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ABSTRACT

The emerging view in molecular biology is that molecules are in-
trinsically dynamic systems rearranging themselves into different
structures to interact with molecules in the cell. Such rearrange-
ments take place on energy landscapes that are vast and multimodal,
with minima housing alternative structures. The multiplicity of
biologically-active structures is prompting researchers to expand
their treatment of classic computational biology problems, such
as the template-free protein structure prediction problem (PSP),
beyond the quest for the global optimum. In this paper, we revisit
subpopulation-oriented EAs as vehicles to switch the objective from
classic optimization to landscape mapping. Specifically, we present
two EAs, one of which makes use of subpopulation competition to
allocate more computational resources to fitter subpopulations, and
another of which additionally utilizes a niche preservation tech-
nique to maintain stable and diverse subpopulations. Initial assess-
ment on benchmark optimization problems confirms that stabler
subpopulations are achieved by the niche-preserving EA. Evalua-
tion on unknown energy landscapes in the context of PSP demon-
strates superior mapping performance by both algorithms over a
popular Monte Carlo-based method, with the niche-preserving EA
achieving superior exploration of lower-energy regions. These re-
sults suggest that subpopulation EAs hold much promise for solving
important mapping problems in computational structural biology.
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1 INTRODUCTION

The driving thrust of research in computational structural biology is
on understanding the structure-to-function relationship in biologi-
cal molecules central to human biology and health. Due to their ubig-
uity and participation in virtually all processes in a cell’s machinery,
much of this research is focused on proteins. Decades of experi-
mental, computational, and theoretical research have demonstrated
that proteins are intrinsically dynamic molecules that reposition
their covalently-linked atoms to assume different three-dimensional
(tertiary) structures with which to bind molecular partners in the
cell [17, 18, 21]. Structural rearrangements allow regulation of bio-
logical activity [2, 3] and correspond to hops on a vast and multi-
modal energy landscape that arise from physical interactions among
constitutive atoms in different three-dimensional placements.

Protein energy landscapes are rich in minima that house tertiary
structures. Deep and narrow minima constitute structural states
with few but very low-energy structures, whereas shallow and
broad minima constitute (more heterogeneous) states with many
but not as low-energy structures [25]. When seeking to understand
how structure(s) governs the biological activity/ies or function(s)
of a protein (and, more broadly, an intrinsically-dynamic molecule),
it is imperative to consider the diversity of structural states. To
do so, the computational framework needs to shift from classic
optimization to mapping of a multimodal landscape in order to
identify the diverse minima that correspond to different biologically-
active structures.

Retaining possibly numerous minima is also an important step
toward advancing the treatment of a classic problem in molecu-
lar biology, the template-free protein structure prediction problem
(PSP). In template-free PSP, one is provided only the identity and
order of the constitutive building blocks, the amino acids, in a
protein. Given the sequence of amino acids, the goal has tradition-
ally been to discover the biologically-active structure. However,
the now-recognized multiplicity of biologically-active structures
is prompting researchers to expand their treatment of PSP. More-
over, inherent inaccuracies in energy/fitness functions that evaluate
structures result in landscapes where the structure detected in the
wet laboratory (which may be one of various biologically-active
structures) may not reside in the deepest minimum. As such, clas-
sic optimization is indeed insufficient. Instead, the goal becomes
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to retain diversity and then use complementary, domain-specific
metrics to evaluate computed structures. The latter is treated as
a separate problem, known as decoy selection, and is beyond the
scope of this paper.

Here we revisit subpopulation-oriented Evolutionary Algorithms
(EAs) as vehicles to switch the objective from classic optimization
to mapping. The concept of a subpopulation is appealing, as it can
be directly linked to a structural state. An EA that evolves and
maintains multiple subpopulations at local minima while exploring
new regions of the fitness landscape seems ideally suited for identi-
fying multiple structural states. To do so, subpopulation EAs must
maintain diversity, a recurring theme in Evolutionary Computation
(EC) research. Many approaches have been pursued over the years,
as summarized in Section 2. Diversity retainment strategies have
also been motivated by problems in protein modeling, but none so
far have considered subpopulation EAs.

