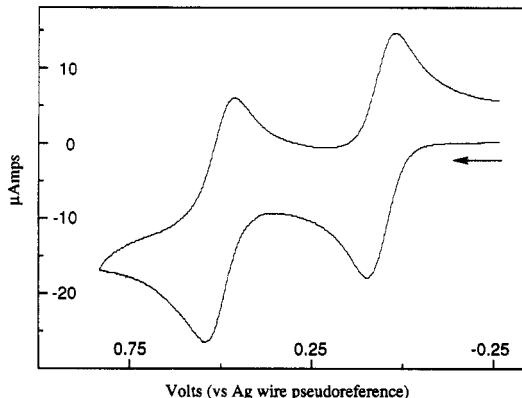


An Isolable Organometallic Cation Radical in Which a C₄ Chain Conducts Charge between Two Chiral and Configurationally Stable Rhenium Termini

Jeffery W. Seyler, Weiqing Weng, Yuanlin Zhou, and J. A. Gladysz*


Department of Chemistry, University of Utah, Salt Lake City, Utah 84112

Received July 30, 1993*

Summary: The deep green, chiral, configurationally stable cation radical (*SS,RR*)- $[(\eta^5\text{-C}_5\text{Me}_5)\text{Re}(\text{NO})\text{-}(\text{PPh}_3)\text{(CCCC)}\text{(Ph}_3\text{P)}\text{(ON)}\text{Re}(\eta^5\text{-C}_5\text{Me}_5)]^{+\cdot}\text{PF}_6^-$ is prepared by comproportionation of the corresponding neutral and dicationic C_4 complexes or Ag^+PF_6^- oxidation of the neutral complex (50–69%). ESR and IR data indicate complete spin delocalization between the two rheniums, and UV/visible/near-IR absorptions are described.

Compounds in which linear unsaturated chains of elemental carbon span two transition metals, $L_nMC_xM'L'n'$, are now available for $x = 1-4$.^{1,2} As x becomes larger, possible analogies with polyacetylenes become apparent.^{3,4} In particular, charge density in oxidized or reduced states might be efficiently delocalized along the MC_xM assembly, which may in turn lead to useful bulk attributes. This, together with exciting recent advances in metallaradical bond activation and catalysis,⁵ and other unique properties of paramagnetic organometallic compounds,⁶ prompted us to seek isolable, odd valence electron C_x complexes.

In a predecessor effort,^{1c} the diamagnetic neutral and dicationic ReC_4Re complexes (SS,RR) - $(\eta^5\text{-C}_5\text{Me}_5)$ - $\text{Re}(\text{NO})(\text{PPh}_3)(\text{C}\equiv\text{C}\equiv\text{C})(\text{Ph}_3\text{P})(\text{ON})\text{Re}(\eta^5\text{-C}_5\text{Me}_5)$ - $((SS,RR)\text{-}2)$ and (SS,RR) - $[(\eta^5\text{-C}_5\text{Me}_5)\text{Re}(\text{NO})(\text{PPh}_3)\text{-}=\text{C}\equiv\text{C}\equiv\text{C}\equiv\text{C}](\text{Ph}_3\text{P})(\text{ON})\text{Re}(\eta^5\text{-C}_5\text{Me}_5)]^{2+}(\text{PF}_6^-)_2$ ($(SS,RR)\text{-}2^{2+}(\text{PF}_6^-)_2$) were isolated and structurally characterized (Scheme I). The rhenium atoms have 18 valence electron, d^6 configurations, and are 7.83–7.63 Å apart. A cyclic voltammogram of the former was recorded under the conditions described in Figure 1. Two chemically reversible one electron oxidations occurred at +0.06 and +0.50 V (ΔE_p , 60 mV).⁷ Thus, the intermediate cation radical, $(SS,RR)\text{-}2^{2+}\text{X}^-$, was viewed as a viable synthetic target.

Figure 1. Cyclic voltammogram of (*SS,RR*)-2 (3×10^{-3} M in 0.1 M $\text{Et}_4\text{N}^+\text{ClO}_4^-$ /CH₃CN; E° (ferrocene) = 0.56 V; scan rate = 100 mV/s).

Scheme I. Synthesis of a Paramagnetic ReC₄Re Complex

From the emf of the half-reactions, a large K_{eq} (2.9×10^7) was calculated for the comproportionation of (SS, RR)-2 and (SS,RR)-2²⁺(X⁻)₂ to (SS,RR)-2²⁺X⁻ (Scheme 1).

