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Summary

� Though substantial effort has gone into predicting how global climate change will impact

biodiversity patterns, the scarcity of taxon-specific information has hampered the efficacy of

these endeavors. Further, most studies analyzing spatiotemporal patterns of biodiversity focus

narrowly on species richness.
� We apply machine learning approaches to a comprehensive vascular plant database for the

United States and generate predictive models of regional plant taxonomic and phylogenetic

diversity in response to a wide range of environmental variables.
� We demonstrate differences in predicted patterns and potential drivers of native vs nonna-

tive biodiversity. In particular, native phylogenetic diversity is likely to decrease over the next

half century despite increases in species richness. We also identify that patterns of taxonomic

diversity can be incongruent with those of phylogenetic diversity.
� The combination of macro-environmental factors that determine diversity likely varies at

continental scales; thus, as climate change alters the combinations of these factors across the

landscape, the collective effect on regional diversity will also vary. Our study represents one

of the most comprehensive examinations of plant diversity patterns to date and demonstrates

that our ability to predict future diversity may benefit tremendously from the application of

machine learning.

Introduction

Climate change poses one of the greatest threats to biodiversity in
the Anthropocene (Williams et al., 2007; Tilman et al., 2017;
Vellend et al., 2017). In a matter of decades, large portions of the
globe and its inhabitants will experience climates not seen in the
present or recent past (Parmesan, 2006). This will lead to local
and regional species turnover and changes in species diversity via
a combination of adaptation, dispersal, and extinction (Peterson
et al., 2002). Identifying effective conservation strategies depends
on reliable, spatially explicit predictions of the effects of climate
change on biodiversity (Mokany & Ferrier, 2011).

Though substantial efforts have been made to predict how bio-
diversity patterns will be altered in response to climate change
(Bakkenes et al., 2002; McKenney et al., 2007; Lima-Ribeiro
et al., 2017), the majority of such studies focus on species rich-
ness, mostly ignoring higher taxonomic levels and phylogenetic
relatedness despite increasing understanding of its functional
importance (Vellend et al., 2017; Daru et al., 2019). Also, these
efforts generally do not consider nonnative biodiversity

separately, despite evidence that biodiversity maintenance mecha-
nisms differ between native and nonnative dominated communi-
ties (Wilsey et al., 2009).

The most commonly applied method for predicting patterns
of diversity is to model individual species’ habit preferences by
linking species’ presences (and absences) to environmental condi-
tions, and forecast these species distribution models (SDMs) onto
future climate scenarios (Elith & Leathwick, 2009; Zhang et al.,
2017). The inferred species ranges are then summed, or multiple
models are combined to produce ensemble forecasts of overall
diversity (Thuiller et al., 2005; Algar et al., 2009). This approach
builds upon the hypothesis that species richness may indicate the
sum of the effects on individual species’ environmental tolerances
(Boucher-Lalonde et al., 2013). However, though recent
advances in generating and mobilizing biodiversity data have
improved our general knowledge of species’ ranges at large scales
(e.g. country or state level; Kartesz, 2015; Meineke et al., 2019;
Hedrick et al., 2020), accurate fine-scale occurrence data neces-
sary for SDMs (i.e. point coordinates) are still lacking for most
species, and available data are affected by a wide range of gaps,
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biases and uncertainties (Meyer et al., 2016; Park & Davis, 2017;
Daru et al., 2018). Furthermore, it has been suggested that indi-
vidual species do not track the richness–climate relationship that
accounts for regional variation in species diversity (Algar et al.,
2009; Boucher-Lalonde et al., 2013). Finally, this approach does
not account for the carrying capacity of the environment. It is
hypothesized that the number of taxa that can tolerate the envi-
ronmental conditions in any given location is generally much
greater than the number that actually occur there (Cornell, 1985;
Currie, 1991; Cornell & Karlson, 1996).

Here, for the first time to our knowledge, we employ machine
learning – the practice of using algorithms to parse data, learn
from it, and then make predictions – to predict the regional bio-
diversity of counties in the contiguous United States (hereafter
referred to as the US) in response to a wide range of climatic, geo-
graphic, and edaphic variables, as opposed to individual species
(Ferrier & Guisan, 2006; Sommer et al., 2010). Models built
using machine learning are able to incorporate complex, high-di-
mensional, correlated data, and account for nonlinear relation-
ships, rendering them ideal for modeling complicated patterns of
biodiversity (Olden et al., 2008; Kelling et al., 2009). The ‘top-
down’ modeling approach we employ can be applied in situations
where insufficient data are available for modeling the distribu-
tions of individual species (Mokany et al., 2010; Mokany & Fer-
rier, 2011), and builds on the theory that there exists a direct link
between species richness and climate, which imposes limits on
overall richness, regardless of individual species identities (Algar
et al., 2009; Boucher-Lalonde et al., 2013). Indeed, strong cli-
mate–richness relationships have been identified in a number of
studies across a wide range of taxa, including plants, inverte-
brates, and vertebrates (H-Acevedo & Currie, 2003; Hawkins
et al., 2003, 2011; Kreft & Jetz, 2007; Park & Razafindratsima,
2018).

