Learning Reduced Latent Representations of
Protein Structure Data

Fardina Fathmiul Alam
Dept of Computer Science
George Mason University

falam5@gmu.edu

ABSTRACT

The protein modeling community has long been interested in dimen-
sionality reduction of structure data. Motivated by rapid progress
in neural network research, we investigate autoencoders of various
architectures on reducing the dimensionality of protein structure
data generated by template-free protein structure prediction meth-
ods. We show that autoencoders that model nonlinear relationships
among variables outperform linear dimensionality reduction. We
evaluate various architectures and propose a better-performing one.
We further show that the learned, low-dimensional latent represen-
tations capture inherent information useful for structure prediction.
Given the ease with which open-source neural network libraries,
such as Keras, which we employ here, allow constructing, training,
and evaluating neural networks, we believe that autoencoders will
gain in popularity in the structure biology community and open
up further avenues of research.

CCS CONCEPTS

« Computing methodologies — Machine learning; - Applied
computing — Molecular structural biology; Bioinformatics.

KEYWORDS

protein structure; latent representation; dimensionality reduction;
autoencoders; deep neural networks.

ACM Reference Format:

Fardina Fathmiul Alam, Taseef Rahman, and Amarda Shehu. 2019. Learning
Reduced Latent Representations of Protein Structure Data. In 10th ACM
International Conference on Bioinformatics, Computational Biology and Health
Informatics (ACM-BCB °19), September 7-10, 2019, Niagara Falls, NY, USA.
ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3307339.3343866

1 INTRODUCTION

There is now a great demand for machine learning (ML) methods to
handle, summarize, and make observations from growing molecular
structure data [6, 21-23, 25, 33]. In particular, the protein modeling
community has long been interested in reducing the dimension-
ality of protein structure data [1]. One driving objective has been

“Corresponding Author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ACM-BCB 19, September 7-10, 2019, Niagara Falls, NY, USA

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6666-3/19/09...$15.00
https://doi.org/10.1145/3307339.3343866

Taseef Rahman
Dept of Computer Science
George Mason University

trahman2@gmu.edu

Amarda Shehu”
Dept of Computer Science
George Mason University

amarda@gmu.edu

to highlight functionally-related collective motions of groups of
atoms [12, 14, 24, 25]. Another objective has been to visualize struc-
ture spaces and make structure-function discoveries [21, 23, 29],
as well as expedite the search for novel structures and structural
transitions [9, 10, 13, 18, 19, 27, 28, 30]. Predominantly, linear meth-
ods, such as Principal Component Analysis (PCA) [31], have been
favored due to ease of implementation and evaluation. Some work
has considered non-linear methods, such as Isomap [32], Locally
Linear Embedding [26], Diffusion Maps [11], and others [34], but
these have not been as broadly adopted, mainly due to difficulty of
evaluation and/or implementation.

Motivated by rapid progress in neural network research, we in-
vestigate autoencoders (AEs) of various architectures on reducing
the dimensionality of protein structure data. To the best of our
knowledge, the first AE occurrence can be found in Ref. [5], where
an AE is applied to a substituted cyclo-octane of 24 atoms. In more
recent work [17], an AE with several hidden layers in the encoder
and a novel cost function is applied to molecular dynamics sim-
ulation data obtained for Asp7, a small molecule of 12 backbone
dihedral angles, and Trp-cage, a small protein of 20 amino acids.
Work in [7] investigates a similar AE architecture to summarize
the Trp-Cage folding landscape.

In this paper, we conduct a systematic, quantitative evaluation
of shallow and deep AEs. We focus on structure data generated by
template-free protein structure prediction (PSP) platforms due to
the ease with which tertiary structures can be generated. These
structures, are also referred to as decoys, as they hide among them
the biologically-active/native structure. Moreover, we focus on
small- to medium-size proteins that are beyond the reach of molec-
ular dynamics simulation. These molecules consist of thousands
of atoms. On such data, we demonstrate that deep AEs allows
modeling complex, nonlinear relationships among variables and
outperform linear dimensionality reduction models. However, we
also demonstrate that higher depth does not necessarily translate
to better performance. A proof-of-concept evaluation additionally
demonstrates how learned latent representations capture inherent
structure-function information that can be useful for important
learning tasks in template-free PSP.

The rest of this paper is organized as follows. Section 2 describes
AE architectures and relates details regarding training and evalua-
tion. Section 3 presents a detailed comparative evaluation against
PCA on decoy data over a benchmark set of protein targets often
used by decoy generation algorithms. This section also shows the
ability of the AE-learned representations to predict proximity of
decoys to the native structure. Section 4 concludes the paper with
a summary and discussion of future work.

https://doi.org/10.1145/3307339.3343866
https://doi.org/10.1145/3307339.3343866

ACM-BCB ’19, September 7-10, 2019, Niagara Falls, NY, USA

2 METHODS

We first summarize the architecture of a traditional/vanilla AE
before demonstrating how more complex AEs can be obtained and
relating details on training and evaluation.

