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Home assistant devices such as Amazon Echo and Google Home have become tremendously popular in the last couple of
years. However, due to their voice-controlled functionality, these devices are not accessible to Deaf and Hard-of-Hearing
(DHH) people. Given that over half a million people in the United States communicate using American Sign Language (ASL),
there is a need of a home assistant system that can recognize ASL. The objective of this work is to design a home assistant
system for DHH users (referred to as mmASL) that can perform ASL recognition using 60 GHz millimeter-wave wireless
signals. mmASL has two important components. First, it can perform reliable wake-word detection using spatial spectrograms.
Second, using a scalable and extensible multi-task deep learning model, mmASL can learn the phonological properties of ASL
signs and use them to accurately recognize the ASL signs. We implement mmASL on 60 GHz software radio platform with
phased array, and evaluate it using a large-scale data collection from 15 signers, 50 ASL signs and over 12K sign instances.
We show that mmASL is tolerant to the presence of other interfering users and their activities, change of environment and
different user positions. We compare mmASL with a well-studied Kinect and RGB camera based ASL recognition systems,
and find that it can achieve a comparable performance (87% average accuracy of sign recognition), validating the feasibility of
using 60 GHz mmWave system for ASL sign recognition.
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1 INTRODUCTION

With increasing interest in Internet-of-Things (IoT) devices, voice-controlled home assistants (such as Amazon
Echo and Google Home smart-speakers) are becoming more and more popular. In the United States alone, more
than 50 million home assistant devices were sold in 2018 [9]. Their easy-to-use functionality and ability to assist
in one’s personal and professional lives have enabled many novel applications. However, these devices are not
readily available to Deaf and Hard-of-Hearing (DHH) people due to their voice-controlled interface. About 30
million people in the United States have bilateral hearing loss [49], and about 1 million are functionally deaf [22].
Speech production quality is correlated with hearing loss [53], which can lead to both speaking and listening
difficulties. Around half a million people in the United States communicate visually through American Sign
Language (ASL), and use it as their primary means of communication [56]. Hence, a home assistant system
that can recognize ASL is highly desirable for DHH people. Apart from the convenience and entertainment
applications, such devices can create ambient awareness for DHH users improving their safety and well-being
3, 5, 8].

ASL recognition has been studied mostly in the form of gesture recognition using a variety of sensing modalities.
Use of RGB [21, 23, 50, 55, 60, 79] and infrared (Kinect [30, 68]) have been investigated extensively, however,
they perform poorly in dark and incur privacy concerns due to constant video monitoring. Wearable sensors
such as EMG [73], IMU [35, 41] and Leap Motion [32] capture motion that is highly localized to the body part
where they are worn, and multiple on-body sensors [102] might be required for higher accuracy, reducing the
overall usability compared to device-free solutions. Recently, 2.4/5 GHz WiFi CSI (Channel State Information) has
been leveraged for gesture recognition [46, 74, 83, 89]. Although it enables device-free and low-cost sensing, its
lower tolerance to change of environment (multi-path), user position, and presence of other moving users pose
significant challenges in terms of accuracy and reproducibility. For example, [51] proposed to use WiFi CSI for
sign recognition. However, it requires the user to be constrained to a specific location relative to link endpoints.
Dealing with environment related changes has been recently looked at in [38] using adversarial learning, but the
approach is shown to work for a few activity classes. Similarly, with CSI-based sensing, presence of other people
can significantly affect the sensing accuracy, but this challenge has been addressed largely through controlled
experiments.

In this paper, we present mmASL, a home assistant system for DHH users that can perform ASL recognition
using 60 GHz millimeter-wave (mmWave) signals. 60 GHz mmWave has emerged as a viable candidate for
designing the next generation of multi-gigabit WLANs [6, 37]. In order to compensate for high path loss
experienced at 60 GHz frequencies, directional antenna such as phased antenna array is employed to concentrate
the signal in a desired direction. In this paper, we demonstrate that large available bandwidth, higher frequency
and directionality make 60 GHz signals a suitable candidate for gesture sensing and ASL recognition. mmASL has
many salient features. First, it leverages the directionality and channel sparsity of 60 GHz indoor channels to make
ASL recognition tolerant to the presence of other people (moving or stationary) in a room. Second, mmASL is
able to create environment independent motion signatures that can allow training and testing across different

indoor environments. Third, it does not restrict the user to be at any specific location within the room while

performing the gestures. Lastly, mmASL is designed to extract and learn feature representations such that it can
scale for a large number of ASL signs as well as user diversity in signing.

We note that 60 GHz sensing has been explored for near-field hand gesture recognition in [47] and fine-grained
tracking in [92]. mmASL demonstrates its potential for sensing in typical indoor environments at larger distances,
which bring in new challenges associated with multiple users, change of environment, etc. Through extensive
experimentation and measurements, we show that device-free sensing using 60 GHz provides reasonable tolerance
to changes in the environment, presence of other moving users, and user position. We leverage these properties
to design mmASL, which can perform wake-word detection as well as ASL recognition. Using wake-word (ASL
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counterpart to “Alexa” or “Ok Google”) detection through spatial spectrogram (space-frequency-time maps),
mmASL can detect user’s intention to initiate a conversation with the home assistant device. Once the wake-word
is detected, mmASL can recognize ASL signs using Doppler spread spectrograms. Given the large vocabulary of
ASL lexicon, we focus our attention on 50 ASL signs based on words commonly used (e.g., weather, schedule,
etc.) in interaction with home assistant devices. We note that using these subset of words, a user can create
many sentences/commands to interact with home assistants. The proposed design of mmASL imposes multiple
challenges. We describe the challenges along with our solutions:

(1) Reliable wake-word detection at any location: While initiating an interaction with mmASL, a DHH
user can perform the wake-word at any location in a given indoor environment. Even with the directionality of
60 GHz signals, mmASL should be able to detect the wake-word reliably with a short response time. Also, the
wake-word detection should be able to tolerate presence and activities of other people (for example, another
person walking in the same room).

mmASL uses beam scanning where a predetermined set of beam sectors are scanned continuously and observed
reflections are processed to create spatial spectrograms (concatenated spectrogram of all sectors). We utilize a
Convolutional Neural Network (CNN) based machine learning model that can learn from spectrogram images and
distinguish between wake-word and other activities. The model can even recognize partial wake-word gestures,
allowing us to reduce the response time through faster scanning.

(2) Scalable and explainable ASL sign recognition: As a home assistant to DHH users, mmASL should
be able to recognize a large number of ASL signs. Also, the representation of 60 GHz signal reflected from the
user performing ASL signs and the machine learning algorithms using these representations should support and
extend to such large classification.

mmASL exploits observed Doppler spread to create spectrograms for ASL signs which provide sufficient
distinguishability between different signs. Instead of blindly applying machine learning on spectrograms, we
work with an ASL domain expert and design an explainable multi-task deep learning model for sign recognition.
The multi-task model includes separate tasks based on specific phonological properties of signs (e.g., repetitive
motion, parallel/perpendicular movement) to learn feature representations that generalize well across a large
number of signs and different users. The proposed model is extensible because more tasks for other phonological
properties can be added in the future as the number of signs considered in the ASL recognition grows.

(3) mmASL in realistic, uncontrolled settings: ASL sign recognition is challenging because significant
variations can exist between signs performed by different or even the same users. This is further complicated
by consideration of scenarios such as presence of other interfering person and change of environment. Ad-
dressing these challenges requires large-scale data collection, analysis, model design and evaluation in realistic,
uncontrolled settings.

We implement mmASL on NI+SiBeam 60 GHz multi-FPGA software radio platform with phased antenna
array and analog beamforming. We develop mmASL using a large-scale data collection with 15 users’ for 50
ASL signs (over 12K gesture instances [16]) in 6 different rooms. Our study includes a diverse set of scenarios
such as random user location (varying distances and angles), presence of other interfering user walking or
performing other activities in the same or different beams, and blocking of 60 GHz line-of-sight path. We also
collect data simultaneously on Kinect and RGB camera for all gesture instances and compare it with our 60 GHz
sign recognition system. In contrast with mmASL, Kinect provides data for 25 body joint movements (includes
thumb, wrist, hand, elbow and shoulder joints, collectively called skeletal data) with respect to time. Given
this fine-grained movement information, Kinect has been used in many existing works on gesture and activity
recognition [31, 76, 105] and ASL recognition [45, 61, 99], providing a competitive baseline for comparing mmASL.
ASL sign recognition has been predominantly studied using RGB camera based systems [77, 78, 80]. Unlike Kinect

! Approved by Institutional Review Board (IRB)
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and mmASL, RGB cameras can provide palm and finger joint information, the importance of which has been
explored in recent works [29, 40, 98].