We train models of total, native, and nonnative (introduced)
plant diversity on an exceptionally robust and well-curated
dataset of the US vascular flora. We then project these models
into the near future under seven climate change scenarios to
determine how spatial patterns of biodiversity may shift over
time. Though this approach assumes that the current diversity of
taxa is at or near carrying capacity, and that the processes that
generated and maintain this diversity can respond over the times-
pan of the prediction interval, it can generate baseline estimates
of how the diversity in an area may change in the future. The eco-
logical and evolutionary responses of individual taxa will ulti-
mately determine whether and when predictions are met, but
such models can provide useful benchmarks for immediate cli-
mate change mitigation and biodiversity management. In addi-
tion to metrics of taxonomic richness, we assess metrics of
phylogenetic diversity, which take into account the shared evolu-
tionary history of species in a region. It has been suggested that
environmental variation can affect the phylogenetic diversity and
structure of communities (Kerkhoff et al., 2014; Kamilar et al.,
2015; Park & Razafindratsima, 2018), and plant phylogenetic
diversity in particular, has been linked to ecosystem productivity
(Cadotte et al., 2008; Flynn et al., 2011; Srivastava et al., 2012),
ecosystem stability (Cadotte et al., 2012), and animal diversity

(Dinnage et al., 2012; Park & Razafindratsima, 2018). Despite
its importance for conservation, however, relatively few studies
have addressed the impact of climate change on phylogenetic
diversity on large scales (Zhang et al., 2015, 2017; Gonz�alez-
Orozco et al., 2016).

Machine learning models employ complex and opaque algo-
rithms that often render it difficult to ascertain the effects of indi-
vidual predictor variables and their importance. Indeed, there is
no general consensus on the best way to compute – or even define
– variable importance in such predictive models (Gr€omping,
2009). Therefore, we additionally explored the effects of a subset
of environmental variables that have been hypothesized to drive
plant diversity using traditional modeling methods (Holdridge,
1947; Parker, 1963; Stephenson, 1990; Pigott & Pigott, 1993;
Francis & Currie, 2003; Venevsky & Veneskaia, 2003). Our
combined analyses represent one of the most comprehensive
examinations of plant diversity patterns in the US and highlight
significant differences among patterns and drivers of native and
nonnative plant diversity.

Materials and Methods

Species occurrence data

Species richness and nativity data on vascular plants were derived
from the Biota of North America Program’s (BONAP; http://
www.bonap.org/) North American Plant Atlas (NAPA; Kartesz,
2015), representing 19 039 taxa from 227 families. The dataset is
available as presence/absence data for 3067 counties in the US,
excluding Alaska and Hawaii. BONAP’s NAPA represents the
first comprehensive attempt to provide state- and county-level
distribution maps of all vascular plant taxa in the US, and inte-
grates county records, derived from herbaria, museums and other
plant repositories, coupled with monographic and revisionary lit-
erature, and other selected bibliographic references into arguably
the most complete floristic treatment of a large region. The vast
majority of the nearly 6000 000 county records of the BONAP’s
database are verified by taxonomic and floristic specialists. Nativ-
ity status is derived from historical floristic accounts, taxonomic
literature, and plant repository vouchers from multiple institu-
tions across North America. Though counties and their equiva-
lents are not standard area units, they often represent finer
geographic and climatic units than those used in many similarly
large-scale studies (e.g. 1° cells), and mean county climate has
been shown to be a reasonable proxy for point climate when
point occurrence data are not available (Park & Davis, 2017).

Biodiversity assessment

Our phylogenetic dataset for the North American flora was
assembled using the program PHLAWD (Smith et al., 2009). We
harvested sequence data from GenBank Release 205.0 based on
our entire species list, targeting 12 commonly used molecular loci
(plastid: atpB, atpB-rbcL, matK, ndhF, rbcL, rps4 and trnL-trnF;
mitochondrial: atp1, atpA, matR and rps3; nuclear: ITS). Species
names were cross-checked against potential synonyms listed in
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GenBank. DNA sequences of each locus were aligned separately
using MAFFT v.7.220 (Katoh & Standley, 2013) and then con-
catenated together using PHYUTILITY v.2.4 (Smith & Dunn,
2008). We were able to retrieve DNA sequences for 10 147
species, and the final concatenated matrix contained 23 022 sites
(percentage of gaps and missing data: 88.7%). Maximum likeli-
hood (ML) phylogenies including 100 bootstrap replicates with
replacement were constructed using EXAML v.3.0.1 (Kozlov
et al., 2015) with a general time reversible (GTR) + Γ model
specified for each locus. These phylogenies were then dated using
the penalized likelihood approach as implemented in TREEPL
v.3.26.2013 (Smith & O’Meara, 2012). The smoothing parame-
ter was determined using the random subsample and replicate
cross-validation (RSRCV) approach. Thirty-three fossils
described in detail by Bell et al. (2010) and five age constraints
used by Jiao et al. (2011) were adopted as calibration points. The
resulting trees are available in a Zenodo repository (Park et al.,
2020). Taxonomic richness was calculated as the sum of taxa at
each level (i.e. species, genera, and families) occurring in each
county and region based on the presence–absence matrices com-
piled as described in the Species occurrence data section above.
Phylogenetic diversity (PD), mean phylogenetic distance (MPD)
and their standardized effect sizes (PDS, MPDS) were calculated
using the package PHYLOMEASURES v.2.1 (Tsirogiannis & Sandel,
2016) in R v.3.4.1 (R Core Team, 2017). Standardized effect
sizes account for effects of species richness and are calculated as:
(observed value – expected value)/standard deviation of the
expected value. Expected values of PD and MPD were calculated
from a null distribution of 1000 random assemblages of species
drawn without replacement from the species pool of US taxa.
Therefore, positive values of PDS and MPDS indicate phyloge-
netic overdispersion, whereas negative values indicate clustering,
relative to random assemblages of taxa. These metrics were calcu-
lated for the following: all taxa regardless of native status (T),
native taxa (N), and nonnative (introduced) taxa (I), across all
phylogenies. Molecular data for vascular plant species is still lack-
ing; thus, our phylogenies do not include all taxa present in the
US. However, our phylogenies represent one of the most com-
prehensive phylogenetic reconstructions of the North American
flora to date, and the standard error of each metric derived from
the phylogenetic bootstrap replicates are presented in Supporting
Information Fig. S1. Our downstream modeling efforts account
for differences in the proportion of taxa in each county repre-
sented on the phylogeny.

