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ABSTRACT

Morphogen signaling contributes to the patterned spatiotemporal expression of genes during development.
One mode of regulation of signaling-responsive genes is at the level of transcription. Single-cell quantitative
studies of transcription have revealed that transcription occurs intermittently, in bursts. Although the effects
of many gene regulatory mechanisms on transcriptional bursting have been studied, it remains unclear how
morphogen gradients affect this dynamic property of downstream genes. Here we have adapted single
molecule fluorescence in situ hybridization (smFISH) for use in the Drosophila wing imaginal disc in order to
measure nascent and mature mRNA of genes downstream of the Wg and Dpp morphogen gradients. We
compared our experimental results with predictions from stochastic models of transcription, which indicated
that the transcription levels of these genes appear to share a common method of control via burst frequency
modulation. Our data helps further elucidate the link between developmental gene regulatory mechanisms

and transcriptional bursting.
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INTRODUCTION

Paracrine signaling is a highly conserved means for cells within a tissue to communicate with one
another to regulate diverse activities including proliferation, differentiation, apoptosis, and movement. Many
of these activities are mediated by changes in gene transcription that are brought about by reception of the
signals. Paracrine factors acting as morphogens are a particularly important class of gene regulators.
Morphogens form spatially-extended gradients from the source of their synthesis, and elicit different
transcription outputs from target genes, depending on local concentration of the morphogen (Tabata and
Takei, 2004). Many paracrine signals regulate gene transcription via control of the availability or activity of
sequence-specific transcription factors. Some transcription factors regulate assembly of the preinitiation
complex composed of Pol Il and general factors at the transcription start site (Esnault et al., 2008). Other
factors recruit coregulators that modify nucleosomes or remodel the chromatin architecture of the gene

(Bannister and Kouzarides, 2011).

However, transcription is a dynamic process, and thus, molecular models of regulation via PIC
assembly or chromatin structure, do not adequately capture what kinetic steps in transcription initiation
are being regulated. Recently developed methods have uncovered greater complexity in the transcription
initiation process than previously imagined. Genes that are constitutively expressed rarely show uniform and
continuous mRNA synthesis. Rather, mRNA synthesis occurs in bursts that are interrupted by periods of
dormant output. This phenomenon is known as transcriptional bursting (Chen et al., 2019; Chubb et al.,

2006; Dey et al., 2015; Raj et al., 2006; Suter et al., 2011).

Various studies have explored how mechanisms of gene regulation affect the size and frequency of
transcriptional bursts, and thereby affect transcription output. The availability of transcription factors has
been shown to affect burst frequency (Ezer et al., 2016; Larson et al., 2013; Senecal et al., 2014). For

example, the Drosophila transcription factors Bicoid and Dorsal have been studied in great detail with respect
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to their effects on transcription burst frequency in the embryo (Garcia et al., 2013; He et al., 2012; Holloway
and Spirov, 2017; Little et al., 2013; Xu et al., 2015). Enhancer strength and enhancer-promoter contact

correlate with burst frequency of genes (Bartman et al., 2016; Bothma et al., 2014; Chen et al., 2019; Fukaya
et al., 2016; Larsson et al., 2019). These studies altogether suggest that bursting frequency is potentiated by

enhancer-promoter contact and is mediated by transcription factors binding to DNA.

In this study, we have explored how the Wnt protein Wingless (Wg) and BMP
protein Decapentaplegic (Dpp) regulate transcription dynamics of genes in the Drosophila wing imaginal disc.
The Wnt and BMP families of proteins are two highly conserved paracrine factors that can act as
morphogens. In canonical Wnt signaling, the binding of extracellular Wnt protein to its transmembrane
receptor Frizzled causes B-catenin to be stabilized and free to enter the nucleus, where it relieves repression
of Wnt-responsive genes by binding to the sequence-specific transcription factor TCF (Clevers and Nusse,
2012; Swarup and Verheyen, 2012). In canonical BMP signaling, ligand binding to receptor triggers
phosphorylation of SMAD proteins, which translocate to the nucleus along with co-SMADs, bind to

responsive genes, and activate their transcription (Hamaratoglu et al., 2014; Shi and Massagué, 2003).

To explore the effects of Dpp and Wg signaling on transcription dynamics, we have adapted single
molecule fluorescent in situ hybridization (smFISH) for use in imaginal disc tissues. We use smFISH to
guantify nascent and mature mRNAs for several genes expressed in highly diverse spatial patterns within the
wing disc. Taken together, our data suggests that all of the genes investigated are regulated by modulation of
their transcription burst frequency by Dpp and Wg even though their mean expression patterns are distinct

from one another.

RESULTS
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In this study, we have explored how the Wg and Dpp morphogens regulate transcription dynamics in
the wing disc. Each morphogen is synthesized in a narrow stripe of cells within the disc. Wg is produced in
cells at the boundary between Dorsal and Ventral (DV) compartments of the wing pouch, while Dpp is
produced in cells at the boundary between Anterior and Posterior (AP) compartments (Figure 1A). These
factors form concentration gradients across the disc, and in the case of Dpp, it regulates gene expression in a

concentration-dependent manner.

smFISH detection of mMRNA molecules in the wing disc

In order to assay gene expression in the wing imaginal disc, we quantified mRNA numbers using
smFISH. With smFISH, a tandem array of fluorescently-labeled oligonucleotides complementary to a given
mMRNA are hybridized to fixed and permeabilized tissue. When a sufficient number of oligo probes anneal to
one mRNA molecule, the aggregate fluorescence can be detected by standard confocal microscopy (Raj et al.,
2008). This method has been developed and applied to many systems, including cell culture, C. elegans, and
the Drosophila embryo (Ji and van Oudenaarden, 2012; Little and Gregor, 2018; Youk et al., 2010). We

developed a robust smFISH method applicable for imaginal discs (see Materials and Methods for details).

We first probed for expression of the senseless (sens) gene in the wing disc. Sens is required for cells
to adopt a sensory organ fate, and the gene is expressed in two stripes of cells adjacent to and on either side
of the DV boundary in the wing pouch (Figure 1B,C) (Nolo et al., 2000). Sens expression in the wing pouch is
induced by Wg, which is expressed by cells located at the DV boundary (Jafar-Nejad et al., 2006). We probed
for sens mRNAs expressed from a transgenic version of the sens gene. We did so for a number of reasons.
First, the genomic transgene rescues the endogenous gene based on function and expression (Cassidy et al.,
2013). Second, the transgene is tagged such that the amino-terminal coding sequence corresponds to super-
fold GFP (sfGFP). By using oligo probes directed against sfGFP, we could easily determine the specificity of

detection.
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Discs from sfGFP-sens animals were probed and imaged by confocal microscopy, revealing the
expected pattern of fluorescence localized to two stripes adjacent to the DV midline in the wing pouch
(Figure 1D). The fluorescence signal was specific for sfGFP-sens since wing discs from larvae not carrying
the transgene gave a low background fluorescence pattern (Figure 1 - figure supplement 1A,B). The
fluorescence signal from sfGFP-sens discs was sufficiently bright that spots were readily detected in
optical sections when imaged under higher magnification (Figure 1E). The size of each 2D spot was
approximately the expected diffraction limit of ~ 600 nm for smFISH probes emitting at 633 nm wavelength
(Lipson 1995). A custom image-analysis pipeline was developed to segment and analyze all of the 3D
fluorescent spots in an entire stack of optical sections (Figure 1 - figure supplement 1C). Details of the

segmentation and analysis are provided in the Materials and Methods.

We tested the ability of the pipeline to correctly identify RNA spots by several means. First we
expected sfGFP-sens mRNA molecules to generate fluorescence spots with a homogeneous composition
since the mRNAs could equivalently anneal to the probes. The distribution of fluorescence intensity for the
identified 3D spots was unimodal, suggesting that the spots had a homogeneous composition (Figure 1 -
figure supplement 1D). Second, we incubated wing discs in media containing actinomycin-D, an inhibitor of
MRNA synthesis. The number of fluorescence spots was greatly diminished, as would be expected if they
were localized to mRNA molecules (Figure 1 - figure supplement 1E). Third, if the method is accurate, almost
all spots would correspond to sfGFP-sens mRNAs. We compared the number of identified spots in discs
expressing the sfGFP-sens transgene versus discs lacking the transgene. From this, we estimated that 0.5% of
identified spots are false-positive (Figure 1 - figure supplement 2A). Finally, we estimated the number of
sfGFP-sens mRNAs that fail to be identified as fluorescent spots. We simultaneously hybridized sfGFP-sens
wing discs with two sets of non-overlapping probes - one set recognized sfGFP and the other set recognized
sens sequences. Each probe-set was labeled with a different fluor. If a spot identified using the sfGFP probe

set was not identified by the sens probe-set, we classified that spot as a false-negative. The analysis indicated
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that a maximum of 6% of mMRNAs (232 out of 3,842 spots scored) were not identified by both probe-sets
(Figure 1 - figure supplement 2B). This rate of false-negative identification is comparable to smFISH methods

in other systems (Raj et al., 2008).