2.1 Shallow versus Deep AE Architectures

An AE contains an encoder and a decoder. Fig. 1(a) relates a vanilla
AE (VAE), where the encoder maps the input layer x to the layer
y, and the decoder maps the same layer y to the output layer z.
The sought latent representation is the layer y. The encoder is a
deterministic mapping fp parameterized by a vector of parameters
0 = {W, b} that transforms an input vector x into a hidden rep-
resentation/code vector y. Learning y is the objective. Typically,
fp is an affine mapping that can also be followed by a nonlinear-
ity: fo(x) = o(W - x + b). Here, o refers to the sigmoid function
o(x) = ﬁ, and W and b are the weights and biases, respectively,
that connect the input units (elements of x) to the hidden units (ele-
ments of y). Note that o is a specific activation function. Others can
be used, such as tanh, rectified linear unit (RELU), or leaky RELU
(LR). RELU returns max(0, z) (zeroing out negative units). To rem-
edy premature convergence of units to zeroes, LR replaces the zero
region with a slope whose coefficient can be specified by the user.
The decoder maps y to a vector z = gy (y), where 0 = (Wb},
where W' and b’ are the weights and biases, and g, is an affine
mapping followed (or not) by nonlinearity. As z is the reconstructed
version of x, |z| = |x|. Typically, one seeks a reduced representa-
tion y such that |y| < |x|; this setting is known as under-complete.
Nothing disallows |y| > |x| (over-complete setting).

Many theoretical arguments point in favor of composing several
levels of nonlinearity as key to efficiently modeling complex rela-
tionships between variables and achieving better generalization
performance on challenging recognition tasks [3]. One can do so in
two different ways, by stacking separate encoder-decoder pairs, or
by adding various hidden layers to the encoder and decoder in one
encoder-decoder pair. Specifically, stacked AEs (sAEs), shown in
Fig. 1(b), are one type of deep AEs that stack vAEs [35]. Typically,
one abuses notation and refers to the vAEs as layers. The learned
hidden z of one layer becomes the input of the next layer.

Fig. 1(b) illustrates this as follows. Let us assume that the di-
mensionality of an input instance x is 5. The first vAE/layer can
be summarized as LY = {x — y; — z;}, with the subscript 1
indicating that this is the first layer. In this layer, Fig. 1(b) illus-
trates that |y;| = 4, and |z;| = 5. The second layer can be sum-
marized as L(?) = {y(l) - y(z) — 2@} In this layer, the input is
not x but the learned vector y(l) obtained from the previous layer.
Fig. 1(b) illustrates that [y| = 4, |y®| = 3, and |z?]| = 4. A
third layer has been shown in Fig. 1(b) that can be summarized
as L) = {y(z) - y(3) — 203}, where |y(2)| =3, |y(3)| = 2, and
|z23)| = 3. The need to know y(!) learned from layer L) to serve
as input for layer LU*D) necessitates that each layer be trained
separately and in order.

Alternatively, an AE capable of learning complex, non-linear
relationships can be constructed not via stacking, but by adding
more hidden layers in the encoder and decoder. Fig. 1(c) provides an
illustration. In this architecture, the encoder makes use of several

F. Alam, T. Rahman, and A. Shehu

hidden layers. The first hidden layer can be over-complete, whereas
the others gradually reduce the number of units until the target
dimensionality is reached. The layer where the number of units is
the same as the target dimensionality is the input to the decoder,
which mirrors the encoder (in reverse) in the composition of hidden
layers. To distinguish this architecture from the above, we will refer
to this architecture as dAE.

AEs provide a general dimensionality reduction framework.
When using affine encoder and decoder without any nonlinear-
ity (and a squared error loss, which we detail below), the resulting
AE essentially performs PCA [2]. We demonstrate this in Section 3.
The employment of nonlinearity in the encoder allows carrying
out nonlinear dimensionality reduction.

2.2 AE Training

The training of an AE is guided by a loss function that measures how
different the input x and its reconstructed version z are from each-
other. The loss function is also referred to as the reconstruction error.
For real-valued x € [0, l]d (of dimensionality d), it is more natural
for the loss to be measured as the squared error ||x — z||2 [35]. Note
that in an sAE, each layer LD s guided by its own reconstruction
error ||y~ — z1||2 (with x serving as y° for the first layer). For
real-valued x, due to the Gaussian interpretation of z, it is also more
natural not to use nonlinearity in the decoder, though it has become
common practice to do so. Nonlinearity in the decoder is justified
when dealing with binary data x, as the decoder needs to produce
ze0,1]9. Doing so yields a loss function that is the cross-entropy
between two independent multivariate Bernoullis.