- Abstract published in *Advance ACS Abstracts*, September 15, 1993.
- (1) Lead references for $x = 4$: (a) Rappert, T.; Nürnberg, O.; Werner, H. *Organometallics* 1993, 12, 1859. (b) Le Narvor, N.; Lapinte, C. *J. Chem. Soc., Chem. Commun.* 1993, 357. (c) Zhou, Y.; Seyler, J. W.; Weng, W.; Arif, A. M.; Gladysz, J. A. *J. Am. Chem. Soc.* 1993, 115, 8509. (d) See also Worth, G. H.; Robinson, B. H.; Simpson, J. *Organometallics* 1992, 11, 3863. Osella, D.; Gambino, O.; Nevi, C.; Ravera, M.; Bertolino, D. *Inorg. Chim. Acta* 1993, 206, 155.

(2) For lead references for $x = 1-3$, see earlier papers in this series:
 (a) Ramsden, J. A.; Weng, W.; Arif, A. M.; Gladysz, J. A. *J. Am. Chem. Soc.* 1992, 114, 5890. (b) Weng, W.; Ramsden, J. A.; Arif, A. M.; Gladysz, J. A. *Ibid.* 1993, 115, 3824.

(3) (a) Tolbert, L. *Acc. Chem. Res.* 1992, 25, 561. (b) Bally, T.; Roth, K.; Tang, W.; Schrock, R. R.; Knoll, K.; Park, L. Y. *J. Am. Chem. Soc.* 1992, 114, 2440. (c) Jozefiak, T. H.; Ginsburg, E. J.; Gorman, C. B.; Grubbs, R. H.; Lewis, N. H. *Ibid.* 1993, 115, 4705.

(4) A more precise comparison would be to a polymeric chain of sp-hybridized carbons. However, this material, termed "carbyne" or "chaotic", remains poorly characterized. See: Diederich, F.; Rubin, Y. *Angew. Chem. Int. Ed. Engl.* 1992, 31, 1101 and references therein.

Angew. Chem., Int. Ed. Engl. 1992, 31, 1101 and references therein.
 (5) (a) Wayland, B. B.; Ba, S.; Sherry, A. E. *J. Am. Chem. Soc.* 1991, 113, 5305 and references therein. (b) Togni, A.; Rist, G.; Rihs, G.; Schweizer, A. *Ibid.* 1993, 115, 1908.

(6) (a) Baird, M. C. *Chem. Rev.* 1988, 88, 1217. (b) Astruc, D. *Acc. Chem. Res.* 1991, 24, 36. (c) Tyler, D. B. *Ibid.* 1991, 24, 325.

(7) The *SS,RR* diastereomer and samples enriched in the *SR,RS* diastereomer gave identical data.

Figure 2. ESR spectrum of $(SS,RR)\text{-}2\cdot\text{+PF}_6^-$ (CH_2Cl_2 , ambient temperature, 7.0×10^{-3} M).

I). Hence, $(SS,RR)\text{-}2$ (1.1 equiv) and $(SS,RR)\text{-}2^{2+}(\text{PF}_6^-)_2$ were combined in CH_2Cl_2 . Workup gave $(SS,RR)\text{-}2\cdot\text{+PF}_6^-$ as a deep green, analytically pure powder in 50% yield.^{8,9} Reaction of $(SS,RR)\text{-}2$ and Ag^+PF_6^- (1.0 equiv) in toluene also gave $(SS,RR)\text{-}2\cdot\text{+PF}_6^-$ (69%). Solid $(SS,RR)\text{-}2\cdot\text{+PF}_6^-$ was stable for weeks under an inert atmosphere, but some decomposition was evident after several hours in degassed CH_2Cl_2 or CH_3CN . Diastereomeric purity was assayed as described below. The magnetic susceptibility indicated one unpaired electron ($2.1 \mu_B$, Evans NMR and balance methods). Samples enriched in the opposite diastereomer $(SR,RS)\text{-}2\cdot\text{+PF}_6^-$, and with ^{13}C labeled bridges, were similarly prepared.

We sought to probe the electronic structure of $(SS,RR)\text{-}2\cdot\text{+PF}_6^-$, for which many resonance forms are possible (I–III, Scheme I). First, IR spectra showed a single ν_{NO} absorption in both solution and the solid state (cm^{-1} , $\text{CH}_2\text{Cl}_2/\text{KBr}$ 1665/1654 (s)).⁷ The band was between those of $(SS,RR)\text{-}2$ and $(SS,RR)\text{-}2^{2+}(\text{PF}_6^-)_2$ (1623, 1719; CH_2Cl_2), indicating intermediate metal-to-ligand back-bonding. The $\nu_{\text{C=C}}$ value, 1872/1870 (m), was lower than that of $(SS,RR)\text{-}2$ (1964 w) and shifted to 1799 in the $^{13}\text{C}_4$ analog (calcd 1799).

