (2009). Spt6
873 enhances the elongation rate of RNA polymerase II in vivo. *EMBO Journal*, 28(8), 1067-1077.
874 doi:10.1038/emboj.2009.56

875 Bannister, A. J., and Kouzarides, T. (2011). Regulation of chromatin by histone modifications. *Cell Research*,
876 21(3), 381-395. doi:10.1038/cr.2011.22

877 Bartman, Caroline R., Hsu, Sarah C., Hsiung, Chris C. S., Raj, A., and Blobel, Gerd A. (2016). Enhancer
878 Regulation of Transcriptional Bursting Parameters Revealed by Forced Chromatin Looping. *Molecular Cell*,
879 62(2), 237-247. doi:10.1016/j.molcel.2016.03.007

880 Bothma, J. P., Garcia, H. G., Esposito, E., Schlissel, G., Gregor, T., and Levine, M. (2014). Dynamic regulation of
881 eve stripe 2 expression reveals transcriptional bursts in living *Drosophila* embryos. *Proceedings of the
882 National Academy of Sciences*, 111(29), 10598-10603. doi:10.1073/pnas.1410022111

883 Cai, Y., and Laughon, A. (2009). The *Drosophila* Smad cofactor Schnurri engages in redundant and synergistic
884 interactions with multiple corepressors. *Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms*,
885 1789(3), 232-245. doi:10.1016/j.bbagr.2009.01.001

886 Campbell, G., and Tomlinson, A. (1999). Transducing the Dpp Morphogen Gradient in the Wing of *Drosophila*:
887 Regulation of Dpp Targets by *brinker*. *Cell*, 96(4), 553-562. doi:10.1016/S0092-8674(00)80659-5

888 Campbell, S., Inamdar, M., Rodrigues, V., Raghavan, V., Palazzolo, M., and Chovnick, A. (1992). The *scalloped*
889 gene encodes a novel, evolutionarily conserved transcription factor required for sensory organ
890 differentiation in *Drosophila*. *Genes & Development*, 6(3), 367-379. doi: 10.1101/gad.6.3.367.

891 Cassidy, J. J., Jha, A. R., Posadas, D. M., Giri, R., Venken, K. J., Ji, J., . . . Carthew, R. W. (2013). miR-9a
892 minimizes the phenotypic impact of genomic diversity by buffering a transcription factor. *Cell*, 155(7), 1556-
893 1567. doi:10.1016/j.cell.2013.10.057

894 Celis, J. F. d., Barrio, R., and Kafatos, F. C. (1996). A gene complex acting downstream of *dpp* in *Drosophila*
895 wing morphogenesis. *Nature*, 381(6581), 421. doi:10.1038/381421a0

896 Chen, L.-F., Lin, Y. T., Gallegos, D. A., Hazlett, M. F., Gómez-Schiavon, M., Yang, M. G., . . . West, A. E.
897 (2019). Enhancer Histone Acetylation Modulates Transcriptional Bursting Dynamics of Neuronal
898 Activity-Inducible Genes. *Cell Reports*, 26(5), 1174-1188.e1175. doi:10.1016/j.celrep.2019.01.032

899 Chubb, J. R., Trcek, T., Shenoy, S. M., and Singer, R. H. (2006). Transcriptional Pulsing of a Developmental
900 Gene. *Current Biology*, 16(10), 1018-1025. doi:10.1016/j.cub.2006.03.092

901 Clevers, H., and Nusse, R. (2012). Wnt/β-Catenin Signaling and Disease. *Cell*, 149(6), 1192-1205.
902 doi:10.1016/j.cell.2012.05.012

903 Dar, R.D., Razooky, B.S., Singh, A., Trimeloni, T.V., McCollum, J.M., Cox, C.D., Simpson, M.L., and Weinberger,
904 L.S. (2012). Transcriptional burst frequency and burst size are equally modulated across the human genome.
905 *Proceedings of the National Academy of Sciences*, 109(43), 17454-17459. doi.org/10.1073/pnas.1213530109

906 D'Errico, J. (2020). Inhull. Retrieved from <https://www.mathworks.com/matlabcentral/fileexchange/10226-inhull>

907

908 Desponts, J., Tran, H., Ferraro, T., Lucas, T., Perez Romero, C., Guillou, A., Fradin, C., Coppey, M., Dostatni, N.,
909 and Walczak, A.M. (2016). Precision of readout at the *hunchback* gene: Analyzing short transcription time
910 traces in living fly embryos. *PLoS Computational Biology*, 12, e1005256. doi:10.1371/journal. pcbi.1005256

911 Dey, S. S., Foley, J. E., Limsirichai, P., Schaffer, D. V., and Arkin, A. P. (2015). Orthogonal control of expression
912 mean and variance by epigenetic features at different genomic loci. *Molecular Systems Biology*, 11(5).
913 doi:10.15252/msb.20145704

914 Dufourt, J., Trullo, A., Hunter, J., Fernandez, C., Lazaro, J., Dejean, M., Morales, L., Nait-Amer, S., Schulz, K.N.,
915 Harrison, M.M., Favard, C., Radulescu, O., and Lagha, M. (2018). Temporal control of gene expression by the

916 pioneer factor Zelda through transient interactions in hubs. *Nature Communications*, 9, 5194.

917 doi:10.1038/s41467-018-07613-z

918 Eck, E., Liu, J., Kazemzadeh-Atoufi, M., Ghoreishi, S., Blythe, S., and Garcia, H. G. (2020). Quantitative

919 dissection of transcription in development yields evidence for transcription factor-driven chromatin

920 accessibility. *BioRxiv*, doi.org/10.1101/2020.01.27.922054

921 Esnault, C., Ghavi-Helm, Y., Brun, S., Soutourina, J., Van Berkum, N., Boschiero, C., . . . Werner, M. (2008).

922 Mediator-Dependent Recruitment of TFIID Modules in Preinitiation Complex. *Molecular Cell*, 31(3), 337-346.

923 doi:10.1016/j.molcel.2008.06.021

924 Ezer, D., Moignard, V., Göttgens, B., and Adryan, B. (2016). Determining Physical Mechanisms of Gene

925 Expression Regulation from Single Cell Gene Expression Data. *PLOS Computational Biology*, 12(8), e1005072.

926 doi:10.1371/journal.pcbi.1005072

927 Falo-Sanjuan, J., Lammers, N. C., Garcia, H. G., and Bray, S. J. (2019). Enhancer priming enables fast and

928 sustained transcriptional responses to Notch signaling. *Developmental Cell*, 50(4), 411-425.

929 doi.org/10.1016/j.devcel.2019.07.002

930 Fukaya, T., Lim, B., and Levine, M. (2016). Enhancer Control of Transcriptional Bursting. *Cell*, 166(2), 358-368.

931 doi:10.1016/j.cell.2016.05.025

932 Garcia, H. G., Tikhonov, M., Lin, A., and Gregor, T. (2013). Quantitative imaging of transcription in living

933 *Drosophila* embryos links polymerase activity to patterning. *Current Biology*, 23(21), 2140-2145.

934 doi:10.1016/j.cub.2013.08.054

935 Gaspar, I., Wippich, F., and Ephrussi, A. (2017). Enzymatic production of single-molecule FISH and RNA

936 capture probes. *RNA*, 23(10), 1582-1591. doi:10.1261/rna.061184.117

937 Gillespie, D. (1977). Exact stochastic simulation of coupled chemical reactions. *The Journal of Physical*
938 *Chemistry*, 81(25), 2340-2361.

939 Giri R, P. D., Posadas DM, Potluri, HK, Tomancak P, Mani M, Carthew RW. (2020). Ordered patterning of the
940 sensory system is susceptible to stochastic features of gene expression. *eLife*, 2020;9:e53638. doi:
941 10.7554/eLife.53638

942 Grimm, S., and Pflugfelder, G. O. (1996). Control of the gene *optomotor-blind* in *Drosophila* wing
943 development by *decapentaplegic* and *wingless*. *Science*, 271(5255), 1601-1604.
944 doi:10.1126/science.271.5255.1601

945 Hamaratoglu, F., Affolter, M., and Pyrowolakis, G. (2014). Dpp/BMP signaling in flies: From molecules to
946 biology. *Seminars in Cell and Developmental Biology*, 32, 128-136. doi:10.1016/j.semcd.2014.04.036

947 He, F., Ren, J., Wang, W., and Ma, J. (2012). Evaluating the *Drosophila* Bicoid morphogen gradient system
948 through dissecting the noise in transcriptional bursts. *Bioinformatics*, 28(7), 970-975.
949 doi:10.1093/bioinformatics/bts068

950 Hollandi, S., Toth, T., Molnar, M., Grexa, M., Balind, G., Kovacs, M., Goodman, B., ... and Horvath, P. (2020).
951 NuclAlzer: a parameter-free deep learning framework for nucleus segmentation using image style transfer.
952 *Cell Systems*, 10(5), 453-458. doi.org/10.1016/j.cels.2020.04.003

