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Machine learning (ML) has great potential to drive scientific discovery by harvesting data from images of herbarium specimens—preserved plant 
material curated in natural history collections—but ML techniques have only recently been applied to this rich resource. ML has particularly 
strong prospects for the study of plant phenological events such as growth and reproduction. As a major indicator of climate change, driver of 
ecological processes, and critical determinant of plant fitness, plant phenology is an important frontier for the application of ML techniques for 
science and society. In the present article, we describe a generalized, modular ML workflow for extracting phenological data from images of 
herbarium specimens, and we discuss the advantages, limitations, and potential future improvements of this workflow. Strategic research and 
investment in specimen-based ML methods, along with the aggregation of herbarium specimen data, may give rise to a better understanding 
of life on Earth.
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Seasonal variation in the timing of life cycle    
 (phenological) events (e.g., leaf-out, flowering, and 

fruiting) critically affects plant ecology and evolution 
through interactions between plants and climate (Cleland 
et  al. 2007), herbivores (Meineke et  al. 2014), mutualists 
(Diamond et al. 2014), and inter- and intraspecific competi-
tors (Heberling et al. 2019). Changes in the timing of plant 
phenological events can alter species interactions, such as 
those between plants and their pollinators (Burkle et  al. 
2013) and even disrupt interactions at higher trophic levels, 
such as those between bears and salmon (Deacy et al. 2017). 
The significance and complexity of plant phenology on 
local and global scales lead to many compelling questions 
for science and society (Ellwood et  al. 2019), especially as 
anthropogenic changes in habitat, biodiversity, and climate 
alter phenological events (Parmesan and Yohe 2003).

Wide-ranging and complex phenological responses to 
climate change have been discovered in many taxa across 
the globe (Willis et al. 2017a), but our understanding of the 
mechanisms driving these complicated phenomena and their 
subsequent effects are incomplete. Critical questions remain 
about the effects and interactions of climate, traits, geogra-
phy, and phylogeny on the phenological sensitivities of plants 

and how these effects propagate throughout ecosystems 
(box  1). These factors could play key roles in understand-
ing, predicting, and potentially ameliorating environmental 
changes that threaten biodiversity and humankind.

The variable and context-dependent nature of plant phe-
nology renders its study particularly challenging because 
long-term data sets are necessary to detect the patterns, 
causes, and consequences of phenological change for a given 
taxon in a given location (Wolkovich et al. 2012). Historical 
phenological observations (Primack and Miller-Rushing 
2012), agricultural records (e.g., crop harvest records; 
Ellwood et  al. 2014), long-term field stations (Taylor et  al. 
2018), and, more recently, citizen science networks (Bison 
et al. 2018) have proven vital sources of phenological data. 
However, none of these resources provides the spatio-
temporal coverage available from herbarium specimens. 
Herbarium specimens have been archived for hundreds of 
years from across the globe and therefore represent a rich 
source of phenological data (Zalamea et al. 2011), especially 
as specimen data (e.g., date, species, and locality) and speci-
men images become digitally available through large-scale 
digitization projects (Nelson and Ellis 2018). Specimen-
based studies have greatly informed our understanding of 
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Box 1. Example questions to advance the study of plant phenology using machine learning approaches.

Phenological research questions well suited for ML-based analyses

The following list contains ecoevolutionary questions that require large sample sizes or, potentially, fine-scale data collection, rendering 
manual collection of phenological data from herbarium specimens infeasible. 

•	 How is morphological variation related to phenology?

•	 Within or across species, do male and female flowers or individuals have different phenological responses to climate variables?

•	 �Do closely related species differ in their phenological sensitivity to climate? If so, are such differences related to differences between 
taxa in habitat, climatic tolerance, geographic distribution, mean flowering time, or nonphenological traits?

•	 Do species with unisexual flowers differ in their phenological responsiveness from species with cosexual (i.e., perfect) flowers?

•	 How can certain phenophases be quantified in a way that is useful for predicting seasonal allergens, e.g., maturation of male catkins?

•	 How do global events affect regional phenology?

•	 �What and where are phenological dark data (i.e., taxonomic, geographic, or other groups for which little phenological data are 
available)?

•	 How do climate and other factors affect how many flowers in an inflorescence become fruits (i.e., reproductive output)?

•	 How do climate and other factors affect the sizes and shapes of reproductive structures?

•	 �How does the timing of phenological events and species-specific cues vary with latitude and across the globe? Do these interactions 
vary with climate change?

•	 How do nonnative species differ from native species with respect to phenological or distributional responses to climate change?