The parameters 6 and ¢’ arelearnedina gradient descent process
whose objective is the minimization of the loss function. We make
use of the Adam optimizer due to its demonstrated superiority [16].
A learning rate controls how much the weights are adjusted with
respect the negative gradient of the loss function. A lower learning
rate may stall premature convergence into local minima. Typically,
one starts with a low learning rate that increases gradually to
expedite convergence. Since the loss function may be complex, its
optimization proceeds in epochs. In each epoch, the training data
are passed forward to compute the current value of the loss function.
The negative gradient of the loss function is evaluated at this value
and then passed backwards to update the weights and biases. In
each epoch, the training data is divided into batches, where the
batch size is the number of input instances passed forward before
the parameters are updated.

One of the choices during training is the employment of dropout.

Dropout refers to ignoring a randomly-selected subset of units/elements

in the input during training. Ignoring means that selected units
are not considered (zeroed out) during the forward and backward
passes. The reason for dropout is to prevent overfitting. Another
consequence of dropout is a reduced training time per epoch but
an increase in the time required to converge.

2.3 Investigated AE Architectures

Since the protein structure data we utilize are specified as Cartesian
coordinates, the inputs x are real-valued. We have experimented
with various AE architectures, shallow, stacked, and deep ones,
where encoders and decoders employ nonlinearity or not. Since

Latent Representations of Protein Structure Data

Decoder

Vo

ACM-BCB ’19, September 7-10, 2019, Niagara Falls, NY, USA

—___Encoder

r
! ~~-
|
I
|

Decoder

t - ' = /\ L® %
/” ' Z////)‘(/ lli 77}.
{ ‘ \ L® _ Lci:};\ |
(a) vanilla AE (b) Stacked AE () Deep AE o
p

Figure 1: (a) A traditional/vanilla AE, where the he encoder maps an input vector x to a hidden vector y, and the decoder maps
y to an output vector z, a reconstructed version of x. The training process that determines the parameters of the encoder and
decoder (weights and biases) aims to minimize the loss function. For real-valued x, this is typically the squared error ||x — z||%.
(b) VAEs can be stacked to obtain an sAE. Each vAE can be considered a layer. The learned, hidden y of one layer (one vAE)
becomes the input of the next layer (the next vAE). (c) In this deep architecture, the encoder and decoder make use of several
hidden layers. The decoder mirrors the encoder, performing the reverse mapping.

the space of possible architectures can be vast, we restrict our
investigation to the following. First, we make use of a vAE with
only affine mappings in the encoder and decoder. For instance, for a
dataset of 222 dimensions (corresponding to Cartesian coordinates),
the encoder maps an input layer of 222 units to the code layer of
2 units, and the decoder then maps the code layer of 2 units to
an output layer of 222 units. Abusing notation in the interest of
convenience, we refer to this vAE as 222 — 2 — 222.

We also experiment with various sAE architectures. At one ex-
treme, we consider an 8-layer sAE: IV = {Ix]| > m - x|},
L® = {m > 125 5 m}, L® = {125 - 64 — 125}, L¥ = {64 —
32 — 64}, L = {32 > 16 — 32}, L®) = {16 —» 8 — 16},
L = {8 - 4 — 8}, and L® = {4 > 2 — 4}, where m > |x|
depends on input dimensionality. When x < 222, m = 250; when
[x| > 250, m = |x| + 28. The overall principle is to increase the
dimensionality over |x|. The model can experience a loss of in-
formation when going from real-valued input data to values in
[0, 1] (due to nonlinearity in the encoder), which can be counter-
balanced by an initial increase in dimensionality [15]. On the other
extreme, we consider an 3-layer sAE, IO = {|Ix] - m = |x|},
I® = {m > 125 > m},and L® = {125 - 2 — 125.}

Finally, we consider various dAEs. At one extreme, we consider
a dAE, where the encoder is the mapping |x| - m — 125 —
64 — 32 — 16 —> 8 — 4 — 2 (and the decoder does the reverse).
At the other end, we consider a dAE, where the encoder maps
[x| = m — 125 — 2 (and the decoder does the reverse). We also
consider various choices in activation functions (affine mappings,
sigmoid, or LR) and dropout (or not).