953 Holloway, D. M., and Spirov, A. V. (2017). Transcriptional bursting in *Drosophila* development: Stochastic
954 dynamics of *eve* stripe 2 expression. *PLOS ONE*, 12(4), e0176228. doi:10.1371/journal.pone.0176228

955 Jafar-Nejad, H., Tien, A-C., Acar, M., and Bellen, H.J. (2006). Senseless and Daughterless confer neuronal
956 identity to epithelial cells in the *Drosophila* wing margin. *Development*, 133(9), 1683-1692.
957 doi: 10.1242/dev.02338

958 Ji, N., and van Oudenaarden, A. (2012). Single molecule fluorescent in situ hybridization (smFISH) of *C.*
959 *elegans* worms and embryos. *WormBook*, 1-16. doi:10.1895/wormbook.1.153.1

960 Lammers, N.C., Galstyan, V., Reimer, A., Medin, S.A., Wiggins, C.H., and Garcia, H.G. (2020). Multimodal
961 transcriptional control of pattern formation in embryonic development. *Proceedings National Academy of
962 Sciences*, 117(2), 836-847. <https://doi.org/10.1073/pnas.1912500117>

963 Larson, D. R., Fritzsch, C., Sun, L., Meng, X., Lawrence, D. S., and Singer, R. H. (2013). Direct observation of
964 frequency modulated transcription in single cells using light activation. *eLife*, 2, e00750.
965 doi:10.7554/eLife.00750

966 Larsson, A. J. M., Johnsson, P., Hagemann-Jensen, M., Hartmanis, L., Faridani, O. R., Reinius, B., ... and
967 Sandberg, R. (2019). Genomic encoding of transcriptional burst kinetics. *Nature*, 565(7738), 251.
968 doi:10.1038/s41586-018-0836-1

969 Lipson, S., Lipson, H. and Tannhauser, DS. (1995). *Optical Physics* (3 ed.). Cambridge, UK: Cambridge
970 University Press.

971 Little, S. C., and Gregor, T. (2018). Single mRNA Molecule Detection in *Drosophila*. *Methods Mol Biol*, 1649,
972 127-142. doi:10.1007/978-1-4939-7213-5_8

973 Little, S. C., Tikhonov, M., and Gregor, T. (2013). Precise Developmental Gene Expression Arises from Globally
974 Stochastic Transcriptional Activity. *Cell*, 154(4), 789-800. doi:10.1016/j.cell.2013.07.025

975 Mayer, L. R., Diegelmann, S., Abassi, Y., Eichinger, F., and Pflugfelder, G. O. (2013). Enhancer trap infidelity in
976 *Drosophila optomotor-blind*. *Fly*, 7(2), 118-128. doi:10.4161/fly.23657

977 McKee, B. D. (2004). Homologous pairing and chromosome dynamics in meiosis and mitosis. *Biochimica
978 Biophysica Acta*, 1677(1-3), 165-180. doi:10.1016/j.bbexp.2003.11.017

979 Milo, R., Jorgensen, P., Moran, U., Weber, G., and Springer, M. (2010). BioNumbers--the database of key
980 numbers in molecular and cell biology. *Nucleic Acids Research*, 38(Database issue), 1 D750-753.
981 doi:10.1093/nar/gkp889

982 Minami, M., Kinoshita, N., Kamoshida, Y., Tanimoto, H., and Tabata, T. (1999). *brinker* is a target of Dpp in
983 *Drosophila* that negatively regulates Dpp-dependent genes. *Nature*, 398(6724), 242. doi:10.1038/18451

984 Moser, M., and Campbell, G. (2005). Generating and interpreting the Brinker gradient in the *Drosophila* wing.
985 *Developmental Biology*, 286(2), 647-658. doi:10.1016/j.ydbio.2005.08.036

986 Munsky, B., Neuert, G., and van Oudenaarden, A. (2012). Using gene expression noise to understand gene
987 regulation. *Science*, 336(6078), 183-187. doi:10.1126/science.1216379

988 Nolo, R., Abbott, L. A., and Bellen, H. J. (2000). Senseless, a Zn finger transcription factor, is necessary and
989 sufficient for sensory organ development in *Drosophila*. *Cell*, 102(3), 349-362. doi:10.1016/s0092-
990 8674(00)00040-4

991 Park, H. (2020). Polytope bounded Voronoi diagram in 2D and 3D. Retrieved from
992 <https://www.github.com/hyongju/Polytope-bounded-Voronoi-diagram>

993 Raj, A., Peskin, C. S., Tranchina, D., Vargas, D. Y., and Tyagi, S. (2006). Stochastic mRNA Synthesis in
994 Mammalian Cells. *PLOS Biology*, 4(10), e309. doi:10.1371/journal.pbio.0040309

995 Raj, A., van den Bogaard, P., Rifkin, S. A., van Oudenaarden, A., and Tyagi, S. (2008). Imaging individual mRNA
996 molecules using multiple singly labeled probes. *Nature Methods*, 5(10), 877-879. doi:10.1038/nmeth.1253

997 Raj, A., and van Oudenaarden, A. (2008). Nature, Nurture, or Chance: Stochastic Gene Expression and Its
998 Consequences. *Cell*, 135(2), 216-226. doi:10.1016/j.cell.2008.09.050

999 Senecal, A., Munsky, B., Proux, F., Ly, N., Braye, Floriane E., Zimmer, C., . . . Darzacq, X. (2014). Transcription
000 Factors Modulate c-Fos Transcriptional Bursts. *Cell Reports*, 8(1), 75-83. doi:10.1016/j.celrep.2014.05.053

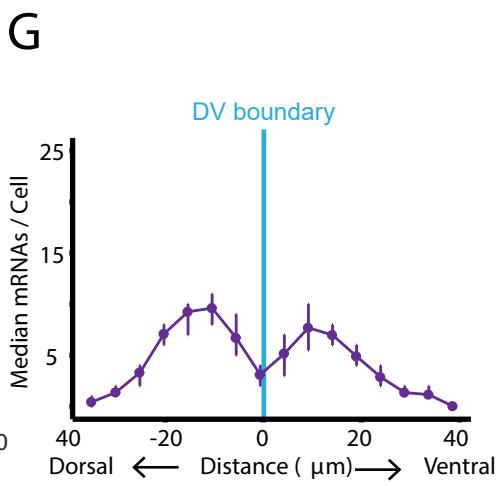
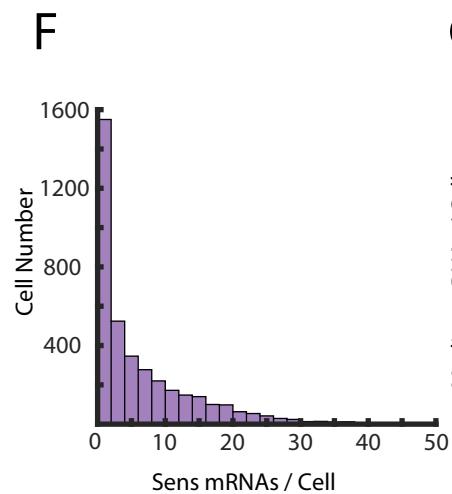
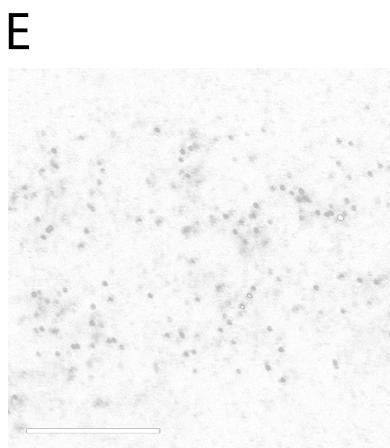
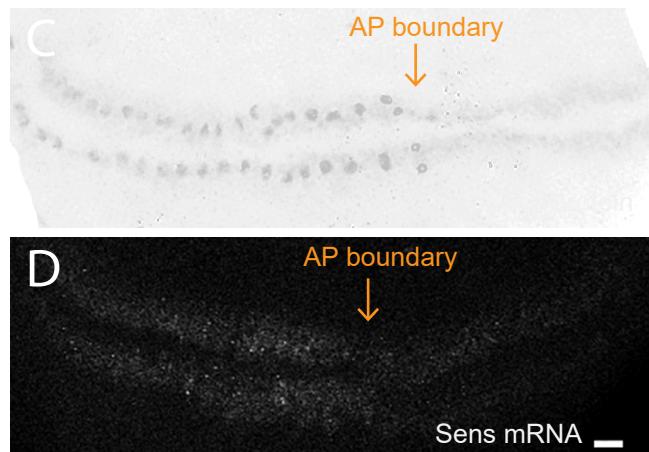
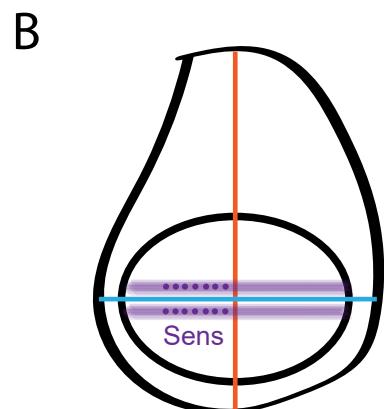
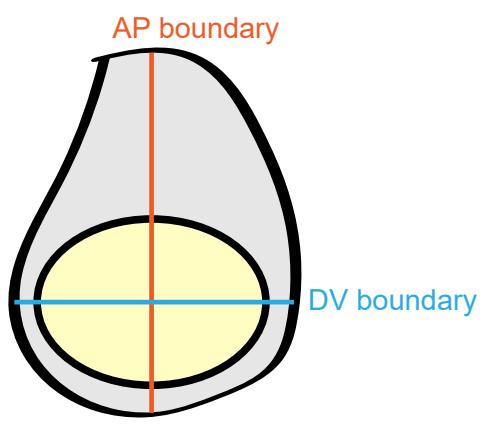
.001 Shi, Y., and Massagué, J. (2003). Mechanisms of TGF- β Signaling from Cell Membrane to the Nucleus. *Cell*,
.002 113(6), 685-700. doi:10.1016/S0092-8674(03)00432-X