•	 How does nonangiosperm phenology (e.g., pollen release dates of gymnosperms) respond to climate and other factors?

•	 �How do changes in plant phenology affect interactions between plants and other communities or trophic levels, including insects, 
pests, birds, and mammals?

Questions about ML methodology

This list consists of questions relating to the methodology and limitations of machine learning for assessing phenology from herbarium 
specimens.

•	 Can ML algorithms reliably recognize plant reproductive structures?

•	 Can ML methods appropriately convey the level of confidence or uncertainty associated with any given classification or count?

•	 �How many training images are necessary to train phenological data sets, and does this number exceed the number of specimens 
needed to conduct phenological studies?

•	 How does a computer “decide” how to classify specimens, and is the decision process generalizable?

•	 What are systematic errors from ML that could propagate and impact studies that use automatically annotated data?

•	 At which taxonomic scales and physical dimensions can ML contribute to phenological studies?

•	 �How can the robustness of phenological annotations with ML approaches be ensured in data-deficient contexts (e.g., rare species 
or neglected floras)?

phenological change beyond what was previously possible 
(Willis et al. 2017a).

To date, most phenological studies using herbarium 
specimens have relied on manual annotation (see table 1 
for a glossary of italicized terms) of specimens to record 
phenological traits (Willis et  al. 2017a). Herbarium staff 
might record the presence or absence of reproductive 
structures while transcribing specimen data, or, more com-
monly, researchers classify phenological traits from physical 

specimens or specimen images for specific projects. Such 
methods are time and labor intensive, and the accuracy and 
precision of the resulting phenological annotations depend 
on the botanical expertise and consistency of the scorer, 
as well as on how easily the relevant anatomical structures 
can be identified on dried, pressed plants. To study phenol-
ogy on a global scale, many thousands—even millions—of 
specimens must be annotated, but manual annotation at 
this scale is not feasible. Machine learning (ML) approaches 
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have the potential to overcome this challenge by automating 
phenological data acquisition. ML approaches have empow-
ered advances in many areas of science and technology, with 
applications from self-driving cars (Wulff et al. 2018) to bio-
medical imaging (Ronneberger et al. 2015). Plant phenology, 
one of the best-known indicators of climate change, presents 
a fast-growing frontier for the deployment of these powerful 
methods.

ML algorithms build statistical models from input data 
(i.e., training data), and these models can then be applied 
to make predictions on novel data (LeCun et al. 2015). For 
image annotation tasks, for example, ML algorithms create 
statistical models (“learn”) from a training data set of images 
that have already been annotated. Then, the algorithms use 
these models to predict annotations for images that have 
not been annotated. ML has been successfully applied to 
many biological studies requiring classification of visual 
information, including the recognition and classification of 
animals in camera trap images (Norouzzadeh et  al. 2018) 
and the automated species identification of herbarium speci-
mens (e.g., Unger et  al. 2016, Carranza-Rojas et  al. 2017). 

Successful application of ML techniques to phenological 
annotation tasks has only recently been demonstrated for 
herbarium specimen images (Lorieul et  al. 2019). In the 
present article, we describe a generalized ML workflow for 
phenological annotation of plant specimen images, and we 
discuss the advantages, limitations, and potential future 
improvements of this workflow. Furthermore, we explore 
how technological advances in ML will facilitate the col-
lection of additional phenological and other trait data from 
images, enhancing ecoevolutionary research and biodiver-
sity education.

Machine learning with digitized herbarium specimens
Figure 1 presents a workflow of five components for pheno-
logical annotation of herbarium specimen images (storage, 
generating training data, machine learning, deployment, 
and testing and analysis; figure 1), further described below. 
A detailed discussion of ML methodology can be found in 
Lorieul and colleagues (2019). In the present article, we use 
the term annotation to describe the general process of add-
ing ancillary data to a specimen record. Although we focus 

Table 1. Glossary of machine learning (ML) terms discussed in this article.
Term Definition

Annotation Data added to a specimen record that is ancillary to the original collection data; annotations include, for 
example, phenological status, taxonomic identification, and georeferenced coordinates of a specimen; or 
the process of adding such ancillary data to a specimen record

Bounding box (Often rectangular) area on a two-dimensional image that contains all points belonging to a given object; 
the sides of this area are defined by the extreme edges of the object

Convolutional neural network (CNN) Type of neural network especially suited for image analysis that automatically learns relevant filters; 
other approaches use handcrafted filters and handcrafted feature extractors