Environmental data

Environmental data comprised climatic, edaphic, and geo-
graphic data collected at 2.5 arc-minute resolution. Climatic
data included the 19 bioclimatic variables available in the
WorldClim database v.1.4 (Hijmans et al., 2005). Elevation
data for each county was derived from the USGS
GMTED2010 dataset (Danielson & Gesch, 2011). Edaphic
data, including fraction soil clay content, fraction soil gravel
content, fraction soil sand content, percentage organic content
in soil, soil pH, soil salinity, fraction soil silt content, cation

exchange capacity (CEC), and CaSO4 concentration were
derived from the Harmonized World Soil Database v.1.21
(Fischer et al., 2008). For predictive models, we included the
mean, minimum, maximum, and standard deviation of all bio-
climatic variables, soil variables, and elevation at the county
level. Geographic variables included county area, presence of
coast, and glaciation status during the last glacial maximum
inferred from the United States Geological Survey database
(Haj et al., 2018).

To examine future patterns of plant biodiversity, predictive
models were projected onto Hadley Centre Global Environment
Model v.2 (HadGEM2-ES (HE); Collins et al., 2011) climate
predictions for 2050 and 2070 across four representative concen-
tration pathways (RCPs; 2.6, 4.5, 6.0 and 8.5) as used in the
Fifth Assessment Intergovernmental Panel on Climate Change
report (IPCC, 2014). Among these, RCP 4.5 reflects a somewhat
optimistic scenario where the goals of the Paris Climate Agree-
ment are assumed to be met. Thus, to focus on climate change
scenarios based upon RCP 4.5 in more depth, we incorporated
future climate predictions from the following additional Coupled
Model Intercomparison Project Phase 5 (CMIP5) models:
ACCESS1.0 (AC), GFDL-ESM2G (GD) and GISS-E2-R (GS).
These projections were also derived from the WorldClim
database (Hijmans et al., 2005).

Statistical methods

Machine learning can either be ‘supervised’, where a response
variable (e.g. species richness) is observed and therefore some
ground-truth is known about the relationship between predictors
and response, or ‘unsupervised’, where no response variable
exists. Supervised learning, as employed here, represents the gold-
standard for producing accurate out-of-sample predictions of
response variables and allows us to consider an unprecedented
number of environmental variables potentially linked to biodiver-
sity patterns. Compared to more traditional SDMs, machine
learning SDMs typically have higher predictive performance and
greater flexibility to incorporate complex nonlinear effects, inter-
action effects, and noisy high dimensional data. Our analysis
goals were twofold: to predict future biodiversity, in terms of tax-
onomic richness and phylogenetic diversity, under various cli-
matic scenarios; and to identify explanators of contemporary
biodiversity. To achieve these goals, we built two different statis-
tical models: predictive and explanatory.

For predictive models, we first cleaned the data by imputing
missing predictor data (< 0.5% of observations for 6 out of 125
variables) using bagging (bootstrap aggregation: a method where
models are trained on bootstrap resamples of the original data
and then averaged to obtain results with less variance than indi-
vidual models) and transforming some response variables to natu-
ral logarithms if this improved predictive accuracy. For model
selection and validation, we partitioned data into 80% (training)
and 20% (test) subsets. Model specific parameters were tuned by
fitting models over a grid of parameter values and selecting the
combination of values that minimized predictive error. To select
the best performing model out of 13 candidate models (which

