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Machine learning (ML) has great potential to drive scientific discovery by harvesting data from images of herbarium specimens—preserved plant
material curated in natural history collections—but ML techniques have only recently been applied to this rich resource. ML has particularly
strong prospects for the study of plant phenological events such as growth and reproduction. As a major indicator of climate change, driver of
ecological processes, and critical determinant of plant fitness, plant phenology is an important frontier for the application of ML techniques for
science and society. In the present article, we describe a generalized, modular ML workflow for extracting phenological data from images of
herbarium specimens, and we discuss the advantages, limitations, and potential future improvements of this workflow. Strategic research and
investment in specimen-based ML methods, along with the aggregation of herbarium specimen data, may give rise to a better understanding

of life on Earth.
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easonal variation in the timing of life cycle
(phenological) events (e.g., leaf-out, flowering, and
fruiting) critically affects plant ecology and evolution
through interactions between plants and climate (Cleland
et al. 2007), herbivores (Meineke et al. 2014), mutualists
(Diamond et al. 2014), and inter- and intraspecific competi-
tors (Heberling et al. 2019). Changes in the timing of plant
phenological events can alter species interactions, such as
those between plants and their pollinators (Burkle et al.
2013) and even disrupt interactions at higher trophic levels,
such as those between bears and salmon (Deacy et al. 2017).
The significance and complexity of plant phenology on
local and global scales lead to many compelling questions
for science and society (Ellwood et al. 2019), especially as
anthropogenic changes in habitat, biodiversity, and climate
alter phenological events (Parmesan and Yohe 2003).
Wide-ranging and complex phenological responses to
climate change have been discovered in many taxa across
the globe (Willis et al. 2017a), but our understanding of the
mechanisms driving these complicated phenomena and their
subsequent effects are incomplete. Critical questions remain
about the effects and interactions of climate, traits, geogra-
phy, and phylogeny on the phenological sensitivities of plants

and how these effects propagate throughout ecosystems
(box 1). These factors could play key roles in understand-
ing, predicting, and potentially ameliorating environmental
changes that threaten biodiversity and humankind.

The variable and context-dependent nature of plant phe-
nology renders its study particularly challenging because
long-term data sets are necessary to detect the patterns,
causes, and consequences of phenological change for a given
taxon in a given location (Wolkovich et al. 2012). Historical
phenological observations (Primack and Miller-Rushing
2012), agricultural records (e.g., crop harvest records;
Ellwood et al. 2014), long-term field stations (Taylor et al.
2018), and, more recently, citizen science networks (Bison
et al. 2018) have proven vital sources of phenological data.
However, none of these resources provides the spatio-
temporal coverage available from herbarium specimens.
Herbarium specimens have been archived for hundreds of
years from across the globe and therefore represent a rich
source of phenological data (Zalamea et al. 2011), especially
as specimen data (e.g., date, species, and locality) and speci-
men images become digitally available through large-scale
digitization projects (Nelson and Ellis 2018). Specimen-
based studies have greatly informed our understanding of

BioScience XX: 1-11. © The Author(s) 2020. Published by Oxford University Press on behalf of the American Institute of Biological Sciences. This is an
Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

doi:10.1093/biosci/biaa044

https://academic.oup.com/bioscience

XXXX XXXX / Vol. XX No. X « BioScience 1

020z 2unp Gz uo 1senb Aq 1.2/GZ8S/y#0EEIq/19S0I0/E60 "0 L/I0P/ADBSHE-5]0ILE/80USISO0Iq/W00"dNO"OIWSPEdE//:SARY WO} POPEojUMOd



Box 1. Example questions to advance the study of plant phenology using machine learning approaches.

o How is morphological variation related to phenology?

o How do global events affect regional phenology?

available)?

vary with climate change?

pests, birds, and mammals?

Questions about ML methodology

specimens.

needed to conduct phenological studies?

or neglected floras)?