Cyberinfrastructure Computational environment and personnel resources which allow a combination of several tasks, 
including data acquisition, storage, management, mining, visualization, and analysis

Deep learning Subset of machine learning techniques consisting of neural network models with a high number of 
successive layers; such models have been especially successful in tackling image, sound, and text tasks

Domain adaptation Field of machine learning in which a model trained on a certain set of training data is co-opted for a 
different, but somewhat related, target data set

Filter In image analysis, a specific type of local operation, i.e., a convolution, applied on the neighborhood of 
a pixel, designed to remove unwanted features from the image while preserving relevant information to 
perform a task, e.g., edge detectors for classification purposes

Graphics processing unit (GPU) Hardware originally designed to accelerate computer graphics operations before being used for other 
kinds of computations; used heavily in deep learning computations

Instance segmentation In image analysis, the task of finding the objects present in an image and their segmentation mask

Machine learning (ML) Wide class of methods dedicated to the problem of training a computer to automatically learn to make 
predictions about novel data using annotated samples from a training data set

Metadata Data used to describe or augment existing data

Object detection In image analysis, the task of finding the objects present in an image and their bounding box

Plant phenology ontology (PPO) The structured vocabulary for describing plant phenological observations that was developed to 
allow harmonization of data across disparate phenological data sets, including those from herbarium 
specimens (Stucky et al. 2018, Brenskelle et al. 2019)

Prediction The output of a learning model, which is used to predict the most likely value or a mask for a new image

Segmentation mask Defined path around an object containing exactly all the pixels of an image corresponding to that object, 
and only them

Training data or data set Subset of the target data set to be annotated that is used to train ML algorithms according to the 
annotation schema; the training data set must already be annotated and should ideally contain a 
representative sample of the visual variation in the target data set

Transfer learning Using knowledge gained from one domain of machine learning to improve another domain
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on phenological annotation—recording of the phenological 
status of a specimen—many other types of annotation exist, 
such as georeferencing, taxonomic identification, and scor-
ing of nonphenological traits.

Core specimen data, such as collection date, scientific 
name, collector name, and textual locality information, are 
often captured and mobilized as part of large-scale digitiza-
tion initiatives (e.g., more than 120 million specimen records 
contain this information in iDigBio; www.idigbio.org). 
Therefore, we do not describe the use of ML for harvesting 

these data. We focus in the present article on the application 
of ML to automatically identify and record the phenological 
status of specimen images, ideally those images for which 
these core specimen data are already available.

Storage.  Input and output data for ML approaches consist of 
digital images of specimens, associated core specimen data 
(e.g., specimen identifier, collection date, etc.), and pheno-
logical annotations. High-resolution images (e.g., up to tens 
of millions of pixels per specimen) can represent a very large 

Figure 1. Key components of a generalized, modular machine learning (ML) workflow applied to the annotation of herbarium 
specimen images for phenological traits. Specimen images are retrieved from storage, and a representative subset of the focal 
images are used to generate a set of training data. The training data, which have been manually annotated according to the 
desired phenological scoring protocol (e.g., flowers present or absent), are used as input data for ML. The resulting statistical 
model is then deployed to predict phenological annotations for previously unannotated specimens. The accuracy and 
precision of the ML model(s) can be tested using a subset of manually annotated data to compare predicted annotations to 
those recorded by expert observers. Newly annotated specimens, combined with specimen label data, georeferenced localities, 
and other data sets (e.g., historical climate data), can then be used in an array of phenological research.
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volume of data (4–10 megabytes per image), and their stor-
age therefore requires software and hardware infrastructure 
designed for large amounts of data.

Generating training data.  The images used to “train” ML algo-
rithms must first be manually annotated with phenological 
information according to the desired protocol. For example, 
if a researcher is interested only in whether a specimen has 
flowers, each specimen image would be annotated as flow-
ers “present” or “absent.” A model based on these training 
data will classify specimens as either of these two classes. 
If the researcher wishes to detect individual reproductive 
structures on a specimen, for example, in order to count 
them or estimate their relative proportions, these could be 
delineated by bounding boxes, which indicate the general 
location of structures, or segmentation masks, which des-
ignate all pixels belonging to a reproductive structure. To 
produce these more complex annotations, specific annota-
tion tools are usually required (e.g., CocoAnnotator, https://
annotator.justinbrooks.ca; LabelMe, http://labelme.csail.mit.
edu/Release3.0; ImageTagger, https://github.com/bit-bots/
imagetagger). Regardless of the type of phenological annota-
tion being created, it is important to recognize that ML is a 
form of statistical inference that finds patterns in the train-
ing data, and predictions will therefore reflect any biases in 
those data. Therefore, the training data set should include 
a representative sample of taxon (or taxa) and phenologi-
cal attributes or categories that should appear in the data 
set on which the trained model will be applied. A lack of 
visual diversity in the manual annotations will result in the 
same lack of diversity in the predictions. Similarly, noisy, 
imprecise, or incomplete annotations may result in noisy, 
imprecise, or incomplete predictions. A subset of the train-
ing data should also be reserved for model validation (see 
the “Testing and analysis” section).