It is worth highlighting that model depth comes at a great cost
(number of weights and biases) that have to be learned. While data
size in the structure biology community has increased, it cannot
approach the million regime for image data, where deep learning is
shown to be superior. Back-of-the-envelope calculations make this
point. For an sAE with 8 layers as described above, the number of
weights that have to be learned when |x| = 222 is 2 X (222 X 250 +
250X 1254+ 125X 64 + 64 X32+32X 16+ 16 X8 +8X 4 +4X2) =
194, 956; the factor of 2 at the beginning considers the encoder
and decoder in each layer. Tying the weights of the decoder to
those of the encoder (effectively learning only the weights of the

encoder and transposing them to obtain the weights of the decoder)
brings this number down to close to 100K. In a dAE, the additions
are all turned into multiplications, and the number of weights is
2X(222x250%125X64%x32X16X4X2) = 2.9097984e+13. Such large
numbers of weights ensure that training converges prematurely to
a local minimum in a very high-dimensional loss space.

2.4 Evaluation and Implementation Details

The trained models are compared to one another and PCA on MSE
on the testing dataset in terms of mean squared error (MSE); the
squared error is measured over every instance in the testing dataset,
and the mean of these values is reported. PCA is used as a baseline
due to its popularity. For fair comparison, the PCA model is trained
over the same training data as the AEs and is evaluated over the
same testing data in terms of MSE. We make use of Python’s sklearn
library to do so. After creating a PCA object, the object/model is
trained over the training data x using pca.fit(x). Any data in-
stance D can be transformed/projected over the number of dimen-
sions of interest using D = pca.transform(D) afterwards; D
refers to the transformed data. The transformed data D' can
be mapped back to obtain the reconstructed data D" at some dimen-
sionality of interest d using D’ = pca. inverse_transform(D/ ,
d). The reconstruction error is then measured as ||D — D’ |2, and
the MSE over the data instances in the testing dataset is reported to
evaluate PCA in comparison to the sAE models. Each AE model can
converge to a different local minimum of the loss function, as the
optimization process depends on initial values of the parameters,
which are set at random, as is common practice. Therefore, each
AE model is trained 3 times (starting with random initial parame-
ters), resulting in 3 trained models. When comparing the MSE of a
particular architecture to the MSE of PCA, we report the mean and
variance of the MSEs obtained over the 3 runs.

The comparative evaluation highlights a model that achieves the
lowest overall MSE on a 2D latent representation. The learned rep-
resentation is evaluated visually and quantitatively. First, datasets
are projected onto this representation and visualized in comparison
to projections over the PCA-learned representations. Second, the
learned representation is evaluated for its ability to encode “native-
ness” in a regression setting, where the goal is to predict the least

ACM-BCB ’19, September 7-10, 2019, Niagara Falls, NY, USA

root-mean-squared deviation (IRMSD) [20] of each decoy from the
native structure from the learned representation. Two settings are
considered, linear versus non-linear regression. In the latter, the
sigmoid function is used to return values in [0, 1]; all IRMSD values
are scaled in the same range. Each model is trained over the same
training dataset and evaluated over the same testing dataset as the
AEs. Model quality is evaluated on the MSE between predicted and
given IRMSDs over the testing dataset.

The implementation, training, and evaluation of the various AEs
is carried out in Keras [8], an open-source neural-network library
written in Python. In the models with dropout during training,
dropout rates of 0.1 — 0.4, are evaluated; The increase in dropout
pressures against overfitting. Each of the investigated AEs is trained
for a total of 100 epochs with a batch size of 256. Learning rates
vary from 0.009 to 0.0005 (varied per layer on sAEs). When LR is
employed, the negative slope coefficient « is set to 0.3. Training
times for all considered AE models vary from 326.479 seconds to
1076.575 seconds depending on the size of the training dataset.

We employ 19 proteins of varying lengths (53 to 146 amino acids
long) and folds (@, f, a + f, and coil). These proteins are typically
employed to evaluate debuting decoy generation algorithms for
template-free PSP [36, 37]. On each protein, we run the Rosetta
Ablnitio protocol in an embarrassingly parallel manner to obtain
an ensemble of 50,000 — 60,000 decoys per protein. Each decoy
is a tertiary structure specified via the Cartesian coordinates of
its atoms. We simplify each decoy by only maintaining the main
carbon (CA) atom of each amino acid. Since the proteins we employ
vary in lengths from 53 to 146 amino acids, input instances vary
in dimensionality from 159 = 53 X 3 to 438 = 146 X 3. The decoy
ensemble of each protein is split to obtain a training, validation,
and testing dataset. A 0.5:0.1:0.4 split yields the training, validation,
and testing datasets, respectively. The known native structure of
each protein is obtained from the Protein Data Bank (PDB) [4].

3 RESULTS

In the interest of space, we only only report the performance of
a subset of the (better-performing) AE models constructed and
trained, omitting the very deep, underperforming architectures. We
report on the performance of a vVAE with affine mappings in the
encoder and decoder, and a vAE with ¢ in the encoder (VAE).
We evaluate an sAE with three layers IO = {|x| > m - x|},
L® = {m - 125 - m},and L® = {125 - 2 - 125}, and o
in the encoder layers, referring to it as SAEy;. These models are
compared to a dAE architecture, where the encoder maps |x| —
m — 125 — 2, and the decoder does the reverse. We report on two
variations, dAEg,, o, Where o is used in the encoder and decoder,
and dAE[R, o, Where the encoder uses LR instead. Each model is
trained with or without dropout. The better performing models are
those trained with dropout.