Phenological research questions well suited for ML-based analyses

The following list contains ecoevolutionary questions that require large sample sizes or, potentially, fine-scale data collection, rendering
manual collection of phenological data from herbarium specimens infeasible.

o Within or across species, do male and female flowers or individuals have different phenological responses to climate variables?

o Do closely related species differ in their phenological sensitivity to climate? If so, are such differences related to differences between
taxa in habitat, climatic tolerance, geographic distribution, mean flowering time, or nonphenological traits?

o Do species with unisexual flowers differ in their phenological responsiveness from species with cosexual (i.e., perfect) flowers?

o How can certain phenophases be quantified in a way that is useful for predicting seasonal allergens, e.g., maturation of male catkins?

o What and where are phenological dark data (i.e., taxonomic, geographic, or other groups for which little phenological data are

o How do climate and other factors affect how many flowers in an inflorescence become fruits (i.e., reproductive output)?
o How do climate and other factors affect the sizes and shapes of reproductive structures?

o How does the timing of phenological events and species-specific cues vary with latitude and across the globe? Do these interactions

o How do nonnative species differ from native species with respect to phenological or distributional responses to climate change?
o How does nonangiosperm phenology (e.g., pollen release dates of gymnosperms) respond to climate and other factors?

o How do changes in plant phenology affect interactions between plants and other communities or trophic levels, including insects,

This list consists of questions relating to the methodology and limitations of machine learning for assessing phenology from herbarium

o Can ML algorithms reliably recognize plant reproductive structures?
o Can ML methods appropriately convey the level of confidence or uncertainty associated with any given classification or count?

o How many training images are necessary to train phenological data sets, and does this number exceed the number of specimens

o How does a computer “decide” how to classify specimens, and is the decision process generalizable?
o What are systematic errors from ML that could propagate and impact studies that use automatically annotated data?
o At which taxonomic scales and physical dimensions can ML contribute to phenological studies?

o How can the robustness of phenological annotations with ML approaches be ensured in data-deficient contexts (e.g., rare species

phenological change beyond what was previously possible
(Willis et al. 2017a).

To date, most phenological studies using herbarium
specimens have relied on manual annotation (see table 1
for a glossary of italicized terms) of specimens to record
phenological traits (Willis et al. 2017a). Herbarium staff
might record the presence or absence of reproductive
structures while transcribing specimen data, or, more com-
monly, researchers classify phenological traits from physical
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specimens or specimen images for specific projects. Such
methods are time and labor intensive, and the accuracy and
precision of the resulting phenological annotations depend
on the botanical expertise and consistency of the scorer,
as well as on how easily the relevant anatomical structures
can be identified on dried, pressed plants. To study phenol-
ogy on a global scale, many thousands—even millions—of
specimens must be annotated, but manual annotation at
this scale is not feasible. Machine learning (ML) approaches
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Table 1. Glossary of machine learning (ML) terms discussed in this article.

Term

Definition

Annotation

Bounding box

Convolutional neural network (CNN)

Cyberinfrastructure

Deep learning

Domain adaptation

Filter

Graphics processing unit (GPU)

Instance segmentation

Machine learning (ML)

Data added to a specimen record that is ancillary to the original collection data; annotations include, for
example, phenological status, taxonomic identification, and georeferenced coordinates of a specimen; or
the process of adding such ancillary data to a specimen record

(Often rectangular) area on a two-dimensional image that contains all points belonging to a given object;
the sides of this area are defined by the extreme edges of the object

Type of neural network especially suited for image analysis that automatically learns relevant filters;
other approaches use handcrafted filters and handcrafted feature extractors

Computational environment and personnel resources which allow a combination of several tasks,
including data acquisition, storage, management, mining, visualization, and analysis

Subset of machine learning techniques consisting of neural network models with a high number of
successive layers; such models have been especially successful in tackling image, sound, and text tasks

Field of machine learning in which a model trained on a certain set of training data is co-opted for a
different, but somewhat related, target data set

In image analysis, a specific type of local operation, i.e., a convolution, applied on the neighborhood of
a pixel, designed to remove unwanted features from the image while preserving relevant information to
perform a task, e.g., edge detectors for classification purposes

Hardware originally designed to accelerate computer graphics operations before being used for other
kinds of computations; used heavily in deep learning computations

In image analysis, the task of finding the objects present in an image and their segmentation mask

Wide class of methods dedicated to the problem of training a computer to automatically learn to make

Metadata
Object detection
Plant phenology ontology (PPO)

Prediction

Segmentation mask
and only them

Training data or data set

Transfer learning

predictions about novel data using annotated samples from a training data set
Data used to describe or augment existing data
In image analysis, the task of finding the objects present in an image and their bounding box

The structured vocabulary for describing plant phenological observations that was developed to
allow harmonization of data across disparate phenological data sets, including those from herbarium
specimens (Stucky et al. 2018, Brenskelle et al. 2019)

The output of a learning model, which is used to predict the most likely value or a mask for a new image

Defined path around an object containing exactly all the pixels of an image corresponding to that object,

Subset of the target data set to be annotated that is used to train ML algorithms according to the
annotation schema; the training data set must already be annotated and should ideally contain a
representative sample of the visual variation in the target data set

Using knowledge gained from one domain of machine learning to improve another domain

have the potential to overcome this challenge by automating
phenological data acquisition. ML approaches have empow-
ered advances in many areas of science and technology, with
applications from self-driving cars (Wulff et al. 2018) to bio-
medical imaging (Ronneberger et al. 2015). Plant phenology,
one of the best-known indicators of climate change, presents
a fast-growing frontier for the deployment of these powerful
methods.