We next looked to partition identified mRNAs into the cells from which they were expressed. Since
the smFISH method denatured the epitopes of all tested antibodies and it also denatured sfGFP, we were
unable to segment cells using standard approaches. In the absence of a direct approach, we adopted a
computational approach to resolving the smFISH signal at single-cell resolution. Using the fluorescent dye
DAPI to visualize cell nuclei in the imaged samples, we segmented nuclei into 3D objects (Figure 1 - figure
supplement 2C-E), which are located throughout the apical-basal axis of the pseudostratified epithelium of
the wing disc (Aldaz and Escudero, 2010). Based on segmented nuclei, we were able to construct effective
cell boundaries by performing a 3D Voronoi tessellation (Figure 1 - figure supplement 2F). RNAs were then
partitioned into the distinct Voronoi cells (Figure 1 - figure supplement 2G). Despite the local inaccuracies in
our protocol for assigning transcripts to single cells, the Voronoi based tessellation of the three-dimensional
tissue is a democratic prescription, lacking any hyperparameters, that is able to reveal the global quantitative
trends in the data. The same democratic approach has been used by others in assigning mRNA transcripts to
early embryonic nuclei when cell boundaries are unseen (Little et al., 2013). Details of tessellation are

provided in the Materials and Methods.

The abundance of sens mRNAs within the DV stripes varied from one to fifty molecules per cell
(Figure 1F), reflecting the graded expression pattern of Sens protein induced by the Wg morphogen across
the width of each stripe (Jafar-Nejad et al., 2006). Binning cells according to their distance from the DV
boundary, we were able to observe peaks in mMRNA number per cell as a function of distance from the

boundary (Figure 1G).
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We also used the sfGFP-sens gene to determine whether the smFISH method could detect mRNAs in
other imaginal discs. In the eye disc, sens is expressed in a stripe of cells located within the morphogenetic
furrow, and indeed we were able to detect smFISH signals in furrow cells of the eye disc (Figure 1 - figure

supplement 3). Thus, our method is broadly applicable to imaginal discs.

smFISH detection of gene expression regulated by Dpp

We extended the analysis to genes downstream of the BMP family protein Dpp. Dpp is expressed in a
stripe of cells located at the AP boundary of the wing disc, orthogonal to the Wg stripe (Figure 2A). Dpp
protein is transported bidirectionally to form gradients across the disc, and several genes are regulated by
Dpp in a concentration-dependent manner. Spalt-major (salm), optomoter-blind (omb), daughters-against-
dpp (dad), and brinker (brk) are expressed in symmetric domains within the anterior and posterior
compartments of the wing pouch (Figure 2A,B). Salm is symmetrically expressed in a domain somewhat
broader than the Dpp stripe, whereas omb and dad are expressed more broadly, and brk is expressed only
near the wing pouch border (Celis et al., 1996; Grimm and Pflugfelder, 1996; Tabata and Takei, 2004). When
smFISH was used to detect mRNAs of these genes, it qualitatively recapitulated their known expression
patterns (Figure 2C-F). We quantified the number of mRNAs per cell and attempted to map the distribution
to cell position within the wing pouch. Since the only landmark we could reliably use was the border
between the wing pouch and the rest of the disc, we measured cell position as a function of distance from
the border (Figure 2G). When we did so, the distributions in mRNA number per cell displayed profiles that
were consistent with previous qualitative descriptions of their expression patterns (Figure 2H). To ensure
that these distributions were not an artifact of landmarking the border, we probed for mRNAs produced
from the scalloped (sd) gene. The sd gene is expressed uniformly throughout the wing pouch (Campbell et

al., 1992; Williams et al. 1993), and thus we anticipated a uniform distribution of mRNAs/cell if our method
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was accurate. Indeed, there was a fairly constant level of mRNAs/cell across the wing pouch as determined

by our smFISH pipeline (Figure 2 -figure supplement 1A).

smFISH detects sites of nascent transcription

A further benefit to smFISH is that it can detect and quantify RNA as it is being transcribed from a
gene. We sought to identify and characterize these sites of nascent transcription in the wing disc.
Quantification of pixel intensity of all fluorescent spots revealed two discrete populations: a large population
of dim spots of uniform intensity, and a smaller population of brighter spots with more variable intensity
(Figure 3A,B). The former population corresponded to those described earlier, and they were primarily
located in the cytoplasm - these are the mature mRNAs. The latter population was primarily located inside
nuclei, and thus we hypothesized that these were sites of nascent transcription. To confirm that these bright
spots corresponded to transcription sites, we used probes complementary to an intron in the omb gene.
These probes only detected the brighter population of spots localized to nuclei (Figure 3C). Since introns are
not spliced out until after transcription, this result supports the conclusion that the brighter nuclear spots are

sites of nascent transcription.

Although wing disc cells are diploid, fewer than 15% of nuclei contained more than one transcription
site for a given gene. One explanation is that transcription is infrequent enough that 85% of the time only
one allele is actively transcribing. Another explanation is that two alleles are physically co-localized, and their
nascent transcripts cannot be resolved by confocal microscopy. Drosophila and other animals have extensive
physical pairing of homologous chromosomes in somatic cells (McKee, 2004). Consequently, alleles on
paired chromosomes are often spatially juxtaposed (Szabo et al., 2018). For genes such as omb that we
probed far upstream of the transcription termination site, it is likely that we were observing transcription
from both alleles at once, given that a detectable nascent RNA would stay at the transcription site for a long

time (~50 minutes). Even for these very bright transcription spots, only one transcription site per nucleus
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was observed (Figure 3 B,C). This observation is consistent with a single transcription spot in a nucleus

representing transcription from both alleles.

Transcription occurs in bursts

Transcription sites were counted by applying a cutoff that only included spots with at least twice the
intensity of a mature mRNA spot (Figure 3D, Figure 3 - figure supplement 1). There was a broad distribution
of transcription site intensities, suggesting a large range of nascent RNA numbers that were present on a

gene at a given time.

Strikingly, many cells did not have a detectable transcription site even though the cells contained
mature mRNAs (Figure 3E). Between 50 - 80% of all cells had this feature, and it was observed for all genes.
This observation is not an artifact of segmentation erroneously assigning mature mRNAs to cells that do not
express the genes. For all genes, the number of transcription sites strongly correlated with mRNA number
when discs were binned but not segmented (Figure 3 - figure supplement 2). Hence, although assignment
errors occur at the local scale, they cannot account for the quantitative global trends where 2 -5 fold more

cells lack a transcription site than lack any mature mRNAs.

Why do cells with mature mRNAs lack detectable transcription sites? One explanation is that each
gene's promoter is always open, but since transcription is stochastic, there would be times when zero or just
a few Pol Il molecules are presently transcribing the gene. In this scenario, the birth and death of mRNAs can
be described as a Poisson process, where the ratio of the variance of the distribution of number of mRNAs to
its mean is expected to be one (Munsky et al., 2012; Raj and van Oudenaarden, 2008). Since mRNA number
per cell varied systematically across the wing disc because of Wg and Dpp signaling, we binned cells
according to their position in the disc, as had been described earlier (Figure 1G, 2H), and empirically
estimated the ratio of a bin's variance to its mean. The ratio of variance to mean mature mRNA number per

cell was between 5 and 10 for all genes, and was fairly independent of mRNA output (Figure 3F). This
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indicated that a Poisson process could not explain why we failed to detect transcription sites in every cell

expressing mRNA.

To determine if our observations were possibly caused by transcription bursting, we invoked a two-
state model of transcription (Figure 4A). A promoter exists in one of two possible states - ON and OFF. The
promoter switches between states at particular rates kon and kofr. When the promoter is in the ON state, Pol Il
is permitted to initiate transcription that is subject to a rate constant ki,;.. When the promoter is in the OFF
state, Pol Il is unable to initiate transcription. The model also includes a transcription elongation step, which
is assumed to be 100% processive, and whose timescale depends on the gene length and the rate of
elongation. The latter is assumed to be 1,100 nucleotides/min, which is a value that has been experimentally

determined in Drosophila (Ardehali et al., 2009).

In the model, transcriptional bursts have a characteristic size (number of transcripts per burst) and
frequency (rate at which bursts occur). The average burst size is defined as kini / kofr, Whereas the average
burst frequency is defined as (kor ™ + ko ') (Dar et al, 2012). We systematically and independently varied the
parameters kon, kofr, and kini to tune the frequency and size of virtual bursts. For each parameter set, we ran
1,000 simulations of the model. To capture the stochastic nature of gene expression, reactions in the model

were treated as probabilistic events, with the exception of the transcript elongation time.

To directly relate the results of model simulations to experimental data, we performed the following
treatment of simulation data. First, we transformed output of each simulation to mimic the experimentally
detected fluorescence at a single gene allele. Fluorescence intensity depends on how many probe-binding
sites are present in nascent RNAs on a gene allele at a given time (Figure 4B). This varies with the number
of elongating Pol Il molecules on the allele, and the position of the probe-binding sites relative to the
transcription start and stop sites. We normalized the output of simulated nascent RNAs by calculating the

number of Pol Il molecules upstream, within, and downstream of the binding region at the completion of a
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simulation. This normalization provided an approximation of fluorescence intensity from one gene allele.
Second, we randomly paired two independent simulations to mimic the transcription site fluorescence of
paired alleles within a nucleus. If simulated transcription site fluorescence fell below a cutoff of twice

the fluorescence of a single RNA, we counted that simulation as having no "detectable" transcription site.