In this paper, we develop a subpopulation EA by building on ear-
lier work on effective representations of protein tertiary structure
and representation-aware variation operators. We then further ex-
tend this baseline EA so as not only to allocate more computational
resources to fitter subpopulations, but additionally maintain stable
and diverse subpopulations via a niche preservation technique.

While our primary motivation is identifying the modality of
unknown molecular structure landscapes, we first evaluate the two
EAs on benchmark problems with fitness landscapes of known
modalities. We then provide a comparative evaluation in the PSP
setting and additionally compare the two EAs against a highly-
popular method in the PSP community. Our results demonstrate
that the subpopulation mechanism offers several advantages over
the state-of-the-art, with the niche preservation technique yielding
the best performance. These results motivate further investigation
and development of subpopulation EAs to further advance treat-
ment of protein structure modeling and, more broadly, molecular
modeling problems in molecular biology.

The rest of this paper is organized as follows. After presenting a
summary of related work in Section 2, the paper continues with a
description of the two subpopulation EAs in Section 3. Section 4
then relates the evaluation of these EAs, and the paper concludes
with a summary and discussion of further research in Section 5.

2 RELATED WORK

The need to map landscapes as key to understanding a wide range
of molecular phenomena has long been recognized across compu-
tational physics, organic and inorganic chemistry, and biology [4,
5, 12-14, 21, 32, 34]. For instance, mapping the energy landscape
of a cluster of 38 Lennard-Jones atomic particles reveals a double
funnel that provides a microscopic basis for understanding how
relaxation to the global minimum is diverted into a set of com-
peting structures [34]. In [14], the mapped energy landscapes of
small clusters of atoms are revealed to be highly heterogeneous
and contain low-energy minima with large basins of attraction.
In [12], the energy landscape is shown to facilitate the analysis
and interpretation of supercooling and glass-formation phenomena.
In [4, 21], various studies in computational chemistry, physics, and
biology are summarized to propose and support the holistic view
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of the energy landscape as central to explaining the behavior of
atomic clusters, glasses, and even proteins.

While great progress has been made in mapping energy land-
scapes of atomic clusters [32], glasses [5], and short peptides [13],
mapping protein energy landscapes remains challenging due to
the complexity of such landscapes. In glasses, atomic particles,
and short peptides, the number of interacting atoms/particles does
not exceed a few hundreds, and EAs that rely mainly on exploita-
tion and limit exploration to naive strategies (e.g., random restart)
can be useful. However, such approaches lose efficacy rapidly on
landscapes of increasing modality, and sophisticated strategies are
needed to balance between exploitation and exploration to avoid
premature convergence.

Building on the pioneering efforts of Holland, De Jong, Goldberg,
and Richardson [6, 10], various strategies have been proposed to
address adequate exploration and diversity maintenance. Biased
towards strategies that have been shown effective on computa-
tional structural biology problems, we highlight here three main
techniques often used in combination: a hall of fame mechanism,
multi-objective optimization, and hybridization. Work in [30] in-
tegrates a hall of fame mechanism in a hybridized/memetic EA
to encode a detailed representation of the EA-explored landscape.
Work in [27, 28] links the presence of multiple minima in protein
energy landscapes to competing objectives in energy functions and
demonstrates the utility of multi-objective optimization EAs. Work
in [7-9] additionally debuts decentralized selection operators to
retain diversity. Work in [26, 29] pursues various recombination
strategies to promote generation of diverse candidates, hybridiza-
tion for better exploitation, and non-local optimization operators
to balance between exploration and exploitation.

While EC literature on subpopulation models is quite extensive,
subpopulation EAs have not yet been considered for molecular mod-
eling. Largely, existing research considers two scenarios, one where
there is prior information on landscape modalities, and one where
there is no such information. For the case of prior information, we
highlight seminal work by Goldberg and Richardson [6], which as-
sumes that the number of modalities/optima and their location are
both known. This setting is not valid in molecular structure model-
ing, where the objective is to actually discover the diverse optima.
An early survey by Spears [33] summarizes the use of restricted
mating schemes to evolve subpopulations when no information
about the optima is available. Work in [16] proposes a set of multi-
population genetic algorithm (GA) operators for general landscape
mapping. More recent work in [20] applies subpopulation EAs to
the problem of feature selection but utilizes known information to
organize the initial population into subpopulations (also referred
to as tribes in [20]).