ML algorithms build statistical models from input data
(i.e., training data), and these models can then be applied
to make predictions on novel data (LeCun et al. 2015). For
image annotation tasks, for example, ML algorithms create
statistical models (“learn”) from a training data set of images
that have already been annotated. Then, the algorithms use
these models to predict annotations for images that have
not been annotated. ML has been successfully applied to
many biological studies requiring classification of visual
information, including the recognition and classification of
animals in camera trap images (Norouzzadeh et al. 2018)
and the automated species identification of herbarium speci-
mens (e.g., Unger et al. 2016, Carranza-Rojas et al. 2017).

https://academic.oup.com/bioscience

Successful application of ML techniques to phenological
annotation tasks has only recently been demonstrated for
herbarium specimen images (Lorieul et al. 2019). In the
present article, we describe a generalized ML workflow for
phenological annotation of plant specimen images, and we
discuss the advantages, limitations, and potential future
improvements of this workflow. Furthermore, we explore
how technological advances in ML will facilitate the col-
lection of additional phenological and other trait data from
images, enhancing ecoevolutionary research and biodiver-
sity education.

Machine learning with digitized herbarium specimens
Figure 1 presents a workflow of five components for pheno-
logical annotation of herbarium specimen images (storage,
generating training data, machine learning, deployment,
and testing and analysis; figure 1), further described below.
A detailed discussion of ML methodology can be found in
Lorieul and colleagues (2019). In the present article, we use
the term annotation to describe the general process of add-
ing ancillary data to a specimen record. Although we focus
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Figure 1. Key components of a generalized, modular machine learning (ML) workflow applied to the annotation of herbarium
specimen images for phenological traits. Specimen images are retrieved from storage, and a representative subset of the focal
images are used to generate a set of training data. The training data, which have been manually annotated according to the
desired phenological scoring protocol (e.g., flowers present or absent), are used as input data for ML. The resulting statistical
model is then deployed to predict phenological annotations for previously unannotated specimens. The accuracy and
precision of the ML model(s) can be tested using a subset of manually annotated data to compare predicted annotations to
those recorded by expert observers. Newly annotated specimens, combined with specimen label data, georeferenced localities,
and other data sets (e.g., historical climate data), can then be used in an array of phenological research.

on phenological annotation—recording of the phenological
status of a specimen—many other types of annotation exist,
such as georeferencing, taxonomic identification, and scor-
ing of nonphenological traits.

Core specimen data, such as collection date, scientific
name, collector name, and textual locality information, are
often captured and mobilized as part of large-scale digitiza-
tion initiatives (e.g., more than 120 million specimen records
contain this information in iDigBio; www.idigbio.org).
Therefore, we do not describe the use of ML for harvesting
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these data. We focus in the present article on the application
of ML to automatically identify and record the phenological
status of specimen images, ideally those images for which
these core specimen data are already available.

Storage. Input and output data for ML approaches consist of
digital images of specimens, associated core specimen data
(e.g., specimen identifier, collection date, etc.), and pheno-
logical annotations. High-resolution images (e.g., up to tens
of millions of pixels per specimen) can represent a very large
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volume of data (4-10 megabytes per image), and their stor-
age therefore requires software and hardware infrastructure
designed for large amounts of data.