This mimicked the cutoff that was applied to experimental data for identifying a transcription site.

We then asked what combination of burst size and frequency could theoretically account for the
observed frequency of finding cells with a transcription site (this ranged from 20 to 50% of cells). A phase
diagram revealed that a broad range of burst size and frequency could explain our experimental observations
(Figure 4C). Therefore, according to our model results, tuning burst frequency and/or size can produce the

variable likelihood of detecting a transcription site by smFISH.

Burst frequency is regulated by Dpp and Wg

We quantified the frequency of detecting a transcription site as a function of cell position within the
wing pouch (Figure 5A,B). This frequency varied across the disc in a manner that was gene-specific.
Strikingly, the spatial distributions of transcription site frequency strongly paralleled the mRNA number per
cell for all genes (compare Figure 5A,B and Figures 1G, 2H). To ensure that this was not an artifact of variable
smFISH detection, we also quantified the frequency of detecting a transcription site for sd, which is uniformly
expressed in the wing pouch. This frequency was constant across the disc and paralleled the sd mRNA

number per cell (Figure 2 - figure supplement 1A,B).

We further examined the relationship between mRNA number per cell and transcription site
frequency (Figure 5C,D). Average mRNA number per cell and the likelihood of detecting a transcription site
were linearly correlated with one another for all genes. The positive correlation confirms that Dpp and Wg
regulate gene expression primarily through control of transcription initiation. Remarkably, the slopes of

linear fits for three Dpp-responsive genes, brk, omb, and salm, were not significantly different from one
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another, and the slope for dad was similar to brk and omb but smaller than for salm (Figure 5E). This
conserved linear relationship between gene transcription and mRNA number has several implications. It
suggests that mRNA decay rates are not very different between these Dpp target genes since the slopes
would be different from one another if decay rates varied. Moreover, since the slopes are constant over a

broad range of mRNA output, it suggests that mRNA decay is not being actively regulated by Dpp.

The likelihood of detecting a transcription site increases because either the promoter is spending
more total time in the ON state or more RNAs are being transcribed while in the ON state. These properties
are affected by burst size and burst frequency in different ways. We sought to determine whether burst size
or frequency was being regulated. We did so by estimating the number of nascent RNAs at each transcription
site, which was quantified as a multiple of the median pixel intensity of mature RNA spots (Figure 3 - figure
supplement 1). The average number of nascent RNAs per transcription site did not significantly vary
between cells that were receiving different levels of Dpp and Wg signal (Figure 6A,B). This was observed for
all genes, including the uniformly expressed sd gene (Figure 2 - figure supplement 1C). Moreover, the average
number of nascent RNAs per transcription site was also independent of the likelihood that transcription was
occurring in a cell (Figure 6C). Therefore, the propensity for a cell to generate nascent transcripts does not

correlate with the number of nascent transcripts.

To understand the causes of the relationship between these observed features, we turned to our
mathematical model. We first considered whether modulation of transcription burst size by Wg and Dpp
could explain our observations. We modulated burst size by systematically varying the kin; parameter, and
from simulations, then calculated the number of nascent RNAs per transcription site and the transcription
site detection frequency. There was a positive correlation between nascent RNA number in a transcription
site and the probability of detecting a transcription site (Figure 6D and Figure 6 - figure supplement 1A). This

was observed across a wide range of fixed burst frequencies. When nascent RNA number was 3 or higher,
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the correlation with transcription site frequency was strongest. Moreover, when the probability of a
transcription site was very low, nascent RNA number converged to a common value irrespective of burst
frequency. None of these model predictions were observed in the experimental results with the target genes

(Figure 6C). It suggests that transcription burst size is not strongly regulated by Dpp and Wg.

We then modulated burst frequency in the model by systematically varying kon, and calculated the
number of nascent RNAs per transcription site and the transcription site frequency. There was little change in
nascent RNA number as transcription site frequency changed, even across a wide range of fixed burst sizes
(Figure 6E and Figure 6 - figure supplement 1B). The burst size appeared to determine what nascent RNA
number value was held at a constant. Moreover, there was no convergence of nascent RNA number when
the probability of a transcription site was very low, irrespective of burst size. All of these model predictions
agree well with the experimental results (Figure 6C). This suggests that Dpp and Wg regulation of genes in

the wing disc primarily occurs by modulation of transcriptional burst frequency.

DISCUSSION

Morphogens elicit different transcriptional outputs from target genes, depending on local
concentration of the morphogen. The targets of Dpp signaling in the wing offer a well-studied example of this
concept. Transcription of the gene brk is directly regulated by the Dpp effector protein Mothers-against-dpp
(Mad) (Minami et al., 1999; Moser and Campbell, 2005). Mad, in complex with Medea and Schnurri,
represses brk transcription (Cai and Laughon, 2009). This generates a gradient of Brk protein expression that
is inverted to the Dpp gradient. In turn, the level of Brk protein is instrumental in repressing the expression of
omb and salm, which are induced by Dpp (Campbell and Tomlinson, 1999). Thus, opposing gradients of
activation and repression determine the expression domains of omb and salm. Since omb is less sensitive to

Brk repression than salm, its expression domain is broader. salm transcription is directly activated by Dpp
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without participation of Schnurri (Moser and Campbell, 2005). Curiously, omb transcription does not directly
depend on Dpp signaling, and its transcriptional activation is brought about by unknown factors

(Sivasankaran et al., 2000).

Given the diverse molecular mechanisms by which genes such as omb, brk, and salm are regulated, it
is illuminating that regulation of transcription burst frequency occurs for all of them. In the two-state view of
promoter kinetics, the on-rate, kon, then is the most likely rate constant being regulated since it specifically
affects burst frequency alone (Dar et al., 2012). It determines the average rate at which a promoter will
switch from its OFF to its ON state. When a promoter is in the OFF state, the next burst will only occur when
it switches ON, which is controlled by ko, and not ko;z. When a promoter is in the ON state, the size of its burst
depends on when it switches OFF, which is controlled by kof and not kon (Dar et al., 2012). However, ko also
affects burst frequency because the longer a promoter is ON, the longer the time it takes before a new burst
can occur. If Dpp regulates kofr, then we would have seen modulation of both size and frequency of bursts.

However, burst size appears to be independent of Dpp signaling.

If kon is the kinetic rate constant under regulation for all of these genes, how does this occur given
such diverse enhancer architectures and transcription factor inputs? It has been found that burst frequency
correlates with enhancer strength and enhancer-promoter contact, suggesting that k., is potentiated by
enhancer-promoter contact and is mediated by transcription factor binding to DNA (Bartman et al.,

2016; Bothma et al., 2014; Chen et al., 2019; Fukaya et al., 2016; Larsson et al., 2019). This suggests that
occupancy of Dpp effectors on target enhancers varies the k,, rate for their linked promoters, and this

modulation is negative for repressors such as Brk and positive for activators such as Mad.

Burst frequency regulation is also observed for developmental genes in the embryo (Bothma et al.,
2014; Chen et al., 2019; Fukaya et al., 2016; Garcia et al., 2013; Holloway and Spirov, 2017; Little et al., 2013;

Xu et al., 2015). Thus, a common mechanism to regulate patterned gene expression is by control of burst
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frequency. However, burst size can also be regulated by cell-cell signaling, as is the case for Notch target
genes in the Drosophila embryo (Falo-Sanjuan et al., 2019). Moreover, eve gene expression in the embryo is
regulated by transcription factors that modulate burst frequency, plus there is an orthogonal mechanism
that controls the window of time over which a nucleus can transcribe the eve gene (Lammers et al., 2020).
This distinct mechanism appears to be regulated by repressors, perhaps acting on nucleosome organization.
Modeling of various embryonic genes suggests that they transition through several intermediate
transcriptionally-silent states before their transcription can begin (Desponds et al., 2016; Dufourt et al., 2018;
Eck et al., 2020). Chromatin remodeling factors appear to modulate these transitions (Eck et al., 2020).
Although a two-state model explains much of our experimental results, likely there are other factors that

also help determine the expression domains of Dpp-responsive genes.

Our results challenge the view that salm and omb expression domains have sharp boundaries due to
transcription thresholds set by Brk and Dpp. We find that omb and salm mRNA numbers per cell drop
gradually with distance from the source of Dpp (Figure 2H). As well, their gradients in mRNA number are
inversely correlated with the gradient in brk mRNA number. Sa/m has relatively constant mRNA number in
cells near the AP boundary, and those numbers gradually diminish in cells located more laterally. A similar
pattern is seen with omb, except the domain with constant omb mRNA number is smaller than for salm.
However, the salm and omb enhancer trap reporters as well as anti-Salm immunohistochemistry
have reported expression domains with sharp boundaries (Mayer et al., 2013). Possibly, the discrepancy
hints at some threshold of mMRNA expression below which protein output drops sharply. It is also possible
that the previously characterized expression domains for salm and omb were distorted by non-

linear detection of antibodies that recognize Salm and the protein product of lacZ, B-galactosidase.