In this paper, we presume no a priori information regarding the
number and/or location of optima, or the distinct characteristics
that may allow organizing individuals in the initial population into
distinct subpopulations. We note that in a discovery setting, the
location of the competitive states would not be known in molec-
ular modeling, though occasionally in computational physics or
chemistry applications information would be available regarding
the number of such states and attributes distinguishing them. In
protein structure modeling, such information is not available, and
one must proceed in more difficult blind settings.
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3 METHODS

As described above, we first design a baseline subpopulation EA,
to which we refer as SP-EA™ from now on. In summary, SP-EA™
organizes the initial population into subpopulations and then ap-
plies subpopulation competition to provide more resources to the
fitter subpopulations during the evolutionary process. The second
algorithm we propose to improve the stability of subpopulations
via a niching technique is referred to as SP-EA™ from now on. In
summary, SP-EA™" adds onto SP-EA™ an additional mechanism to
prevent genetic drift and maintain diversity of subpopulations.

3.1 A Baseline Subpopulation EA

SP-EA™, shown in pseudocode in Algorithm 1, first initializes a
running counter that keeps track of fitness function evaluations
(line 1) so as to evaluate and compare the two different algorithms
(SP-EA™ and SP-EA™) using the same user-defined budget FMAX
of fitness evaluations.

Algo. 1 Baseline EA

Require: FMAX //total computational budget
N //population size

CompFreq //competition frequency
ElitismRate //elitism rate
1: fcounter < FMAX //counter of fitness evaluations

210 //generation counter
3: (Pj, budgetSpent) « InitOper(N) //generate
//initial population

4: fcounter « fcounter — budgetSpent

5: {S1,...,Sk} < GenSubPops(P;) //divide into

//subpopulations
6: while fcounter > 0 do
7: for S € {S1,...,Sk} do
8: C—0 //set of offspring
9: fors € Sdo
10: ¢ « VarOper(s) //generate offspring
1 (c',f', budgetSpent) «— ImprovOper(c) //improve
12: fcounter « fcounter — budgetSpent
13: C—culc,f} //add improved offspring
14: S« SelOper(S, C, ElitismRate) //select
15: S8 //update subpopulation

16:  if i mod CompFreq = 0 then
17: {S1,...,Sk} < SubPopCompete({S;, ..

18: i—i+1

Sk}

The initial population is obtained via an initialization mech-
anism (line 3). For the benchmark problems studied here, coor-
dinates for individuals are drawn uniformly at random from the
given parameter ranges. On applications to proteins, different ini-
tialization mechanisms can be employed that take advantage of
domain-specific knowledge. Work in [26] describes an effective
initialization mechanism that makes use of the molecular fragment
replacement technique that is popular in PSP.
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3.1.1 Defining Subpopulations. Unlike a classic EA, where, once
initialized, the population evolves over generations, the subpop-
ulation EAs we present here first organize the initial population
into subpopulations. Unlike other work, where information may
be available on the attributes that can be leveraged for such organi-
zation, here we assume no a priori information. That is why line 5
in Algorithm 1 simply refers to a mechanism to generate subpopu-
lations from the initial population. In this paper, we employ leader
clustering, but other clustering algorithms can be utilized. The main
idea behind leader clustering is that individuals are considered in
order, and each individual either forms a new cluster (becoming its
representative) or is assigned to the first cluster whose representa-
tive is within a distance threshold.

For the benchmark problems considered here, we utilize Eu-
clidean distance to measure the distance between an individual
yet to be assigned to a cluster and the representative individual
of each cluster computed so far. In applications (and adaptation)
of SP-EA™ and SP-EA™ to proteins, the distance function used is
least root-mean-squared-deviation (Irmsd) [22]; lrmsd first removes
differences between two three-dimensional structures due to rigid-
body motions, and then averages the Euclidean distance over the
number of atoms in each structure.