The number of specimens necessary to train a model 
depends on the complexity of the classification task, the 
number and morphological diversity of taxa included in the 
data set, and whether the model will be trained iteratively. 
Initial models with a small set of training data (at least 500 
specimens) can be used to annotate a much larger set of 
data, and the ML-generated annotations can be revised and 
enriched through additional manual annotation, and then 
used to train the model further (see Affouard et al. 2017). As 
the annotated training data set grows, models will improve 
and become more useful for identifying edge cases (e.g., 
specimens on which phenological attributes are partially 
obscured, taxa that are represented by only a few specimens) 
that might be missing in a small training data set, as well as 
phenological phases that are morphologically highly variable 
or represented by very small reproductive structures.

Machine learning and deep learning.  For image data, the most 
effective machine learning techniques are deep learning 
neural networks, or more precisely, convolutional neural 
networks (CNN), or extensions such as CNNs for object 

detection (e.g., R-CNN) or instance segmentation (e.g., Mask-
R-CNN). Like any neural network, a CNN is a composition 
of functions that receive an image as input and provide 
predictions as output (e.g., a phenological score of the entire 
specimen or a set of bounding boxes around reproductive 
structures). The term convolutional refers to the fact that for 
each input pixel, the functions return the result of a local 
computation (a filter) based on the pixel and its neighboring 
pixels. The number of neighboring pixels (i.e., filter size) 
is set as a parameter of the model. Each filter can be inter-
preted as a detector of a specific, local visual pattern.

CNNs consist of multiple layers of processing. The first 
layers of a CNN detect low-level patterns (color changes, 
angles, textures, etc.), whereas the last layers recognize 
complex visual patterns (such as reproductive structures 
on a specimen) by combining the patterns found in previ-
ous layers. The main objective of the training phase of a 
CNN model is to estimate the parameters of these filters 
on the basis of the training data. This is done by iteratively 
minimizing a loss function measuring the error between the 
predictions and the expected manual annotations.

As the number of parameters to be estimated can be in 
the millions, this training phase consumes significant com-
putational resources, because the training process requires 
efficient storage to handle frequent access to the training set 
and efficient graphics processing units (GPUs) to reduce the 
training time. The type of model may differ depending on 
the task, but the duration of the training phase is strongly 
related to the GPU number and characteristics. The greater 
the availability of computational resources, the more train-
ing a model can undergo, and the better the final model 
architecture and parameter selection can be.

Available online tools can enable inexperienced users 
to train ML models, but these tools are limited to simple 
image classification tasks and low data volumes. Therefore, 
at present, developing accurate models is often achieved 
by involving a data scientist for several days, weeks, or 
months depending on the difficulty of the task. The software 
frameworks most commonly used to develop CNNs are 
Pytorch (https://pytorch.org), TensorFlow (www.tensorflow.
org), CAFFE (https://caffe.berkeleyvision.org), and MXNET 
(https://mxnet.incubator.apache.org). The framework that 
is best for a given task will depend on a variety of factors, 
including the availability of preexisting models or code for 
the targeted task, the hardware used, or simply the data sci-
entist’s skills with respect to a particular framework.

Deployment.  Once an ML model is trained, it can be deployed 
to predict phenological annotations for previously unan-
notated specimens. This process could be implemented in 
several ways, including via a web service available to other 
applications that returns the model output for any submitted 
image, a standalone program, or an end-user graphical user 
interface (GUI) web application. Inference is usually a less 
computationally intensive task than training and therefore 
requires fewer resources. Models can be publicly shared 
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through software repositories hosted on sites such as GitHub 
(https://github.com), GitLab (https://gitlab.com), or dedi-
cated platforms such as Model Zoo (https://modelzoo.co). 
Such sharing encourages cross-model improvement based 
on transfer learning (Bengio 2012) or domain adaptation 
techniques (Long et al. 2016).