FIGURE AND FIGURE SUPPLEMENT LEGENDS
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Figure 1. smFISH analysis of sfGFP-sens mRNA levels in wing imaginal discs. (A) Schematic of a wing disc
outlining different regional domains, and the positions of boundaries between Dorsal (D) - Ventral (V) and
Anterior (A) - Posterior (P) compartments of the disc. Each wing disc is composed of roughly 50,000 cells
organized in a pseudostratified epithelium. (B) Schematized expression pattern for Sens inside the wing
pouch centered around the DV boundary. Sens is also expressed in clusters of cells in the notum, which are
not shown. (C-E) Confocal sections of wing discs expressing sfGFP-Sens. (C) sfGFP-Sens protein fluorescence.
(D) sfGFP-Sens mRNAs as visualized by smFISH using sfGFP probes. Scale bar = 10 um. (E) Higher
magnification of sfGFP-Sens mRNAs as visualized by smFISH using sfGFP probes. Scale bar = 10 um.

(F) Distribution of wing disc cells as a function of the number of Sens mMRNA molecules per cell. (G) Sens
mRNA number as a function of cell distance from the DV boundary displays a bimodal expression pattern for
Sens. Cells were binned according to the shortest path length from its centroid to the DV boundary, and
whether they were dorsal or ventral compartment cells. Median mRNA number/cell for each bin is plotted

with 95% bootstrapped confidence intervals.

Figure 1 - figure supplement 1. Development of smFISH imaging and analysis. (A,B) Representative optical
sections of wing discs probed for sfGFP mRNAs. Upper panels show 1x exposure of fluorescence from optical
sections. Lower panels show same sections with 4x overexposure of fluorescence. Scale bars =5 um. (A) A
disc from an animal with two copies of the sfGFP-sens transgene. (B) A control disc from an animal without
the sfGFP-sens transgene. (C) Imaging and analysis pipeline to quantify mRNAs as 3D fluorescent objects. 1. A
stack of 35 optical sections is acquired per sample. 2. RNA spots are segmented by using a pixel intensity
value as a cutoff, above which lie true RNA fluorescent spots, and below which lies the background. To select
the optimal cutoff for each image stack, a broad range of potential cutoff values are systematically tested,

and the number of segmented objects (object > 7 contiguous pixels) is counted for each cutoff tested. Object
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number plateaus over a range of cutoff values (red arrow). This plateau corresponds to the cutoff levels that
correctly identify RNA spots (< 5% error from ground truth). 3. Such a cutoff value is then applied as a
threshold to identify 2D objects in each section. 4. 2D objects must satisfy two criteria in order to be counted
as an RNA spot. One, they must have a corresponding object at least one neighboring z-plane within a
diffraction limited radius of 4 pixels. Two, they must be larger (contain more pixels) than corresponding
objects in neighboring z-planes. This criterion prevents RNA spots from being counted in multiple z-planes.
Centroid position and 3D object pixel intensity are then recorded. (D) Distribution of mean fluorescence
intensity for all identified 3D fluorescent objects from one wing disc expressing sfGFP-Sens mRNAs. (E)
Average number of 3D fluorescent objects per imaged wing disc after a 30 minute treatment of the discs in
actinomycin-D. Untreated discs were incubated in media for an identical period of time, and all discs were

fixed and imaged for sfGFP-Sens mRNAs. Error bars are SEM.

Figure 1 - figure supplement 2. Determination of false-positive and false-negative rates for smFISH. (A)
Wing discs were imaged and scored for 3D fluorescent objects using the sfGFP probe set. Discs were either
from animals with two copies of the sfGFP-sens transgene and two copies of the endogenous senst? gene, or
from animals with just two copies of the endogenous sens™ gene. Error bars are SEM. (B) A representative
optical section taken from a wing disc expressing the sfGFP-sens transgene and endogenous sens™’ gene. The
disc was probed for sfGFP (red) and Sens (green) RNA using independent probe sets. Spots that fluoresce
both green and red are presumptive sfGFP-Sens mRNAs that have annealed to both probe sets (purple
arrow). Spots that only fluoresce with the Sens probe set (white arrow) are presumptive Sens mRNAs that
are generated from the endogenous sens gene. Although these sens alleles are mutant for protein output,
they still produce mRNA. The occasional spot (beige arrow) that only fluoresces with the sfGFP probe set are

presumptive sfGFP-Sens mRNAs that failed to hybridize with the Sens probe set. These are false-negatives.
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Scale bar = 5 um. (C-E) Pipeline for 3D segmentation of cell nuclei. (C) An optical section showing DAPI
fluorescence. (D) 2D segmentation of this image. (E) Five contiguous z-sections of segmented nuclei are
colored and viewed laterally. Note the three-dimensional “stack of pancakes” nature of the nuclear objects
in the wing disc 3D rendering. (F) 3D Voronoi tessellation of an image stack of wing disc cells. The centroids
of the 3D nuclei (shown as circles) were used to tessellate the image stack, creating virtual cells. Cells are
represented with different colors. Numbers in the x-y plane refer to pixel positions in the 1024 x 1024
sections. Please see the Materials and Methods for a detailed description of tessellation and its meaning. (G)
An image stack showing the centroid positions of 3D mRNA objects as circles. One tessellated cell (green) is
superimposed to show the mRNA objects that reside in space occupied by the tessellated cell. These mRNAs
would be assigned to that particular cell. Shown is one stripe of sfGFP-Sens expressing cells on one side

of the DV boundary marked by pixel position 0.

Figure 1 - figure supplement 3. smFISH imaging of the eye imaginal disc. (A) Schematic of the eye antennal
disc complex showing the approximate location of cells that express the sens gene. Anterior is to the left.
(B,C) Optical sections through a representative eye antennal disc complex probed for sfGFP-Sens mRNAs by
smFISH. Anterior is to the left. (B) Low magnification shows a vertical stripe of positive fluorescence that
oscillates between clusters of high and low mRNA abundance. This is the pattern that has been reported for
cells in the morphogenetic furrow (Nolo et al 2000). Scale bar = 5 um. (C) Higher magnification of an optical
section through the morphogenetic furrow showing two complete clusters of Sens-positive cells (dashed

purple lines). Scale bar =5 um.

Figure 2. smFISH analysis of mRNA levels from Dpp-responsive genes. (A) Schematic of wing discs

highlighting the graded distribution of Dpp protein in the wing pouch, centered around the AP boundary, and
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the expression domain for salm, one of the targets of Dpp regulation. Not shown is Dpp localization in the
notum domain of the disc. (B) Expression domains of four target genes of Dpp signaling. (C-F) Confocal
sections of wing pouches probed for mRNAs synthesized from the salm (C), omb (D), dad (E), and brk (F)
genes. Orange arrows mark the position of the AP boundary in each image. (G, H) mRNA number as a
function of cell distance from the anterior-most border of the wing pouch. (G) A border-to-boundary axis,
orthogonal to the AP boundary, is used to map cell position, along which distances are displayed in um from
the wing pouch border. (H) Cells were binned according to position along the border-to-boundary axis.

Median mRNA number/cell for each bin is plotted with 95% bootstrapped confidence intervals.

Figure 2 - figure supplement 1. Detection of RNAs corresponding to the sd gene. (A) sd mMRNA number as a
function of cell distance from the anterior-most border of the wing pouch. An axis orthogonal to the AP
boundary is used to map cell position. Numbers refer to distance in um from the wing pouch border. (B) The
probability of detecting a cell with a sd transcription site does not vary with the cell's location relative to the
source of morphogens. Error bars are 95% bootstrapped confidence intervals. Cells are binned according to
their distance from the pouch border, and the fraction of cells in each bin with a transcription site is shown.
(C) The average number of nascent RNAs in a sd transcription site does not vary with the cell's location. Error
bars are bootstrapped 95% confidence intervals. Cells are binned according to their distance from the pouch

border, and the average number of nascent RNAs per site in each bin is shown.

Figure 3. Sites of nascent transcription are detected by smFISH. (A) Sites of nascent transcription can
fluoresce more brightly than single mRNA molecules due to multiple nascent transcripts localized to one
gene locus. (B) Probes recognizing an omb exon generate many small dim spots and a few large bright spots.

Right image shows the merge of probe and DAPI fluorescence. The bright spots are associated with nuclei
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whereas most dim spots are not. (C) Probes recognizing an omb intron only generate large bright spots that
are associated with nuclei. Scale bars =5 um. (D) Frequency distribution of intensity for all spots identified in
a wing disc probed for sens RNAs. Using a threshold of twice the median spot intensity, all single mRNA spots
were filtered out, leaving only spots that are associated with transcription sites. The frequency distribution
for this class of spots is shown. (E) Transcription sites are assigned to cells. For each cell that contains one or
more mRNA molecules, it is scored for whether it also has one or more transcription sites. The average
fraction of all such cells with a transcription site is shown for each gene. Error bars represent 95% confidence
intervals. (F) The ratio of the variance of mRNAs/cell to its mean, as a function of the mean, for all genes. This
ratio is larger than one, irrespective of the mRNA number for binned sub-populations of cells and the gene.