We note that the number of subpopulations in line 5 is not pre-
determined. Clustering algorithms that necessitate such determina-
tion can be used, but one of the reasons we prefer leader clustering
is that the number of clusters follows based on the specified dis-
tance threshold. Once subpopulations are determined, they each
undergo an evolutionary process. Lines 7-15 in Algorithm 1 evolve
each subpopulation as follows. For each subpopulation, offspring
are recorded in a set C that is initialized to the empty set (line 8).
Each individual in the current subpopulation S under consideration
(line 9) is selected to obtain an offspring c via a variation operator
(line 10). The variation operator for the benchmark problems stud-
ied here is a Gaussian perturbation operator, which perturbs each
coordinate of an individual by a value drawn from a zero-mean
Gaussian distribution with a given variance. In applications on
proteins, the variation operator is implemented as in [26] and is
described in detail later.

3.1.2  Evolving Each Subpopulation. The obtained offspring is then
subjected to a local search that seeks to improve the offspring
(line 11). For the benchmark problems considered here, a naive
local search chooses any of the coordinates of the offspring with
equal probability and then applies a simple gradient descent on the
chosen coordinate for a total of budgetSpent iterations/cycles. The
local search utilized in the applications on proteins is implemented
as in [26] and is detailed later. Note that all fitness evaluations
that occur in the improvement operator are counted, and they are
removed from the total budget (line 12).

Once the offspring of a subpopulation are generated and stored
in C (line 13), they compete for survival with parents (line 14). An
elitism-based truncation selection mechanism is employed for this
purpose. Based on an user-defined elitism rate, a percentage of the
fittest parents are selected to compete against the set of offspring.
The selected parents and offspring are sorted by their fitness values,
and the fittest |S| individuals are selected for the next generation,
where || is the size of the current subpopulation.
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3.1.3  Competition Among Subpopulations. Once this process com-
pletes for each subpopulation (line 7), subpopulations may now
compete with one another. How frequently this occurs is deter-
mined via a user-defined competition frequency (line 16). In this pa-
per, the competition takes place once every CompFreq generations.
Algorithm 1 does not provide details of the competition process
(line 17) which may update subpopulations. Different implementa-
tions of this process give rise to different variants of subpopulation
EAs. Let us delay momentarily the implementations we consider
here in the interest of first explaining how the competition among
subpopulations takes places.

Provided a mechanism exists to associate a fitness with an en-
tire subpopulation, a competition mechanism aims to accomplish
the following. The fittest subpopulation is rewarded with more
resources in hopes of affording better exploration of the landscape.
This is operationalized by replicating the fittest individual in the
fittest subpopulation; the size of the fittest subpopulation increases
by 1. In addition, the worst (lowest fitness) subpopulation is pe-
nalized by discarding its worst (lowest fitness) individual; the size
of the worst subpopulation decreases by 1. Note that it is possible
under this mechanism for a subpopulation to gradually lose all its
members, resulting in the elimination of a subpopulation.

As Algorithm 1 shows, the process of subpopulation evolution
and subpopulation competition is repeated until the fitness evalua-
tion budget is exhausted. At that point, the algorithm terminates.
The competitive mechanism described above is greatly dependent
on how the fitness of a subpopulation is defined. SP-EA™ considers
a straightforward definition of the fitness of a subpopulation as the
average over the fitness values of individuals in the subpopulation:

_ 2ses f(s)

Fs
N

)

3.2 A Niche-Preserving Subpopulation EA

The population competition utilized in SP-EA™ may result in a loss
of population diversity in cases in which a subpopulation with the
highest fit individuals may persist indefinitely, gradually acquiring
more members, resulting in the loss of subpopulations containing
less fit individuals. To provide some subpopulation stability, SP-
EAY preserves niches in a population by redefining the fitness of a
subpopulation to consider not only the fitness values of its members
but also the size of the subpopulation. Specifically,

Fs = Zses f(s) + TS| @)
IS]

In Equation 2, the fitness of a subpopulation not only calculates
the average over the fitness values of the members of the subpop-
ulation, but also penalizes the subpopulation fitness by a factor
(governed by the "temperature" parameter T) of the subpopula-
tion size (number of members). Larger subpopulations have more
penalty added to their score. This ensures that a large subpopulation
can only win, if it really holds much fitter individuals than smaller
subpopulations. Otherwise, smaller subpopulations get to increase
their sizes. This way, a small subpopulation can also win if it holds
good individuals, even if they are not the fittest. This helps preserve
the niches, lets the algorithm map more of the subspaces in the
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search space, and gives the algorithm a better chance of finding
diverse optima.