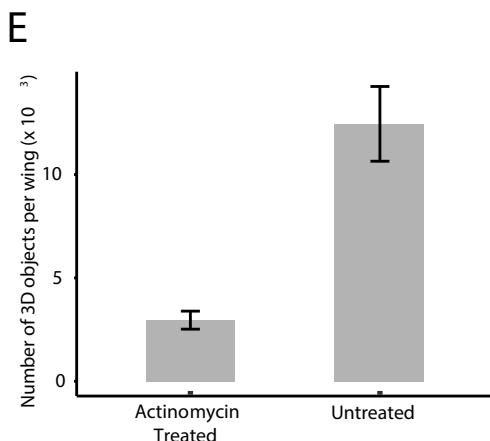
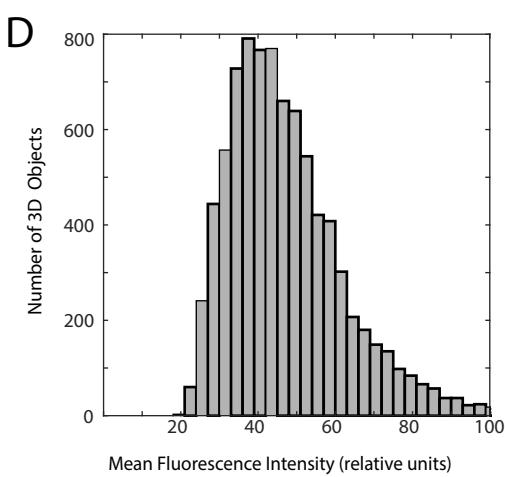
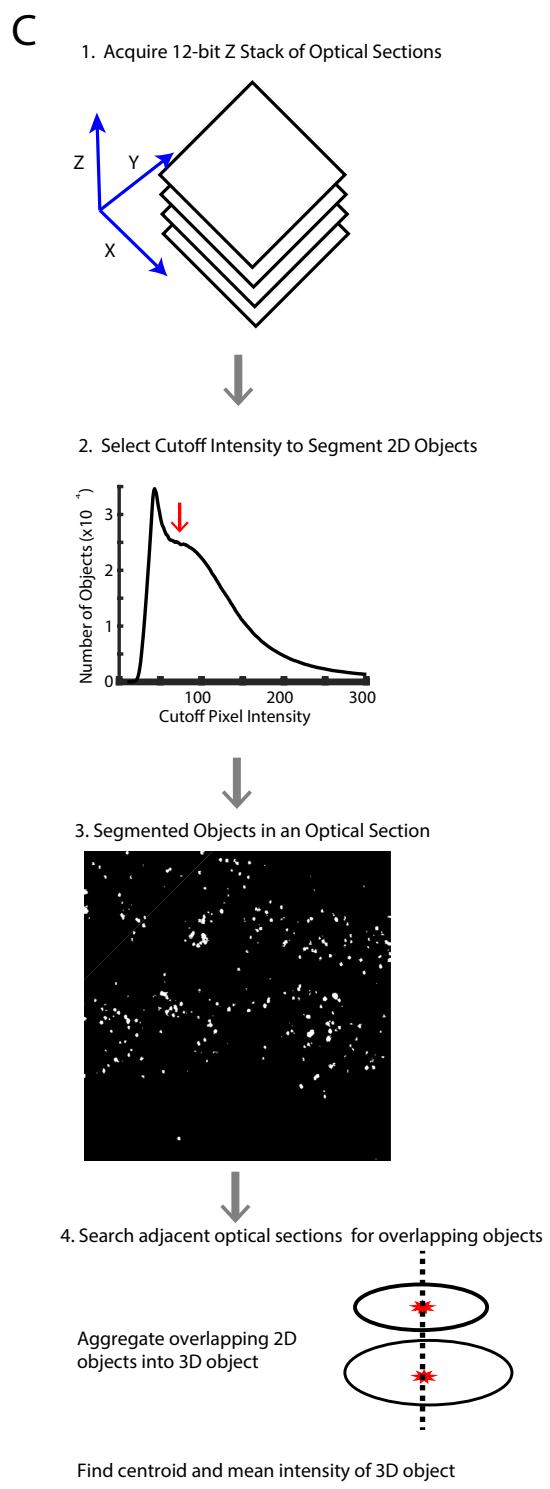
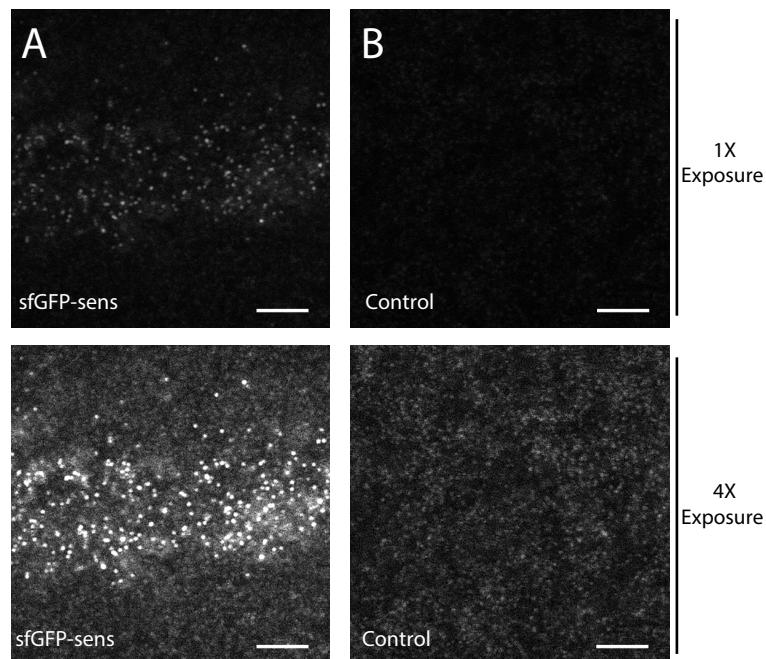
.003 Sivasankaran, R., Vigano, M. A., Muller, B., Affolter, M., and Basler, K. (2000). Direct transcriptional control of
.004 the Dpp target *omb* by the DNA binding protein Brinker. *EMBO Journal*, 19(22), 6162-6172.
.005 doi:10.1093/emboj/19.22.6162

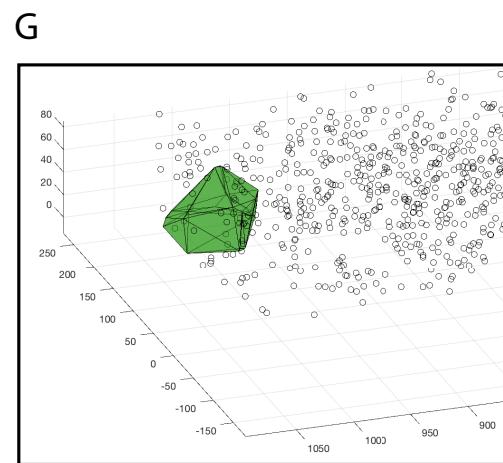
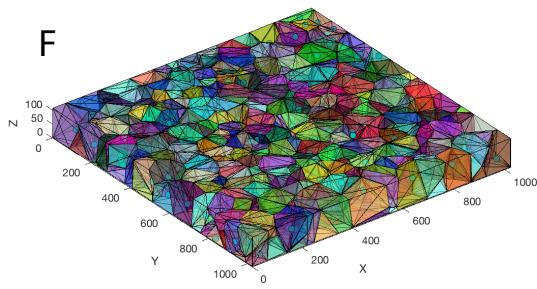
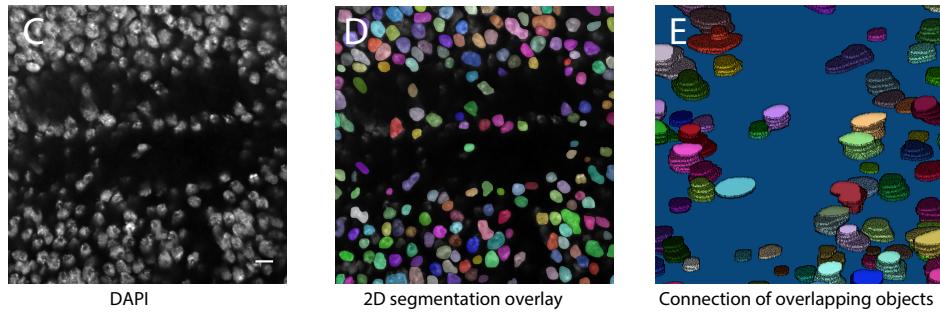
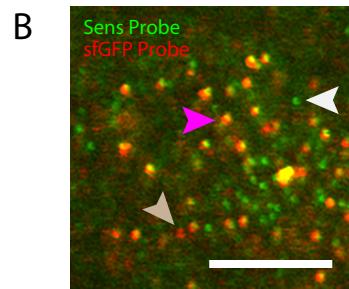
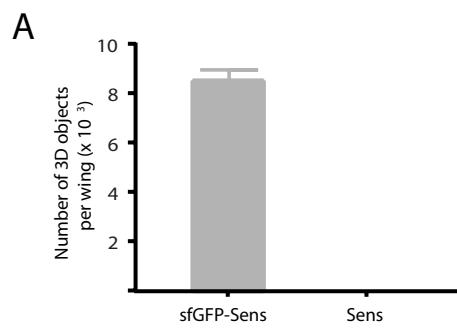
.006 Suter, D. M., Molina, N., Gatfield, D., Schneider, K., Schibler, U., and Naef, F. (2011). Mammalian Genes Are
.007 Transcribed with Widely Different Bursting Kinetics. *Science*, 332(6028), 472-474.
.008 doi:10.1126/science.1198817