Error bars represent 95% confidence intervals.

Figure 3 - figure supplement 1. Detection of transcription sites and their quantification. (A)

A representative frequency distribution of fluorescence intensity for 3D spots identified in one wing disc
expressing sfGFP-sens. The median intensity is 28 units. (B) The same wing disc was reanalyzed for 3D spots
but using a threshold of 70 units as a cutoff, below which spots are not counted. (C) The fluorescence
intensity of each 3D spot in B is divided by the median intensity of 28 units to provide a normalized number
of RNAs that are localized to that 3D spot. This is not an actual number of RNA molecules but the output
from partially transcribed RNAs annealing to a variable number of probes depending on the composition of
binding sites in the RNA composite. (D) The mean threshold used for transcription site identification for
each data set plotted against the median normalized RNA molecules per transcription site for

all transcription sites in that data set.
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Figure 3 - figure supplement 2. Transcription sites and mRNA patterns in unsegmented images. (A,B,C,D,E)
Three discs were analyzed independently (green, blue, orange dots) for spots that corresponded to the
MRNAs from sens (A), salm (B), omb (C), dad (D) and brk (E). Spots were binned according to their positions
along the AP or DV axes, and total mRNAs per bin were plotted. Note the strong concordance of independent
discs for all genes. (A',B',C',D',E') The same three discs were analyzed independently (green, blue, orange
dots) for spots that corresponded to transcription sites from sens (A), salm (B), omb (C), dad (D) and brk (E).
Spots were binned according to their positions along the AP or DV axes, and total transcription sites per bin

were plotted. Note the strong concordance of independent discs for all genes.

Figure 4. Modeling transcription sites using bursting dynamics. (A) Model framework showing the three rate
parameters affecting transcription initiation. Two parameters affect the promoter state, while the third
parameter only affects how many initiation events occur when the promoter is ON. (B) Pol Il molecules in
elongation mode are distributed along the transcription unit. If Pol Il is upstream of the probe binding sites,
the nascent transcript will not be detected. If Pol Il is downstream, the nascent transcript will be detected as
100% signal. If Pol Il is transcribing within the binding sites, the nascent transcript will be detected as a
partial signal. These three different scenarios are explicitly accounted for in our mathematical model. For
example in the simulation result shown here, four Pol Il's are situated such that a total of 12 virtual probe-
binding sites are present. Since each mRNA has 6 binding sites, it means that this simulated transcription site
has 12/6 or 2 units of normalized signal. Applying our filter cutoff for identifying a transcription site as 2 or
more units, this simulated site would be scored as a positive. (C) The phase diagram of transcription site
detection as a function of burst size and frequency in the model. Both burst size and frequency impact the
likelihood of detecting a transcription site. When burst size increases at low burst frequency, the likelihood

of detecting a transcription site remains fairly constant. When burst size increases at high burst



489  frequency (horizontal red arrow), the likelihood of detecting a transcription site is ultrasensitive to burst size.
490 Likewise, when burst frequency increases at low burst size, the likelihood of detecting a transcription site

491  remains fairly constant. When burst frequency increases at high burst size (vertical red arrow), the likelihood
492  of detecting a transcription site is ultrasensitive to burst size. The phase diagram makes manifest that a range

493  of combinations of burst frequency and size could explain observed transcription site frequency data.

494

495  Figure 5. Transcription site detection correlates with mRNA number. (A,B) The probability of detecting a cell
496  with a transcription site varies with the cell's location relative to the source of morphogen. Error bars are

497  95% bootstrapped confidence intervals. (A) Cells are binned according to their distance from the pouch

498  border, and the fraction of cells in each bin with a transcription site are shown for each Dpp-responsive gene.
499  (B) Cells are binned according to their distance from the DV boundary, and the fraction of cells in each bin
500 with a transcription site is shown for the sens gene. (C,D) The probability of detecting a cell with a

501 transcription site varies linearly with the number of mMRNA molecules in the cell. Fitted lines are from linear
502  regression. Error bars are 95% confidence intervals. (C) Cells are binned according to the number of mRNAs
503 they contain, and the fraction of cells in each bin with a transcription site are shown for each Dpp-

504 responsive gene. (D) Cells are binned according to the number of mRNAs they contain, and the fraction

505 of cells in each bin with a transcription site is shown for the sens gene. (E) Linear regression analysis was

506 performed on samples from C and D, shown is the slope with a parametric 95% confidence interval.

507

508  Figure 6. Burst frequency is regulated by Dpp and Wg. (A,B) The average number of nascent RNAs in a
509 transcription site does not vary with the cell's location relative to the source of morphogen. Error bars are
510 bootstrapped 95% confidence intervals. (A) Cells are binned according to their distance from the pouch

511  border, and the average number of nascent RNAs per site in each bin are shown for each Dpp-responsive



512  gene. (B) Cells are binned according to their distance from the DV boundary, and the average number of

513  nascent RNAs per site in each bin is shown for the sens gene. (C) The average number of nascent RNAs in a
514  transcription site does not vary with the probability of detecting a cell with a transcription site. Error bars
515 are 95% confidence intervals. (D,E) Model predictions of the relationship between average number of

516  nascent RNAs in a transcription site and the probability of detecting a site for the dad gene. (D) Simulations
517 are performed where the rate parameter k;,; has been systematically varied so as to modulate burst size

518 alone. Resulting values for nascent RNA number and fraction of cells with a site are shown. Each datapoint is
519 the average of 1,000 simulations. Simulations are repeated for three different values of k., to specifically set
520 the burst frequency to 0.04, 0.2 and 0.4 min™. (E) Simulations are performed where the rate parameter ko,
521  has been systematically varied so that burst frequency alone is variable. Resulting values for nascent RNA
522  number and fraction of cells with a site are shown. Each datapoint is the average of 1,000 simulations.

523  Simulations are repeated for three different values of k;,; to specifically set the burst size to 1, 4 and 20.
524

525  Figure 6 - figure supplement 1. Modeling the relationship between average number of nascent RNAs in a
526 transcription site and the probability of detecting a site for the brk, omb, salm, and sens genes. (A)

527  Simulations are performed where the rate parameter ki, has been systematically varied so that burst size
528 alone is variable. Resulting values for nascent RNA number and fraction of cells with a site are shown. Each
529  datapoint is the average of 1,000 simulations. Simulations are repeated for three different values of ko, to
530  specifically set the burst frequency to 0.04, 0.2 and 0.4 min™. (B) Simulations are performed where the rate
531  parameter kon has been systematically varied so that burst frequency alone is variable. Resulting values for
532  nascent RNA number and fraction of cells with a site are shown. Each datapoint is the average of

533 1,000 simulations. Simulations are repeated for three different values of ki to specifically set the burst size

534 to1,4and10.
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Supplementary File 1. Excel file containing the sequences of all oligonucleotide probes used for smFISH

experiments in this paper. Each worksheet lists the oligos specific for a gene, as indicated. Sequences are

ordered 5'-to - 3.

MATERIALS AND METHODS

Key Resources Table

Reagent
type . Designation Source or Identifiers | Additional information
(species) or reference
resource
BDSC: 3605
gene Bloomington Flybase:
(Drosophila white'""® Drosophila FBst0003605
melanogaster) Stock Center RRID:BDSC _
3605
gene £1 Flybase:
(Drosophila sens Nolo et al 2001 FBal00980 From Hugo Bellen
melanogaster) 24
Pacman construct
genetic Venken et al containing sens gene with
reagent SfGFP-sens 2006. From N N-terminal 3xFlag-TEV-
(Drosophila [VK37] Hugo. Bellen Strepll-sfGFP-FIAsH fusion
melanogaster) tag inserted at 22A3
(VK37)
BDSC:
genetic . 81273 ,
reagent dad-GFP Bloomlngton Flybase: y w; PBac{y[+mDint2]
(Drosophila [VK37] Drosophila FBti0150281 yv[ +mCJ=Dad-GFP.FLAG}
melanogaster) Stock Center RRID:BDSC_ | inserted at 22A3 (VK37)
81273
BDSC:
genetic . 38629 1118 .
reagent brk-GEP Bloomlngton Flyt?ase: w %, PBac{y[+mDint2]
(Drosophila [VK33] Drosophila FBti01477 w[+mCJ=brk-GFP.FPTB}
melanogaster) Stock Center 30 inserted at 65B2 (VK33)
RRID:BDS