� 2020 The Authors

New Phytologist� 2020 New Phytologist Trust
New Phytologist (2020)

www.newphytologist.com

New
Phytologist Research 3



were selected as a representative sample of different modeling
strategies/algorithms from a larger set of 80+ machine learning
models for continuous outcomes available in the R language),
while preventing over-fitting, we used k-fold cross validation
(CV; 10-folds, with 10 repeats) on the training data. The CV was
nonspatial, because the out-of-sample predictions generated from
the models are for new temporal units, but the same spatial units
as the training data. For each response variable and combination
of model specific parameter values, CV involved partitioning the
training data into k-folds, then iteratively fitting each candidate
model k times to k� 1 folds of the data, until all folds had been
excluded from model estimation (Fig. S2). Performance was
assessed by predicting response values for the excluded out-of-
sample data folds and comparing them to observed response val-
ues from the same folds. The k-fold partitioning step was
repeated 10 times to provide 100 estimates of performance for
each candidate model, response variable, and set of model specific
parameters (Fig. 1). Model predictive accuracy was compared
using the coefficient of determination (R2) and root mean
squared error (RMSE). The model with the highest average R2

and lowest average RMSE was selected as the best predictive
model, which was in this case a Cubist regression tree model. For
this final model, we performed external validation using the test
dataset and report R2 and RMSE as out-of-sample predictive
accuracy measures (Table S1). Predictive models were fitted in R
v.3.4.1 (R Core Team, 2017) using the package CARET v.6.0-77
(Khun, 2018).

To explore the effects of specific environmental factors, we
examined the relationship between contemporary taxonomic
richness/diversity patterns and a subset of variables used in the
predictive models using linear mixed effects models (explanatory
models). These models shared a common specification. To
account for state-level heterogeneity in the reporting of data, ran-
dom intercepts were grouped by state. To ameliorate the con-
founding effects of spatial autocorrelation, we included a residual
autocovariate (RAC) term. The spatial range and functional form
(linear inverse distance or quadratic inverse distance) of autocor-
relation differed for each outcome and was determined by opti-
mizing these parameters on a variogram. To facilitate
comparisons of effect size magnitude, all focal explanatory vari-
ables were standardized so that a one-unit change was equivalent
to a change of one standard deviation. Response variables were
not standardized, but some were transformed to the natural loga-
rithm scale when this improved residual diagnostics. Models
included explanatory climatic, geographic, and edaphic variables
that are representative of major, independent axes of environ-
mental variation across the US and are thus hypothesized to
influence taxonomic richness/phylogenetic diversity. These vari-
ables included: mean annual temperature (BIO1), annual tem-
perature range (BIO7), mean temperature of the wettest quarter
(BIO8), annual precipitation (BIO12), precipitation seasonality
(BIO15), mean elevation, standard deviation of elevation, frac-
tion soil clay content, fraction soil gravel content, fraction soil
sand content, percentage organic content in soil, soil pH, soil
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Fig. 1 Model selection for seven total taxonomic and phylogenetic diversity responses using cross-validation (10-fold, 10-repeats) on the training sets
(80%). Diversity responses include total (a) species richness (SpeciesT), (b) genus richness (GenusT), (c) family richness (FamilyT), (d) phylogenetic diversity,
(e) mean phylogenetic diversity, (f) standardized effect size of phylogenetic diversity (PDT

s ) and (g) standardized effect size of mean phylogenetic diversity
(MPDT

s ). Thirteen predictive models, plus one explanatory model, are shown, ranked by R2 and RMSE. Points are averages, while error bars denote minima
and maxima, over the folds and repeats. BLM, boosted linear model; CUBE, Cubist model; EGB, extreme gradient boosting; ENRGLM, elastic-net
regularized GLM; explanatory, explanatory linear mixed effects model; GAM, generalized additive model; GPPK, Gaussian process with polynomial kernel;
OLS, general linear model; PCR, principal component regression; PLS, partial least squares; PQR, penalized quantile regression; RF, random forest; RR,
ridge regression; WKPLS, wide kernel partial least squares.
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salinity, county area, presence of coast and glaciation history.
Both point and interval (95% confidence) estimates are reported.
Explanatory models were fitted in R v.3.4.1 (R Core Team,
2017) using the package LME4 v.1.1-14 (Bates et al., 2014).
Replication code and data are available in a Zenodo repository
(Park et al., 2020).

Results

Predictive model results

Of 13 candidate models, we determined that a Cubist regression
tree model yielded the most accurate predictions for all response
variables, including species, genus, and family richness, PD,
MPD, PDS and MPDS (Fig. 1). Cubist models are rule-based
and fit separate linear models at each node of a decision tree. An
ensemble procedure is used to combine many decision trees into
one omnibus model. As with other ensemble methods (e.g. ran-
dom forest, stochastic gradient boosting), combining multiple
trees improves model stability and performance. Our Cubist
models yielded an out-of-sample predictive accuracy between
88% and 70% (Table S1). Predicted patterns of biodiversity were
highly correlated across all general circulation models (GCMs)
and emission scenarios, differing only in severity, with more sev-
ere emission scenarios eliciting larger predicted changes
(Table S2; Figs S3, S4). Therefore, we present predictions based
on RCP4.5, which reflects a scenario in which the goals of the
Paris Climate Agreement are met. As the predicted responses of
several diversity metrics were correlated (Fig. S5), we focus on
our results for species richness and MPD below.