Testing and analysis.   Once deployed, a model can be evalu-
ated through qualitative judgments or quantitative mea-
surements. Qualitative judgments are typically performed 
through a GUI, allowing the researcher to visualize and 
assess the automated predictions of the model on this test 
data set. For more robust measures of model accuracy, quan-
titative measurements of the quality of the predictions can 
be readily calculated and visualized (see Lorieul et al. 2019). 
This step cannot be performed on the same data used for 
training the model; a model can perfectly fit the training data 
and not fit new data of the same type. Therefore, some of the 
manually annotated data (e.g., 20%–30%) must be reserved 
and not used for training purposes (Carranza-Rojas et  al. 
2017). As with developing appropriate training data, a deep 
understanding of the data set and the desired end product 
is necessary. The goals are to determine whether the model 
meets the needs of the researcher and to identify the neces-
sary progress points (e.g., new annotations on a particular 
taxonomic group or phenological stage).

Advantages of machine learning for phenology
The main advantage of using ML for phenological annota-
tion is ML’s ability to score very large volumes of data in a 
short amount of time. Once an algorithm has been trained, 
it can score tens to thousands of specimens per minute, 
depending on the task, with a single standard GPU. For 
example, during summer 2019, more than 490,000 field plant 
images were analyzed for species identification on the public 
Pl@ntNet platform in a single day (Affouard et  al. 2017). 
Model processing can be further accelerated by using many 
GPUs in parallel. Another key advantage is that the accu-
racy of ML annotations can be very high. The deep learning 
method evaluated in Lorieul and colleagues (2019) correctly 
detected fertile specimens with an accuracy of 96.3%. Such 
a success rate is quite high, especially considering that one 
coauthor of the present article obtained an accuracy of only 
87.8% at the same task. Accuracy was slightly decreased for 
finer-scale phenological annotations (84.3% for the detec-
tion of flowers and 80.5% for the detection of fruits) or for 
determining specific phenophases of specimens, but again, 
the model’s accuracy was slightly better than the accuracy of 
a human expert.

With the large volumes of phenological data produced 
from ML methods, it will be possible to create phenocli-
matic and other phenological models at unprecedented 
scales of time, space, and phylogenetic diversity. Leveraging 
a large number of specimens for phenological models has 
already helped identify influential climate variables that 
may have been overlooked in previous studies (Park and 

Mazer 2018). Large sample sizes and potentially finer scales 
of phenological annotation could further elucidate dif-
ferences in phenological trends among taxa and between 
regions. Phenological annotation via ML could also be used 
to address current spatial biases in phenological studies, for 
example, through applications using herbarium specimens 
from tropical and subtropical climates, where phenological 
trends are less well documented (Willis et al. 2017a).

Limitations of machine learning applications
The workflow described above is not without limitations; 
there are technological, social, and logistical challenges that 
must be overcome for efficient application of ML in pheno-
logical research. Herbarium specimens may themselves limit 
their utility for phenological scoring, because they differ in 
quality and quantity (figure 2; for a review, see Willis et al. 
2017a). The morphological structures necessary to measure 
a given phenological trait may be damaged or lost, stored 
in opaque fragment packets, or obscured by other plant 
material on the sheet. Some plant taxa have phenological 
stages that are impossible to determine without dissecting 
the physical specimen. For example, the fruits of sedges 
are often indistinguishable from female flowers, and fig 
flowers are tightly enclosed within vegetative receptacles. 
Furthermore, herbarium specimens often consist of only a 
portion of a plant, and therefore the reproductive status of 
the entire plant may not be readily discernible except via 
the label or field notes, when they exist. In each of these 
cases, ML algorithms, no matter how accurate at recogniz-
ing reproductive structures on herbarium specimen images, 
cannot fully determine the phenological status of a plant 
from a specimen.

Beyond these general issues, there are additional consid-
erations for applying ML to herbarium specimen images. 
Specimens contain a significant amount of nonplant mate-
rial such as herbarium stamps or logos, labels, mounting 
tape, color standard plates, rulers, or evidence of past 
pest-control measures that may bias certain ML classifica-
tion tasks (figure 2). Because ML techniques use all visual 
data available, the algorithms could reflect differences in 
preparation techniques rather than in the presence or num-
bers of particular plant structures. Finally, when preparing 
training data sets, users of herbarium data must be aware 
of duplicate specimens—the same species collected at the 
same time in the same place—and of possible misidentified 
specimens.