3.1 Comparative Evaluation

To substantiate the lack of overfitting, we relate the per-epoch
training versus validation loss (on one selected protein) for vAE
and dAE[R, 4, in Fig. 2. Convergence is reached later in the dAE
than the vAE model due to the complexity of the loss surface (which
has more dimensions due to the higher number of parameters). The

F. Alam, T. Rahman, and A. Shehu

other AE models also indicate no overfitting (data not shown). We
note that on sAEs, this analysis is done for every layer, as each sAE
layer is trained separately.

—— TRAINING DATA

—— TRAINING DATA
VALIDATION DATA o \ VALIDATION DATA

a0 oy, 500 & 0 100

800 0 20 40 epock
VAE dAELR,. op
Figure 2: Training versus validation loss is shown over
epochs. The shallow model converges faster.

Fig. 3 compares mean MSEs (over 3 runs) of various AE models
(related above) in comparison to PCA over the testing dataset. Fig. 3
shows that vAE obtains similar MSEs as PCA, and that vAE, does
not yield superior performance. The performance of sAEs, is the
poorest, which is due to the fact that each subsequent layer consid-
ers a problem of lower dimensionality; the representations learned
at each layer and associated reconstruction errors do not necessarily
lead to an optimal overall representation and overall reconstruction
error. Effectively, each layer makes a greedy decision that leads to
an overall poor representation and high reconstruction error. In
contrast, dAE[R, o, and dAE, o, are the best performing ones,
with dAE,, 5, achieving the lowest mean MSEs. It is worth not-
ing that the variances obtained for each model are < 1le — 3; the
only exceptions are sAE, on 1sap (variance of 0.018), dAErr, o/,
on 2h5n(D) (variance of 0.02), and dAE, o, on 2ci2 and 2h5n(D)
(variances of 0.026 and 0.059, respectively).

Tl 1008) Twap(Al g 1GU(A) Tnz6(A) IcBC(Al 202

hp 1twp 1sap 2n5n(D) Zezk laoy

o
Figure 3: The AE architectures are trained 3 times, starting
with initial random weights and biases, and the mean MSEs
obtained over the runs are reported. Each protein is identi-
fied with the PDB id of its known native structure. The chain

is shown in parenthesis.

3.2 Visualization of Latent Space

We visualize the 2D latent space in which PCA, vAE, and dAE g, o,
project the decoy datasets. We do so for the protein with native
structure under PDB id 1aoy, plotting all embedded Rosetta-generated
decoys as disks color-coded by their least RMSD from the native
structure. A blue-to-red color scheme indicates lower-to-higher
RMSDs. Fig. 4(a) shows the PCA-learned 2D embedding. Fig. 4(b)-
(c) do so for the vAE-learned embedding from two different runs,

Latent Representations of Protein Structure Data

each one initialized with random parameter values. Fig. 4(d)-(f)
relates the embedding learned from three different runs, each one
initialized with random parameter values, of the best-performing
dAE (in terms of MSEs), dAE[g, s, model.

Fig. 4(b)-(c) makes it clear that the models can be different and
depend on the initialization of parameters. The embeddings are sim-
ilar to the PCA-obtained one in Fig. 4(a) (within a rotation around
z axis), visually indicating that the vAE model indeed reproduces
PCA. Fig. 4(d)-(f) show similar embeddings obtained by three dif-
ferent runs of dAE R, &, The embeddings related in Fig. 4(d)-(f)
are qualitatively more useful, as they either co-localize low IRMSD
decoys better or separate them better in the latent space, holding
more promise for further learning from the latent space.

3.3 Nativeness Encoding in the Latent Space

The above visualizations are a qualitative evaluation of the infor-
mation present in the learned latent representations. We carry out
a quantitative, proof-of-concept evaluation of whether the learned
representations encode in them proximity to the native structure.
We do so in a comparative setting for the 2D representations learned
by PCA and the top-performing dAE (on mean MSE), dAEs, o,
In each case, we train a linear regression model and a perceptron
(which adds o) over the same training dataset over which we have
trained PCA and dAEs,, o, to predict decoy IRMSDs from the na-
tive structure. Fig. 5 evaluates the regression and perceptron models
on their mean MSE and variance over the testing datasets. In the
case of the perceptron, since o maps the input to an output in
[0, 1], we scale IRMSDs to the same range. We note that regression
variance is the coefficient of determination, so higher values indi-
cate better performance. Low values indicate that the dependent
variable cannot be predicted from the independent variable.