Predicted changes to taxonomic diversity were highly variable
across counties (Figs 2, S6, S7). Overall, taxonomic diversity was
predicted to increase in the majority of US counties, but less so
in desert areas of the southwest. In particular, average gains in
species richness were 9% by 2050 and 14% by 2070, but overall
increases in nonnative taxa were predicted to be much greater
than native taxa. Native MPD (MPDN) was expected to decrease
in over 80% of the counties examined. By contrast, nonnative
MPD (MPDI) was predicted to increase overall. Along these
lines, standardized native MPD (MPDN

S ) was predicted to
decrease by 81% by 2070, on average, while standardized nonna-
tive MPD (MPDI

S) was predicted to decrease by only 11%
(Fig. S6). In general, predicted patterns of total biodiversity mir-
rored those predicted for native taxa (Figs S3, S7).

Contrasting biogeographical patterns emerged across different
aspects of plant diversity when predicted changes in plant diver-
sity were examined across ecoregions following their current-day
extents (Figs 3, S8, S9). In general, phylogenetic diversity loss
was greater in ecoregions east of the Rocky Mountains (Great
Plains (GP), eastern temperate forests (ETF), tropical wet forests
(TWF), northern forests (NF)), whereas taxonomic gains tended
to be greatest in northern forest ecoregions (marine west coast
forest (MWCF), northwestern forested mountains (NFM), NF).
Northern forests were predicted to gain the most diversity in
terms of species richness, but not MPD. On the other hand,
southern semi-arid highlands (SSH) were predicted to lose native

taxonomic diversity while becoming more phylogenetically
diverse, especially in terms of MPDI. Along these lines, most
regions were predicted to lose native phylogenetic diversity while
gaining nonnative phylogenetic diversity. For instance, TWF
were predicted to lose the most phylogenetic diversity on average,
in terms of both total MPD and MPDN. However, this region
was simultaneously predicted to gain the most diversity in terms
of MPDI. When native and nonnative plant diversity were mod-
eled and predicted together (total diversity), the resulting biogeo-
graphical patterns mirrored those of predicted native diversity in
general (Fig. S8).

Explanatory model results

As with our future predictions, current patterns of plant diversity
vary greatly across space, metric, and native status (Fig. S10). The
climatic factors that consistently explained taxonomic diversity
were annual temperature range (BIO7) and precipitation season-
ality (BIO15) (Tables S3–S5; Figs S11, S12). Species richness
was lower in areas with greater seasonal variation in temperature
and precipitation, and the magnitude of these climatic effects was
greater on native diversity than nonnative diversity (Fig. 4;
Tables S4, S5). On average, with a one SD unit increase in
annual temperature variation, native and nonnative species rich-
ness decreases by 12.0% and 8.2%, respectively. Similarly, for a
one SD unit increase in annual precipitation variation, native and
nonnative species decline by 12.1% and 2.5%, respectively. Simi-
larly, the effects of edaphic variables and presence of coast were
directionally consistent across native and nonnative species rich-
ness, but of greater magnitude in the case of native diversity. Of
these geophysical factors, proximity to coast had the greatest
impact on diversity, with coastal counties having significantly
higher relative diversity than inland counties.

As with species richness, both native and nonnative phyloge-
netic diversity was lower in areas with greater seasonal variation
in temperature (BIO7) and precipitation (BIO15), and those
without a coast (Figs 4, S12, S13). However, some environmental
associations differed significantly between native and nonnative
phylogenetic diversity (Tables S4, S5). For instance, MPDN

decreased 5.7% per unit increase in mean annual temperature
(BIO1), while MPDI increased by 3.0%. Higher mean elevation
was associated with higher MPDN but did not have a significant
effect on MPDI. Other geophysical factors had undetectable
(P > 0.05) and/or weak (< 1%) associations with native and non-
native phylogenetic diversity. Similar results were found when
examining the standardized versions of these metrics (Figs S12,
S13).

Discussion

Mitigating the effects of climate change on Earth’s biodiversity
requires the means to accurately predict future biodiversity
change and understand factors that influence its distribution and
maintenance. Harnessing the power of machine learning, we gen-
erated large-scale predictive models of multiple facets of native
and nonnative biodiversity, using climatic, geographic, and
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edaphic data. We also identify key climate and geophysical fac-
tors that may influence patterns of biodiversity and demonstrate
that the importance of these factors differed between native and
nonnative taxa. Our models also took into account environmen-
tal heterogeneity, which despite being known to be an important
driver of biodiversity (Ricklefs, 1977, 2004) is frequently ignored
(Cramer & Verboom, 2017). Thus, the modeling approaches
applied here provide a comprehensive examination of potential
changes in plant biodiversity. Ultimately, the delay between envi-
ronmental changes and colonization events (colonization lags),
speciation events (speciation rate), and extirpations (extinction
debt) will determine whether our projections are met within the
modeled timeframe. As it may take longer amounts of time for
plant diversity and the composition of biological communities to
adjust to changing environments (Hector et al., 1999), our

projections can be considered estimates of the steepness of the
gradient across which plant diversity is predicted to change over
time (Currie, 2001). Thus, these projections can serve as a base-
line for assessing and managing the future distribution of plant
diversity in the face of climate change.