Future solutions for developing optimal machine 
learning workflows
Perhaps the greatest limitation of the ML workflow is the 
requirement for adequate training data sets. Training data 
sets need not be large, but a visually diverse set of specimen 
images of focal taxa must be available. Although several 
million herbarium specimens have been digitized and mobi-
lized online (currently nearly 30 million images in iDigBio), 
most of the 375 million specimens in herbarium collections 
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worldwide are not digitized. Continued digitization of her-
barium specimens is needed, particularly of phylogenetically 
and morphologically diverse collections that can reflect 
visual variation among specimens and therefore enable the 
creation of more versatile training data sets.

As more specimen images become available, they must 
also be accurately annotated according to the desired phe-
nological classification protocol. Citizen science and crowd-
sourcing can accelerate the image annotation process, as 
has been demonstrated by platforms such as Zooniverse 
(www.zooniverse.org), From the Page (https://fromthepage.
com), Pl@ntNet (https://plantnet.org/en), and CrowdCurio 
(Willis et al. 2017b). Engaging students in this process as a 
learning experience could be a dual-benefit solution (see the 
“Extending machine learning” section). Mass annotation by 
volunteers with heterogeneous skills presents its own chal-
lenges, including the need to attract and retain volunteer 
interest and ensure data quality, but it offers the additional 
benefits of community engagement and education.

Regardless of how training data sets are created, both 
input and output data of ML analyses must be accessible, 
reproducible, and reusable. ML metadata, such as the type of 
model used to create the prediction, the contact information 
of the model creator, uncertainty regarding phenological 
predictions, and reference to the training data set, must be 

carefully documented so that downstream users can repro-
duce and assess the utility of the scorings for their specific 
research purposes. Furthermore, the potentially complex 
outputs of ML approaches (e.g., coordinates of reproduc-
tive structures on an image) must be stored in a way that is 
interoperable with alternative specimen classification meth-
ods (e.g., manual annotation) and intelligible to nonexperts 
of ML, while at the same time being reproducible by those 
with ML expertise. The development of standard vocabu-
laries, metadata protocols, and data structures within the 
scaffold of existing biodiversity data standards (i.e., Darwin 
Core; see Yost et al. 2018) would greatly advance this aim. 
When designing ML-based phenological studies, research-
ers should consider how to integrate output data and 
metadata with existing databases or data sets, ideally using 
terms and relationships from the Plant Phenology Ontology 
(Stucky et al. 2018, Brenskelle et al. 2019). A relatively small 
investment early in the research process can ensure that 
ML-generated, “extended” data (sensu Lendemer et al. 2019) 
can be productively leveraged by other researchers and 
owners of the original data (i.e., natural history collections), 
thereby increase the value of the specimens. This process 
would benefit from further discussion across biological and 
computer science disciplines, for example, within the frame-
work of the Research Data Alliance (www.rd-alliance.org).

Figure 2. Examples of herbarium specimens displaying visual heterogeneity (e.g., in morphology, labels, and color 
standards) and challenges related to the morphology and position of reproductive structures. The specimen on the left 
shows large, isolated reproductive structures that would likely be annotated successfully by ML algorithms. The specimen 
in the center with small flowers and numerous overlapping fruits would be much more difficult for ML algorithms to parse. 
The specimen on the right would be very difficult for ML algorithms to delineate or count because of the unclear distinction 
between flowers and buds. Examples of segmentation masks (see the glossary in box 1) created to delineate reproductive 
structures are shown by the brightly colored areas in the left and center specimen images.
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Another significant advance for ML-based phenologi-
cal annotation would be a better understanding of the 
limitations of ML methods for phenological annotation 
tasks. Current specimen-based studies using ML have yet 
to diversify beyond simple classification tasks (e.g., whole 
images classified as “flower present” or “flower absent”) to 
more complex tasks, such as object detection and localiza-
tion (see Girshick et al. 2014) or the use of models that focus 
on a subset of visual data, rather than the entire image (see 
Mnih et  al. 2014). To move forward with the design and 
implementation of ML techniques for phenological studies, 
questions concerning methodology and appropriateness 
(e.g., table 1) must be addressed with future research.

However, evaluating models with high complexity may 
not be easy to achieve given presently available, highly 
localized cyberinfrastructure. ML approaches, especially 
those using thousands of high-resolution images, require 
computers with fast GPUs, but high-power computing 
clusters are generally heavier in central processing units 
(CPUs) than GPUs. Therefore, having advanced comput-
ing resources does not necessarily guarantee the ability to 
conduct image-based ML experiments. Although publicly 
accessible GPU resources (e.g., XSEDE; Towns et al. 2014) 
and sharing of ML methods (e.g., through Model Zoo) are 
growing, large-scale and collaborative platforms for using 
and sharing ML techniques for biological applications are 
lacking. Greater investment in interoperable cyberinfra-
structure resources that are available to a broader, collab-
orative community is needed.