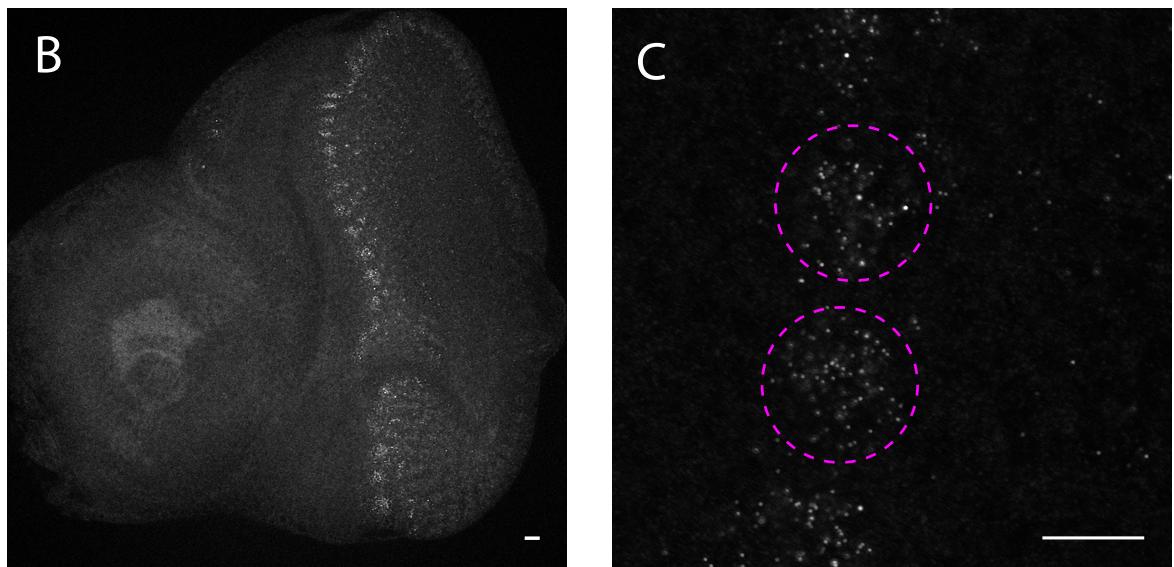
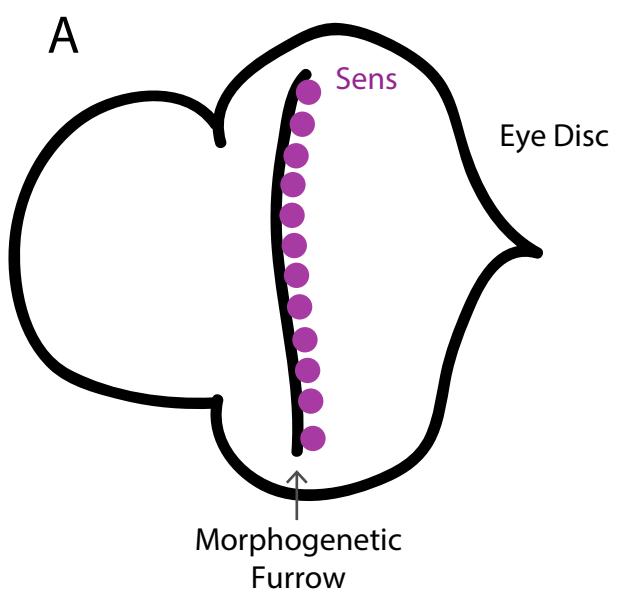
.009 Swarup, S., and Verheyen, E. M. (2012). Wnt/Wingless Signaling in *Drosophila*. *Cold Spring Harbor
.010 Perspectives in Biology*, 4(6), a007930. doi:10.1101/cshperspect.a007930

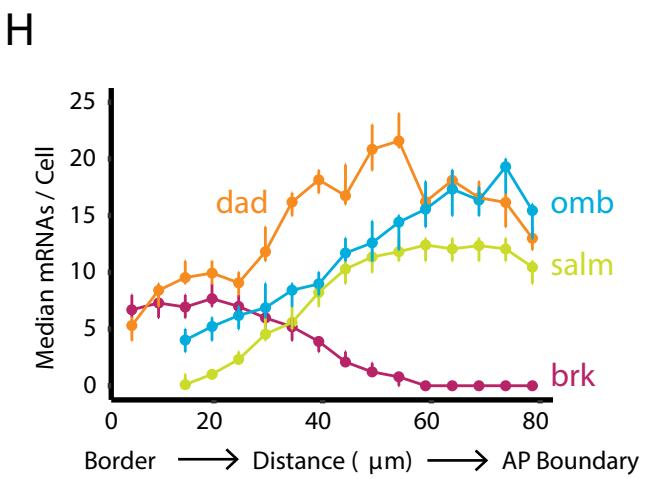
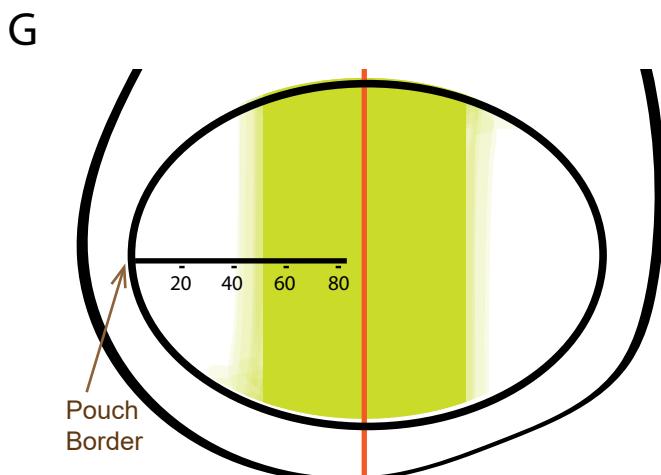
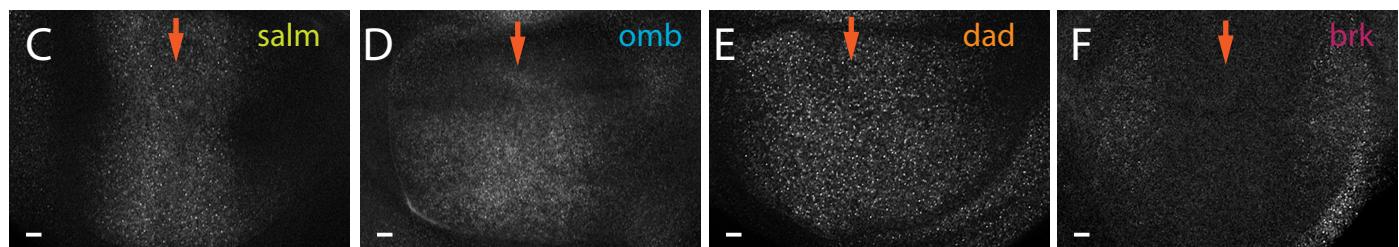
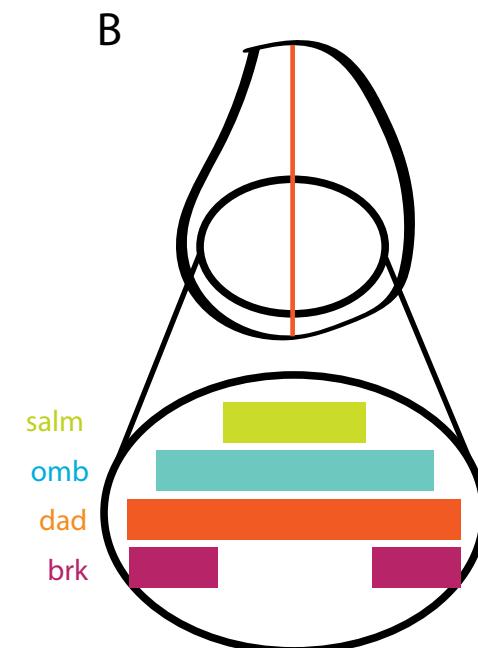
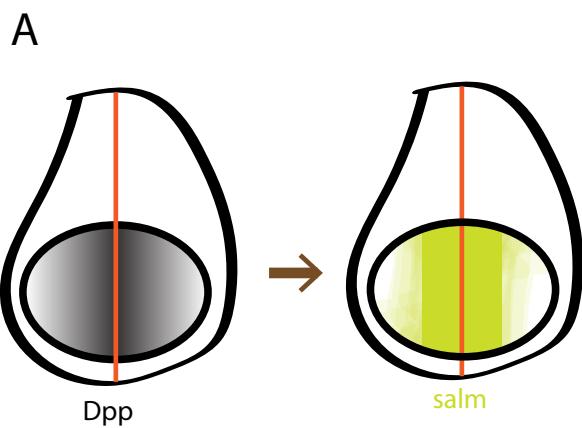
.011 Szabo, Q., Jost, D., Chang, J. M., Cattoni, D. I., Papadopoulos, G. L., Bonev, B., . . . Cavalli, G. (2018). TADs are
.012 3D structural units of higher-order chromosome organization in *Drosophila*. *Science Advances*, 4(2),
.013 eaar8082. doi:10.1126/sciadv.aar8082