Note that the temperature parameter shifts the balance in the
fitness of a subpopulation towards fitness or size. For instance, if
T = 0, SP-EA™ reverts to SP-EA™ and does not consider the size of
a population.

3.3 Adaptations for Application to Proteins

In the above exposition, we frequently refer to adaptations of vari-
ous operators for application of SP-EA™ and SP-EA™ to proteins.
Below, we briefly summarize each of these operators, as effective
implementations for them have appeared in genetic algorithms,
memetic EAs, and multi-objective memetic EAs in literature [26—
28].

3.3.1 Initial Population. A structure (individual) of a protein is
represented as a vector of (dihedral) angles. These angles basically
determine the spatial arrangement of atoms that are covalently
linked to form a chain that folds in different structures in three
dimensions. We will refer to this vector representation of a struc-
ture as a conformation. Extended conformations can be computed
trivially (due to characteristic values for the dihedral angles that
"stretch" the chain of atoms in three dimensions). The initialization
operator first generates N of such identical extended conforma-
tions, where N is the population size. Then, as described in [27],
each extended conformation is subjected to a 2-stage Metropolis
Monte Carlo (MMC) search. The first stage contains 200 moves and
uses a temperature of 0 for the Metropolis criterion, which accepts
a move if it decreases the energy of a conformation. This stage
employs Rosetta’s score0 [19] energy function to obtain conforma-
tions free of self collisions; we note that Rosetta is a popular PSP
software package that contains representations, energy functions,
and a protocol for generating low-energy conformations given an
amino-acid sequence.

The second stage performs MMC search until [ consecutive
moves fail according to the Metropolis criterion, where [ is the
number of amino acids in the protein sequence. This stage uses a
temperature of 2, which primarily accepts a move if it decreases
the potential energy while also allowing small increases. This stage
uses the scorel Rosetta energy function to reward secondary struc-
ture formation. Each move in this 2-stage search is a molecular
fragment replacement of length 9.

3.3.2 Molecular Fragment Replacement. A fragment of length f
is defined over amino acids at positions i through i + f — 1 in the
chain. To perform molecular fragment replacement of length f on
a conformation C, an uniformly random position i is sampled over
the amino acid positions 1 to [ — f + 1. Here, [ is the number of
amino acids in C. Then, a random matching fragment of length
f is selected from the fragment configuration library and used to
replace the 3 f dihedral angles (¢, i, and w per amino acid) of the
previously selected fragment in C. As a result, a new conformation
is achieved. We use the popular Rosetta fragment server [19] as the
fragment configuration library.

3.3.3  Variation and Improvement Operators. The variation oper-
ator implements mutation by performing a molecular fragment
replacement of length 3 on the parent. A generated offspring is
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then improved by employing a local search. The goal is to map the
offspring to a nearby local minimum in the energy landscape. The
local search is greedy in nature and ensures that only the moves
that lower energy are accepted. Each move is a molecular fragment
replacement of length 3 and is evaluated with the Rosetta score3
energy function. This greedy search returns the lowest-energy con-
formation sampled when [ consecutive moves fail to improve the
conformation (I is the number of amino acids in the sequence).

4 RESULTS

In this section, we present a summary of our results. We first apply
both algorithms on two generic landscapes with known global
minima to analyze their performance in finding these minima as
well as in the overall exploration of the subspaces. We also examine
the stability of the subpopulations that they generate. Then, we
execute both algorithms in the context of PSP on a benchmark
dataset and compare them via different metrics against each other
and against the popular Rosetta algorithm [19].

4.1 Analysis on Known Fitness Landscapes

We choose two benchmark problems to comparatively evaluate the
behavior of SP-EA™ and SP-EA™:

e Asphere: f(x) = X7, x 2
o The product of two spheres.

flx) = \/z;;l(x,- —200)2 x \/z;;l(x,- +200)2.

where x is a D-dimensional vector. The landscape of the sphere
function contains 1 global minimum, and the landscape of the
product of two spheres contains 2 global minima. Each algorithm is
run 1, 000 times on each problem. On each run, we randomly pick
the dimensionality D from {2, 5, 10, 20}. We set the temperature for
SP-EAY to 6, 12, 25, and 50, respectively, for D = 2, 5, 10, and 20. We
fix the range of values for each x; to [-500, 500]. The population
size is set to 200, elitism rate for selection to 25%, the frequency for
subpopulation competition to 2, and the evaluation budget for each
run to 10, 000, 000 fitness evaluations (this same budget is used in
our evaluation on protein landscapes in the context of PSP).