Generating training data. The images used to “train” ML algo-
rithms must first be manually annotated with phenological
information according to the desired protocol. For example,
if a researcher is interested only in whether a specimen has
flowers, each specimen image would be annotated as flow-
ers “present” or “absent” A model based on these training
data will classify specimens as either of these two classes.
If the researcher wishes to detect individual reproductive
structures on a specimen, for example, in order to count
them or estimate their relative proportions, these could be
delineated by bounding boxes, which indicate the general
location of structures, or segmentation masks, which des-
ignate all pixels belonging to a reproductive structure. To
produce these more complex annotations, specific annota-
tion tools are usually required (e.g., CocoAnnotator, https://
annotator.justinbrooks.ca; LabelMe, http://labelme.csail. mit.
edu/Release3.0; ImageTagger, https://github.com/bit-bots/
imagetagger). Regardless of the type of phenological annota-
tion being created, it is important to recognize that ML is a
form of statistical inference that finds patterns in the train-
ing data, and predictions will therefore reflect any biases in
those data. Therefore, the training data set should include
a representative sample of taxon (or taxa) and phenologi-
cal attributes or categories that should appear in the data
set on which the trained model will be applied. A lack of
visual diversity in the manual annotations will result in the
same lack of diversity in the predictions. Similarly, noisy,
imprecise, or incomplete annotations may result in noisy,
imprecise, or incomplete predictions. A subset of the train-
ing data should also be reserved for model validation (see
the “Testing and analysis” section).

The number of specimens necessary to train a model
depends on the complexity of the classification task, the
number and morphological diversity of taxa included in the
data set, and whether the model will be trained iteratively.
Initial models with a small set of training data (at least 500
specimens) can be used to annotate a much larger set of
data, and the ML-generated annotations can be revised and
enriched through additional manual annotation, and then
used to train the model further (see Affouard et al. 2017). As
the annotated training data set grows, models will improve
and become more useful for identifying edge cases (e.g.,
specimens on which phenological attributes are partially
obscured, taxa that are represented by only a few specimens)
that might be missing in a small training data set, as well as
phenological phases that are morphologically highly variable
or represented by very small reproductive structures.

Machine learning and deep learning. For image data, the most
effective machine learning techniques are deep learning
neural networks, or more precisely, convolutional neural
networks (CNN), or extensions such as CNNs for object

https://academic.oup.com/bioscience
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detection (e.g., R-CNN) or instance segmentation (e.g., Mask-
R-CNN). Like any neural network, a CNN is a composition
of functions that receive an image as input and provide
predictions as output (e.g., a phenological score of the entire
specimen or a set of bounding boxes around reproductive
structures). The term convolutional refers to the fact that for
each input pixel, the functions return the result of a local
computation (a filter) based on the pixel and its neighboring
pixels. The number of neighboring pixels (i.e., filter size)
is set as a parameter of the model. Each filter can be inter-
preted as a detector of a specific, local visual pattern.

CNNs consist of multiple layers of processing. The first
layers of a CNN detect low-level patterns (color changes,
angles, textures, etc.), whereas the last layers recognize
complex visual patterns (such as reproductive structures
on a specimen) by combining the patterns found in previ-
ous layers. The main objective of the training phase of a
CNN model is to estimate the parameters of these filters
on the basis of the training data. This is done by iteratively
minimizing a loss function measuring the error between the
predictions and the expected manual annotations.

As the number of parameters to be estimated can be in
the millions, this training phase consumes significant com-
putational resources, because the training process requires
efficient storage to handle frequent access to the training set
and efficient graphics processing units (GPUs) to reduce the
training time. The type of model may differ depending on
the task, but the duration of the training phase is strongly
related to the GPU number and characteristics. The greater
the availability of computational resources, the more train-
ing a model can undergo, and the better the final model
architecture and parameter selection can be.

Available online tools can enable inexperienced users
to train ML models, but these tools are limited to simple
image classification tasks and low data volumes. Therefore,
at present, developing accurate models is often achieved
by involving a data scientist for several days, weeks, or
months depending on the difficulty of the task. The software
frameworks most commonly used to develop CNNs are
Pytorch (https://pytorch.org), TensorFlow (www.tensorflow.
org), CAFFE (https://caffe.berkeleyvision.org), and MXNET
(https://mxnet.incubator.apache.org). The framework that
is best for a given task will depend on a variety of factors,
including the availability of preexisting models or code for
the targeted task, the hardware used, or simply the data sci-
entist’s skills with respect to a particular framework.

Deployment. Once an ML model is trained, it can be deployed
to predict phenological annotations for previously unan-
notated specimens. This process could be implemented in
several ways, including via a web service available to other
applications that returns the model output for any submitted
image, a standalone program, or an end-user graphical user
interface (GUI) web application. Inference is usually a less
computationally intensive task than training and therefore
requires fewer resources. Models can be publicly shared
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through software repositories hosted on sites such as GitHub
(https://github.com), GitLab (https://gitlab.com), or dedi-
cated platforms such as Model Zoo (https://modelzoo.co).
Such sharing encourages cross-model improvement based
on transfer learning (Bengio 2012) or domain adaptation
techniques (Long et al. 2016).