C_38629




GFP Biosearch Custom Set of oligos with 3'
hybridization Technologies probe set modification mdC(TEG-
sequence- g )
based reagent oligo probes Armno). Sequence of all
oligos is in Supplementary
File 1
sens Biosearch Custom Set of oligos with 3'
hybridization Technologies probe set modification mdC(TEG-
sequence- g )
based reagent oligo probes Armno?. _Sequence of all
oligos is in Supplementary
File 1
salm IDT Custom Set of oligos. Sequence of
sequence- hybridization probe set all oligos is in
based reagent oligo probes Supplementary File 1
omb IDT Custom Set of oligos. Sequence of
sequence- hybridization probe set all oligos is in
based reagent oligo probes Supplementary File 1
sd IDT Custom Set of oligos. Sequence of
sequence- hybridization probe set all oligos is in
based reagent oligo probes Supplementary File 1
omb intron IDT Custom Set of oligos. Sequence of
sequence- hybridization probe set all oligos is in
based reagent oligo probes Supplementary File 1
omb 5' exon IDT Custom Set of oligos. Sequence of
sequence- hybridization probe set all oligos is in
based reagent oligo probes Supplementary File 1
NHS-ester Sigma #01464
chemical ATTO 633
compound, dye
drug
NHS-ester Sigma #72464
chemical ATTO 565
compound, dye
drug
amino-11- Lumiprobe A5040
chemical ddUTP
compound

drug




Paraformald Polysciences 00380-1
chemical ehyde
compound, (powder)
drug
Triton X-100 Sigma Aldrich T9284-
chemical 500ML
compound,
drug
VectaShield Vector Labs H-1000
chemical
compound,
drug
_ 4'6- Life D1306
chemical diamidino-2- Technologies
compound, phenylindole
drug (DAPI)
salmon sper Invitrogen #15632
chemical m Sing|e
compound, stranded
drug DNA
_ vanadyl New England #514025
chemical ribonucleosid Biolabs
compound, e
drug
MATLAB
pipeline to
process raw
software, smFISH This paper https://github.com/bakkerra
algorithm images with pap /smfish_pipeline
no
prior preproc
essing
Graces’ Growth medium for organ
other Insect Sigma #69771 |
Medium culture
541
542
543  EXPERIMENTAL MODEL AND SUBJECT DETAILS

544  For all experiments, Drosophila melanogaster was raised using standard lab conditions and food. Stocks
545  were either obtained from the Bloomington Stock Center, from listed labs, or were derived in our laboratory
546  (RWC). A list of all stocks and transgenics used in this study is in the Key Resources Table. The sample sizes

547  were not computed when the study was designed. Sample sizes were determined such that > 6,000 cells



548  were measured for each genotype. All Drosophila were raised at room temperature and grown on standard
549  molasses- cornmeal food. The sfGFP-sens transgenic line was used as described in (Cassidy et al.,

550  2013). Experiments were performed on dad-GFP and brk-GFP transgenes obtained from

551  Bloomington Drosophila Stock Center (stocks 81273 and 38629, respectively). For all transgenic

552  experiments, smFISH was performed on homozygous individuals. Experiments were performed

1118

553  onendogenous omb and salm in w° individuals. There was no exclusion of any data or subjects.

554  METHOD DETAILS

555  smFISH Probe Design and Preparation

556 smFISH oligonucleotide probes were designed using Stellaris Probe Designer (Biosearch Technologies).
557  Probes sets contain between 45 and 48 non-overlapping 20-nucleotide oligos. A full list of all probe sets is
558  provided in Supplementary File 1. Anti-GFP probes were prepared by conjugating NHS-ester ATTO 633 dye
559  (Sigma 01464) to the 3' end of each oligonucleotide. Anti-Sens probes were prepared by conjugating NHS-
560 ester ATTO 565 dye (Sigma 72464) to the 3' end of each oligonucleotide. These oligos bear a mdC(TEG-

561  Amino) 3’ modification to allow conjugation, and were obtained from Biosearch Technologies. Conjugation
562  and purification was performed as described (Little and Gregor, 2018). All other probe sets were prepared
563  using the enzymatic conjugation protocol as described (Gaspar et al., 2017). Briefly, amino-11-ddUTP

564  (Lumiprobe) was conjugated to NHS-ester ATTO 633. Terminal deoxynucleotidyl transferase (New England
565  Biolabs) was then used to conjugate ATTO 633-ddUTP to the 3' ends of oligonucleotides that had been

566  purchased from IDT. After enzymatic conjugation, oligos were purified from free ATTO 633-ddUTP using G-25

567  spin columns (GE lllustra) according to manufacturer’s instructions. Final concentration of oligonucleotide

568  was 33 uM in water. Probes were stored at -20°C, protected from light, until use.

569  smFISH
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Wing discs were dissected from wandering 3"instar larva in cold phosphate buffered saline (PBS) and
immediately fixed in 0.1% (w/v) paraformaldehyde / PBS for 15 minutes at room temperature. Discs were
then fixed for 30 minutes in methanol at room temperature. Discs were transferred to hybridization buffer
(10% w/v dextran sulfate, 4X SSC, 0.01% w/v salmon sperm ssDNA (Invitrogen 15632), 1% v/v vanadyl
ribonucleoside (NEB $14025), 0.2mg/mL BSA, 0.1% v/v Tween-20). Oligo probes were added to a 1.5 uM final
concentration in the hybridization buffer, and hybridization was performed for 1 hour at 62° C. After
hybridization, discs were washed once for 5 minutes at 62 ° C in wash buffer (4X SSC, 0.1% v/v Tween-

20). Discs were then incubated with 2.5 ug/mL 4',6-diamidino-2-phenylindole (DAPI) (Invitrogen) in PBS +
0.1% Tween-20 for 5 minutes at room temperature. Discs were washed with PBS + 0.1% Tween-20 and
transferred to Vectashield (Vector Labs) for mounting. Discs were mounted in 15 pl of Vectashield on glass
microscope slides using an 18 X 18 mm No. 1 coverslip (Zeiss). For eye imaginal discs, discs were dissected
from late 3" instar larva in cold PBS with brain and mouth hooks attached, then smFISH was performed as
described. Immediately prior to mounting, brain and mouth hooks were removed from eye discs and

discarded.
Actinomycin D Treatment

Wing discs were dissected in room temperature Graces’ Insect Medium (Sigma 69771) supplemented with 1X
Pen-Strep (Gibco 15140-122) and 5 mM Bis-Tris (Sigma B4429). Half of the total dissected discs were
transferred to 24-well tissue culture dishes containing this prepared media + 5 pug/mL Actinomycin D, and
half were transferred to untreated controls containing culture media + 1:1000 (v/v) DMSO. Discs were
incubated with gentle shaking for 30 minutes at room temperature, protected from light, before being

washed with fresh culture media, and 1X PBS. SmFISH was then performed as described.

Image Acquisition
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3D image stacks were collected on a Leica SP8 scanning confocal microscope, using a pinhole size of 1 Airy
unit and a 63X oil immersion (NA 1.4) objective. Approximately 35 optical sections were collected per
sample, with each section 700 nm thick. Sections were spaced 345 nm apart. DAPI, ATTO 565, and ATTO 633
were excited by 405, 555, and 630 nm lasers, respectively. ATTO dye fluorescence was collected using a HyD
detector on photon counting mode and a scanning speed of 200 Hz, with 16X line accumulation.

DAPI fluorescence was collected using a PMT detector using 8X line averaging. Pixel intensity values are 12-
bit, and x-y pixel sizes are 76 nm. We modeled each z-section like a plane of width 345 nm for analysis, but in
reality the edges of the z point spread function (PSF) overlap between sections. Since the PSF resembles a
Gaussian distribution, most of the light is coming from the center of that distribution. Therefore, overlap is

needed between sections to ensure equivalent sampling of the entire specimen.

Image Processing

Raw smFISH images were processed using a custom Matlab pipeline with no prior preprocessing. Our
pipeline is available at https://github.com/bakkerra/smfish_pipeline. The pipeline consists of several

modules.

Selection of mMRNA Segmentation Threshold: RNA segmentation is performed by applying a cutoff
intensity value to a stack of optical sections, and transforming all pixels above the cutoff to white and pixels
below the cutoff to black. Diffraction-limited fluorescent spots captured with a 63X objective at 633 nm
wavelength are estimated to be approximately 600 nm in diameter (Lipson, 1995). This corresponds to a
diameter of 8 x-y pixels in our images. Therefore, we classify a 2D object in each transformed section when 2

8 white pixels are connected with one another.

It is important to select a cutoff where true RNA fluorescent spots are identified as 2D objects in a
section, and background is not. Therefore, a broad range of cutoff values is systematically applied to an

image stack, and 2D object number is summed for each cutoff value. The distribution of 2D object number
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exhibits a plateau across a range of cutoff values (Figure 1 - figure supplement 1C), and thresholds applied at
this plateau accurately identify true RNA spots. To demonstrate this, we manually curated 347 RNA spots
from sub-regions of four independent image stacks, and found that when a cutoff is selected within the
plateau, the number of 2D objects identified by threshold segmentation is no more than +/- 5% different
than the ground truth. Furthermore, the centroids of identified objects have an average displacement of only
2 pixels from the manually identified centroids. Therefore, this plateau, a regime of relative insensitivity to

user-specified hyperparameters, is an appropriate threshold for accurate segmentation of RNA spots.