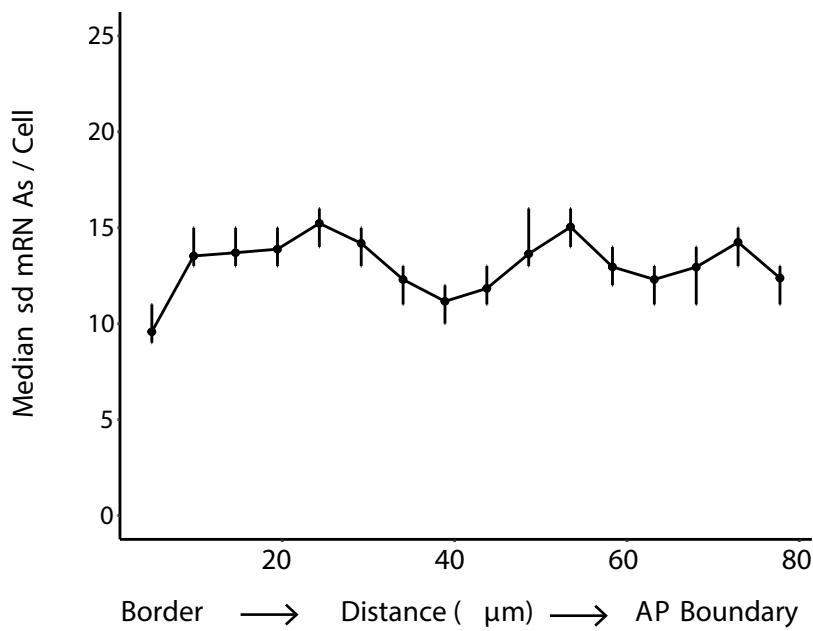
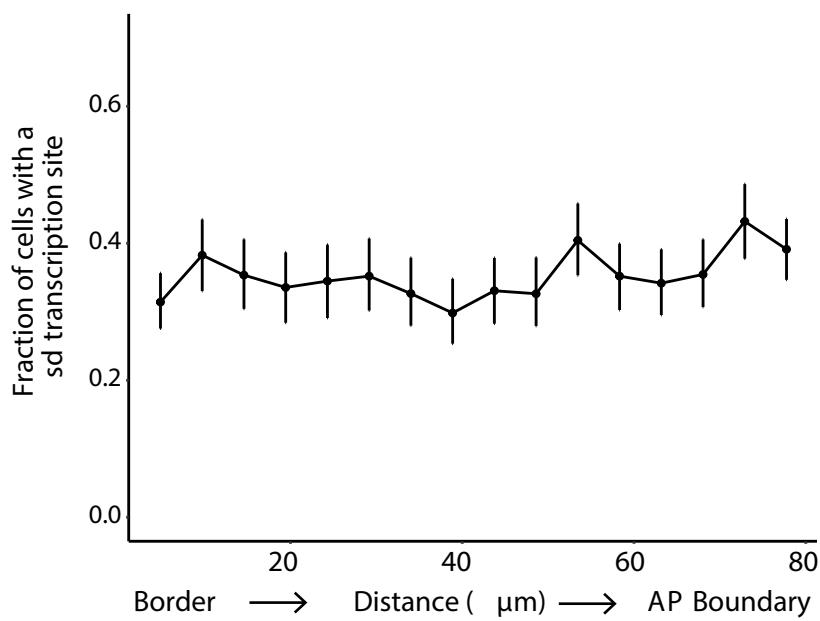
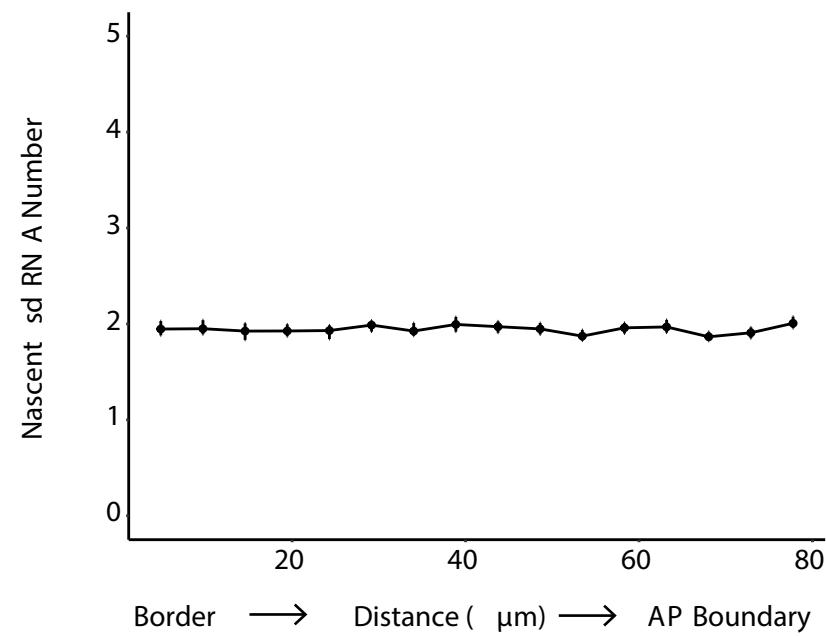






.014 Tabata, T., and Takei, Y. (2004). Morphogens, their identification and regulation. *Development*, 131(4), 703-
.015 712. doi:10.1242/dev.01043

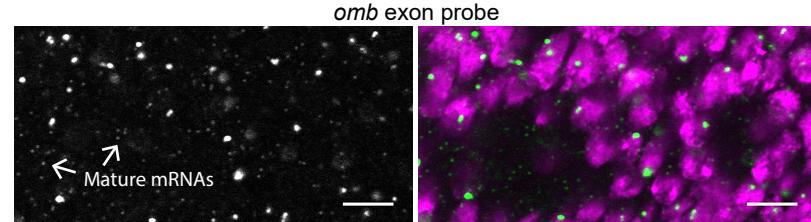
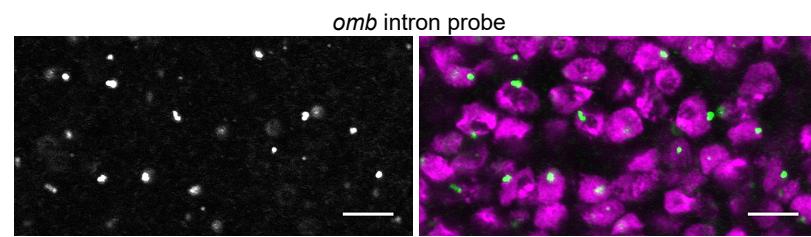
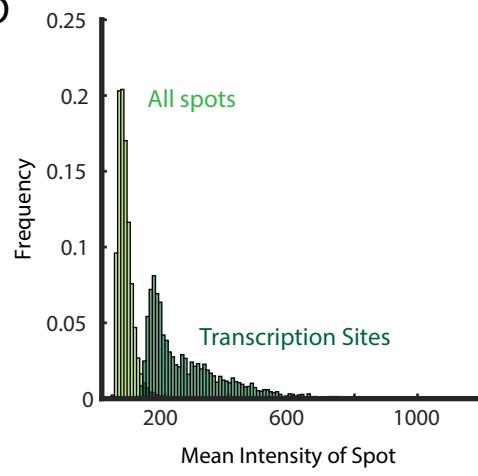
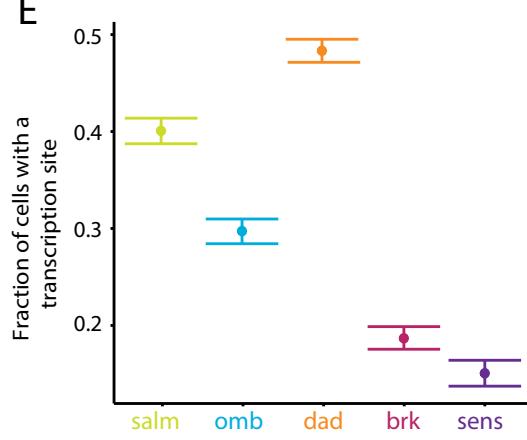
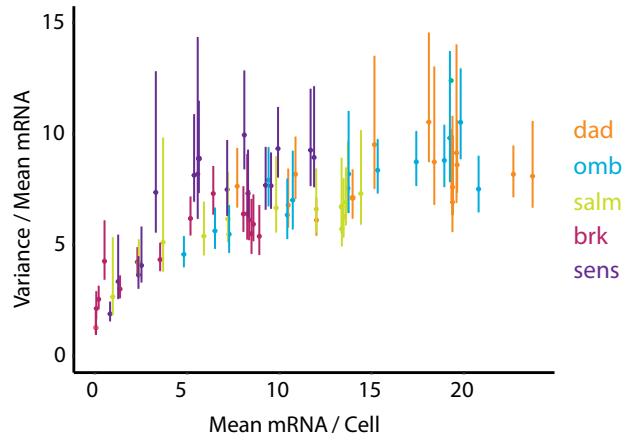