Testing and analysis. Once deployed, a model can be evalu-
ated through qualitative judgments or quantitative mea-
surements. Qualitative judgments are typically performed
through a GUI, allowing the researcher to visualize and
assess the automated predictions of the model on this test
data set. For more robust measures of model accuracy, quan-
titative measurements of the quality of the predictions can
be readily calculated and visualized (see Lorieul et al. 2019).
This step cannot be performed on the same data used for
training the model; a model can perfectly fit the training data
and not fit new data of the same type. Therefore, some of the
manually annotated data (e.g., 20%-30%) must be reserved
and not used for training purposes (Carranza-Rojas et al.
2017). As with developing appropriate training data, a deep
understanding of the data set and the desired end product
is necessary. The goals are to determine whether the model
meets the needs of the researcher and to identify the neces-
sary progress points (e.g., new annotations on a particular
taxonomic group or phenological stage).

Advantages of machine learning for phenology

The main advantage of using ML for phenological annota-
tion is MLs ability to score very large volumes of data in a
short amount of time. Once an algorithm has been trained,
it can score tens to thousands of specimens per minute,
depending on the task, with a single standard GPU. For
example, during summer 2019, more than 490,000 field plant
images were analyzed for species identification on the public
Pl@ntNet platform in a single day (Affouard et al. 2017).
Model processing can be further accelerated by using many
GPUs in parallel. Another key advantage is that the accu-
racy of ML annotations can be very high. The deep learning
method evaluated in Lorieul and colleagues (2019) correctly
detected fertile specimens with an accuracy of 96.3%. Such
a success rate is quite high, especially considering that one
coauthor of the present article obtained an accuracy of only
87.8% at the same task. Accuracy was slightly decreased for
finer-scale phenological annotations (84.3% for the detec-
tion of flowers and 80.5% for the detection of fruits) or for
determining specific phenophases of specimens, but again,
the model’s accuracy was slightly better than the accuracy of
a human expert.

With the large volumes of phenological data produced
from ML methods, it will be possible to create phenocli-
matic and other phenological models at unprecedented
scales of time, space, and phylogenetic diversity. Leveraging
a large number of specimens for phenological models has
already helped identify influential climate variables that
may have been overlooked in previous studies (Park and
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Mazer 2018). Large sample sizes and potentially finer scales
of phenological annotation could further elucidate dif-
ferences in phenological trends among taxa and between
regions. Phenological annotation via ML could also be used
to address current spatial biases in phenological studies, for
example, through applications using herbarium specimens
from tropical and subtropical climates, where phenological
trends are less well documented (Willis et al. 2017a).

Limitations of machine learning applications

The workflow described above is not without limitations;
there are technological, social, and logistical challenges that
must be overcome for efficient application of ML in pheno-
logical research. Herbarium specimens may themselves limit
their utility for phenological scoring, because they differ in
quality and quantity (figure 2; for a review, see Willis et al.
2017a). The morphological structures necessary to measure
a given phenological trait may be damaged or lost, stored
in opaque fragment packets, or obscured by other plant
material on the sheet. Some plant taxa have phenological
stages that are impossible to determine without dissecting
the physical specimen. For example, the fruits of sedges
are often indistinguishable from female flowers, and fig
flowers are tightly enclosed within vegetative receptacles.
Furthermore, herbarium specimens often consist of only a
portion of a plant, and therefore the reproductive status of
the entire plant may not be readily discernible except via
the label or field notes, when they exist. In each of these
cases, ML algorithms, no matter how accurate at recogniz-
ing reproductive structures on herbarium specimen images,
cannot fully determine the phenological status of a plant
from a specimen.

Beyond these general issues, there are additional consid-
erations for applying ML to herbarium specimen images.
Specimens contain a significant amount of nonplant mate-
rial such as herbarium stamps or logos, labels, mounting
tape, color standard plates, rulers, or evidence of past
pest-control measures that may bias certain ML classifica-
tion tasks (figure 2). Because ML techniques use all visual
data available, the algorithms could reflect differences in
preparation techniques rather than in the presence or num-
bers of particular plant structures. Finally, when preparing
training data sets, users of herbarium data must be aware
of duplicate specimens—the same species collected at the
same time in the same place—and of possible misidentified
specimens.