Disparate responses to climate and homogenization of
diversity

Patterns of predicted change varied across the different facets of
biodiversity. While considerable variation existed between coun-
ties, taxonomic diversity was predicted to increase on average in
the US. Predicted changes among metrics of taxonomic diversity
were positively correlated regardless of nativity (Fig. S5). These
projections support previous studies predicting an overall increase
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circulation models (ACCESS1-0 (ac), GISS-E2-R (gs), GFDL-ESM2G (gd) and HadGEM2-ES (he)) between predicted future values for 2050/2070 and
present day observed values, for each of two response variables (species, MPD), grouped by eco-regions. ETF refers to eastern temperate forests; GP,
Great Plains; MC, Mediterranean California; MWCF, marine west coast forest; NAD, North American deserts; NF, northern forests; NFM, northwestern
forested mountains; SSH, southern semiarid highlands; TS, temperate sierras; and TWF, tropical wet forests. Native status is denoted in superscript for each
diversity metric, where N indicates native, and I nonnative introduced.

New Phytologist (2020) � 2020 The Authors

New Phytologist� 2020 New Phytologist Trustwww.newphytologist.com

Research

New
Phytologist6

https://www.epa.gov/eco-research/ecoregions-north-america


of plant species richness in the US (Currie, 2001; Iverson &
Prasad, 2001; Sommer et al., 2010). However, increases in family
diversity were predicted to be much smaller than those for species
and genus, and under certain emission scenarios, family diversity
was predicted to decrease slightly on average in 2050. This sug-
gests that increases in plant biodiversity are likely to occur at
lower taxonomic levels, or shallower phylogenetic nodes. Along
these lines, our models predicted an overall decrease in phyloge-
netic diversity, especially in terms of native MPD. On the other
hand, PD is inherently correlated with species richness, as greater
numbers of species almost always correspond to greater summed
branch lengths on a phylogeny (Venail et al., 2015). While our
predictions reflect this relationship, percent increases in PD were
much smaller compared to those of species and genera, again
indicating that increases in diversity may primarily occur within
shallower nodes. This is also supported by the fact that phyloge-
netic clustering (MPDS) was predicted to increase across the vast
majority of the counties examined. This is especially alarming, as
the loss of phylogenetic diversity is the loss of biodiversity per se,
and may affect ecosystem function and stability negatively
(Cadotte et al., 2008, 2012; Staab et al., 2016; Knapp et al.,
2017; Park & Razafindratsima, 2018). Furthermore, predicted
changes in plant diversity were negatively correlated with the cur-
rent amount of diversity present across all metrics examined
(Table S2). Larger increases were predicted in counties with lower
levels of diversity, whereas smaller increases and larger losses were
predicted for counties with higher levels of standing diversity.
We find that this has a homogenizing effect, leading to an overall

decrease in the variation of plant diversity across the landscape,
with few exceptions (Table S6). While it is possible that this pat-
tern could be influenced by sampling bias, where counties with
conditions conducive to high levels of plant diversity have been
subject to undersampling, similar results have previously been
reported (Sommer et al., 2010). Together, our results suggest that
while more counties will gain an increased capacity for taxonomic
diversity, this gain will mostly support the proliferation of closely
related native or nonnative species and relatively few lineages.

At the ecoregion scale, gains in taxonomic richness were great-
est in northern forest ecoregions (MWCF, NFM, NF). In these
regions, numerous taxa, including nonnative invasive species,
have been limited by (seasonal) extreme cold and ice cover, and
shorter growth periods (Sakai & Weiser, 1973; Grodowitz et al.,
1991; Owens & Madsen, 1995; Ayres & Lombardero, 2000;
Owens et al., 2004). However, the northeastern and northwest-
ern US are experiencing disproportionately high amounts of cli-
mate change (Wuebbles et al., 2017). The resulting relaxation of
such thermal constraints is likely to increase taxonomic diversity
(Sommer et al., 2010). Loss of phylogenetic diversity was gener-
ally predicted to be greater in ecoregions east of the Rocky
Mountains (GP, ETF, TWF, NF), suggesting that changes in cli-
mate may select for certain evolutionary lineages in these regions.
In particular, TWF were predicted to lose the most phylogenetic
diversity on average, suggesting that warm-adapted tropical lin-
eages in these areas may be at greater risk. These patterns high-
light how changes in different facets of biodiversity are not
necessarily linked, and that regional capacities for biodiversity
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may shift in unexpected ways. Indeed, regional changes in cli-
mate, which can be highly spatially heterogeneous, are more rele-
vant in the context of ecological response to climatic change,
compared to global or continental trends (Walther et al., 2002).
Further, although many studies have predicted that species in the
US will have to migrate northward with global warming (Morse
et al., 1993; Iverson & Prasad, 1998; McKenney et al., 2007;
Zhang et al., 2017), our results suggest that that northern regions
will not necessarily increase in their taxonomic and phylogenetic
carrying capacity. Thus, mitigating the effects of climate change
will require region-specific strategies, as well as approaches speci-
fic to the biodiversity facet (e.g. species richness, phylogenetic
diversity) of management interest.