.016 Voronoi, G. (1908). Nouvelles applications des paramètres continus à la théorie des formes quadratiques.
.017 Premier mémoire. Sur quelques propriétés des formes quadratiques positives parfaites. *Journal für die reine
.018 und angewandte Mathematik*, 1908(133), 97- 102.

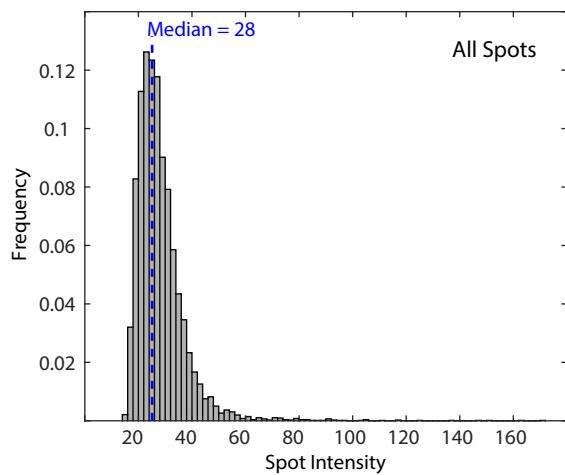
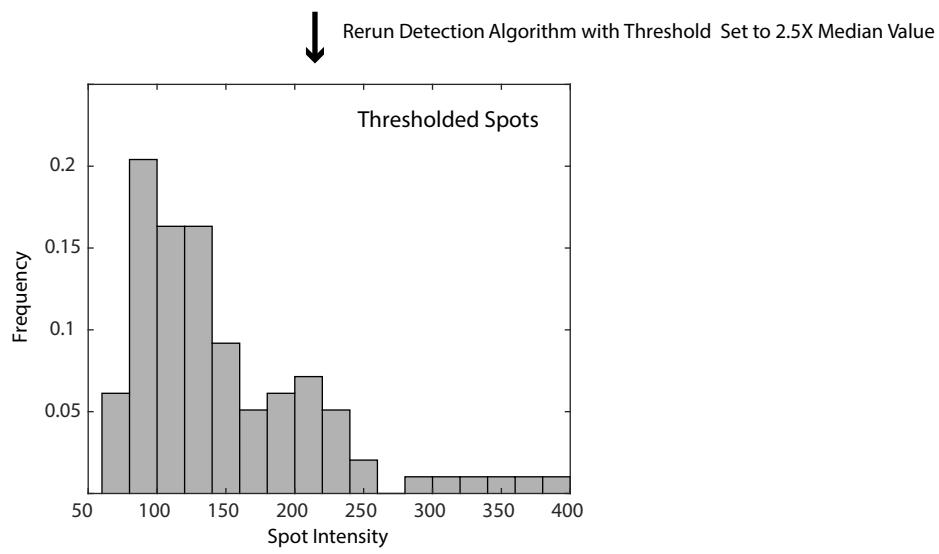
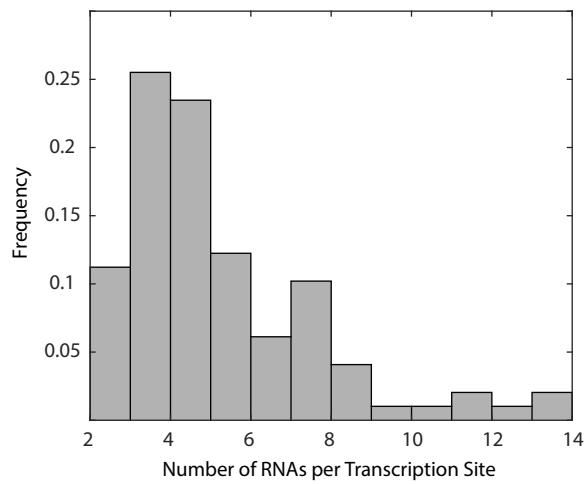
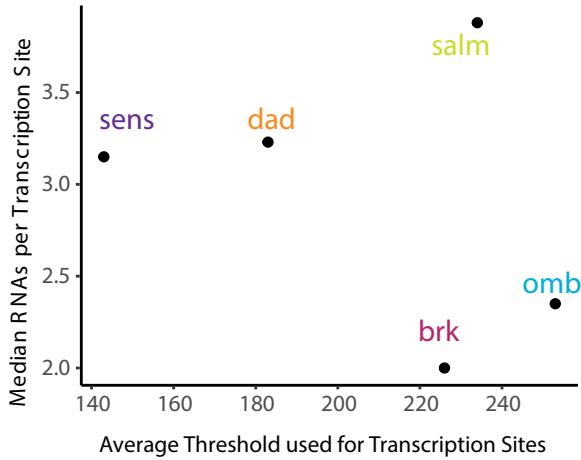





.019 Williams, J.A., Paddock, S.W., and Carroll, S.B. (1993). Pattern formation in a secondary field: a hierarchy of
.020 regulatory genes subdivides the developing *Drosophila* wing disc into discrete subregions. *Development*,
.021 117(2), 571-584.