Future solutions for developing optimal machine
learning workflows

Perhaps the greatest limitation of the ML workflow is the
requirement for adequate training data sets. Training data
sets need not be large, but a visually diverse set of specimen
images of focal taxa must be available. Although several
million herbarium specimens have been digitized and mobi-
lized online (currently nearly 30 million images in iDigBio),
most of the 375 million specimens in herbarium collections
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Figure 2. Examples of herbarium specimens displaying visual heterogeneity (e.g., in morphology, labels, and color
standards) and challenges related to the morphology and position of reproductive structures. The specimen on the left
shows large, isolated reproductive structures that would likely be annotated successfully by ML algorithms. The specimen
in the center with small flowers and numerous overlapping fruits would be much more difficult for ML algorithms to parse.
The specimen on the right would be very difficult for ML algorithms to delineate or count because of the unclear distinction
between flowers and buds. Examples of segmentation masks (see the glossary in box 1) created to delineate reproductive
structures are shown by the brightly colored areas in the left and center specimen images.

worldwide are not digitized. Continued digitization of her-
barium specimens is needed, particularly of phylogenetically
and morphologically diverse collections that can reflect
visual variation among specimens and therefore enable the
creation of more versatile training data sets.

As more specimen images become available, they must
also be accurately annotated according to the desired phe-
nological classification protocol. Citizen science and crowd-
sourcing can accelerate the image annotation process, as
has been demonstrated by platforms such as Zooniverse
(www.zooniverse.org), From the Page (https://fromthepage.
com), Pl@ntNet (https://plantnet.org/en), and CrowdCurio
(Willis et al. 2017b). Engaging students in this process as a
learning experience could be a dual-benefit solution (see the
“Extending machine learning” section). Mass annotation by
volunteers with heterogeneous skills presents its own chal-
lenges, including the need to attract and retain volunteer
interest and ensure data quality, but it offers the additional
benefits of community engagement and education.

Regardless of how training data sets are created, both
input and output data of ML analyses must be accessible,
reproducible, and reusable. ML metadata, such as the type of
model used to create the prediction, the contact information
of the model creator, uncertainty regarding phenological
predictions, and reference to the training data set, must be
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carefully documented so that downstream users can repro-
duce and assess the utility of the scorings for their specific
research purposes. Furthermore, the potentially complex
outputs of ML approaches (e.g., coordinates of reproduc-
tive structures on an image) must be stored in a way that is
interoperable with alternative specimen classification meth-
ods (e.g., manual annotation) and intelligible to nonexperts
of ML, while at the same time being reproducible by those
with ML expertise. The development of standard vocabu-
laries, metadata protocols, and data structures within the
scaffold of existing biodiversity data standards (i.e., Darwin
Core; see Yost et al. 2018) would greatly advance this aim.
When designing ML-based phenological studies, research-
ers should consider how to integrate output data and
metadata with existing databases or data sets, ideally using
terms and relationships from the Plant Phenology Ontology
(Stucky et al. 2018, Brenskelle et al. 2019). A relatively small
investment early in the research process can ensure that
ML-generated, “extended” data (sensu Lendemer et al. 2019)
can be productively leveraged by other researchers and
owners of the original data (i.e., natural history collections),
thereby increase the value of the specimens. This process
would benefit from further discussion across biological and
computer science disciplines, for example, within the frame-
work of the Research Data Alliance (www.rd-alliance.org).
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Another significant advance for ML-based phenologi-
cal annotation would be a better understanding of the
limitations of ML methods for phenological annotation
tasks. Current specimen-based studies using ML have yet
to diversify beyond simple classification tasks (e.g., whole
images classified as “flower present” or “flower absent”) to
more complex tasks, such as object detection and localiza-
tion (see Girshick et al. 2014) or the use of models that focus
on a subset of visual data, rather than the entire image (see
Mnih et al. 2014). To move forward with the design and
implementation of ML techniques for phenological studies,
questions concerning methodology and appropriateness
(e.g., table 1) must be addressed with future research.

However, evaluating models with high complexity may
not be easy to achieve given presently available, highly
localized cyberinfrastructure. ML approaches, especially
those using thousands of high-resolution images, require
computers with fast GPUs, but high-power computing
clusters are generally heavier in central processing units
(CPUs) than GPUs. Therefore, having advanced comput-
ing resources does not necessarily guarantee the ability to
conduct image-based ML experiments. Although publicly
accessible GPU resources (e.g., XSEDE; Towns et al. 2014)
and sharing of ML methods (e.g., through Model Zoo) are
growing, large-scale and collaborative platforms for using
and sharing ML techniques for biological applications are
lacking. Greater investment in interoperable cyberinfra-
structure resources that are available to a broader, collab-
orative community is needed.