We first evaluate the number of times each algorithm converges
to the known global minima (or minimum). We consider an algo-
rithm to have converged if for 1-sphere problem, the final popula-
tion generated by the algorithm consists of a single subpopulation
and that subpopulation contains the global minimum; and for the
2-sphere problem, the final population generated by the algorithm
consists of only two subpopulations and each of the subpopulations
contains one global minimum each. Table 1 shows the percentage
of times the two EAs converge in 1000 runs on each problem. Both
EAs converge in the 1-sphere problem to the only minimum in all
the runs. On the 2-sphere problem, SP-EA™ does not converge to
both minima in the final subpopulations. In most cases, SP-EA™
converges to a single subpopulation. This result indicates the ge-
netic drift that occurs along the way, with the population losing
diversity early. SP-EA™ performs well and retains both minima the
majority of the time, indicating that the niche-preserving technique
is effective in preventing premature convergence.

We now provide a visual analysis of the stability of the subpop-
ulations by examining the size of the subpopulations in the final
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Table 1: Percentage of times (out of 1,000 runs) SP-EA™ and
SP-EA" converge to the 1 minimum and 2 minima in the
known landscapes of the sphere problems considered here.

Algorithm | 1-sphere | 2-spheres
SP-EA™ 100% 0.13%
SP-EA* 100% 71.2%

population of SP-EA* . Fig. 1 shows the histogram of the smaller sub-
population sizes in the final populations for the 2-sphere problem
in the cases where SP-EA™ converges. In 75.9% cases, the smaller
subpopulation has a size of 80 or more out of 200 individuals in the
population. Only in 1.8% of the cases, the smaller subpopulation
has a size of 20 or less. Considering the substantial budget, these
results confirm that SP-EA™ not only retains population diversity,
but also produce stable subpopulations.
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Figure 1: Histogram of smaller subpopulation sizes in the
final population for the 2-sphere problem on the runs where
SP-EA™" produces 2 subpopulations that contain one minima
each.

4.2 Analysis on Protein Structure Landscapes

We consider a benchmark dataset of 20 proteins of different folds
(a, B, a + P, and coil) and lengths (from 53 to 146 amino acids).
Part of this dataset was originally introduced in [24] and then over
time enriched with more protein targets [11, 27]. With regards to
parameter values, differences from the above evaluation include
the distance threshold, which is set to 5A, and the temperature in
SP-EATY, which is set to 2, and the number of runs, which is set
to 5 times on each protein sequence to account for stochasticity
and we report the best performance over all 5 runs combined for
each EA. We compare the two EAs to each other and the Rosetta
algorithm. Note that the Rosetta algorithm implements simulated
annealing and runs for a budget of 54, 000, 000 energy evaluations.
Since the evaluation budget for each run of each of our EAs is fixed
to 10, 000, 000 evaluations, this adds up to 50,000, 000 over 5 runs.

As is practice in PSP evaluation [31], we measure performance in
terms of the lowest reached energy and the lowest reached distance



GECCO ’19, July 13-17, 2019, Prague, Czech Republic

(Irmsd) to a known biologically-active structure of a target under
consideration. The former measures exploration capability. Since
lower energies do not necessarily correlate with proximity to the
active structure, it is important to also measure distance. It is worth
noting that lrmsd is non-descriptive above 8A and increases with
sequence/chain length. An Irmsd within 5-6A is considered to have
captured the active structure under consideration.

Table 2 summarizes the performance of each of the three algo-
rithms in terms of these two metrics; the lowest values on each
target are marked in bold. The first column lists the test cases by
identifying the Protein Data Bank Identifier (PDB ID) of the entry
where an active structure known for each test case is deposited.
We note that for many of these test cases, one active structure is
reported in the wet laboratory though others may exist.