The results in Fig. 5 show that the PCA- and dAE-learned rep-
resentations encode in them sufficient information about native-
ness. There are no significant differences between the PCA- versus
dAE-learned representations regarding MSE, but dAE-learned rep-
resentations yield higher regression variance. Nonlinearity in the
prediction model (perceptron) also improves performance over lin-
ear regression.

4 CONCLUSION

Motivated by rapid progress in neural network research, this paper
has investigated and evaluated several shallow and deep AE archi-
tectures on reducing the dimensionality of protein structure data
generated by template-free protein structure prediction methods.
Nonlinear models are reported to perform best. A proof-of-concept
experiment suggests that the obtained latent representations and
so hold useful information for discriminating decoys in important
tasks in template-free PSP, such as decoy selection.

The proposed work opens up many lines of future investigation.
One can broaden the model search by considering hyperparameters,
such as the learning rate, the negative slope coefficient in parametric
RELU, etc. One can also evaluate the utility of the learned represen-
tations in unsupervised and supervised learning tasks related to
decoy selection in PSP or other settings, where an understanding
of the relationship between structure and function may be aided
by reduced representations of structure.

ACM-BCB ’19, September 7-10, 2019, Niagara Falls, NY, USA

The presented work shows that training AEs is fraught with chal-
lenges. Great care has to be taken to evaluate whether a learned
model converges to a local minimum of the loss function. Deep ar-
chitectures result in high-dimensional loss surfaces, where gradient-
based search is likely to converge prematurely to a local minimum
near the starting point (the initial parameter values). As we have
demonstrated, models have to be trained several times. Altogether,
we believe that AEs hold much promise for structure data reduction
and summarization. The ease of implementation and evaluation in
platforms, such as Keras and others, will help wide adoption of AEs
in the structure biology community.

5 ACKNOWLEDGMENTS

This work is supported in part by NSF IIS Grant No. 1763233, NSF
DMS Grant No. 1821154, and a Jeffress Trust Award. Computations
were run on ARGO, a research computing cluster provided by the
Office of Research Computing at George Mason University, VA
(URL: http://orc.gmu.edu).

REFERENCES

[1] A. Amadei, A. B. Linssen, and H. J. Berendsen. 1993. Essential dynamics of
proteins. Proteins 17, 4 (1993), 412-425.

[2] P.Baldi and K. Hornik. 1989. Neural networks and principal component analysis:
Learning from examples without local minima. Neural Networks 2 (1989), 53-58.

[3] Y. Bengio. 2009. Learning Dee Architectures for Al. Foundations and Trends in
Machine Learning 2, 1 (2009), 1-127.

[4] H. M. Berman, K. Henrick, and H. Nakamura. 2003. Announcing the worldwide
Protein Data Bank. Nat. Struct. Biol. 10, 12 (2003), 980-980.

[5] W. M. Brown, S. Martin, S. N. Pollock, E. A. Coutsias, and J. P. Watson. 2008.
Algorithmic dimensionality reduction for molecular structure analysis. J Chem
Phys 129, 6 (2008), 064118.

[6] I Budowksi-Tal, Y. Nov, and R. Kolodny. 2010. FragBag, an accurate representation
of protein structure, retrieves structural neighbors from the entire PDB quickly
and accurately. Proc Natl Acad Sci USA 107, 8 (2010), 3481-3486.

[7] W. Chen, A. R. Tan, and A. L. Ferguson. 2018. Collective variable discovery and
enhanced sampling using autoencoders: Innovations in network architecture and
error function design. J Chem Phys 149 (2018), 072312.

[8] Francois Chollet et al. 2015. Keras. https://keras.io.

[9] R. Clausen, B. Ma, R. Nussinov, and A. Shehu. 2015. Mapping the Conformation
Space of Wildtype and Mutant H-Ras with a Memetic, Cellular, and Multiscale
Evolutionary Algorithm. PLoS Comput Biol 11, 9 (2015), €1004470.

[10] R. Clausen and A. Shehu. 2015. A Data-driven Evolutionary Algorithm for
Mapping Multi-basin Protein Energy Landscapes. § Comp Biol 22, 9 (2015),
844-860.

[11] R.R. Coifman, S. Lafon, A. B. Lee, M. Maggioni, B. Nadler, F. Warner, and S. W.

Zucker. 2005. Geometric diffusions as a tool for harmonic analysis and structure

definition of data: Diffusion maps. Proc Natl Acad Sci USA 102, 21 (2005), 7426~

7431.

P. Das, M. Moll, H. Stamati, L. E. Kavraki, and C. Clementi. 2006. Low-dimensional

free energy landscapes of protein folding reactions by nonlinear dimensionality

reduction. Proc. Natl. Acad. Sci. USA 103, 26 (2006), 9885-9890.