Increased communication, collaboration, and sharing of 
cyberinfrastructure resources across institutional and dis-
ciplinary boundaries (e.g., between computer scientists and 
biodiversity data managers) are also critical to advancing 
this field. Fully exploring the potential of ML approaches 
may require collaboration beyond academia. Several pri-
vate companies already provide financial or IT resources to 
advance ML techniques in the fields of biodiversity, agricul-
ture, and the environment, including Microsoft, with the AI 
for Earth initiative, and Google, which supports workshops 
on the fine-grained visual categorization of various biologi-
cal entities. Collaboration with technology companies such 
as FaceBook, Dell, or Nvidia, which have significant exper-
tise and resources in this field, may be influential in the suc-
cessful development and deployment of ML applications for 
large herbarium collections.

Many of the challenges in the phenological workflow 
outlined above are generalizable, and ML innovations from 
other disciplines hold promise for applications in herbarium 
science. Broadly, museum-based applications may benefit 
from innovations in ML model architectures in which tasks 
are general (e.g., segmenting images into constituent ele-
ments), transfer learning from other domains in which 
plant images may be used (e.g., agricultural applications), 
and ML-based applications in associated data-rich domains 
in which images are associated with rich tabular data (e.g., 
medical images, which may be linked to multidimensional 

patient histories) (Esteva et al. 2017). Advances in medical 
imaging in which specific anatomical structures need to 
be identified, measured, and evaluated for patient diagno-
sis have already provided the ML community with model 
architectures (Ronneberger et al. 2015) that are now applied 
broadly to segmentation tasks in domains as seemingly 
distant as automated driving (Wulff et al. 2018). Other disci-
plines that may yield useful innovations include astronomy, 
single-cell phenotyping, finance, e-commerce, manufactur-
ing, and defense. Potentially useful botanical applications 
shared with these domains include anomaly detection, seg-
mentation, high-dimensional image-based clustering, and 
digital transcription. Recent advances in digital agriculture 
(e.g., Ghosal et  al. 2018) present a number of promising 
avenues for extension into phenological research, most 
importantly because visual models in agriculture are often 
trained to interpret images of plants and identify important 
plant structures and attributes (Ferentinos 2018).

Perhaps the most important aspect to improving ML 
applications for herbarium specimens is open discussion 
and collaboration between biological and computer science 
communities. This includes continued development of the 
community of biologists who are interested in applying 
these models to ecological and evolutionary questions, as 
well as finding appropriate avenues through which biolo-
gists can communicate pressing goals in biodiversity sci-
ence to ML experts. Ultimately, these communities must 
also communicate effectively with end users of automati-
cally scored specimen records, such as ecologists and col-
lection managers, to promote understanding of ML-derived 
outputs and their limitations.

Diversifying phenological research using machine 
learning
Most herbarium-based phenological research to date has 
focused on understanding the timing of key flowering 
events, especially first flowering or peak flowering, using 
fairly simple phenological annotation protocols (Willis et al. 
2017a). However, many specimens contain multiple repro-
ductive structures representing a gradient of phenological 
stages (e.g., flower buds and open flowers present). ML 
methods could be leveraged to quantify numbers of repro-
ductive structures on specimens, which provides a more 
detailed understanding of phenological traits such as flower-
ing duration, the rate of progression between phenophases, 
and phenophase-specific responses to climate change (Love 
et al. 2019).

The phenology of less well-studied taxonomic and 
regional groups such as bryophytes, ferns, gymnosperms, 
and taxa in tropical climates could also be accelerated by 
ML approaches. Furthermore, herbarium specimens can be 
used to assess nonreproductive phenological processes such 
as leaf-out (Everill et al. 2014). In some taxa, it may even be 
possible to track phenological patterns of primary growth 
such as stem elongation. ML-based methods could provide 
a reliable approach to annotating the vegetative phenology of 
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specimens at a large scale, similar to those for reproductive 
phenology (table 1).

Extending machine learning analysis of herbarium 
specimens beyond phenology
The current era of rapid advances in ML coincides with a 
similarly transformative era for biological collections, espe-
cially in global change research. Motivated by widespread 
museum digitization initiatives, herbarium specimens are 
increasingly being used in a variety of new ways in research 
(Meineke et al. 2018a, Hedrick et al. 2020) and in the effec-
tive engagement of the public through citizen science and 
education (e.g., Lacey et al. 2017). In the present article, we 
focused on phenology because phenological inference is an 
emerging tool with links to adaptation, population success, 
ecophysiology, carbon and nutrient dynamics, human health 
and sociocultural applications, and resource management. 
Many of these efforts could be expanded or transformed by 
the application of ML tools built to automate tasks because 
the approaches described above can be applied to a wide 
array of research questions. In particular, ML shows prom-
ise in the study of nonphenological traits, the study of plant 
interactions with nonplant taxa, and the engagement of the 
broader community to promote biodiversity literacy.