Decreases in native diversity coupled with increases in
nonnative diversity

Compared to their native counterparts, many nonnative species
have broad climatic tolerances and large geographic ranges, short
generation times, rapid growth, high fecundity, strong dispersal
ability, and independence from (specific) mutualists, all of which
may affect their responses to climate change (Py�sek et al., 1995;
Rejm�anek & Richardson, 1996; Goodwin et al., 1999; Qian &
Ricklefs, 2006; Bradley et al., 2010; Park & Potter, 2015). Thus,
we might expect that climate-change responses of nonnative
invaders can differ from native taxa. Indeed, we identified that
the environmental drivers of biodiversity can differ among native
and nonnative taxa, and stark contrasts were observed in future
predictions. On average, overall increases were predicted across
all metrics of nonnative biodiversity in the US, under all exam-
ined climate change scenarios. On the other hand, native species
richness and evolutionary diversity (PD and MPD) were pre-
dicted to decrease on average, with counties becoming more phy-
logenetically clustered (i.e. decreased MPDS). At the regional
scale, nonnative species introductions have far outweighed native
extinctions, especially in well-surveyed temperate zones such as
the US (Vellend et al., 2017). This suggests that overall changes
in plant diversity in the US could be disproportionately driven by
increases in nonnative taxa, possibly at the expense of native taxa
(Knapp et al., 2017). For instance, TWF were predicted to simul-
taneously experience large losses in MPDN and large gains in
MPDI, suggesting the environment will shift to favor nonnative
taxa. As our results suggest, this may increase the homogenization
of biodiversity throughout the country, where not only do differ-
ences in cumulative biodiversity become smaller across regions,
but the phylogenetic diversity within regions is reduced as well.
As assemblages of species in ecological communities reflect inter-
actions among, as well as between organisms and their abiotic
environments (Walther et al., 2002), such changes in the compo-
sition of plant communities can alter ecosystem properties in
ways that feed back into other components of global change
(Dukes & Mooney, 1999). Similarly, previous studies have sug-
gested that climate change is likely to favor nonnative species
(Dukes & Mooney, 1999; Prentice et al., 2007; Thuiller et al.,
2008; but see Bezeng et al., 2017) and native endemic taxa may
be especially vulnerable as many have evolved long-term under

relatively stable climatic conditions (Jansson, 2003; Linder,
2008). Along these lines, current patterns of native biodiversity
show strong negative associations with seasonality in temperature
and precipitation.

Our predictive modeling results generate insights into the
capacity of an area to support a certain amount of plant diversity
given specific environmental conditions. These models assume
that most communities are currently at capacity, which is not
likely to be the case. Many communities have accommodated the
establishment of exotics over the last century without substantial
losses of native species, resulting in a net increase in diversity
(Stohlgren et al., 2003). Thus, our predictions provide a baseline,
conservative estimate of future native and nonnative plant diver-
sity, but may underestimate true regional carrying capacity.

Drivers of native and nonnative diversity

Models built using machine learning often employ complex and
opaque algorithms that render the internal components of the
models something of a ‘black box’. To address this knowledge
gap, we analyzed current patterns of diversity using more tradi-
tional approaches focusing on key climatic and geophysical
attributes. Broadly, patterns of taxonomic and phylogenetic
diversity were associated more strongly with seasonal variation in
climate than ‘favorableness’ indices (e.g. mean annual tempera-
ture or total annual precipitation). Seasonal variation in precipi-
tation and temperature accounted for 7.8–16.3% of the variation
in plant diversity between counties, with less variable counties
being more diverse. This trend likely reflects, in part, the seasonal
impacts of winter in northern areas. However, the impact of sea-
sonality cannot be dismissed entirely as a byproduct of winter
extremes per se, as mean annual temperature, temperature range,
and latitude were all controlled for in our model. Rather, season-
ality itself is known to act as a filter on plant diversity in North
America (Swenson et al., 2012), because it requires unique physi-
ological adaptations that are not present in all plant lineages
(Kreft & Jetz, 2007).

Both taxonomic and phylogenetic diversity tended to decrease
with greater elevation. However, the association with elevation
was relatively weak when compared to other geophysical factors,
including soil clay content, soil pH, and variation in elevation.
Of particular note was the positive association of taxonomic
diversity with more acidic and clay-rich soils – two factors that
are not generally considered favorable to plant growth. These
associations are likely the result of averaging soil characteristics at
the county level, which would mask edaphic heterogeneity. Envi-
ronmental heterogeneity can drive increased alpha diversity,
driven by turnover between microenvironment (beta diversity;
Ricklefs, 1977), even at small geographic scales (Willis et al.,
2010). We observe this process with the positive relationship
between standard deviation in elevation per county and diversity.
Unfortunately, we were not able to test this same hypothesis with
soil heterogeneity because we did not have similar data on
within-county variation.

Patterns of native and nonnative diversity were associated with
different combinations of climate and geophysical variables,
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suggesting that climate change will likely impact the regional
capacity of native vs nonnative diversity differently. In particular,
geophysical factors including soil pH and clay content tended to
have a greater effect on native diversity. Though climate is chang-
ing rapidly, geophysical factors are relatively fixed and not likely
to change significantly over the timescales that we examine here.
This may result in fewer areas with both suitable climates and the
geophysical conditions that native species have evolved to require
or prefer. The differences in the drivers of native vs nonnative
diversity may also reflect the possibility that nonnative species
may not have yet reached equilibria with their new environmen-
tal conditions as they have only existed on the landscape for a rel-
atively short amount of time. Along these lines, our models do
not implicitly take into account the long-term evolutionary pro-
cesses that have influenced current patterns of biodiversity. Biodi-
versity in a region is the result of both shorter-term ecological
processes such as environmental filtering and longer-term evolu-
tionary processes that have generated the diversity of species on
which filtering acts. Evolutionary and biogeographic history,
including past diversification processes and environmental
change, may have influenced the distributions of lineages and
populations, creating deep-time legacy effects that influence the
patterns of diversity we observe today (Cavender-Bares et al.,
2018). This is especially likely to be true for native diversity that
has evolved in situ. Thus, serious consideration of a historical per-
spective is needed, and should improve our understanding of evo-
lutionary and geographic mechanisms that link patterns of
biodiversity across spatial scales (Qian & Ricklefs, 2004).