Table 2 shows that SP-EA™ achieves the lowest energy in 12/20
targets, whereas SP-EA™ and Rosetta do so on 2/20 and 6/20 tar-
gets, respectively. In a head-to-head comparison between SP-EA*
and Rosetta, SP-EA™ achieves lower energy in 14/20 targets over
Rosetta. Between SP-EA* and SP-EA™, the former wins in 17/20
cases. Finally, between SP-EA™ and Rosetta, SP-EA™ wins in 11/20
cases.

A similar comparison on lowest lrmsds reveals that SP-EA*
achieves the lowest IRMSD in 12/20 targets, whereas SP-EA™ and
Rosetta do so on 2/20 and 10/20 targets, respectively. In a head-to-
head comparison between SP-EA" and Rosetta, Rosetta achieves
lower IRMSD in 8/20 targets than SP-EA*. Between SP-EA™ and SP-
EA™, the former wins in 15/20 cases. Between SP-EA™ and Rosetta,
Rosetta wins in 9/20 cases.

To give some insight into these low Irmsd values, Fig. 2 selects
two proteins (with respective active structures under PDB IDs 1ail
and 3gwl) and shows the lowest-lrmsd structure obtained by SP-
EA™ in each case. These structures (drawn in blue) are superim-
posed over the corresponding active structures (drawn in olive). The
superimposition highlights the quality of the solutions obtained by
SP-EA*.

1ail (1.24)

3gwl (2.9A)

Figure 2: The lowest-Irmsd structure obtained by SP-EA" on
each protein is drawn in blue, superimposed over the corre-
sponding active structure (with PDB id and lrmsd shown),
which is drawn in olive. Rendering is performed with the
CCP4mg molecular graphics software [23].
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The comparisons so far suggest that the subpopulation EAs out-
perform Rosetta on both metrics. We harden this result via statisti-
cal significance analysis tests. We use two statistical significance
tests, Fisher’s [15] and Barnard’s [1] exact tests to determine if the
results are statistically significant. We employ the tests over 2x2
contingency matrices generated from the results obtained using the
comparison metrics. Fisher’s test is conditional and Barnard’s test is
unconditional in nature. While Fisher’s exact test is widely adopted
for statistical significance, Barnard’s test is generally considered
more powerful than Fisher’s test on 2x2 contingency matrices.

Table 3 shows the p-values for the 1-sided Fisher’s and Barnard’s
tests for the lowest energy head-to-head comparison. All the values
(< 0.05) that reject the null hypothesis with 95% confidence are
marked in bold. Both null hypotheses (SP-EA* does not perform
better than Rosetta and SP-EA* does not perform better than SP-
EA™) are rejected, confirming the superior performance of SP-EA™.
The null hypothesis that SP-EA™ does not perform better than
Rosetta is not rejected, indicating that the performance improve-
ment of SP-EA™ over Rosetta is not statistically significant with
95% confidence.

Similarly, Table 3 also shows the p-values for the 1-sided Fisher’s
and Barnard’s tests for the lowest Irmsd head-to-head comparison.
All the values (< 0.05) that reject the null hypothesis with 95%
confidence are marked in bold. The null hypothesis that SP-EA*
does not perform better than SP-EA™ is rejected, confirming the
superior performance of SP-EA* over SP-EA™. The null hypotheses
that SP-EA* does not perform better than Rosetta and that SP-EA™
does not perform better than Rosetta are not rejected, indicating
that the performance improvements of the two subpopulation EAs
over Rosetta are not statistically significant with 95% confidence.

Taken altogether, the results presented above suggest a stronger
exploration capability of the subpopulation EAs over Rosetta and
a superiority of the niche-preservation technique in exploration.
On the Irmsd-based comparison, none of the algorithms is a clear
winner, but the subpopulation EAs perform comparably to Rosetta.

5 CONCLUSION

In this paper we revisit subpopulation-oriented EAs to switch the
objective from classic optimization to mapping of fitness landscapes.
The latter task is only relevant when the problem of interest is
characterized by a multimodal landscape where the various modes
contain information about the system being investigated. This is
the case for most biological systems, and, in particular, protein
molecules.