An ESR spectrum (Figure 2) showed a simple undecet with broad individual lines (g 2.02; $A_{\text{iso},\text{Re}}$ 98 G; ΔH_{pp} 49 G).⁷ Since rhenium has two principal isotopes, each with $I = 5/2$ (^{185}Re 37.05%, ^{187}Re 62.93%), a superposition of a sextet of sextets ($^{185}\text{Re}/^{187}\text{Re}$) with two undecets ($^{185}\text{Re}/^{185}\text{Re}$, $^{187}\text{Re}/^{187}\text{Re}$) might have been expected. However, the ^{185}Re and ^{187}Re magnetic moments differ by only 1%. Thus, the three isotopomers give essentially identical spectra.¹⁰ Surprisingly, ESR data are available for only a few other rhenium-centered radicals.^{8a,e} $A_{\text{iso},\text{Re}}$ values of 190 and 156 G can be calculated for two isomeric $^{\bullet}\text{Re}(\text{CO})_3(\text{PCy}_3)_2$ species.^{8a} Significantly, these are approximately twice that of the dirhenium radical $(SS,RR)\text{-}2\cdot\text{+PF}_6^-$.

These data establish that the odd electron in $(SS,RR)\text{-}2\cdot\text{+PF}_6^-$ is fully delocalized between the two rheniums, at least on the very rapid IR and ESR time

(8) For other isolable paramagnetic rhenium compounds, see: (a) Walker, H. W.; Rattner, G. B.; Belford, R. L.; Brown, T. L. *Organometallics* 1983, 2, 775. (b) Crocker, L. S.; Heinekey, D. M.; Schulte, G. K. *J. Am. Chem. Soc.* 1989, 111, 405. (c) Detty, M. R.; Jones, W. D. *Ibid.* 1987, 109, 5666. (d) deLearie, L. A.; Pierpont, C. G. *Ibid.* 1987, 109, 7031. (e) deLearie, L. A.; Haltiwanger, R. C.; Pierpont, C. G. *Inorg. Chem.* 1987, 26, 817.

(9) For structurally characterized $(\eta^5\text{-C}_5\text{H}_5)\text{Cr}(\text{NO})(\text{PPh}_3)(\text{R})^{\bullet}$ and alkynyl iron radicals, see: (a) Herring, F. G.; Legzdins, P.; McNeil, W. S.; Shaw, M. J. *J. Am. Chem. Soc.* 1991, 113, 7049. (b) Bianchini, C.; Laschi, F.; Masi, D.; Ottaviani, F. M.; Pastor, A.; Peruzzini, M.; Zanello, P.; Zanobini, F. *Ibid.* 1993, 115, 2723.

(10) ESR spectra recorded at 77 K, or of the $^{13}\text{C}_4$ analog, did not show additional couplings. However, the IR $\nu_{\text{C=C}}$ value suggests a reduced C=C bond order and resonance contributions by II or III (Scheme I).

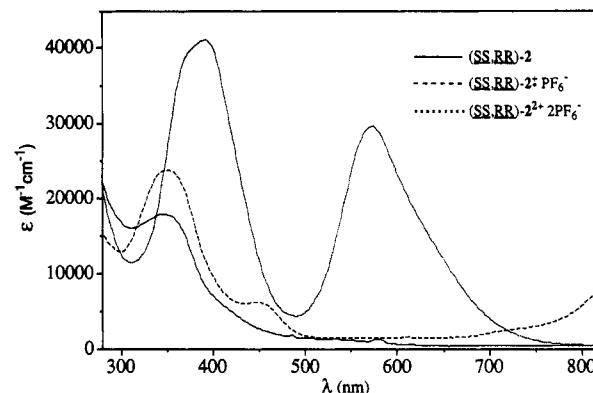


Figure 3. UV/visible spectra of $(SS,RR)\text{-}2$, $(SS,RR)\text{-}2\cdot\text{+PF}_6^-$, and $(SS,RR)\text{-}2^{2+}(\text{PF}_6^-)_2$ (CH_2Cl_2 , ambient temperature, $(1.7\text{--}2.9) \times 10^{-5}$ M).