With the provided solutions, mmASL advances the state-of-the-art of RF based gesture recognition with the
following novel contributions.

e We demonstrate the feasibility of RF based solutions for long range and fine-grained gesture recognition,
which can be environment independent, tolerate the presence of other users, does not restrict user’s
position, and scale for a large number of gestures.

e We propose a gesture-based wake-word detection solution, which to the best of our knowledge has not
been studied in existing RF based gesture recognition literature. Our beam scanning based solution enables
mmASL to not only detect a wake-word but also locate the intended user for subsequent ASL recognition.

e We develop a novel deep learning approach that combines ASL domain specific knowledge with contempo-
rary deep learning algorithms for effective ASL sign recognition.

o To the best of our knowledge this is the first work to demonstrate that RF based gesture recognition can
offer comparable performance with state-of-the-art Kinect and RGB camera based systems.

After an extensive evaluation, we find that mmASL achieves an average sign recognition accuracy of 87%
for same users when trained and tested in different rooms. It achieves an accuracy of 73.75% for cross subjects
(training and testing on different users) and the accuracy increases to 83% when additional data (from new
users who where neither in training set nor in cross subject set) is added to the training set. Kinect and RGB
camera-based recognition models achieve 96% and 97.3% for the same subjects, and 76.3% and 77.8% for cross
subjects, respectively. Compared to a basic deep learning model, the multi-task learning architecture yields a
gain of 10% in accuracy in case of untrained users and as much as 24% in case of random user locations. mmASL
can detect wake-word with an average accuracy of 94% for untrained users in untrained environments. Lastly,
mmASL is found to be tolerant to the presence of other people in both wake-word detection and sign recognition.

The remaining paper is organized as follows. Section 2 discusses the related work. Section 3 provides an
overview of our proposed system and feasibility experiments. Section 4 explains wake-word detection and spatial
spectrogram based model. Section 5 discusses multi-task deep learning sign recognition model. Section 6 provides
details of data collection and numerical evaluation. Section 7 provides insights, limitations and future directions
of improvements and we conclude in Section 8.

2 RELATED WORK

mmWave Sensing: Given their higher frequency and larger bandwidth, mmWave wireless signals have been
used for sensing in recent years. Authors in [58], [47] and [87] have built custom FMCW (Frequency Modulated
Continuous Wave) radars for short range (less than a meter) hand gesture recognition and fine-grained finger
gesture recognition. Designed to provide hands-free interaction to smart devices, they operate by illuminating the
hand and utilize Range-Doppler Maps for tracking the movement of < 10 gestures. On the other hand, mmASL
has to illuminate the entire upper body of the user because of the nature of the ASL signs (which involve both
the hands and displacement of the hands can reach upto a couple of feet) and be available over long-ranges (a
requirement for digital assistants). Operating in long-range (4 — 6 meters) brings new challenges such as presence
of other people, change of environment, etc. Recently, a 60 GHz radar is used in [62] to recognize 8 gestures using
FMCW range information. However, due to limited number of antenna elements, the system cannot perform
beam scanning or steering which is necessary in case of mmASL DHH home assistant system. mmWave sensing
is also used for fine-grained object tracking [93], and imaging using synthetic aperture radars [106]. mmVital [96]
uses mmWave signals for locating a human being and monitoring her vital signs. In comparison, our approach
uses beam-scanning and spatial spectrograms that are shown to be more robust than time-series metrics such as
energy or variance used in mmVital. Authors in [38] recently proposed an environment independent activity
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Table 1. mmASL compared with existing works on ASL recognition
Device Other User Wake
System Free / Environment o Lighting Non-
. people . position | . word .
(Modality) | Wearable impact impact impact impact Detection Intrusive
(DE/W) P P
RGB Camera .
[21, 55, 80, 97] DF Low Low Moderate High No No
Depth Camera
[30, 36, 68] DF Low Low Moderate | Moderate No No
(Kinect)
DeepASL .[32] W None None None None No Yes
(Leap motion)
SignSpeaker
[35] (IMU) W None None None None No Yes
SignFI [51] . . .
(WiFi CSI) DF High High High None No Yes
mmASL Low to
(mmWave) DF Moderate Low Moderate None Yes Yes

recognition using mmWave. In comparison, in addition to dealing with larger set of signs, we also show that
mmASL is tolerant against presence of another human in the room.

2.4/5 GHz CSI/RSSI based systems: CSI and RSSI based systems have been well studied in recent years
for activity recognition [19, 33, 86, 88-91, 100, 107] and gesture recognition [18, 46, 51, 67, 75, 83]. Authors in
Wigest[18] utilize primitives built on WiFi signal strength (RSSI) to sense 9 hand gestures. WiSee[67] extracts
Doppler shifts from WiFi signals in recognizing 9 gestures where variability in Doppler energy among gestures is
used for classifying them. In comparison, 60 GHz signals provide higher Doppler shifts, allowing the recognition
problem to scale to ASL domain which is difficult to achieve using variability in Doppler energy at lower
frequencies. In [46, 83], authors use CSI information to recognize 10 gestures and signs for numbers. WiSign[75]
utilizes multiple antennas with CSI measurements to classify between 5 ASL signs, and SignFi [51] classifies
among 276 ASL signs. These CSI-based systems require the user to be sitting/standing at a fixed location usually
in close proximity (0.3 meters in case of SignFi) of the access point while performing the gestures. In comparison,
mmASL includes a large number of gestures (only studied in WiSign), poses no restrictions on user position, and
includes practical scenarios such as presence of other human beings and change of environment (refer Table 1).
WIiAG [85] performs position and orientation agnostic gesture recognition using CSI where virtual samples for all
possible gestures in the perceived configuration are generated and matched with the received samples. mmASL
can detect the ASL signs without requiring samples in specific configurations for any user position in range
and minor changes to orientations. Additionally, mmASL can tolerate the presence of other interferer while the
intended user performs the gestures. CSI measurements have been used by researchers in fall detection [91],
human activity recognition [89], determining people count in a crowd [95] etc. [88] authors use spectrograms
to capture frequency change in CSI measurements at the receiver in recognizing human gait. In our work, we
augment the spectrograms with spatial (beam sector) information to further improve the accuracy of wake-word
detection and gesture recognition. In [54] authors showcase the ability of directional antennas in recognizing ASL
signs in a constrained setup (car/office chair). mmASL shows feasibility of such recognition for a large number of
gestures in many practical scenarios (interferer, varying distances and angles, etc.).

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 4, No. 1, Article 26. Publication date: March 2020.



26:6 « Santhalingam et al.

Vision, infrared and other modalities: ASL recognition using Kinect and Leap-motion has been well-
studied because of the direct availability of skeletal joint data. Authors [30] and [68] utilize Kinect for recognizing
static ASL alphabets by determining the hand shape from depth data. In [36, 64, 81], authors develop different
methodologies to improve word level ASL sign recognition accuracy. All of them utilize the mentioned skeletal
joints as features in recognition. While Kinect gives specific joint information, it performs poorly in bad lighting
conditions (refer Table 1). [28], [69], [43] utilize leapmotion in recognizing ASL alphabets, while [32] utilizes
Leap-motion for both word-level and sentence-level recognition. Leap-motion provides skeletal joint data for
fingers, palms and fore-arms which is used in detecting different ASL signs. While Leap-motion based systems
have proven effective [32], they require the user hand to be in close proximity of the sensor, making them less
suitable for home assistant systems. Even when used as a wearable on chest, many ASL signs which have their
major location to be head or above shoulder cannot always be accurately recognized. RGB camera based systems
[21, 23, 50, 55, 60, 77-80]. They pose multiple challenges including low accuracy in low lighting cases, restricted
poses and privacy concerns due to constant monitoring (refer Table 1). Researchers have also utilized wearable
sensors in ASL sign recognition. This includes on-body IMU and EMG Sensors used in [41, 66, 73, 102]. Such
methods require user to either wear multiple on-body sensors to capture motion of each body part (e.g., both
hands) or a smart-glove, reducing the overall comfort in using such systems.

3 SYSTEM OVERVIEW
3.1 Platform Overview & Implementation

Today’s typical home assistant (such as Amazon Echo)
is a single device which a user can interact with using
voice commands. Inspired by this design, mmASL is
60 GHz RF / : built using co-located Tx and Rx similar to a mono-
front-end =_—I® ) . . .
\ Phased static radar. A highly reflective surface is used to sep-
1/Q and beam antenna arate Tx and Rx to reduce their direct communication.
control \ 3

channels | 22 e -

Reflective
surface

SiBeam

Fig. 1 shows mmASL setup.