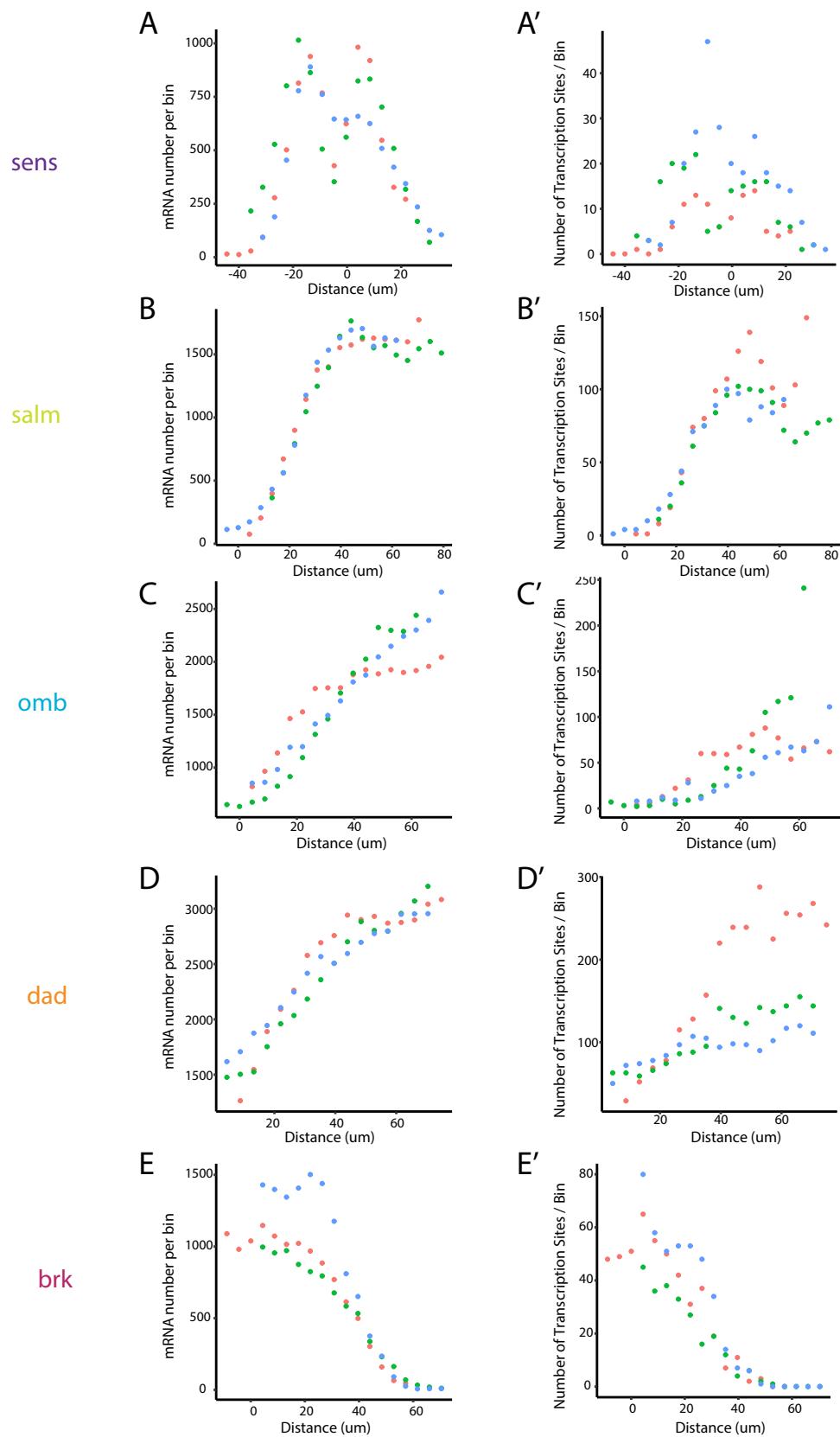


022 Xu, H., Sepúlveda, L. A., Figard, L., Sokac, A. M., and Golding, I. (2015). Combining protein and mRNA
023 quantification to decipher transcriptional regulation. *Nature Methods*, 12(8), 739-742.
024 doi:10.1038/nmeth.3446






025 Youk, H., Raj, A., and van Oudenaarden, A. (2010). Imaging single mRNA molecules in yeast. *Methods in
026 Enzymology*, 470, 429-446. doi:10.1016/S0076-6879(10)70017-3

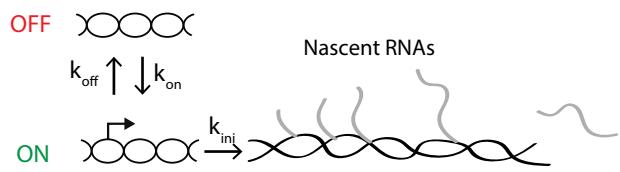




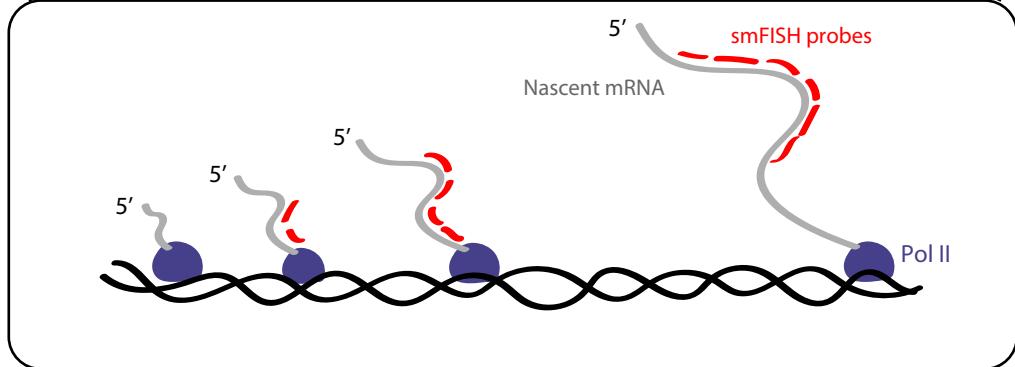





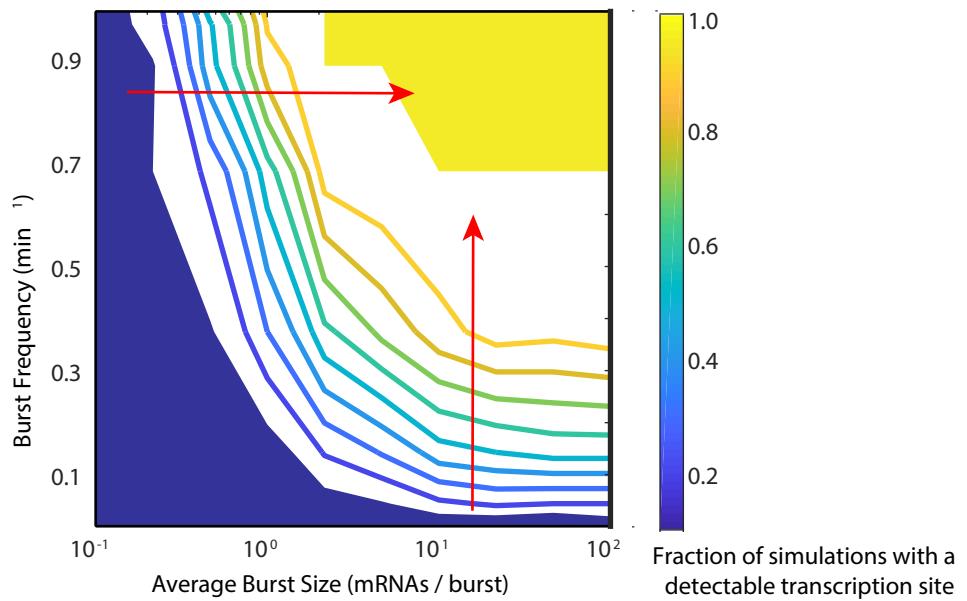

A**B****C**

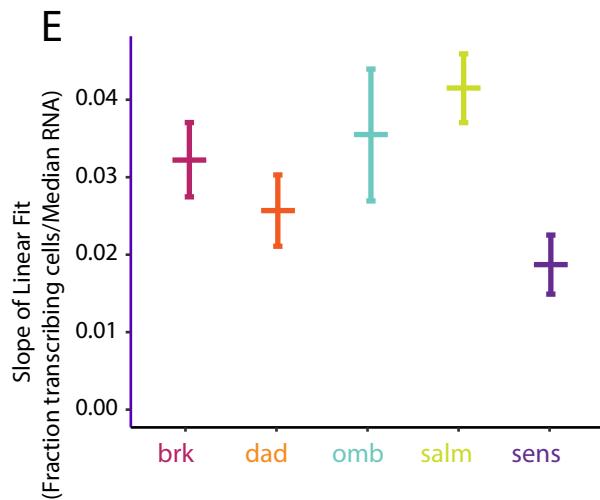
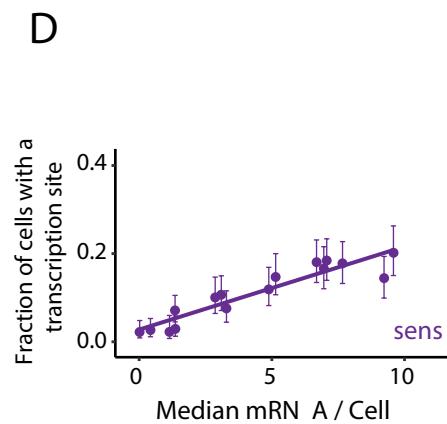
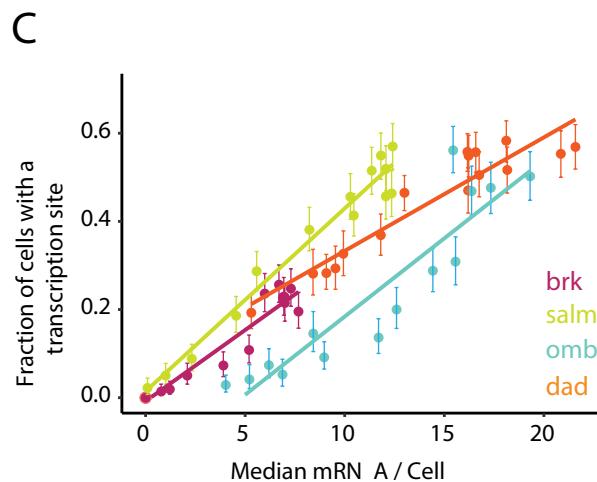
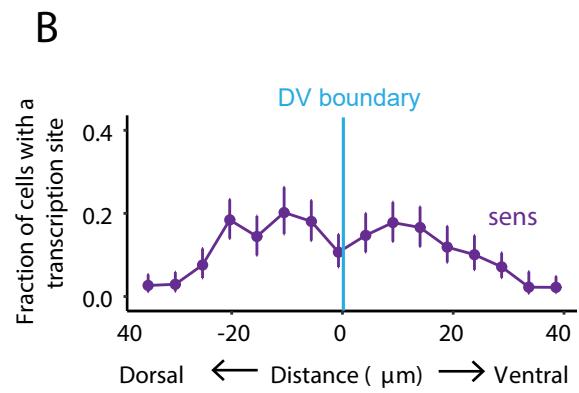
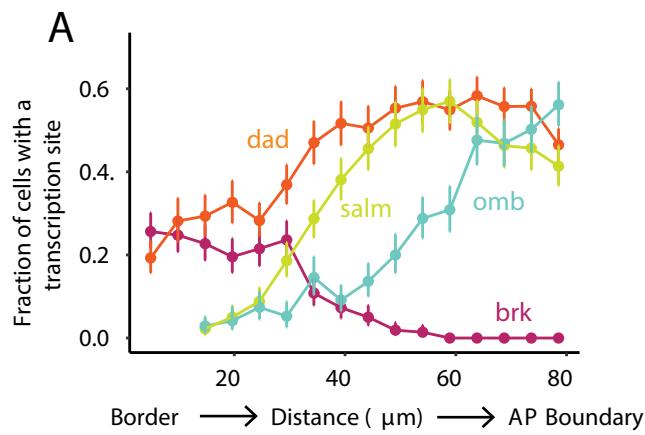
A