Machine learning biodiversity

When we projected the explanatory models we generated onto
current environmental conditions, we identified that these more
traditional models performed relatively well, but were not as
effective as the best machine learning models (Fig. 1). The pre-
dictive improvements gained by using more complex, machine
learning models are two-fold. First, these models are likely using
macroecological factors not included in our explanatory model
that might have a small but significant effect on predictive accu-
racy. Second, and more importantly, the improved accuracy of
our predictive models most likely reflects the fact that they apply
different combinations of macroecological factors when predict-
ing diversity in different regions of the US. Though climatic fac-
tors will shift across the landscape as a result of climate change,
geophysical factors will remain largely consistent. New combina-
tions of macro-environments are likely to be created, resulting in
novel assemblages of native and nonnative species. The advantage
of the using a top-down, machine learning approach to predict
biodiversity as we have done here is that these combinations need
not be determined a priori. How changing patterns of diversity
will be reflected in terms of the actual composition of the flora,
however, will require a more targeted approach.

Our models do not consider the ecology of individual taxa,
and by extension, do not directly consider possible range expan-
sions and contractions via dispersal and local extinctions (Currie,
1991, 2001; Sommer et al., 2010). As our results alone do not

provide information on taxon identity or the functional roles and
endangerment status of individual taxa, conservation strategies
must also take complementary taxon-specific data into account to
be as effective as possible. For instance, our results do not discern
between terrestrial plant biodiversity and that of exceptionally
vulnerable aquatic and wetland species. Also, while our models
account for particular aspects of climate change, they do not
address the complexity of biotic interactions, potential additional
environmental constraints, and changes in included and addi-
tional nonclimatic environmental variables, all of which can
influence changes in patterns of biodiversity (Hutchinson, 1959;
MacArthur, 1965; Macarthur & Levins, 1967; Brown, 1981;
Wright, 1983). For instance, individuals assumed to shift their
distributions following the climatic conditions they are adapted
to may not encounter adequate photoperiods or necessary mutu-
alists, rendering our predictions overestimations (Visser, 2008).
Alternatively, associations with certain mutualists can expand the
environmental tolerance of plant species, potentially mitigating
the effects of climate change, in which case our predictions could
be underestimating biodiversity (Peay, 2016; Gerz et al., 2018).
Similarly, our predictions do not account for potential climatic
refugia at small spatial scales, where species may be able to persist
even as conditions become unsuitable in the overall area.

Additionally, though their relative importance is debated,
stochastic factors related to demographic fluctuations and genetic
drift, or environmental variability (e.g. extremes) and distur-
bances can influence patterns of biodiversity and community
assembly (Watt, 1947; Wiens, 1977; Den Boer, 1981; Strong
et al., 1984; Hubbell, 2001; Tilman, 2004; McPeek &
Gomulkiewicz, 2005; Guisan & Rahbek, 2011; Rosindell et al.,
2012). Species with larger effective population sizes may be able
to adapt to changing climates in situ while those with smaller
sizes may face local extirpation if they are not able to disperse to
more favorable conditions. Along these lines, though our data
represent a comprehensive inventory of the US flora, it is difficult
to gauge whether local plant diversity is at capacity, especially in
terms of nonnative species (Stohlgren et al., 2003). Lastly, it is
uncertain whether or how the relationships between plant biodi-
versity and the abiotic factors examined here may change over
time and to what degree future novel environmental conditions
could influence these patterns (Williams et al., 2007).

In the near future, it may very well become possible to incor-
porate information regarding biotic interactions, genetic diver-
sity, ecological traits, biogeographical history, and variable
relationships between facets of biodiversity and climate into
machine learning approaches as more data become available.
Nonetheless, climatic variables are assumed to be the strongest
influence on the distribution of biodiversity (Wright, 1983; Cur-
rie & Paquin, 1987; Adams & Woodward, 1989; Ricklefs, 1990;
O’Brien, 1993; Ara�ujo & Rahbek, 2006), and our results repre-
sent one of the most comprehensive uses of climatic variables in
addition to edaphic and geographic factors to predict regional
patterns of plant biodiversity to date. We thus demonstrate the
potential of machine learning approaches for predicting complex
biodiversity patterns and show that the consequences of climate
change can vary markedly across different facets of biodiversity.

� 2020 The Authors

New Phytologist� 2020 New Phytologist Trust
New Phytologist (2020)

www.newphytologist.com

New
Phytologist Research 9



Such approaches can especially be useful for conservation efforts
when species-specific data are unavailable and where the goal is to
identify regions that will gain and lose the capacity to support
biodiversity.
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