We implement mmASL using 60 GHz repro-
grammable software radio platform. This transceiver
system is developed using National Instruments (NI)
multi-FPGA platform [1], and a V-band RF front-
end and phased antenna array from SiBeam [7]. The
NI+SiBeam system includes multiple FPGA modules
(NI PXIe 7902, 7976 and 3610/3630) for implement-
ing ADC/DAC, modulation/demodulation and encod-
ing/decoding. The SiBeam antenna array (as shown in Fig. 1) has 24 antenna elements (12 for Tx and 12 for Rx)
and is capable of performing analog beamforming. The SiBeam codebook includes 25 beam sectors which cover a
region of -60° to +60° from antenna broadside. The 3-dB beamwidth of each beam ranges from 25° to 30° for Tx
and from 30° to 35° for Rx, and each of the 25 beam sectors are approximately 5° apart. The NI+SiBeam platform
is connected to a host which sends/receives data to/from FPGA and implements additional signal processing
tasks. In mmASL, Tx and Rx hosts are connected via Ethernet for control and coordination (e.g., setting a specific
Tx and Rx beam sector while scanning).

The transmit and receive side processing pipelines are shown in Fig. 2. On transmit side, the host generates a 1
MH?z signal that is copied to an intermediate FPGA using host-to-target Direct Memory Access (DMA). The data
is then used by a DAC module (sampling rate 3.07 GHz) which generates analog baseband signal and sends it to
SiBeam RF front-end board where it is upconverted to 60.48 GHz before being transmitted on the current sector.

NI multi-FPGA
mmWave
platform

Fig. . mmASL’s implementation on NI+Sibeam 60 GHz
software radio platform
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NI+SiBeam SiBeam
Host FPGA DAC RF Interface Phased array
Generate Host-to- Digital to Upconvert
1 MHz > Target > Analog > tg 60GHz [ Transmit U
signal DMA Conversion sl
[ Rx | NI+SiBeam SiBeam Dl
Host FPGA ADC RF Interface  Phased array M
Target- Analog to Down- OO
::;f%t“;‘; scoped [ Digital <= convertto [« Receive P
DMA Conversion baseband
,' T e-——o e ———
e T DHH user
T —— === performing
os! . " i
> Average Low-pass High-pass an AsL sign
Acquired [ > > - > 3 !
signal Smoothing 1 KHz filter 10 Hz filter R :
Spectrogram

Fig. 2. mmASL signal processing pipeline

On the receive side, the received signal is downconverted and downsampled, first while copying from ADC to
the FPGA (3.07 GHz to 192 MHz), and then copying from FPGA to the host (at 16 MHz). We implement the entire
processing pipeline using NI's Labview/ Xilinx FPGA modules.

3.2 Doppler Spread and Spectrograms

For mmASL to reliably recognize ASL signs, it should extract components of the received signal which are
representative of the performed sign. mmASL utilizes a sinusoid of 1 MHz as baseband signal. Here the reflection
profile of a gesture can be understood as a wireless channel between Tx and Rx. Let us assume a wireless
communication channel with a single Tx and Rx, the Rx is moving with a velocity v and located close to a
reflecting wall. The signals reflected from the wall and ones that reach directly to the moving Rx follow a pattern
of constructive and destructive interference [84]. This causes the received signal strength to increase and decrease
over time. This can be equivalently represented using Doppler shifts of the direct and reflected signals given by

acos2m f[(1— 9)t — 2] acos2m f[(1+ 2)t - _(rﬂ—CZd)]
ro + vt - 2d —ry — vt

Er(f’ t) = (1)
Here, Tx transmits a sinusoid cos 27 ft, a represents Rx beam pattern and E, is the electric field at the receiver.
The Rx is at ry at time t; and reaches r = rg + vt at time ¢, d is the distance between the Tx and wall, and ¢

is the speed of light. The first term (direct signal) is a sinusoid of frequency D; := —j% and the second term

(reflected signal) is another sinusoid of frequency Dy := +J%. The resulting Doppler spread is Ds := Dy — D;.
In case of mmASL, the user acts as a multipoint reflector and scatterer, with different body parts producing
different Doppler shifts (each body part moves with a different velocity depending on the sign performed). These
individual Doppler shifts add up constructively/destructively resulting in a Doppler spread [84] which can be
extracted from the received composite signal. mmASL exploits the change in Doppler spread observed over time
for distinguishing different ASL signs.

In order to extract the Doppler spread, we process the received 16 MHz signal on host as shown in Fig. 2. We
empirically observe that the maximum Doppler shift does not exceed 1 KHz in our ASL experiments. In order to
avoid poor roll-off and stopband attenuation with 1 KHz low-pass filter on 16 MHz signal, we first downsample
the signal to 8 KHz using smoothing (window size of 2K samples). We then apply the 1 KHz low-pass filter and
10 Hz high-pass filter. The 10 Hz high-pass filter removes the impact of low frequency human activities such as
breathing and posture changes. The resulting filtered signal is then used to plot spectrograms using Short Time
Fourier Transform (STFT) with a window size of 0.8K samples (100 ms), while sliding the window at every 1 ms (8
samples). Lastly, we use the log-transformation of amplitude values to normalize (addressed as log normalization)
and emphasize on low intensity components (inspired by speech recognition literature [52, 57, 59]). Fig. 3 shows
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Fig. 3. The impact of signal processing on mmASL (a) Spectrogram generated without filtering the data, (b)
spectrogram generated with filtering but without log normalization, (c) spectrogram generated with both
filtering and log normalization.

the significance of different signal processing components in mmASL. It is evident from Fig. 3a that removal
of low frequency, high intensity components is required for a better visual representation of the underlying
ASL sign. Also, log normalization (Fig. 3c) further enhances the spectrogram by bringing forth the low intensity
components not visible in Fig. 3b.

3.3 Feasibility Study

In order to verify that (1) the generated spectrograms indeed capture Doppler spread and (2) different ASL sign
have a different Doppler spread over time, we perform two types of feasibility experiments. First, as shown in
Fig. 4a, we use a plain steel metal plate of size 12” X 18” and attach it with a long wooden stick. The metal plate
is then moved at three different speeds (fast: 0.91 m/s, medium: 0.73 m/s and slow: 0.3 m/s). The experiment is
repeated at a distance of 10 ft and at two angles (0° and 30°), with Tx and Rx sectors both pointing to the angle.
Fig. 4 shows the spectrograms for 30°. It is clear that the observed Doppler spread correlates with the expected
Doppler shift, as for the faster movements, the spread has more higher frequency components compared to the
slower movements. Results for 0° location also show the same trend.

In the second type of feasibility experiment, we ask a user to perform ASL signs in a continuous as well as
segmented manner. In the segmented case, the user pauses between different movements of the gesture. Fig. 5a
shows the four segments of an ASL sign for AIR CONDITIONER with visual depiction of segments. Fig. 5b shows
the spectrogram of the same sign when performed continuously. We find that the Doppler spread over time
is consistent in both cases. Figs. 5b and 5¢ show the difference in Doppler spread between two ASL signs (AIR
CONDITIONER and DIRECTION). We observe that it is feasible to use the spectrograms to recognize ASL signs.

Medium

30° Lo--Fman 30°

it o
603" W—i-
I/)Metal plate( i \\‘
+  moving at . £
K different |2
{_.._Sheods

TxWARx]TTTTTTTTTT
2 1 2 0 2
Time (seconds) Time (seconds) Time (seconds)
(@) (b) (©) (d)

Fig. 4. Observed Doppler spread for a metal plate moving at different speeds
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Fig. 5. Doppler spread spectrograms are (a-b) consistent in segmented or continuous gestures, and (b-c)
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3.4 Overview of mmASL

Fig. 6 shows the high-level system design for mmASL.
There are two important components: (1) Wake-word
recognition and sector determination and (2) ASLsign | [ eam |
recognition. mmASL continuously scans through a Scanning
predetermined set of beam sectors and creates spatial

spectrograms. The spatial spectrograms are used to a CN‘l:
K . assifier
detect if there is a wake-word performed by a user or i
: . User Spatial
not using a CNN-based model applied on the spectro- performing Spectrogram petermine p—
gram images. If a wake-word is detected, a CNN-based “KNOCK” Sector Classifier
wake-word T

classifier is used to determine the sector in which the
user is currently located. Once a sector has been deter-

i inti Multitask
mined (Tx and Rx sect<.3r pointing to the usc;r), her ASL <SNOW<] Dee:l_;aﬁ;ing
gestures are captured in the form of ASL sign spectro- Sign Classifier

ASL Sign User performing
Spectrogram  “SNOW”sign |

grams. mmASL uses a multitask deep learning model
(with auxiliary tasks that are used to learn phono-
logical properties) on the ASL sign spectrograms to
recognize the signs.