G. Fiorin, M. L. Klein, and J. Hénin. 2013. Using collective variables to drive

molecular dynamics simulations. Intl J Interface Chem Phys 111, 22-23 (2013),

3345-3362.

[14] B.]J. Grant, A. A. Gorfe, and J. A. McCammon. 2010. Large conformational
changes in proteins: signaling and other functions. Curr. Opinion Struct. Biol. 20,
2 (2010), 142-147. https://doi.org/10.1016/j.sbi.2009.12.004

[15] G.E.Hinton and R. R. Salakhutdinov. 2006. Reducing the Dimensionality of Data
with Neural Networks. Science 313, 5786 (2006), 504—507.

[16] D.Kingma and J. Ba. 2015. Adam: A Method for Stochastic Optimization. In Intl
Conf Learning Representations (ICLR). IEEE Press, 1-15.

[17] T.Lemke and C. Peter. 2019. EncoderMap: Dimensionality Reduction and Genera-
tion of Molecule Conformations. J Chem Theory Comput 15, 2 (2019), 1209-1215.

[18] T. Maximova, E. Plaku, and A. Shehu. 2018. Structure-guided Protein Transition
Modeling with a Probabilistic Roadmap Algorithm. IEEE/ACM Trans Comput Biol
and Bioinf 15, 6 (2018), 1783-1796.

[19] T. Maximova, ZQi. Zhao, D. B. Carr, E. Plaku, and A. Shehu. 2017. Sample-based
Models of Protein Energy Landscapes and Slow Structural Rearrangements. J
Comput Biol 25, 1 (2017), 33-50.

[12

[13

https://keras.io
https://doi.org/10.1016/j.sbi.2009.12.004

ACM-BCB ’19, September 7-10, 2019, Niagara Falls, NY, USA

F. Alam, T. Rahman, and A. Shehu

7 “ 57 2 57
33 20 33 33
s s 9 s
= ® ®
R ER 2
105 & of 105 & 1105
a a 201 a
a a a
S = S
137% 1372 137%
—20
a0
163 163 163
a0
-5 5o -5 [ocfd 50 160 —20 e D a0 —ho —%0 [20 40
(a) PCA 2D Embedding (b) VAE (Run 1) 2D Embedding
1000 12500
57 100001 7 10 57
2000
_ 75001 _ 5 =
33 3s 83 =
o s 5000 2 2
N 2 2 4o =
ﬁzoo{} 1105 2 2500 1105 Ed 110 5
a a]
3
2 of 2 - =
1372 1375 137 =
—4000{
~2500{ -10
16.3
—s000] 163 00! 163
-15
—aboo -2000 [} 200 4000 6000 8000 —4boo —2b00 [2000 4000 6000 -fo =5 Ab 5 10

(d) dAE (Run 1) 2D Embedding

(e) dAE (Run 2) 2D Embedding

(f) dAE (Run 3) 2D Embedding

Figure 4: (a) plots the decoy dataset of the protein with native structure under PDB id laoy in the 2D latent PCA space. The
embedded decoys are color-coded based on their IRMSD from the native structure in a blue-to-red color scheme indicating
lower-to-higher IRMSDs. (b)-(c) show the 2D latent space learned by two different learned vAE models, each starting from
random initial parameters. (d)-(f) do so for three different learned models of dAE[g, 5/,-

W PCA Latent 2-Dim Representation Linear Regression
mm PCA Latent 2-Dim Representation Perceptron

m GAE,, ;, Latent 2-Dim Representation Linear Regression
= dAE,, 5, Latent 2-Dim Representation Perceptron

0.030]

0.025]

0.020]

MSE

o.015]

0.010]

0.005]

Tal100(8) TwaplAl 109 10U(AI The6(A) TeBctR) 202 1bad Ihp dwp 1sap Zhn(D) Zesk laoy lecs su(Al daly
PDB ID

= PCA Latent 2-Dim Representation Linear Regression
= PCA Latent 2-Dim Representation Perceptron

W 0AE,,;, Latent 2-Dim Representation Linear Regression
= AE,, 5, Latent 2-Dim Representation Perceptron

0.030]

0.025]

0.020]

VARIANCE

0.010]

0.005|

0.000!

Tal 1010(8) Twap(A) 1Ug 1dU(A) Inz6(A) IcBc(a) 202 109 —ihhp 1twp 1sap Znsn(d) Zezk laoy lcc> Lisum) laly
PDB ID

Figure 5: MSEs and variance over testing datasets of linear
and nonlinear regression models over 2D representations
learned from PCA and dAE;;, ..