Increased communication, collaboration, and sharing of
cyberinfrastructure resources across institutional and dis-
ciplinary boundaries (e.g., between computer scientists and
biodiversity data managers) are also critical to advancing
this field. Fully exploring the potential of ML approaches
may require collaboration beyond academia. Several pri-
vate companies already provide financial or IT resources to
advance ML techniques in the fields of biodiversity, agricul-
ture, and the environment, including Microsoft, with the AI
for Earth initiative, and Google, which supports workshops
on the fine-grained visual categorization of various biologi-
cal entities. Collaboration with technology companies such
as FaceBook, Dell, or Nvidia, which have significant exper-
tise and resources in this field, may be influential in the suc-
cessful development and deployment of ML applications for
large herbarium collections.

Many of the challenges in the phenological workflow
outlined above are generalizable, and ML innovations from
other disciplines hold promise for applications in herbarium
science. Broadly, museum-based applications may benefit
from innovations in ML model architectures in which tasks
are general (e.g., segmenting images into constituent ele-
ments), transfer learning from other domains in which
plant images may be used (e.g., agricultural applications),
and ML-based applications in associated data-rich domains
in which images are associated with rich tabular data (e.g.,
medical images, which may be linked to multidimensional
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patient histories) (Esteva et al. 2017). Advances in medical
imaging in which specific anatomical structures need to
be identified, measured, and evaluated for patient diagno-
sis have already provided the ML community with model
architectures (Ronneberger et al. 2015) that are now applied
broadly to segmentation tasks in domains as seemingly
distant as automated driving (Wulff et al. 2018). Other disci-
plines that may yield useful innovations include astronomy,
single-cell phenotyping, finance, e-commerce, manufactur-
ing, and defense. Potentially useful botanical applications
shared with these domains include anomaly detection, seg-
mentation, high-dimensional image-based clustering, and
digital transcription. Recent advances in digital agriculture
(e.g., Ghosal et al. 2018) present a number of promising
avenues for extension into phenological research, most
importantly because visual models in agriculture are often
trained to interpret images of plants and identify important
plant structures and attributes (Ferentinos 2018).

Perhaps the most important aspect to improving ML
applications for herbarium specimens is open discussion
and collaboration between biological and computer science
communities. This includes continued development of the
community of biologists who are interested in applying
these models to ecological and evolutionary questions, as
well as finding appropriate avenues through which biolo-
gists can communicate pressing goals in biodiversity sci-
ence to ML experts. Ultimately, these communities must
also communicate effectively with end users of automati-
cally scored specimen records, such as ecologists and col-
lection managers, to promote understanding of ML-derived
outputs and their limitations.

Diversifying phenological research using machine
learning

Most herbarium-based phenological research to date has
focused on understanding the timing of key flowering
events, especially first flowering or peak flowering, using
fairly simple phenological annotation protocols (Willis et al.
2017a). However, many specimens contain multiple repro-
ductive structures representing a gradient of phenological
stages (e.g., flower buds and open flowers present). ML
methods could be leveraged to quantify numbers of repro-
ductive structures on specimens, which provides a more
detailed understanding of phenological traits such as flower-
ing duration, the rate of progression between phenophases,
and phenophase-specific responses to climate change (Love
et al. 2019).

The phenology of less well-studied taxonomic and
regional groups such as bryophytes, ferns, gymnosperms,
and taxa in tropical climates could also be accelerated by
ML approaches. Furthermore, herbarium specimens can be
used to assess nonreproductive phenological processes such
as leaf-out (Everill et al. 2014). In some taxa, it may even be
possible to track phenological patterns of primary growth
such as stem elongation. ML-based methods could provide
a reliable approach to annotating the vegetative phenology of
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specimens at a large scale, similar to those for reproductive
phenology (table 1).