Fig. 6. mmASL’s overview

4 WAKE WORD RECOGNITION

Wake-word (a sign in case of ASL) detection should meet the following requirements: (1) It should not restrict
the user to be at a specific location relative to Tx and Rx while performing the wake-word, (2) Presence of
other people (moving or stationary) should be tolerated (should not significantly affect wake-word detection
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performance), (3) mmASL should work in any environment and changes in position of ambient reflectors should
affect the recognition performance minimally, (4) The wake-word should be detected with a short response time.
One possible option in meeting the requirements is to utilize omni or quasi-omni beam pattern to recognize
the wake-word occurring in any direction. However, this can significantly increase reflections from unwanted
objects such as other people walking around. To avoid this, mmASL uses a beam scanning approach where a set
of predetermined beams are scanned repeatedly for wake-word detection. As shown in Fig. 6, beam scanning
helps in both detecting the wake-word as well as determining the beam sector to be used for subsequent ASL
sign recognition phase. We use a cascaded model to accomplish this.

Using beam scanning for wake-word detection brings two important challenges. First, it presents a time-
performance trade-off between the number sectors to scan and the amount of time to dwell in each sector. Second,
presence and motion of people in the same or other sectors will also be detected with beam scanning. Hence, it
becomes necessary to distinguish the wake-word motion from other types of motion (e.g., other person walking
in background) to determine if and where (sector) the wake-word was performed.

We address these challenges by first selecting a subset of sectors for beam-scanning and then creating spatial
spectrograms based on observed signal reflections. Here, we use KNOCK sign (performed as knocking on a door
twice) as the wake-word. Note that choice of wake-word can be subjective and we use KNOCK as its symbolic
meaning is similar to a typical wake-word. In evaluation, we compare its performance with another wake-word.

4.1 Selecting Scanning Sectors

Out of the 25 beam sectors (each 5° apart) offered by NI+SiBeam codebook, we select the minimum number
of sectors that can provide the same coverage as the 25 sectors and have the minimum overlap between them.
We do this by finding beams with least overlapping gain pattern
9 120 16 and at least 20° apart from its neighboring chosen beam. Based
on the observation, we choose 6 patterns (beam indices 2, 5, 9,
12, 16 and 20 corresponding to angles -60°,-30°,-15°,0°,+30°,and
+60° from antenna broadside, respectively as shown in Fig. 7) and
use them in the beam scanning process described above. Note
that we restrict our search in azimuth plane only because the
home assistant device and user are typically at the same elevation.
While performing the beam scanning, both Tx and Rx point to the
same sector at each step. From Fig. 7, it is clear that although the
main lobes of the chosen sectors do not have significant overlap,
there is overlap in the sidelobes. This results in wake-word being observed in adjacent sectors, albeit at a lower
intensity.

. R
90 dBToss 30 20 <10 020

Fig. 7. 6 sectors selected from SiBeam
codebook of 25 sectors (Sector index: 2, 5, 9,
12, 16 and 20)

4.2 Spatial Spectrograms

With beam scanning, we need to use the reflected received signal in each sector to detect the wake-word
and determine the sector for user interaction. One possible approach is to calculate motion energy which
has been used in CSI-based activity recognition [20, 27, 100]. Motion energy has been used to distinguish
walking from other activities in [100]. Motion energy can be calculated through frequency domain analysis as
Energy = Z?:Tdowflength/ ? M? where M is the magnitude, i.e. normalized FFT values over the given time. However,
we find that such drastic reduction of dimensions results in misclassifications. Fig. 8a shows the energy of six
beam sectors while the user is performing the wake-word (KNOCK) in Sector 9, and Fig. 8d shows the energy when
user is performing wake-word at Sector 5 and another interfering user is walking at Sector 20. We can observe
that in presence of other user’s motion, energy alone cannot be used for wake-word detection.
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Fig. 8. (a, b, d, e) Comparing motion energy with spatial spectrograms, (c) spatial spectrogram with partial
wake-word (b, f) Spatial spectrogram in different rooms

We instead use an image representation referred as spatial spectrograms. The spatial spectrograms are generated
by collecting samples for each sector in beam scanning, performing STFT for each sector’s data separately, and
concatenating them. Fig. 8b shows how a wake-word is observed in the spatial spectrograms. Compared to the
energy metric, it can be observed in Fig. 8e that motions of other people can be clearly distinguished in spatial
spectrograms. We also observe in Fig. 8c that partial wake-word has visual resemblance to the complete gesture.
Also, the spatial spectrograms do not change significantly in different rooms or environments (Figs. 8b and 8&f).
This is because direct reflections from ambient reflectors add only low frequency components and second order
reflections (e.g., Tx->wall->user->Rx) usually have very weak signal strength.

However, while spatial spectrograms convey visually distinguishable features, we need machine learning
models that can learn feature representations from them. The learned feature representations should be helpful in
both detecting the wake-word and determining the beam sector. In order to learn on spatial spectrogram images,
we employ a CNN-based machine learning model. The model uses two stacks of convolutional layer (feature
representation), a maxpool layer (down sampling) and rectilinear units (non-linearity). This is followed by a fully
connected layer, a dropout layer, and another fully connected layer with softmax for prediction. Each convolution
layers has kernels of size 5x5 with the filter count of 32 and 64 for the first and second layers.

To establish the improvement that spatial spectrograms offer (without even considering CNN), we build two
machine learning models with features based on Principle Component Analysis (PCA) of spatial spectrogram.
For determining the features (number of components) to use in PCA, we pick the top features (75 components)
that explain 95% of the observed variance in the data. We apply Support Vector Machine (SVM) and Random
Forest (RF) on the PCA features. We then compare them with SVM and RF models built using energy metric. The
spatial spectrograms achieve an average accuracy of 83% compared to energy based metric which achieves an
accuracy of 63%. The difference quantifies the importance of spatial spectrograms in building the feature space
for the machine learning model. Average accuracy of wake-word detection using spatial spectrogram with CNN
is observed to be 94%. We leave the complete evaluation to Section 6.
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(a) User-A performing A/C (b) User-A performing A/C (c) User-B performing A/C
(Instance 1) (Instance 2) (Instance 1)
Fig. 9. Commonality and variations observed in instances of the same sign from same and different users. The
numbered components are distinct movements of sign: (1) perform “A”, (2) Perform “C”, (3) lift hand up, (4) move
back and forth fast, (5) return.

5 RECOGNIZING ASL SIGNS

Following wake-word recognition, the user performs ASL signs that mmASL should recognize. As shown in signal
processing pipeline (Fig. 2), we use variation in Doppler spread captured in the form of spectrogram images for
ASL sign recognition. The sign recognition problem is complex due to two reasons. First, compared to wake-word
detection which is a binary classification problem, accurate ASL sign recognition should require classifying
among a large number of signs. This means that any proposed recognition model should generalize well for a
large number of signs. Second, while different instances of the same ASL sign should have some underlying
common pattern, they can vary significantly between different users and even different instances of a sign from
the same user. This is evident from Fig. 9. This problem is further aggravated by the fact that the amount of
training data available is likely to be limited.

CNNs have shown to achieve good performance in image/object recognition tasks. However, use of CNNs in
mmASL should answer the following questions:

(1) CNNs learn rich hierarchical feature representations at different layers (For example, CNNs focus attention
on eyes, nose, etc. when tasked with face detection [44]). However, the question remains that can CNNs
learn such feature representations from spectrogram images of ASL signs?

(2) Can CNNs learn feature representations that are truly discriminatory given limited training data? With
limited training data, it is possible that they learn feature representations that are specific to training
data, but not true discriminants of the underlying classes (For example, machine learning models learned
presence of snow in images to distinguish between huskies and wolves, given a limited data set[71]).

ond, we build a multitask learning model

: ; |ﬁ' : that augments CNN by learning feature

(a) ASL sign SHOPPING (b) ASL sign PLACE representations that focus on these phono-
Fig. 10. Two ASL signs involving repetitive motion (three times for logical properties. The presented multitask
SHOPPING and four times for PLACE), also observed in spectrograms learning model is general and modular

which can be scaled with more auxiliary

We answer these questions in two parts.
First, we identify two phonological proper-
ties of ASL signs that incorporate ASL do-
main specific knowledge in our model. Sec-

tasks, as the ASL recognition problem grows.

5.1 Exploiting ASL Phonological Properties in Spectrograms

Similar to spoken languages, ASL has phonological properties [24] such as major and minor location of the sign
(head, arm, etc.), sign type (symmetric, one-handed, etc.), and movement type (back-and-forth, straight, curved,
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etc.). ASL-LEX [26] clustered ASL signs based on the phonological properties to understand their similarity. For
example, for the ASL sign of RAIN, the major location is neutral, movement type is back-and-forth/repetitive,
and sign type is symmetric (between two hands). While translating all the phonological properties to observable
feature representations in spectrograms would be difficult, we leverage two such properties in mmASL: (1)
Repetitive and (2) Motion direction.