The position of the plateau varies from image stack to image stack. Therefore, for each image stack, a
range of cutoffs is tested, and a cutoff is selected within the plateau to perform segmentation. As a result,
each image stack has a unique threshold, allowing robust segmentation of spots despite variation in
raw fluorescence between image stacks. In practice, replicate samples from the same experiment
captured in the same imaging session did not require thresholds for segmentation more than 15 pixel
intensity units apart. If image stacks did not show an identifiable plateau, the signal-to-background of that
sample was determined to be insufficient and it was not used for analysis. The smFISH protocol and imaging
is robust enough that in our hands, this occurs in less than 10% of image stacks collected. Once a threshold is
selected, the following properties of each 2D object are recorded: x-y centroid position, z-section, and a list

of the connected pixels.

Connecting 2D Objects into 3D mRNA Spots: As each z-section is 340 nm in depth, it is assumed that
genuine diffraction-limited RNA spots will appear in 2 or 3 consecutive z-sections, depending on the spot’s
position along the z-axis. Therefore, a 2D object must satisfy two criteria in order to be counted as an RNA
spot: 1) A 2D object must be linked to one or more 2D objects in at least one neighboring z-section. Linkage
is defined when the centroids of all objects are within a diffraction-limited radius of 4 pixels from one

another in the x-y plane; 2) A 2D object must be larger (contain more pixels) than linked objects
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in neighboring z-sections. This criterion prevents RNA fluorescence spots from being counted in multiple z-
sections. A candidate that satisfies these criteria is recorded as an mRNA spot, and only the largest 2D object

is recorded.

The pipeline allows the images to be overlaid with markers indicating recorded spots so that each
image stack can be manually inspected for any significant errors or inconsistencies. The most common
problem detected at this stage results from images taken of discs that were “drifting” or moving significantly,
which can cause a large number of identified spots to be filtered out during processing for not meeting
criterion 1. Excessive bleaching across the stack can also cause clear inconsistencies. In this study, such
problems were rare enough that any sample experiencing these problems was considered to have

failed quality control and was simply not included for further analysis.

Intensity measurements are recorded from a circle of pixels of radius 4 about the centroid of each
recorded RNA spot. By keeping the area of each intensity measurement fixed, we uncouple user-generated
variation in selection of segmentation thresholds from spot intensity measurements. A 2D circle was used
instead of a 3D sphere to extract intensity measurements because the spots only appear in 2 or 3 z-sections.
This makes their 3D geometry variable from spot to spot, and they cannot be consistently described using a

sphere or ellipse.

Segmentation of Transcription Sites: In our images, transcription sites tend to contain pixels that are
many times brighter than mature RNA spots. As a result, the brightest transcription sites are frequently
misidentified during segmentation of mature RNA spots because the second criterion for spot identification
only records the largest object within the diffraction limit in z. For transcription sites, this is not always the
brightest plane. Therefore, we segment transcription sites independent of mature RNAs using a higher
cutoff. The objective in cutoff selection for transcription sites is to select one that includes objects with a

total fluorescence intensity of twice the average mature RNA, and excludes mature RNA spots. We define
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the “average” intensity for a spot containing a single mRNA to be the median of the distribution of all
identified mature RNA spot objects. We empirically determined that merely doubling the cutoff for
segmentation does not achieve this, because mature mRNAs may contain a few pixels above the cutoff,
enough to still be identified as objects and included in analysis. Therefore, we use a threshold cutoff by

multiplying the median mature RNA intensity by a factor of 2.5 (Figure 3 -figure supplement 1A).

To test the accuracy of this segmentation procedure, we manually inspected three particularly RNA-
dense regions in independent images where automated segmentation found a total of 103 transcription sites
and 4,066 mature RNAs. We determined that only 7 of 4,066 mature RNAs were misidentified as
transcription sites, and found no examples of transcription sites that had been missed by automated
segmentation. After identification, object intensity measurements are recorded from a circle of pixels of
radius 4 (the diffraction limit) about the centroid of each identified transcription site (Figure 3 -figure
supplement 1B). The average transcription site threshold selected for replicates in a dataset show no
correlation with the average intensity of transcription sites in that dataset (Figure 3 -figure supplement 1D).
Therefore, the differences in transcription site intensity between genes cannot be explained merely by

differences in threshold selection or variability in image fluorescence between datasets.

Estimation of Nascent RNA Number per Transcription Site: The intensity measurement of each
identified transcription site in an image stack is divided by the median intensity of identified mature RNAs in
that sample (Figure 3 -figure supplement 1C). This serves two purposes. First, it serves to normalize these
measurements within each sample so transcription site intensity measurements can be pooled across
replicates without the effects of image-to- image variability in fluorescence. Secondly, each transcription site
object is presumed to be the sum of intensities of multiple nascent RNA molecules elongating at the
transcription site. By dividing each transcription site intensity by the average intensity of a single RNA, we

obtain an estimate of the number of nascent RNAs present at the transcription site. Because
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some transcripts are partially elongated, this number cannot be completely accurate, and we attempt to

compensate for this in our computational model when interpreting results.

Nuclei Segmentation: DAPI fluorescence images are output as labeled 16-bit images, where each
nuclear object corresponds to a ‘level’ in the 16-bit image. These images are input to a nuclei segmentation
pipeline, which flattens the images to white nuclei objects and black background. Nuclei images are
segmented in 2D using the NucleAlzer platform maskRCNN Network, trained as described in Hollandi et al.,
(2020). We trained the neural network with an expected nuclear radius of 32 pixels (Figure 1 -
figure supplement 2D). To ascertain the accuracy of segmentation, we compared results to manually labeled
nuclei in four randomly selected disc images. The automated method identified at least 85% of nuclei objects

identified manually for each image.

The segmented black and white images are then processed using a custom Matlab script in order to
join overlapping 2D objects into 3D. Each nucleus object in each z-slice is assigned an identity index. For
each object in the first z-slice, the object with the highest number of overlapping pixels in the next z-slice is
identified, and this object’s identity index is altered to be identical to its overlap partner. This proceeds
through the entire z-stack of images, creating objects that resemble ‘pancake stacks’ of linked 2D objects in
3D (Figure 1 - figure supplement 2E). The 3D-centroid and list of included pixels of these new objects is then

recorded. Objects not incorporated into a 3-D object are disregarded.

Generation of Voronoi Diagrams: A Voronoi tessellation is built from a grid of points in either 2D or
3D. In our case, each point is the centroid of a segmented 3D nucleus. The Voronoi cells delineate regions
consisting of all voxels that are closer to that centroid than to any other centroid (Voronoi, 1908). The
boundaries between Voronoi cells represent points that are equidistant between two centroids. These are
taken to represent virtual cell boundaries. It is important to be clear that the Voronoi cells do not accurately

describe the pseudostratified epithelial nature of wing disc cells. However, note that 3D segmentation of
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pseudostratified epithelial cells is still something no one working in any system has achieved.

The 3D Voronoi tessellation used a polytope bounded Voronoi diagram available for Matlab, which
uses the Delaunay triangulation to calculate the Voronoi diagram (Park, 2020). The result of this tessellation
is a list of 3D vertices of each Voronoi ‘cell’ in space, which is recorded along with the associated nuclear

centroid (Figure 1 - figure supplement 2F).

Assignment of RNA to cells: 3D Voronoi tessellation is a way to democratically assign mature
transcripts to cells based on vicinity to the nucleus. Clearly we get the transcript assignment incorrect at a
local level. However, being the most democratic approach, the trends of mRNAs/cell assigned to 100's of cell
across the wing disc are trustworthy. The same logic has been used by others assigning mRNA transcripts to

early embryonic nuclei when cell boundaries are unseen (Little et al., 2013).

To assign spot objects to cells, a 3D convex hull of the each Voronoi cell is constructed from the
vertices data for that cell. An entire set of image points, either the mRNA or transcription spot centroids, are
tested to determine whether they fall inside or outside of each hull (Figure 1 - figure supplement 2E). This is
performed using a Matlab function called inhull, which uses dot products to shorten calculation times
(D’Errico, 2020). Spots that fall inside a given cell’s Voronoi hull are assigned to that cell’s nuclear centroid,
and the number of assigned spots, as well as their centroid and z- plane information are recorded. This is
then repeated for every Voronoi cell in the image stack. The final result is a list of cells, their nuclear

centroids, the total number of RNA spots assigned, and a list of each assigned spot’s centroids.

Data Analysis Binning of data: Each disc is imaged with the DV boundary located at the y-coordinate
midline of the image. Therefore the x-coordinate of the image corresponds to position along the disc's AP
axis, and the y-coordinate corresponds to position along the DV axis. In order to analyze data across

developmental axes, each image is divided into spatial bins of 64 pixels each, approximately equal to the
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diameter of one cell nucleus. RNA spots are assigned to a bin according to the position of their associated

nuclear centroid.

Sample size and replicates: \We analyzed image stacks from three independent discs for
each experiment. Each image stack contains approximately 1,700 identified nuclei. Therefore, the total
sample size is approximately 5,000 cells per experiment. Similar trends in RNA and transcription spots feature
are observed in each disc individually, and hence, the analysis is not distorted by artifacts in pooling and cell

segmentation (Figure 3 - figure supplement 2).