[20] A.D. McLachlan. 1972. A mathematical procedure for superimposing atomic
coordinates of proteins. Acta Crystallogr. A. 26, 6 (1972), 656-657.

[21] K. Molloy, J. V. Min, D. Barbara, and A. Shehu. 2014. Exploring Representations
of Protein Structure for Automated Remote Homology Detection and Mapping
of Protein Structure Space. BMC Bioinf 15, Suppl 8 (2014), S4.

[22] F.Noé and C. Clementi. 2017. Collective variables for the study of long-time
kinetics from molecular trajectories: theory and methods. Curr Opin Struct Biol
43 (2017), 141-147.

[23] M. Osadchy and R. Kolodny. 2011. Maps of protein structure space reveal a
fundamental relationship between protein structure and function. Proc Natl Acad
Sci USA 108, 30 (2011), 12301-12306.

[24] E. Plaku, H. Stamati, C. Clementi, and L. E. Kavraki. 2007. Fast and Reliable
Analysis of Molecular Motions Using Proximity Relations and Dimensionality
Reduction. Proteins: Struct. Funct. Bioinf. 67, 4 (2007), 897-907.

[25] Mary A Rohrdanz, Wenwei Zheng, Mauro Maggioni, and Cecilia Clementi. 2011.
Determination of reaction coordinates via locally scaled diffusion map. 7 Chem
Phys 134, 12 (2011), 124116.

[26] S.T.Roweis and L. K. Saul. 2000. Nonlinear Dimensionality Reduction by Locally
Linear Embedding. Science 290, 5500 (2000), 2323-2326.

[27] E. Sapin, D. B. Carr, K. A. De Jong, and A. Shehu. 2016. Computing energy
landscape maps and structural excursions of proteins. BMC Genomics 17, Suppl 4
(2016), 456.

[28] E. Sapin, K. A. De Jong, and A. Shehu. 2018. From Optimization to Mapping:
An Evolutionary Algorithm for Protein Energy Landscapes. IEEE/ACM Trans
Comput Biol and Bioinf 15, 3 (2018), 719-731.

[29] A. Shehu, D. Barbara, and K. Molloy. 2016. A Survey of Computational Methods
for Protein Function Prediction. In Big Data Analytics in Genomics, K. C. Wong
(Ed.). Springer.

[30] A.Shkurti et al. 2019. CoCo-MD: A Simple and Effective Method for the Enhanced
Sampling of Conformational Space. J Chem Theory Comput 15, 4 (2019), 2587—
2596.

[31] J. Shlens. 2003. A tutorial on Principal Component Analysis. , 16 pages. https:
//www.cs.princeton.edu/picasso/mats/PCA-Tutorial-Intuition_jp.pdf

[32] J. B. Tenenbaum, V. de Silva, and J. C. Langford. 2000. A Global Geometric
Framework for Nonlinear Dimensionality Reduction. Science 290, 5500 (2000),
2319-2323.

[33] G.A. Tribello and P. Gasparotto. 2019. Using dimensionality reduction to analyze
protein trajectories. Frontiers Mol Biosci 6 (2019), 46.

[34] L.J.P.vander Maaten, E. O. Postma, and H. J. van den Herik. 2009. Dimensionality
reduction: A comparative review. J Mach Learn Res 10, 1-41 (2009), 66-71.

[35] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol. 2010. Stacked
Denoising Autoencoders: Learning Useful Representations in a Deep Network
with a Local Denoising Criterion. J Mach Learn Res 11 (2010), 3371-3408.

[36] A.Zaman and A. Shehu. 2019. Balancing multiple objectives in conformation
sampling to control decoy diversity in template-free protein structure prediction.
BMC Bioinformatics 20, 1 (2019), 211. https://doi.org/10.1186/s12859-019-2794-5

[37] G.Zhang, L. Ma, X. Wang, and X. Zhou. 2018. Secondary Structure and Contact
Guided Differential Evolution for Protein Structure Prediction. IEEE/ACM Trans
Comput Biol and Bioinf (2018). https://doi.org/10.1109/TCBB.2018.2873691

https://www.cs.princeton.edu/picasso/mats/PCA-Tutorial-Intuition_jp.pdf
https://www.cs.princeton.edu/picasso/mats/PCA-Tutorial-Intuition_jp.pdf
https://doi.org/10.1186/s12859-019-2794-5
https://doi.org/10.1109/TCBB.2018.2873691

	Abstract
	1 Introduction
	2 Methods
	2.1 Shallow versus Deep AE Architectures
	2.2 AE Training
	2.3 Investigated AE Architectures
	2.4 Evaluation and Implementation Details

	3 Results
	3.1 Comparative Evaluation
	3.2 Visualization of Latent Space
	3.3 Nativeness Encoding in the Latent Space

	4 Conclusion
	5 Acknowledgments
	References