(1) Repetitive: When a user performs
a sign that involves a repetitive motion,
it translates to a similar repeating com-
ponents/patterns in spectrograms. Fig. 10
shows the spectrograms for two repetitive
ASL signs: SHOPPING [14] and PLACE [13]. Goronal lane e 1 -
Both signs involve repeating a motion three (a) Coronal (b) ASL sign SNow (c) ASL sign EMAIL
times which is also observed in spectro- Plane
grams. In ASL-LEX, 359 signs out of 1000  Fig. 1. Two ASL signs with parallel and perpendicular movements
are repetitive in nature. 17 signs are repeti- with respect to the coronal plane
tive out of 50 signs considered in this paper.

(2) Motion Direction: The second phonological property we leverage is based on the direction of hand
movement (parallel or perpendicular) with respect to coronal plane of the human body (Fig. 11a). When the
hands move perpendicular to the coronal plane, we observe higher intensity components at higher frequencies in
the spectrogram as the movement is likely to result in higher relative velocity compared to Rx. On contrary, signs
involving motion parallel to the coronal plane results in relatively low intensity and low frequency components.
This is evident in Fig. 11 which shows spectrogram for SNOW (parallel) [15] and EMAIL (perpendicular) [12].

5.2 Multitask Learning Model

Training the multitask learning networks:
Multitask learning (MTL) is a learning
technique which is designed for simulta- Gesture
) R spectrogram Main task A/C
neous learning of multiple and related pre- Tl DIRECTION

diction tasks. By exploiting commonalities - J i = :
and differences across the related tasks, it il SNOW
achieves better generalization for all tasks """""‘""""""""""""I"‘E EMAL
[103]. MTL has specific characteristics that CNN ] <8 i=>| Repetitive | X |
can address the challenges highlighted ear- |/ \\, /¢ U Aux, Task 1|
lier: (1) Attention focusing: With high di- \ ik .

. .. . : Perpendicular |
mensional limited data set, multitask learn- = P KV
ing requires the learning model to focus Extract LU Aux. Task 2!

attention on only features that are relevant, features ~ Dense Dropout Dense Softmax

(2) Representation bias: Multitask learn- Fig. 12. Proposed multi-task deep learning architecture with main

ing biases the learning model to learn fea- 551 (ASL sign recognition) and two auxiliary tasks (repetitive and
tures which are representative of all the motion direction)

tasks that are being learned [72].

Fig. 12 shows our multitask deep learning model with hard parameter sharing (all tasks share the initial hidden
layers followed by task specific output layers [72]). It has two auxiliary tasks (repetitive motion and motion
direction) which help in improving the performance of main task of sign recognition through attention focusing
and representation bias. Compared to conventional multitask learning where all tasks need to perform well, our

XX [S[X
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approach (inspired from [104]) cares only about the main task performing well. The auxiliary tasks help the main
task in focusing attention on relevant features as well as learning effective representations. As mmASL takes
spectrogram images as input, we choose the network design based on well established image recognition model
[42]. Alex-Net, utilizes multiple convolutional layers with increasing filter count (enables hierarchical feature
representation learning) and maxpool layer (for downsampling) in between, followed by dense and softmax
layers (for final prediction). We adopt a similar design for the proposed model with convolutional layers for
learning hierarchical feature representations, which is followed by dense layer shared by all the tasks and task
specific dropout (to avoid over-fitting) and softmax layers for individual task classification. The model is intuitive,
explainable (in terms of what it learns) and scalable (extended for more signs with the addition of more parallel
tasks).

We use cross validation to choose the appropriate hyperparameters (parameters which are chosen -in designing
the network- and not learned) for the model. The different hyperparameters we validate are the number of
convolutional layers, number of dense layers, and dropout rate. For cross validation, we use data collected from 7
users for all the 50 gestures, with 75% of data for training and the remaining for testing. We compare the variation
in accuracy when the network is trained for 400 epochs, starting from the 25" epoch we evaluate every 50"
epoch. An epoch is the time taken for the network to perform one iteration of training (feed forward, compute
the loss and back propagate the losses) on the entire training set. The networks are trained with a learning rate
of 0.0001 and batch size of 10 (we observe that smaller batch size results in faster convergence). We use Adam
optimizer [39] for optimizing the networks. Unlike traditional deep learning where we minimize a single loss
function while optimizing the network, in multitask learning we have as many loss functions as the number of
tasks. Let Ly, La1, and L, be the loss functions for the main task, auxiliary task-1 and auxiliary task-2. For each
task T, we use cross entropy over the predicted and target distributions as the loss function (L) given by

N s
-1 A
Lr = ~ ; JZ:; yij log(7ij) ()
where N is the number of samples, S is the number of ASL signs, y and ¢ are ground truth and predicted
probability, respectively. We define the combined loss function for the three tasks as

L=L,+ AlLal + /12La2 (3)

where A; and A, are importance coefficient of auxiliary task-1 and auxiliary task-2, respectively. We set A; to 0.75,
and A; to 0.5 (we observe that setting values greater than 0.5 and less than 0.75 for both 4; and A, yield similar
results). One of the challenges with adding more tasks is that the tasks themselves can compete against each
other, given that we are minimizing the combined loss function just tuning importance coefficient is not helpful.
To address this challenge, we adopt a task specific early stopping approach based on the performance of each
task [104].

Validating the hyperparmeters: We consider four dropout rates (20%, 40%, 60% and 80%), three different
dense layer configurations (1, 2 and 3 dense layers), and three different convolutional layer configurations (3,
6 and 9 convolutional layers) in our hyperparameter validation. All the dense layer configurations have 1024
hidden units in each layer. Irrespective of the number of convolutional layers chosen, we only use 3 maxpool
layers (used for down sampling) in the entire network, each with a size of 4 X 2 and a stride (amount of movement
between consecutive applications) of 2. The number of filters in each layer is chosen to be twice that of the
previous layer. We start with a filter count of 32 for 3 layer model, 16 for 6 layer model, and 8 for 9 layer model.
Drawing inspiration from [65], we use rectangular convolutional kernels of sizes 20 X 4, 10 X 4, and 5 X 2 (in the
given order), with padding such that the resulting size post convolution is the same as input and a stride of 1 (for
the convolution operation). For models with more than three layers, we use the same convolutional kernel size
for consecutive layers before the maxpool layer. The maxpool layer is always inserted between layers of different
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convolutional kernel sizes. We use Rectified Linear Units (ReLU) for activation in both convolutional and dense
layers.

Fig. 13 shows the impact of different hyperparmeters on the proposed multitask deep learning architecture.
From Fig. 13a, it is evident that low dropout rates (20% and 40%) significantly impact the performance (as the
networks over-fit), while the dropout rates greater than 50% offer comparable performance. The variation in
number of dense layers does not offer much variation in performance (refer Fig. 13b). The same is observed in
case of the convolutaional layers where additional layers (6 and 9) do not provide any significant increase in
performance compared to 3 layers (refer Fig. 13c). Based on the observed results, we configure the proposed
architecture with the following hyperparameters: the number of convolutional layers is set to 3, the number
of dense layers is set to 1 and dropout rate is set to 0.8. Fig. 13d shows the learning curve for the proposed
architecture with the chosen hyperparameters, with and without multitask learning. For the network without
multitask learning, we train without the auxiliary tasks and optimize the network only using the main task’s loss
(Lym). While the learning curve exhibits expected increase in performance with increase in data, the model with
multitask learning performs consistently better (4% more accuracy) than the model without multitask learning.
We further quantify the significance of multitask learning in the evaluation section.

Comparison for Dropout Comparison for Number of
Rates Dense Layers
90 90
S B/E/B/EHE/E] S Ak
- N = .//
S 80| S 80
5 g e 20% 5
8 40 % 8 —4a— 1 Layer
< 60 % < 2 Layers
o,
70 —H—80% 70 3 Layers
0 100 200 300 400 0 100 200 300 400
Training time (# Epochs) Training time (# Epochs)
(a) (b)
: Learning curve for mmASL with and
Coggﬁcgﬁﬂig%gl\‘t’m‘f; of without Multitask Learning
g 0| GEEHECY < e
é 80 o §75 L
2 g
5 5
g 60 —6— 3 Layers 8
< 6 Layers 50 With Multitask ——
—5— 9layers Without Multitask —4—
0 100 200 300 400 0 20 40 60 80 100
Training time (# Epochs) Data used for training (%)
(©) (d)

Fig. 13. (a-c) Evaluating mmASL on different model hyperparameters, (d) Leaning curve for mmASL with and
without multitask learning.
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Fig. 14. (a) Scenario 1: Single person scenario with randomly chosen training and testing locations (distance
anywhere from 5ft to 15ft, angle anywhere between -60° and +60°) in different rooms (b-d) Scenarios 2-5:
Multi-person scenarios with one user performing signs and the other user interfering in different ways

6 EVALUATION
6.1 Data Collection and Implementation

mmASL is evaluated using a large amount of data covering a range of practical scenarios involving multiple users
and different environments. The datasets can be divided into two parts: Wake-word dataset and ASL sign dataset.