Alignment of replicates along developmental axes: While each disc is imaged roughly in the same
region, there is not an unambiguous landmark that precisely registers different disc images with one another.
To pool data across space as accurately as possible, we register discs to each other based on their mRNA spot
distributions over space. For each image data set, the number of RNAs per spatial bin is summed, and the
distributions across bins are compared. Bins are then manually registered such that the distribution profiles
of the 3 datasets line up with one another (Figure 3 - figure supplement 2A-E). The overlapping bins from the
three datasets are then assigned to a pooled bin. Pooling includes the nuclei centroids as well as

the transcription and RNA spots. This is repeated for all bins.

Calculations: Median mature mRNAs per cell is calculated from total number of mature mRNA spots
for each cell within a spatial bin of pooled data. As the distribution of mRNAs per cell is not normally
distributed and has a long tail, we ascertained that the median was a more robust descriptor of the “center”
of the distribution than mean. Median nascent RNAs per cell is calculated from normalized intensity
measurements for each transcription spot within a spatial bin of pooled data. All nascent RNA spots are
included. As the distribution of RNA per cell is not normally distributed and has a long tail, we
ascertained that the median was a more robust descriptor of the “center” of the distribution than

mean. Because the number of transcription sites varies over space, sample sizes vary for calculating median
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nascent RNAs per cell. For bins where fewer than 5% of cells contain a transcription site, median nascent
RNAs per cell was not calculated, as the sample size was determined to be too small (<15). Fraction of cells
with a transcription site is calculated by dividing the number of cells in a pooled spatial bin with at least one
transcription site assigned to them by the total number of cells in that spatial bin. Fano factor is calculated
for each spatial bin by dividing the variance in the mRNA per cell distribution by the mean mRNA per cell for

all cells assigned to that pooled spatial bin.
Statistics

Linear models are produced by unweighted least squares linear regression. LOESS fits are performed using
the loess fitter in R, with an optimized span to minimize residuals. Confidence intervals are calculated by
bootstrap resampling analysis using the bias-corrected and accelerated method. We resample data within
each bin of pooled data and calculate the statistic of interest 10,000 times. The mean value of the statistic

and a 95% confidence interval are calculated from these resampled values.
Stochastic Simulation Model

We model the various steps of gene expression, based on central dogma, as linear first order reactions. To
simulate the stochastic nature of reactions, we implement the model as a Markov process using Gillespie’s
Stochastic Simulation Algorithm (Gillespie, 1977). Simple Markov processes can be analyzed using a chemical
master equation to provide a full probability distribution of states as they evolve through time. The master

equation defining our gene expression Markov process is as follows:

OP(Npy, Ny, t
% = Kini| Ny = DP(Nyy — 1, Ny, t) = PNy, Ny, t)]

+ Kgog|(Ny + DP(Nyy + 1,Ny, t) — Ny P(Nyy, Ny, 8]
+ Kon[((Ng = Nytor) )P(Npp, Ny — 1,t) = (Ng — Nygor)P(Npy, Ny, £)]

+ Kopr[(Ny + 1)P(Npy, Ny + 1, ) — NyP(Nyy, Ny, t)]
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where N, Ny, and t are defined as the number of RNA molecules present, as the number of
transcriptionally active gene copies, and simulation time, respectively. Ny, is defined as the total
number of gene copies present, and thus is the maximum number of active gene copies that can exist in the
simulation. Kini, kdeg, kon, and kog are rate constants defining the rates of transcription initiation, RNA
degradation, promoter state switching from off to on, and promoter state switching from on to off,

respectively.

As the Markov process gets more complex, the master equation can become too complicated
to solve. Gillespie’s Algorithm is a statistically exact method that generates a probability distribution
identical to the solution of the corresponding master equation given that a large number of simulations
are realized. A brief description of how the Gillespie simulation produces each probability distribution is as

follows:
1. We initialize all simulations to start with no mRNA molecules and promoter state is set to OFF.

2. Foreach eventiin the simulation, a total rate r:: is calculated by summing all r; reaction rate
constants in the model, given the current promoter state and the total number of mMRNA molecules

present.

3. Atime-step tis generated from an exponential probability distribution with mean 1/ri:. This Tis the

time interval between the current event and the next event.

4. Each eventiis selected from the list of reaction steps in the model available at that time (promoter
switching, transcription initiation, mRNA decay). The probability a reaction step is selected is equal to r;/
rior. An event is selected at random given these probabilities. For each event, the following actions are

taken:

ePromoter switches to ON: Promoter is now in ON state, transcription initiation is now included in

ltot,



793 ePromoter switches to OFF: Promoter is now in OFF state, transcription initiation is no longer included

794 in reot.

795 eTranscription Initiation: Number of mature mRNA molecules is increased by 1.

796 oRNA degradation: Number of mature mRNA molecules is decreased by 1.

797 5.Simulation time is updated as t + T where t is the total time elapsed in the simulation.

798

799 Each simulation is run for 10,000 iterative events to approximate steady-state conditions, at the end

800  of which the number of mMRNA molecules present in the simulation is recorded. Independent simulations are
801 then randomly paired to mimic the two alleles within a cell, and the sum of mMRNA numbers is recorded as
802 the mRNA output per cell. A minimum of 1,000 simulation pairs are generated for each set of rate parameter

803  values.

804 The RNA decay parameter kgeq is fixed at 0.04/min for all simulations, as this rate had been

805 experimentally determined for sens mRNA (Giri et al., 2020). The transcriptional rate parameters are varied
806 in accordance with the specific hypothesis being tested. We constrain them loosely to be within an order of
807  magnitude of reported values for these rates from the literature (Milo et al., 2010). We also constrain these

808  rates so as to produce steady state mRNA numbers similar to experimental data.

809 ekini is varied from 0.2 to 60 /min
810 ekon is varied from 0.008 to 38/min
811 okos is varied from 0.016 to 20/min

812  To perform a parameter sweep, we vary the relevant parameter across the defined range. Each rate

813  parameter value in the sweep is used to make 1,000 paired simulations as described above.
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Nascent Transcripts: Thus far we have described how model simulations generate in silico data for
mature mRNA numbers. We also use the same simulations to approximate the number of nascent RNAs per
gene. After 10,000 iterative events are completed in a simulation, the number of nascent RNAs is counted. A
single nascent RNA is counted if a single transcription initiation event has occurred within an interval of time
(Telong) equal to the time it is estimated that RNA polymerase takes to elongate from the binding site for the
5’-most oligo probe to the 3' end of the RNA. To calculate teiong for each gene, we divide the number of
nucleotides from 5' probe-binding site to 3' end by the transcription elongation rate. This rate is assumed to

be 1,100 nucleotides/min, as experimentally determined (Ardehali et al., 2009).

Gene Telong (Min)
brk 1.35
dad 2.05
sens >.15
salm >.30
omb 3.05

We weight the count of nascent RNAs in a simulation to mimic the fluorescence output from these
nascent RNAs if they are hybridized to probes. We define tprobe to be the time interval for RNA polymerase to
elongate from the 5’-most probe-binding site to the 3’-most probe-binding site. If a nascent RNA had been
initiated in a time less than Tprobe, then we weight the counting of that nascent RNA as 0.5 rather than 1. We
do this because the probe-binding region of the nascent RNA is partially transcribed at this point. For
simplicity, the exact locations of probes and RNA polymerase are not taken into account to calculate the

weighting, and instead we assign the overall probability of fluorescence for an ensemble of such
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partially transcribed RNAs. If a nascent RNA had been initiated in a time greater than or equal to Tprobe and
less than Teiong, then we weight the counting of that nascent RNA as 1. These RNAs are assumed to produce

100% of the fluorescence of a mature RNA spot, since all probe-binding sites are transcribed at this point.

We randomly pair two simulations and sum the number of weighted nascent transcripts. This mimics
the experimental conditions where the two gene alleles are physically paired and thus their nascent RNAs are
co-localized in space. We collate 1,000 paired simulations for each parameter set and calculate the following

statistics:

Fraction of virtual cells with a transcription site is calculated by counting how many paired simulations have a
total number of weighted nascent RNAs of 2.0 or more. This is done in order to be consistent with the
limitations of the experimental data; only nuclear spots with fluorescence greater or equal to 2 mature
MRNA spots were called as transcription sites. When this number of paired simulations is divided by the total

of 1,000 paired simulations, it is the fraction of virtual cells with a transcription site.

Median number of nascent RNAs per virtual cell is calculated from those paired simulations with a total

number of weighted nascent RNAs of 2.0 or more.

DATA AND CODE AVAILABILITY

Experimental analysis code is freely available at https://github.com/bakkerra/smfish_pipeline

All raw smFISH data after spot and nuclei segmentation is freely available at https://doi.org/10.21985/n2-
rfax-bk36. Source data is deposited in the Northwestern University library's data repository. Each .csv file is
for one wing disc analyzed for either nuclei or RNA from a given gene as indicated in each file's name. XYZ

centroid positions and fluorescence intensity values are listed.
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