Nonphenological traits.  Herbarium specimens are rich with 
phenotypic data, and specimen images provide the poten-
tial for automated trait measurement. Specimens have long 
provided morphological characters (e.g., leaf shape, repro-
ductive structures) used to identify plant taxa; however, 
these measurements were traditionally limited to species-
level trait means or ranges for identification purposes 
only. Influenced by developments in functional trait-based 
ecology (e.g., Reich 2014) and advances in global change 
biology, specimen phenotypes are being used for studies 
of evolutionary and ecological change at large taxonomic, 
temporal, and geographic scales. For example, phenotypic 
data from specimens have been used to quantify rapid leaf 
trait evolution in invasive species following introduction 
(Buswell et al. 2011) and to document changes in plant size 
as a result of human harvesting (Law and Salick 2005) or 
climate change (Leger 2013). To scale up these studies, ML 
models could be developed and deployed to efficiently mea-
sure functional traits for thousands of herbarium specimens 
(high-throughput phenotyping; Gehan and Kellogg 2017). 
These traits could include leaf morphometric traits (size, 
shape), plant size (height, area), and inflorescence and floral 
traits (size, number).

Species interactions.  Data on species interactions are currently 
sparse, but hypotheses in this area of global change research 
are central to ecology and evolutionary biology. Herbarium 
specimens and other collections provide unique opportu-
nities to quantify interactions across time and over large 
geographic ranges (Lees et al. 2011, Meineke et al. 2018b). 
ML-based approaches have the potential to broaden and 

deepen the scope of available data and therefore facilitate 
new discoveries with applications in conservation, ecol-
ogy, and other fields. For example, ML could automate the 
recognition of leaf mines, damage from herbivores, or plant 
diseases (Ferentinos 2018, Ingram et al. 2017).

Biodiversity literacy.  ML methods and ML-generated data can 
provide educational opportunities beyond what is possible 
with specimens alone. ML has yet to be widely applied in 
biodiversity education, but on the basis of work using spec-
imen-based data in undergraduate courses, such data can 
provide authentic introductions to scientific skill building, 
biodiversity and data literacy, and workforce training (Lacey 
et al. 2017 and the references within it). Educators can also 
integrate specimen annotation activities into coursework 
using online citizen science platforms such as Zooniverse. In 
addition, students can learn data management skills, investi-
gate research questions of their own design, and gain expe-
rience with data analysis and visualization when working 
with the wealth of data generated from ML. Furthermore, 
it is possible to involve students in more technical aspects 
of the ML workflow, such as model creation and validation. 
The application of ML to digital specimen data provides an 
engaging, well structured, freely available introduction to 
data science.

Conclusions
Machine learning offers an efficient approach to collecting 
large amounts of phenological data from herbarium speci-
mens. When combined with, for example, spatiotemporal 
data extracted from specimen labels during digitization, 
these data enable discovery of phenological patterns on 
unprecedented scales. ML models can annotate thousands 
to millions of images in relatively short time spans, poten-
tially with greater reproducibility and in finer detail than is 
feasible with human labor alone. Furthermore, the adapt-
ability of ML models can empower specimen-based research 
beyond phenological traits, facilitating myriad avenues of 
biological research.

Despite these clear advantages, applying ML to speci-
men images has limitations and challenges, many of which 
could be overcome through research and development in 
several key areas. First, training data sets must be developed 
through continued digitization of herbarium specimens 
and annotation of specimen images. Second, research ques-
tions such as those in table 1 must be addressed to ensure 
ML-based methods are being effectively employed. Third, 
greater attention must be paid to downstream use of auto-
matically generated data. Primary concerns include map-
ping ML-produced data to existing standards (e.g., Darwin 
Core, the Plant Phenology Ontology) and linking these data 
to existing specimen data (Lendemer et al. 2019). Finally, to 
fully realize the potential of ML approaches to phenology 
and biodiversity science, there is great need for collabora-
tive cyberinfrastructure to manage large quantities of visual 
data, including the development of an interdisciplinary 
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community aimed at synergistically advancing ML-based 
methods for science and society.
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