Scenarios and Environments: Both datasets are collected for different scenarios shown in Fig. 14. They
include single-user (Scenario 1) and multi-user (intended user and an interferer as in Scenarios 2-5) scenarios.
Figure 15 shows the different environments (university classroom, lab and conference rooms) where the data
collection was performed. Note that in every scenario (even in the case of single-user), there are always at least
two additional persons in the room behind the 60 GHz system collecting the data and performing uncontrolled
movements.

Wake-word dataset: The wake-word dataset includes a total of 3700 samples, with each sample being 3
seconds long. We collect data for three users (User A, B, and C) in three different rooms: conference room
(Figure 15c¢), lab (Figure 15b), and class room (Figure 15a). The data is collected for all the five scenarios shown
in Fig 14. For Scenarios 2-5, User A performs the wake word (KNOCK or UP-DOWN), and User B performs random
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Fig. 15. Different environments where mmASL data collection was performed.
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Table 2. ASL sign recognition data set: table summarizes data for 15 subjects detailing the training and test data
for different scenarios (shown in Fig. 14) and users. Superscript in ASL signs identifies phonological properties

«_ %

where “h” is horizontal (parallel) and “v” is vertical (perpendicular) to coronal plane, and r means repetitive.

AC™, Alarm™, Bedroom™, Calendar™, Camera™, Cancel™, Direction™, Dim™, Door™,
DoorBell™, Email™¥, Event™, Food™, Game™, Good morning™, Heat™, House™, How™,
ASL Signs Kitchen™, Light'rh, List™, Lock™, Message'h, Movie™, Night'rh, Order”, Phone™,
(50) Picture™, Place™, Play’h, Rain™, Raise™, Restaurant™, Room™, Schedule™, Shopping™,
Snooze™, Snow", Stop™, Sunny’h, Temperature'rh, Time™, Today'h,Traﬂ'lc’rV, Turn down™
Turn OF ™, Turn on™, Wake-up'h, Weather™, Weekend™
Scenario 1: user at 0°
Training : 7 Users x 50 Signs x 17 Instances
User A-User G (7) | = 5950 Samples
Test : 7 Users x 50 Signs x 7 + 1 Instances
Data = 2332 Samples
Samples Cross Scenario 1: user at 0°
. User H-User K (4) | 4 Users x 17 + 2 Signs x 22 + 1 Instances
Subject
=1476 Samples
Scenario 1: user at 0°
User L-User O (4) | 4 Users x 50 Signs x 10 + 1 Instances
= 2198 Samples
Scenario-1: 7 Signs x 20 Instances
= 140 Samples,
Scenario-3: 4 Signs x 20 Instances
Users A and B = 80 Samples
Scenario-5: 3 Signs x 20 Instances
= 60 Samples
Lab (6.5m x 3m): 40% of data,
Rooms 6 different rooms | Dept. Conf. room (16m x 10m): 30% Data,
4 Univ. Conf. rooms (18m x 12m): 30% Data
Total Samples for ASL Signs (Each 6 Sec long) [ 12,236

h

5

Train/Test
with Same User

User Diversity
Test

Other Test User A
Scenarios (not
in training)

activities (e.g., drinking water, using phone, putting on coat, etc.) while walking or standing. For each sample
in any scenario, the user performs the wake-word while mmASL switches between the predetermined set of
beams and collects the data. We do not constrain the user to perform the wake-word at any particular speed,
resulting in partial wake-words depending on gesture speed and scanning time as discussed in Section 4.2. For
scenarios involving an interfering user in addition to the intended user, the interfering user performs the random
activities throughout the sample collection in an arbitrary order. We also collect samples with different beam
scanning times (1, 2, and 3 seconds) and different wake-words (KNOCK -like knocking a door twice and UP-DOWN
-like calling someone with both hands) to study the impact of scanning time and wake-word choice on mmASL’s
performance.

ASL sign dataset: Table 2 summarizes our ASL sign dataset. We select ASL signs for 50 words commonly
used in interaction with home assistants like Amazon echo [4]. The signs and their phonological properties are
shown in Table 2. We performed data collection in two phases. In Phase-1, we recruited 11 participants (8 male
and 3 female) and collected data simultaneously using mmASL, Kinect and RGB camera. The data collected using
the Kinect system includes 25 body joint coordinates in 3D over time. It also includes RGB video recordings of
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the person performing the gesture with 60 frames per second. As Kinect system has an inbuilt RGB camera and
uses the RGB video along with the depth data in determining the different body joints, we were able to collect
data for both the modalities using the same system. We do this to compare mmASL’s performance with well
established sensing modalities like Kinect and camera. More details of the accuracy comparison are provided in
Section 6.3. In Phase-II, we collected data for the same set of 50 ASL signs from 4 additional participants using
mmASL. This additional dataset is used to evaluate the performance of mmASL in terms of different training and
testing splits, diversity in user’s signing and cross-subject accuracy. In both phases, each participant stands in
front of the system (at distances varying from 10-12 feet) and performs the gesture. In Phase-I, we were only
able to collect 17+2 gestures for some users due to availability constraints. The experiments in Phase-I were
conducted in six different rooms as shown in Table 2, while the data for Phase-II was collected in a single room
(refer Figure 15c¢). We also make sure that gesture instances for each user are collected in different rooms to
validate mmASL’s robustness to change in environment. Additionally, we collect data in multi-person scenarios
(Scenarios 2 and 3 shown in Figs. 14b and 14c) to evaluate the impact of presence of an interfering user.

Model implementation: The signal processing modules are implemented on NI+SiBeam FPGA, host (Lab-
View/Windows) and a desktop computer running Linux. We implement the deep learning models on computing
cluster nodes [11] with NVIDIA Tesla K480 GPU with 1.87 TFLOPS (Tera floating point operations per second),
480 GB/s of GPU memory bandwidth, and 48 GB of memory [2]. We use Tensorflow[17] framework for developing
the deep learning models. The approximate training time for the deep learning models on the entire training set
for ASL sign recognition on a node with single GPU (11 GB memory) is approximately 2 hour. We test the model
on a desktop running Linux which approximately takes 49 seconds for 1978 samples (~ 24ms per test sample).

6.2 Wake-word Detection

We now evaluate the impact of scanning time, choice of wake-word, and the machine learning model on wake-
word detection accuracy. For choice of wake-word and scanning time evaluation, we use CNN as the model for
comparison. In choosing the scanning time, we compare 1, 2, and 3 seconds keeping in mind that more than 3
seconds of response time is likely to impact user experience. We compare three machine learning models (1)
SVM, (2) Random Forest (RF) with PCA for feature reduction for both (we choose the top 75 features which
explain 95% variance) and (3) CNN. The model utilized for wake-word recognition should make the predictions
within the chosen scanning time (< 3 seconds). To achieve the predictions efficiently, we choose a vanilla CNN
[10] with only two layers, relatively less number of filters (32 and 64 for first and second layer) and smaller
convolutional kernels (3 X 3). The vanilla CNN model is based on AlexNet [42] (convolutional layers, followed
by dense and softmax layers for prediction) and was optimized using Adam optimizer [39] with a learning rate
of 0.0001 and batch size of 10. We do not observe any significant improvement in performance when changing
the different hyperparameters of the model. We note that although wake-word detection uses vanilla CNN, the
ASL sign recognition model described in Section 5.2 has 3 layers, with filter count of 32, 64 and 128 (for each
layer) and convolutional kernel sizes varying from 5 X 2 to 20 X 8. For SVM and random forest, we perform a grid
search with 10-fold cross validation to determine the optimal parameters. We use User A’s data collected in R1
(1590 samples) as training data (for all scenarios) and test on other users and rooms. This is to verify that the
wake-word detection is robust for untrained users and environments. We also include instances without user and
single user performing non-wake word activities to evaluate false positive rate (FP rate).

Wake-word selection: We compare two wake-words KNOCK and UP-DOWN (involves moving hands up and
down twice). Both wake-words have repetitive motion and have movements which symbolize calling someone.
Fig. 16a compares the wake-word detection accuracy, we find that UP-DOWN has a higher accuracy with lower FP
rate (other activities classified as wake-word). This can be attributed to its higher motion intensity compared to
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Fig. 16. Impact of choice of wake-word and scanning time on wake-word detection accuracy

KNOCK. Given that UP-DOWN performs better as a wake-word, we only present the results for KNOCK (worse case)
due to space limitation.
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Fig. 17. Wake-word detection accuracy and false postive (FP) rate: Model trained on User A in Room 1 (UA-R1),
and tested on other rooms and users (UB-R1, UC-R1, UA-R2 and UA-R3). All wake-word samples collected at
random locations as in shown in Scenario-1 (Fig. 14a).