Since neither the number of subpopulations nor their distribu-
tion are known ahead of time for unknown molecular landscapes,
we present here a baseline subpopulation EA that makes use of
phenotypic clustering to define initial subpopulations and makes
use of subpopulation competition to evolve subpopulations. We
investigate two different strategies for such competition and show
that taking into account not only the height/depth, but also the
size/breadth of a local optimum allows better retaining diverse
subpopulations that converge to the different modes of known
landscapes. Evaluation on unknown landscapes in the context of
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Table 2: Comparison of the lowest energy (in Rosetta Energy Units — REUs) obtained by each algorithm on each of the 20 test
cases is shown in Columns 4, 5, and 6. Comparison of the lowest Irmsd (measured in Angstroms - A) to a given active structure

in each test case is shown in Columns 7, 8, and 9.

Lowest Energy Lowest Irmsd
PDBID Length Fold Rosetta SP-EA~ SP-EA* Rosetta SP-EA~ SP-EA™
lail 73 a -29.9 -74.1 -81.3 4.5 1.5 1.2
laly 146 p -112.5 —63.4 —74.6 12.4 11.1 10.9
laoy 78 o -73.3 —103.2 -116.8 4 3.1 3.1
1bq9 53 B —46.9 -51.3 —64.2 2.9 4.3 4.7
1c8ca 64 p -101.4 -69.5 -78.3 2.2 3.7 3.6
lce5 83 o -82.5 —67.6 -76.4 3.7 4.2 4.7
1dtdb 61 a+p —66.5 -57.5 —-69.6 4.2 5.2 5
1dtja 76 a+p =72.5 -85.5 -72.6 2.3 2.3 2.5
1fwp 68 a+p -71.3 —66.9 =721 2.8 4 3.7
1hhp 99 p -106.3 —87.8 —83.5 10.1 8.4 8.2
1hz6a 67 a+p -117.1 —122.5 -122.8 1.9 2.3 1.9
lisua 62 coil =27 —38.8 —-41.8 6.6 6.1 5.8
1sap 66 B -107.8 -91.2 -109.9 2.8 4.4 4
1tig 88 a+p -138.2 —104.1 —-112.2 2.5 3.5 3.7
lwapa 68 B -109 —65.9 =71 6.5 5.9 5.6
2ci2 83 a+p -37.8 =72.7 -82.7 5.8 3.6 3.5
2ezk 93 a -51.1 —126.4 -135.2 3.6 3 2.9
2h5nd 123 a —82.5 —-134.9 -139.1 7.4 7.8 7.4
2hg6 106 a+p —82.5 -96.4 -95.1 9.4 8.9 8.7
3gwl 106 p —68.2 -112 -117.8 5.8 4.2 2.9

Table 3: p-values obtained by 1-sided Fisher’s and Barnard’s
tests for head-to-head comparison of the algorithms on low-
est energy (left) and lowest Irmsd (right). Top panel evalu-
ates the null hypothesis that SP-EA" does not perform bet-
ter than Rosetta. Middle panel evaluates the null hypothe-
sis that SP-EA*' does not perform better than SP-EA™. Bot-
tom panel evaluates the null hypothesis that SP-EA™ does
not perform better than Rosetta.

SP-EAY vs. Rosetta
Test Lowest energy | Lowest lrmsd
Fisher’s 0.01282 0.3756
Barnard’s 0.008299 0.3057
SP-EAY vs. SP-EA~
Test Lowest energy | Lowest lrmsd
Fisher’s 0.000009693 0.0006159
Barnard’s | 0.000004182 0.0003401
SP-EA™ vs. Rosetta
Test Lowest energy | Lowest Irmsd
Fisher’s 0.3762 0.5
Barnard’s 0.3179 0.4373

protein structure prediction shows that niche preservation also
confers higher exploration capability.

We believe this work is useful for a broad range of landscape map-
ping problems in various domains. Though our primary motivation
in this paper is in the domain of protein modeling in computa-
tional structural biology, there are many problems in chemistry,

physics, and network science that necessitate characterization of
complex systems with diverse functional states. Prompted by the
encouraging results presented here, we intend to further investigate
subpopulation EAs and niche preservation techniques to advance re-
search in molecular structure modeling. Further directions of work
include investigating the impact of temperature in niche preserva-
tion, better regulating resources spent by larger subpopulations in
the evolution process, as well as investigating additional variation,
selection operators, and alternative mechanisms of subpopulation
competition.
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