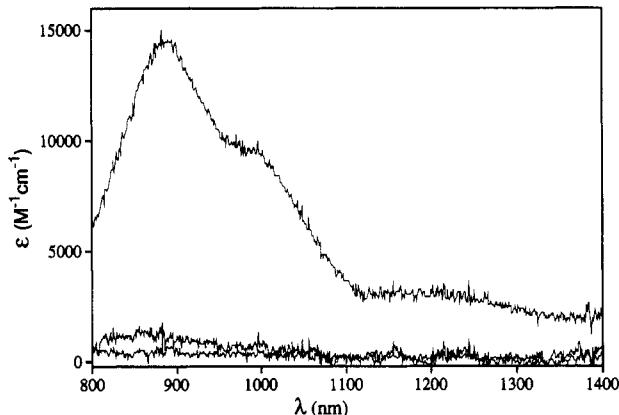


Figure 4. Near-IR spectrum of $(SS,RR)\text{-}2\cdot\text{+PF}_6^-$ (CH_2Cl_2 , ambient temperature, 1.7×10^{-5} M). Background spectra of $(SS,RR)\text{-}2$ and $(SS,RR)\text{-}2^{2+}(\text{PF}_6^-)_2$ are given for comparison.

scales ($10^{-13}\text{--}10^{-9}$ s). An 18/17 valence electron or d^6/d^5 ground state (Ia or Ib) should give two IR ν_{NO} bands and much different ESR spectra. Also, there is extensive literature on d^6/d^5 mixed valence complexes with varying degrees of electronic delocalization and distinguishing optical properties.¹¹ Thus, UV/visible/near-IR spectra were recorded (Figures 3 and 4). Complex $(SS,RR)\text{-}2$ showed an absorption at 350 nm (ϵ 16 900 $\text{M}^{-1} \text{cm}^{-1}$), and $(SS,RR)\text{-}2^{2+}(\text{PF}_6^-)_2$ gave bands at 390 and 578 nm (ϵ 39 600, 28 100). Complex $(SS,RR)\text{-}2\cdot\text{+PF}_6^-$ gave absorptions at 348 and 454 nm (ϵ 24 000, 6400), and unique near-IR bands at 883, 1000, and 1200 nm (ϵ 15 000, 9400 (sh), 3200).⁷ Although further study of these transitions is merited, localized d^6/d^5 complexes generally give a single, weaker, near-IR absorption ($\epsilon \leq 1000$; “intervalence transfer”).¹¹ Interestingly, cation radicals formed from polyacetylene oligomers $\text{R}-(\text{CH}=\text{CH})_n-\text{R}$ also give multiple near-IR bands.^{3b}

To our knowledge, $(SS,RR)\text{-}2\cdot\text{+PF}_6^-$ is the only mixed valence-type complex in which both metals are stereocenters. Thus, configurational stability can be probed.¹² First, CH_2Cl_2 solutions of $(SS,RR)\text{-}2\cdot\text{+PF}_6^-$ and samples enriched in $(SR,RS)\text{-}2\cdot\text{+PF}_6^-$ were stirred for 4 h in the dark. Then sodium naphthalenide was added. Workup gave **2** in 72% yield. NMR analyses (^1H , ^{31}P) showed diastereomer ratios that were identical with those of the samples of **2** originally used to prepare $2\cdot\text{+PF}_6^-$. Hence,

(11) Creutz, C. *Prog. Inorg. Chem.* 1983, 30, 1.

(12) Iron cation radicals $[(\eta^5\text{-C}_5\text{H}_5)\text{Fe}(\text{CO})(\text{L})(\text{CH}_3)]^{2+}$ rapidly lose configuration: Brunner, H.; Fisch, K.; Jones, P. G.; Salbeck, J. *Angew. Chem., Int. Ed. Engl.* 1989, 28, 1521.

2^{+}PF_6^- does not readily epimerize in solution, and configuration must be retained for all reactions in Scheme I.

During the course of our study, Lapinte reported a related FeC_4Fe cation radical, $[(\eta^5\text{-C}_5\text{Me}_5)\text{Fe}(\text{dppe})\text{-}(\text{C}\equiv\text{C}\equiv\text{C})(\text{dppe})\text{Fe}(\eta^5\text{-C}_5\text{Me}_5)]^{+}\text{PF}_6^-$.^{1b} Based upon IR and Mössbauer data, he likewise assigns a delocalized ground state. Also, the $\text{Co}_3\text{C}_4\text{Co}_3$ complex $(\text{CO})_9\text{Co}_3\text{-CC}\equiv\text{CCC}\text{Co}_3(\text{CO})_9$ undergoes two chemically reversible one electron reductions.^{1d} However, $(SS,RR)\text{-}2$ is not reduced at the cathodic limit of Figure 1 (-0.7 V). In summary, the unsaturated ReC_4Re linkage in $(SS,RR)\text{-}2^{+}\text{PF}_6^-$ allows electron delocalization onto any of six atoms over a ca.

7.7-Å span (I-III). This wirelike chiral assembly should be easily accessed in enantiomerically pure form, and with higher carbon chains. These themes, and the reactivities of the ReC_4Re compounds as a function of oxidation state, will be the focus of future reports.¹³

Supplementary Material Available: Textual description of key experimental details (3 pages). Ordering information is given on any current masthead page.

OM9305531

(13) We thank the NSF for support of this research.