Impact of scanning time: Fig. 16b shows the detection accuracy for different scan times for different users.
It is evident that scanning time of 1 second (~ 167ms per sector) is certainly not sufficient as it reduces the
wake-word detection accuracy for all users. The detection accuracy is the lowest for User C because the user
performs the wake-word gestures relatively slow compared to others. Increasing the scanning time to 2 and
3 seconds improves the wake-word detection in most cases. We use 3 seconds as the scanning time for the
remaining analysis.

Machine Learning model comparison: Figs. 17a and 17b compare the three machine learning models in
terms of accuracy and FP rate. We observe that all three models perform comparably well with User A even in
rooms not included in training (R2: Lab and R3: Classroom). Random forests suffer from high FP rate compared to
SVM and CNN which is likely due to over-fitting with decision trees. In case of untrained users, both SVM and RF
suffer in terms of accuracy and FP rate compared to CNN. The better performance of CNNs is due to their ability
to learn better feature representations which generalize well for new users. Given the better performance of
CNNs, we use them in further evaluations. We note that the ability of other models to perform reasonably well in
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most of the scenarios even with a small feature space, further quantifies the importance of spatial spectrograms
in solving this problem.

Testing with untrained users and rooms: Fig. 18a shows the wake-word detection and sector determination
accuracy with the CNN model applied on spatial spectrograms. We find that mmASL can detect wake-word
with an average accuracy of 94% for different (and untrained) users and environments. It can also determine the
sector with an average accuracy of 95%. The higher false positive rate (Fig. 17b) and lower wake-word detection
accuracy in case of User C is due to him performing the wake-word slowly, resulting in a higher number of
partial gestures.

Without Interfering User With Interfering User
=z Wake-word detection ez Wake-word detection
G 2 Sector determination Q 1 Sector determination
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Fig. 18. Wake-word detection and sector determination for (a) single person (different users in different rooms),
(b) multi-person Scenarios 2-5 (interfering user present).

Impact of an interfering user: Here we evaluate Scenarios 2-5 (Fig. 14) where another user is present (in
the same room) whose activities “interfere” with wake-word detection. Fig. 18b shows the results for different
scenarios. In Scenario 2 where the interferer is standing in the same beam sector as the intended user, performing
either random activity or being still, the average accuracy of wake-word detection and sector determination are
98.2% and 100%, respectively. This highlights the little impact the interferer has in this scenario. In Scenario 3
where interfering user walks in the background, the wake-word detection accuracy reduces to 94% given that
higher motion intensity of walking and taking turns sometimes reduces how clearly wake-word signatures are
observed. In Scenario 5, where the interfering user is walking in different sector(s), the wake-word detection
accuracy is 91%. The interferer is closer to the user as well as mmASL in Scenario 5 compared to Scenario 3,
leading to a slight deterioration in performance. We note that sector determination has higher accuracy than
wake-word detection due to the fact that sector determination is a relatively simpler task (only looking for
the most probable sector given a spatial spectrogram sample) compared to wake-word detection (distinguish
wake-word from walking, standing and other random activities with a lower FP rate). Lastly, in Scenario 4 where
the interfering user is walking in between the intended user and mmASL at normal walking speed (0.95 m/s),
there are instances where the wake-word is not properly observed due to blockage of 60 GHz signal by the
interferer. Here, the wake-word detection and sector determination accuracy are 60% and 75% respectively.

In evaluating mmASL with different wake-words and scanning times, and in different environments and
scenarios, we find that user variability in terms of gesture speed can be an important factor affecting the
performance of wake-word detection. It can be addressed by incorporating more diverse user data in the training.
On the other hand, the directional nature of mmWave systems make it possible to not only detect wake-word
occurrence but also locate user at the same time. We also find that mmWave sensing systems can tolerate the
presence of other people and impact of the environment is minimal compared to other low-frequency RF sensing
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systems. mmASL is prone to blockage (Scenario 4) only when the interfering user is on the LoS path between
the transceiver and the intended user. Vision-based systems are also prone to such occlusions, often requiring
multiple cameras [63, 70] for sensing. In the case of mmWave, it is possible to exploit reflections from indoor
objects (e.g., walls) to circumvent the blockages while sensing. Use of more than one transceiver along with
sensing over reflected paths could make mmWave sensing robust against blockages. We observe that mmASL
being a digital assistant, there is a trade-off between availability and false positive rate (FPR). This means that
the wake-word detection model can be tuned either for higher availability or lower FPR. Accommodating user’s
preferences based on contemporary voice-based digital assistants can help in addressing the trade-off.

6.3 ASL Sign Recognition

Average Sign Recognition Accuracy Across Multiple Individual User Accuracy for Training &
Rooms For training and Testing on Same Users Testing on Same Users
S
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Fig. 19. (a) Average sign recognition accuracy (b) Individual user accuracy

As shown in Table 2, we perform training and testing with the same subset of users, different subset of users
(cross-subject), include additional test scenarios with an interfering user, and study the impact of adding more
users (and data) on mmASL. We train two sign recognition models using data from 7 users (Users A-User G).
These models are referred as mmASL-Deep (deep without multi-task learning) and mmASL-MTL (deep with 2
auxiliary tasks - repetitive and motion direction). In addition to the deep learning models, we also evaluate using
random forests (RF) and support vector machine (SVM) models. For both the models, we use principal component
analysis (PCA) for dimensionality reduction of the spectrogram images and choose the top components explaining
95% variance as features. The parameters for both the models are determined using grid search with 10 fold cross
validation. We compare the performance of these models (deep learning and non-deep learning) with Kinect and
RGB camera. For the Kinect data, we use a well-studied learning model proposed in [31, 76, 105] for comparison.
The model uses LSTM (Long Short-Term Memory) based hierarchical recurrent neural network with 4 joints data
(left wrist, right wrist, elbow left, elbow right) and is shown to achieve superior performance in skeleton based
gesture recognition. For camera data, we first perform frame-level pose estimation on the video using OpenPose
[25], which results in 48 joint location per frame (6 for the wrist, elbow, and shoulder for both the hands, and
remaining 42 are palm and finger level joints). Because of its ability to perform fine-grained pose estimation from
images, OpenPose has been previously utilized for ASL sign recognition from continuous videos [29, 40, 98]. We
adopt the LSTM models proposed in [40, 98]. The model takes 48 joint coordinates (obtained from OpenPose) as
input at each time step and predicts the corresponding ASL sign (with respect to the input) in the final time step.
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Recognition accuracy with same users in different rooms: In case of training and testing with the same
user (75%-25% training-testing split), to test for the environment independence we chose the test samples with
the following constraint. Out of the test data chosen for each user, at least 80% of the test samples were chosen
from a room different than the room where the training instances were collected. We are able to do this as we
collected instances of each gesture in different rooms as explained in Sec 6.1.

Figs. 19a and 19b show that mmASL-MTL performs marginally better (86.7%) than mmASL-Deep (84.5%).
This is expected given that the true advantage of multi-task learning comes with data from untrained users and
scenarios. We find that mmASL is robust to change in environment and it is possible to apply model trained in one
room to test in other rooms and achieve a reasonably high accuracy. This can be attributed to the directionality
of 60 GHz transceivers which reduce the impact of multi-path while capturing motion signatures for signs.
Compared to the two models, Kinect LSTM model and OpenPose RGB model achieve an accuracy of 96% and
97.27% respectively. This shows that mmASL can achieve a reasonable performance in sign recognition compared
to well-studied Kinect and camera based systems. We also observe that signs which have similar motion (NIGHT
and TIME both involve moving the right hand on left hand twice) are often misclassified. However, we believe
that if a relevant phonological property can be identified for distinguishing minor differences between such
signs, it is possible to improve the classification performance. In contrast to the deep learning models, random
forests (RF) and SVM models achieve relatively lower accuracy, 58% and 48% respectively. This is expected given
that deep learning models which can learn feature representations from the data perform better compared to
traditional machine learning models requiring feature engineering.

Testing with untrained users (cross-subject): We now take the models developed with 7 users and test
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Fig. 20. (a) Average user accuracy and (b) Individual user accuracy for untrained users.

them on 4 additional users added in Phase-IL. Fig. 20a shows the average accuracy and Fig. 20b shows the individual
user accuracy for different models. As we can observe, Kinect and RGB camera based models offer comparable
performance with 76.3% and 77.8% accuracy respectively. Compared to the Kinect-LSTM, RGB camera based
model (OpenPose-RGB) provides consistently better performance across all the users (refer Figure 20b), because of
the availability of palm and finger joint details. Of the two mmASL models, mmASL-MTL performs significantly
better, establishing the significance of the added auxiliary tasks. Specifically, the gap in average accuracy between
mmASL and Kinect model reduces from 16.9% to 2.6% as we move from mmASL-Deep to mmASL-MTL. This
further validates the need and effectiveness of multitask learning in mmASL. Also, mmASL-MTL consistently
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outperforms mmASL-Deep for every untrained user. Both SVM and random forests suffer a decline in performance
(in contrast to training and testing on the same user). Compared to SVM, random forests perform poorly which
could be the effect of overfitting inherent to the model.