Extending machine learning analysis of herbarium
specimens beyond phenology

The current era of rapid advances in ML coincides with a
similarly transformative era for biological collections, espe-
cially in global change research. Motivated by widespread
museum digitization initiatives, herbarium specimens are
increasingly being used in a variety of new ways in research
(Meineke et al. 2018a, Hedrick et al. 2020) and in the effec-
tive engagement of the public through citizen science and
education (e.g., Lacey et al. 2017). In the present article, we
focused on phenology because phenological inference is an
emerging tool with links to adaptation, population success,
ecophysiology, carbon and nutrient dynamics, human health
and sociocultural applications, and resource management.
Many of these efforts could be expanded or transformed by
the application of ML tools built to automate tasks because
the approaches described above can be applied to a wide
array of research questions. In particular, ML shows prom-
ise in the study of nonphenological traits, the study of plant
interactions with nonplant taxa, and the engagement of the
broader community to promote biodiversity literacy.

Nonphenological traits. Herbarium specimens are rich with
phenotypic data, and specimen images provide the poten-
tial for automated trait measurement. Specimens have long
provided morphological characters (e.g., leaf shape, repro-
ductive structures) used to identify plant taxa; however,
these measurements were traditionally limited to species-
level trait means or ranges for identification purposes
only. Influenced by developments in functional trait-based
ecology (e.g., Reich 2014) and advances in global change
biology, specimen phenotypes are being used for studies
of evolutionary and ecological change at large taxonomic,
temporal, and geographic scales. For example, phenotypic
data from specimens have been used to quantify rapid leaf
trait evolution in invasive species following introduction
(Buswell et al. 2011) and to document changes in plant size
as a result of human harvesting (Law and Salick 2005) or
climate change (Leger 2013). To scale up these studies, ML
models could be developed and deployed to efficiently mea-
sure functional traits for thousands of herbarium specimens
(high-throughput phenotyping; Gehan and Kellogg 2017).
These traits could include leaf morphometric traits (size,
shape), plant size (height, area), and inflorescence and floral
traits (size, number).

Species interactions. Data on species interactions are currently
sparse, but hypotheses in this area of global change research
are central to ecology and evolutionary biology. Herbarium
specimens and other collections provide unique opportu-
nities to quantify interactions across time and over large
geographic ranges (Lees et al. 2011, Meineke et al. 2018b).
ML-based approaches have the potential to broaden and

https://academic.oup.com/bioscience

deepen the scope of available data and therefore facilitate
new discoveries with applications in conservation, ecol-
ogy, and other fields. For example, ML could automate the
recognition of leaf mines, damage from herbivores, or plant
diseases (Ferentinos 2018, Ingram et al. 2017).

Biodiversity literacy. ML methods and ML-generated data can
provide educational opportunities beyond what is possible
with specimens alone. ML has yet to be widely applied in
biodiversity education, but on the basis of work using spec-
imen-based data in undergraduate courses, such data can
provide authentic introductions to scientific skill building,
biodiversity and data literacy, and workforce training (Lacey
et al. 2017 and the references within it). Educators can also
integrate specimen annotation activities into coursework
using online citizen science platforms such as Zooniverse. In
addition, students can learn data management skills, investi-
gate research questions of their own design, and gain expe-
rience with data analysis and visualization when working
with the wealth of data generated from ML. Furthermore,
it is possible to involve students in more technical aspects
of the ML workflow, such as model creation and validation.
The application of ML to digital specimen data provides an
engaging, well structured, freely available introduction to
data science.

Conclusions

Machine learning offers an efficient approach to collecting
large amounts of phenological data from herbarium speci-
mens. When combined with, for example, spatiotemporal
data extracted from specimen labels during digitization,
these data enable discovery of phenological patterns on
unprecedented scales. ML models can annotate thousands
to millions of images in relatively short time spans, poten-
tially with greater reproducibility and in finer detail than is
feasible with human labor alone. Furthermore, the adapt-
ability of ML models can empower specimen-based research
beyond phenological traits, facilitating myriad avenues of
biological research.

Despite these clear advantages, applying ML to speci-
men images has limitations and challenges, many of which
could be overcome through research and development in
several key areas. First, training data sets must be developed
through continued digitization of herbarium specimens
and annotation of specimen images. Second, research ques-
tions such as those in table 1 must be addressed to ensure
ML-based methods are being effectively employed. Third,
greater attention must be paid to downstream use of auto-
matically generated data. Primary concerns include map-
ping ML-produced data to existing standards (e.g., Darwin
Core, the Plant Phenology Ontology) and linking these data
to existing specimen data (Lendemer et al. 2019). Finally, to
tully realize the potential of ML approaches to phenology
and biodiversity science, there is great need for collabora-
tive cyberinfrastructure to manage large quantities of visual
data, including the development of an interdisciplinary
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community aimed at synergistically advancing ML-based
methods for science and society.
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