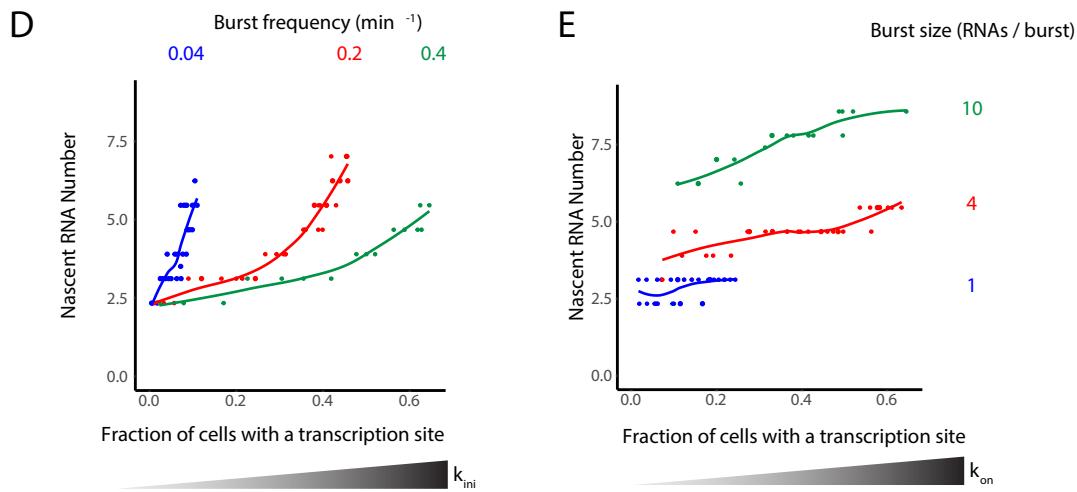
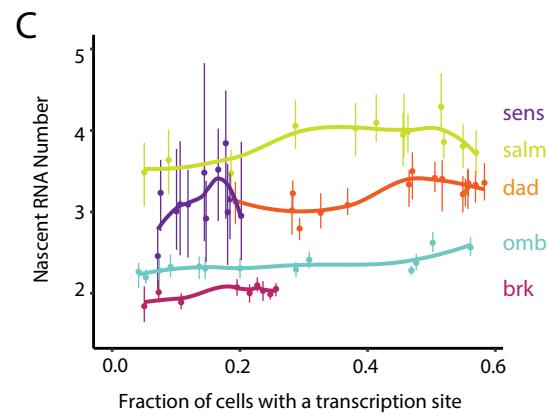
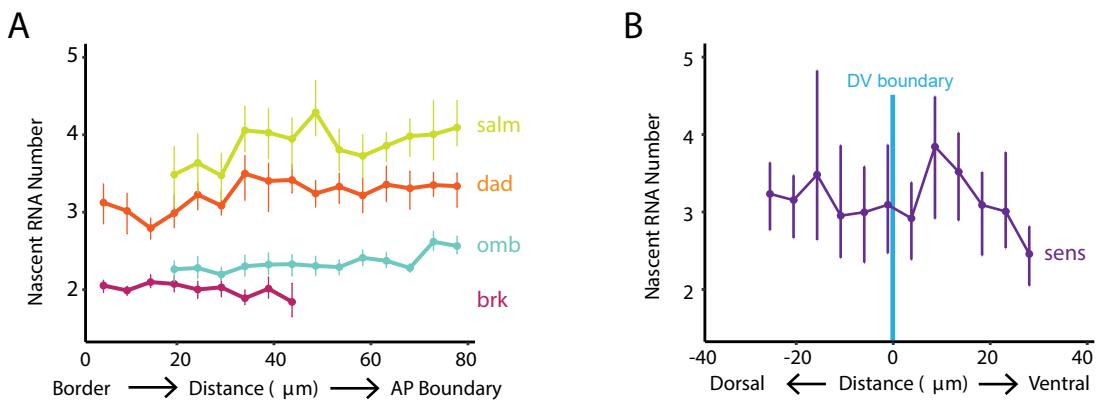

 = Diffraction limited spot
 Mature mRNA

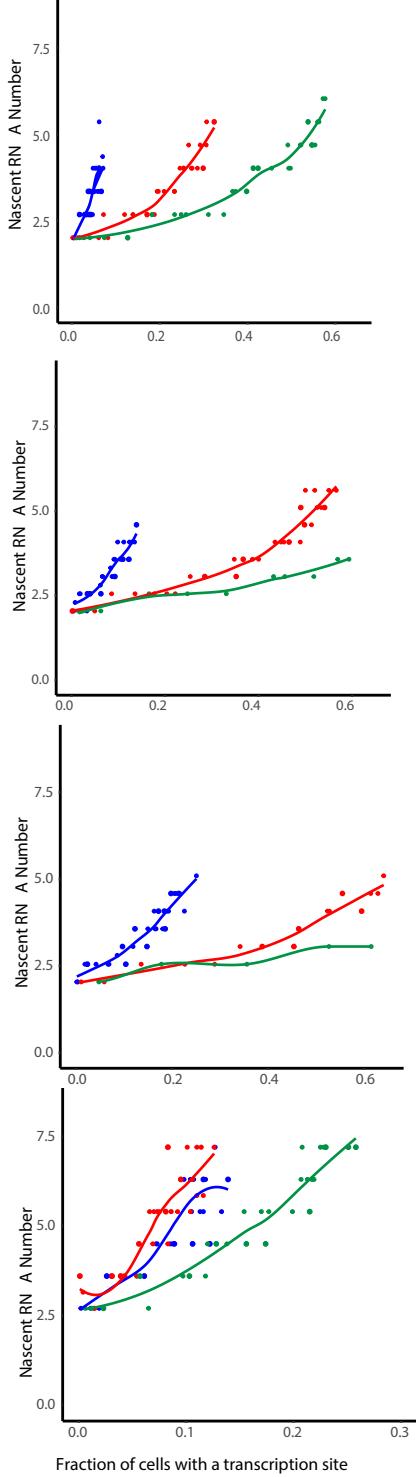
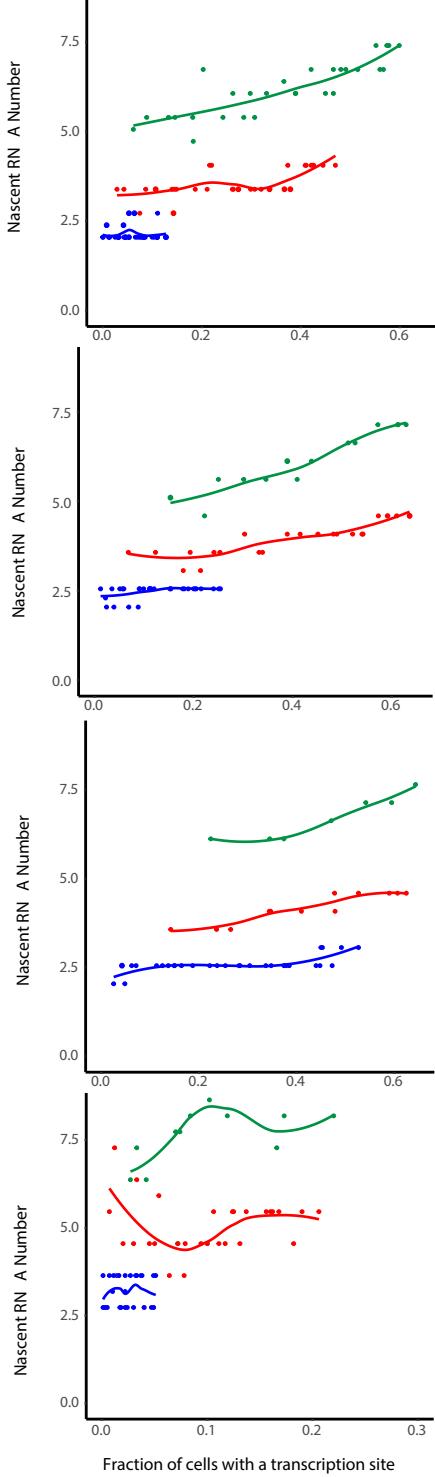
B**C****D****E****F**


A**B****C****D**


A




B

C

A Tuning Burst Size**B Tuning Burst Frequency** k_{ini} k_{on}