Average Sign Recognition Accuracy Individual User Accuracy for Untrained Users
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Fig. 21. Impact of including additional user data on mmASL’s performance. a) Average user accuracy for same
and untrained users b) Individual user accuracy for untrained users

Impact of additional users: We observe that similar to RGB camera and Kinect, the performance of mmASL
reduces in the cross-subject scenario. This could mean that the trained model has high variance i.e., variation in
the training data has an impact on the performance. A common way to address this issue is to add more (and
diverse) data in the training set. To test this hypothesis, we use the data collected for 4 additional users (User
L-User O in Phase-II, refer Table 2). Here, we add 75% of their data to the training set of 7 users (User A-User
G), remaining is added to the test set. We train the four models (mmASL-MTL, mmASL-Deep, random forests,
and SVM) with the new training data and test the models on (i) data from the same 11 users and (ii) data from 4
untrained users (cross-subject). Figs. 21a and 21b show the performance of the trained models when tested on the
same users (User A-User G and User L-User O) and untrained users (User H-User K), respectively.

When tested on the same 11 users, all the four models provide similar results as trained on 7 users, confirming
that mmASL can scale for more users without any significant decline in performance. The evidence for the
high variance of the model is observed when tested on untrained users where all the four models have gained
significant benefit from the additional data. Specifically, the average accuracy for random forests and SVM has
increased by 11% and 9% respectively. Of the deep learning models, mmASL-Deep has gained an increase of 16%
and mmASL-MTL has gained an increase of 9% in the average accuracy, when compared to models trained with 7
users’ data. Although the accuracy gap between mmASL-MTL and mmASL-Deep reduces with additional data, it
is worth noting that the multitask learning is still needed in order for mmASL to scale for more number of signs.

Impact of user position and interfering user: As shown in Table 2, we consider additional test scenarios
(Scenarios 1 (random locations), 2 and 3). Fig. 22a shows the performance of mmASL in all the scenarios. For
Scenario 1, mmASL achieves an average accuracy of 78% for randomly chosen user locations in a room. With
change in user location (distance and angle) relative to the Tx and Rx, the observed doppler shift and reflected
power also changes. mmASL-MTL is resilient to such changes, while mmASL-Deep suffers drop in recognition
accuracy. In contrast to the deep learning models, random forests and SVM models perform poorly with accuracy
of 27% and 7% respectively. When an interferer is walking in the background (Scenario 3), the sign recognition
accuracy is 78%. With distance separation between the user and the interferer and the blockage property of 60
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Fig. 22. (a) Average ASL sign recognition accuracy at random user locations (Rand) and with presence of
interferer in the same beam (Scen-2) and an interfering user walking behind (Scen-3) as shown in Fig. 14 (b)
Impact of singal processing on mmASL’s performance

GHz signals, the interferer does not have significant impact on recognition accuracy. On the other hand, when
the interfering user is in the same beam as the intended user (Scenario 2), there is a significant drop in accuracy.
This is expected given that the reflections capture both sign and interfering motions. We observe similar drop in
performance between Scenario 3 and Scenario 2 for random forests. While SVM performs better (still less than
deep learning models) in the Scenario 2, there is a drop in accuracy in Scenario 3. The decline in performance in
both these models can be attributed to the testing scenarios being completely different from the training data
scenario. We note that because of directionality and use of receive beamforming, presence of interferer in other
beams (Scenario 5) does not have a significant impact on sign recognition. This is different from wake-word
detection with an interferer being present in other beams as wake-word detection requires continuous scanning
of all sectors.

Impact of Signal Processing: To understand the significance of signal processing which we established
in Section 3.2, we train two instances of mmASL-MTL model - one is trained using data processed with the
complete signal processing pipeline, while the other is trained using data without signal processing (specifically
no log normalization). Both the models were optimized using Adam optimizer [39] with a learning rate of 0.0001
and batch size of 10 for 400 epochs (epoch — time required to perform training on the complete training set
once). Fig. 22b shows the performance of these identical models when trained on data with and without signal
processing. We compare the accuracy of the models over multiple epochs as they are trained for 400 epochs. It is
clear from the figure that signal processing is crucial for mmASL’s performance and the model utilizing data with
signal processing consistently performs better (15-20% increase in accuracy) than model utilizing data without
signal processing.

After extensive evaluation of mmASL for ASL sign recognition under multiple scenarios, we make the following
observations. First, mmASL offers comparable performance with state of the art systems like Kinect and camera.
This further validates that it is indeed feasible to use 60 GHz mmWave signals for gesture and activity recognition
even at larger distances (compared to short-range solutions such as [48]). Second, we find that similar to wake-
word detection, ASL recognition is also tolerant to the presence of other people and change of environment. In
contrast to wake-word detection, the presence of another user in the same beam can deteriorate ASL recognition
accuracy. We note that the difference in performance can be attributed to the difference in complexity between the
two problems (wake-word recognition involves a binary classification while ASL sign recognition is a multiclass
-50 classes— classification problem). Also, signal processing is a significant contributor to the performance of
mmASL, and simple normalization techniques (log normalization) can be helpful in defending against user
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diversity (variation in gesture speed and intensity among different users). mmASL shows that learning on
spectrogram representation can be effective and can provide high accuracy. That combined with multi-task
learning can be key to scaling mmASL for a large number of ASL signs. It is worth noting that capturing more
spatial information such as precise distance and angle of body parts through the mmWave radar can further
enhance the recognition accuracy.

7 DISCUSSION

We now discuss various aspects of mmASL that can be improved through further investigation:

60 GHz blockage: As observed in the evaluation, when the intended user is blocked by an interfering user,
wake-word recognition accuracy decreases. Such occlusions are also a problem in vision-based systems. Given
that 60 GHz blockage has been well-studied recently in networking [34, 82, 94, 101], use of reflections (second
order reflections are likely to be weak) or multiple transmitters can be exploited to improve the performance.

Detecting handshape: One reason of classification error in mmASL is signs that have similar hand movements
but different handshape (e.g., NIGHT and TIME) cannot be accurately distinguished. While mmASL cannot extract
handshape, it would be interesting to augment mmASL with synthetic aperture radar based imaging to estimate
handshapes and improve the classification performance.

Orientation: We note that ASL being a visual language, speakers are accustomed to facing the listener (home
assistant device) during conversation. In our experiments, the users were facing the system with +10° variation
in orientation. For such variations, mmASL recognition performance was observed to be robust. However,
consideration of other orientations and their impact on Doppler spread should be studied in more details.

Codebook and Interference: mmASL adopts the codebook designed for communication, which utilizes
relatively wider beams (with a 3-dB beamwidth of 25° to 30° for Tx and 30° to 35° for Rx) to provide the needed
coverage. Instead of using existing codebooks, designing codebooks specifically for gesture sensing (e.g., increasing
recognition range with narrower beams) might improve mmASL’s performance. In addition, the presence of
other mmWave based systems (e.g., 802.11ad WLANS) can interfere with mmASL. Although with directionality,
such interference is likely to be less and existing interference mitigation techniques (e.g., use of non-interfering
channels) can be employed to address the problem.

Commodity devices: mmASL is designed using access to raw I/Q samples from the 60 GHz software radio
system. Current 60 GHz 802.11ad commodity devices do not allow access to such information (in user-space,
similar to 2.4/5 GHz WiFi CSI) from firmware/driver. Upon availability of such information, underlying techniques
of mmASL can be adapted for sign recognition using 60 GHz commodity devices.

Beyond manual signs: In this work, we showed mmASL can detect wake-words and recognize 50 signs.
While this is significant, mmASL should scale from recognizing individual signs to contextual non-manual
grammar markers to provide the true context to sentences. The non-manual grammar markers include head
and torso movements which can be detected through Doppler spreads but requires further extensions to our
proposed models.

8 CONCLUSIONS

In this work, we proposed mmASL, a 60GHz mmWave based home assistant for DHH users. We utilized beam
scanning to generate spatial spectrograms, which can be used in detecting wake-words and choosing the beam
sector. We established that variation in Doppler spread can be captured in spectrograms to recognize ASL signs.
We proposed a multi-task deep learning architecture, which can learn ASL domain specific features from the
spectrograms. We compared the performance of mmASL with Kinect and RGB camera and find that mmASL can
achieve accurate sign recognition for a variety of practical scenarios including presence of other interfering user,
change of environment and different user positions.
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